An idea for access control
enhancement on the EPICS

Accelerator Group
J-PARC, JAERI
April 2004

Why enhancement is required?

o Requirement from high-intensity proton
machine: (Mega-Watt class machine)

There is a target value for effective dose in
J-PARC. (0.25uSv/hour)

In our 50GeV synchrotron, effective dose when

100% loss will be 49uSv/pulse. Loss of a beam

ﬁulse causes waste of machine time for 200
ours.

We are not allowed to mistake on operation at all.
We need anything to reduce possibility of
operation error as low as possible.

So, access control enhancement by using
exclusive operational right is required to achieve
more safe operation.

What is the exclusive operational right?

First come, first serve...

(M Each critical records have a property of access
control called “exclusive operational right.”

@ A client connected to a record at first have an
exclusive operational right (right to write) and can
full access.

® A client connected on and after second have no
exclusive operational right and can not write
access to a record. (but can read access)

1st | opI 2nd |~ Op]

A /

X

I0C

Exclusive operational right

o Requirements:

An operation (write access) to a record
must be permitted only for one operator
at a time.

An o
anot

An o

perational right must be passed to
ner operator.

perational right must be force

released by supervisor if need.

Status of operational right should be
shown for others.

A plan to implement

o Step by step strategy:

Phase 1
Minimum modification to make full use of
existing EPICS resources.

Phase 2
Full spec implementation.

Phase 1.
A tentative implementation

o QOutline:

Changes of operational right is notified b
using CA_PROTO_ACCCESS_RIGHTS packet.

Modify the CA Server program a bit
No modification on CA protocol
No modification on AS files
o Merit
No compatibility problems
No need to modify existing clients
o Demerit
All of records on an IOC may take effect
No legal way to know who has the right

Phase 1 implementation:
procedure to pass a right

o Points:

Pass the right to another client when right
holding channel was disconnected.
(Because existing clients could not take the
right themselves.)

o Procedure:

CAS (CA Server) choose a client within
current connected channels to pass the right
when right holder client was disconnected.

CAS send an ACCESS_RIGHTS packet to the
client.

Phase 1 implementation:
trick to force pass a right

o Points:

Assign an user who has privilege to force release
operational rights.

Force release current operational right when
channel is connected from privileged user.
(Because existing clients could not return the right
themselves.)

o Procedure:

CAS send an ACCESS_RIGHTS packet to right
holder client when the right was released.

CAS choose a client within current connected
channels to pass the right.

CAS send an ACCESS_RIGHTS packet to the
client.

Phase 2:
A proposal implementation

o Qutline:

Add a new command to CA protocol

o new CA_PROTO_RIGHT_CONTROL

o existing CA_PROTO_ACCESS_RIGHTS also used
Add new keywords in AS file

o to specify record need or not need operational
exclusion

o to specify privileged user
o Merit
realize all of requirements
o Demerit

right control dialogue are desired on GUI’s
too hard to update all of existing clients

Phase 2 implementation:
new CA PROTO_RIGHT CONTROL packet

cmd (28) size (variable)

type (variable) count (0)

cid (variable)

sid (variable)

“username\0hostname\0”

the ‘type’ field is abused for sub-command

query(0)

request(1)
return(2)
deny(3)
force(4)

query current status of right.
replay packet have payload

request for a right
return/pass a right

deny request for a right
request for a right (force)

Phase 2 implementation:
procedure to pass a right

@
@

A following client send a RIGHT _CONTROL/request
packet to CAS.

CAS relay the packet to a client who has operational
right. Note that Channel Access has no way of inter-
client communication, so CAS should relay it.

The right holder client returns a

RIGHT _CONTROL/return or /deny reply packet
according to decision of permit or deny.

Note that this decision possibly done by operator.
After right returned, CAS send an ACCESS_RIGHT
packet to the previous client.

CAS relay the RIGHT_CONTROL packet to following
client. And also send an ACCESS_RIGHT packet when
operational right is passed.

Phase 2 implementation:
procedure to pass a right (accept)

following right
client CAS holder
RIGHT_CONTROL
——[reauest
RIGHT_CONTROL
——[request
RIGHT_CONTROL
RIGHT_CONTROL
4& ACCESS_RIGHTS

ACCESS_RIGHTS

Phase 2 implementation:
procedure to pass a right (deny)

following right
client CAS holder
RIGHT_CONTROL
——[reauest
RIGHT_CONTROL
——[request
RIGHT_CONTROL
| fdey

RIGHT_CONTROL
/deny

ey

Phase 2 implementation:
procedure to force release a right

0

A following client send a RIGHT_CONTROL/force
packet to CAS.
Note that following client must have privilege.

CAS relay the packet to a right holder client.
No reply from the right holder client at this

point.
CAS send an ACCESS_RIGHT packet to the right
holder client.

CAS send a RIGHT_CONTROL/return packet and
an ACCESS_RIGHT packet to following client.

Phase 2 implementation:
procedure to force release a right

following right
client CAS holder

RIGHT _CONTROL
/force

T

RIGHT _CONTROL
/force

RIGHT CONTROL -

4/ret* ACCESS_RIGHTS

ACCESS_RIGHTS

Phase 2 implementation:
procedure to return a right

@M Right holder client send a
RIGHT_CONTROL/return packet to CAS.

2 CAS send an ACCESS_RIGHT packet to
client.

Phase 2 implementation:
procedure to return a right

right other
holder CAS clients

RIGHT_CONTROL
/return

T

ACCESS_RIGHTS

Phase 2 implementation:
procedure to query status of a right

@M A client send a RIGHT _CONTROL/query
packet to CAS.

@ CAS returns a RIGHT _CONTROL/query
packet with right holder information.

Phase 2 implementation:
procedure to query status of a right

other

client CAS clients
RIGHT CONTROL
RIGHT CONTROL

/query

| ey

