

Embedded IOC Applications at the APS

2005-10-06

The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

W. Eric Norum

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Arcturus uCDIMM ColdFire 5282 module

- Motorola/FreeScale ColdFire 5282 processor (64 MHz)
- 16 Megabyte SDRAM (32-bit data path)
- 4 Megabyte flash memory (RTEMS/EPICS/IOC)
- 1/2 Megabyte on-chip flash (bootstrap)
- SO-DIMM form factor
- ~\$200 in small quantities, \$120 each for orders of 500 or more.

Arcturus uCDIMM ColdFire 5282 module

- 10/100 Mb/s Ethernet (10/100 BaseT)
- 3 serial ports (2 RS-232, 1 LVTTL)
- I²C and SPI
- CAN support
- 8-channel, 10-bit ADC
- A24/D16 external bus
- 5 interrupt request lines
- 16 general-purpose I/O lines

EPICS device support

- Ethernet and serial ASYN drivers
- I²C ASYN driver
 - Tested with MAX1619 temperature monitor
 - Easy to add support for additional devices (GPIB-style)
- QADC device support for analog-in record
 - Scanning ("voltmeter") operation
- Watchdog timer device support for binary-out record
 - Hardware reset on failure to process record in 5 second interval
- Flash memory programming device support
 - Remote updates of application using standard EPICS tools
- devLib support
 - 'VME' devices implemented in Altera FPGA (Avalon)

- Altera "System on a programmable chip" technology
- Appears to designer as multiple master/slave bus
- Masters can be active simultaneously (to different slaves)
- Example Master devices
 - NIOS processor (on-chip)
 - ColdFire bridge
- Example Slave devices
 - On-chip memory
 - Off-chip SDRAM
 - Parallel I/O port
 - Application-specific

- Separate ColdFire/Avalon clock domains
- 25-bit Avalon address space (16-bit data bus to ColdFire)
 - ColdFire sees
 - Full VME A24/D16
 - Full VME A16/D16
 - Subset of VME A32/D32
- Full Avalon interrupt support
 - Avalon interrupts 0 to 63 map to VME interrupts 192 to 255
- ColdFire IOCs can use standard devLib VME support
- Very low resource usage (49 ALUTs, 31 registers)
 - Less than 0.1% of the chip used for several APS applications

- SO-DIMM connector for uCDIMM ColdFire 5282 card
- Console (DB-9) and Ethernet (RJ-45) connectors
- DS1619 digital thermometer chip
 - Ambient temperature
 - FPGA core temperature
- Connects to development kit 'expansion prototype' connectors
- Tested with several Altera development kits
 - Stratix II DSP
 - Stratix II NIOS
 - Cyclone II NIOS

uCDIMM mounted on Stratix II DSP kit

SR BPM Prototype – SOPC Builder

Use	Module Name	Description	Clock	Base	End	IRQ
	🗆 coldfirebridge_0	ColdFireBridge	clk			
	ColdFireMaster	Master port		IRQ 0	IRQ 63	۲
	🖂 apseventreceiver_0	APSeventReceiver	clk			
	APSeventReceiver	Slave port		0x01FF8800	0×01FF887F	2
	🖂 filters_0	Filters	clk			
	► Fitters	Slave port		0x01014000	0x010143FF	
	🖂 prototwoadc_0	ProtoTwoADC	clk			
	► ScopeControl	Slave port		0x01014400	0x0101441F	D
	► ScopeRam	Slave port		0x01000000	0×0100FFFF	
	← AdcControlRam	Slave port		0x01010000	0×01013FFF	
	🖂 turnhistory_0	TurnHistory	clk			
	► TurnHistoryControl	Slave port		0x010144A0	0x010144BF	
	TurnHistoryFillMaster	Master port				1
	🖂 sdram_0	SDRAM Controller	clk			
	s1	Slave port		0x00000000	0×00FFFFFF	
	🖃 indirectmaster_0	IndirectMaster	clk			
	└───→ IndirectSlave	Slave port		0x01FFFFC0	0x01FFFFCF	
	IndirectMaster	Master port		F//////A		ł
	🖂 tri_state_bridge_0	Avalon Tri-State Bridge	clk			
	▲ avalon_slave	Slave port				
	tristate_master	Master port				
	∽⊞ cfi_flash_0	Flash Memory (Common Flash Interface)		0x00000000	0×00FFFFFF	

- Avalon APS event receiver
 - EPICS driver identical to vxWorks/VME version
- ASYN 'int32' and 'float64' drivers
 - Acquisition-control waveform record
 - Filter coefficients
 - Clock status
 - PLL reconfigure (programmable delay, 160 ps steps)
- Generic Transient Recorder drivers
 - 'Digital Oscilloscope' display of raw ADC values (4096 points)
 - Turn history (262144 points)

Single-bunch feedback

- Transverse beam stabilization
- Each 88 MHz clock interval (11.26 ns):
 - Sample horizontal BPM ADC (12-bit)
 - Update/remove DC offset
 - Apply 32-tap FIR filter (18-bit coefficients, 18-bit values)
 - Apply per-bunch gain
 - Programmable delay
 - Drive DAC (14-bit)
- ~3×10⁹ multiply-accumulate operations/second
- EPICS drivers for:
 - Filter coefficients, bunch gains
 - Clock status
 - Programmable delay

- Under development
- Replace Power Supply Control Units and BITBUS interface
 - Eliminate obsolescence issues with some components
 - Provide additional capability.
- Will add ~220 IOCs to control system
 - Network segmentation (routers)
 - EPICS channel access segmentation (gateways)
 - Second tier network switches (one per double-sector)
 - Additional terminal servers for console ports

Smart power supply controller

Embedded IOC Applications at the APS

