
An idea for access control
enhancement on the EPICS

Accelerator Group
J-PARC, JAERI

April 2004

Why enhancement is required?

 Requirement from high-intensity proton
machine: (Mega-Watt class machine)
 There is a target value for effective dose in

J-PARC. (0.25µSv/hour)
 In our 50GeV synchrotron, effective dose when

100% loss will be 49µSv/pulse. Loss of a beam
pulse causes waste of machine time for 200
hours.

 We are not allowed to mistake on operation at all.
We need anything to reduce possibility of
operation error as low as possible.

 So, access control enhancement by using
exclusive operational right is required to achieve
more safe operation.

What is the exclusive operational right?

First come, first serve...
① Each critical records have a property of access

control called “exclusive operational right.”
② A client connected to a record at first have an

exclusive operational right (right to write) and can
full access.

③ A client connected on and after second have no
exclusive operational right and can not write
access to a record. (but can read access)

IOC

OPI OPI1st

×

2nd

Exclusive operational right

 Requirements:
 An operation (write access) to a record

must be permitted only for one operator
at a time.

 An operational right must be passed to
another operator.

 An operational right must be force
released by supervisor if need.

 Status of operational right should be
shown for others.

A plan to implement

 Step by step strategy:
 Phase 1

Minimum modification to make full use of
existing EPICS resources.

 Phase 2
Full spec implementation.

Phase 1:
A tentative implementation

 Outline:
 Changes of operational right is notified by

using CA_PROTO_ACCCESS_RIGHTS packet.
 Modify the CA Server program a bit
 No modification on CA protocol
 No modification on AS files

 Merit
 No compatibility problems
 No need to modify existing clients

 Demerit
 All of records on an IOC may take effect
 No legal way to know who has the right

Phase 1 implementation:
procedure to pass a right

 Points:
 Pass the right to another client when right

holding channel was disconnected.
(Because existing clients could not take the
right themselves.)

 Procedure:
① CAS (CA Server) choose a client within

current connected channels to pass the right
when right holder client was disconnected.

② CAS send an ACCESS_RIGHTS packet to the
client.

Phase 1 implementation:
trick to force pass a right

 Points:
 Assign an user who has privilege to force release

operational rights.
 Force release current operational right when

channel is connected from privileged user.
(Because existing clients could not return the right
themselves.)

 Procedure:
① CAS send an ACCESS_RIGHTS packet to right

holder client when the right was released.
② CAS choose a client within current connected

channels to pass the right.
③ CAS send an ACCESS_RIGHTS packet to the

client.

Phase 2:
A proposal implementation

 Outline:
 Add a new command to CA protocol

 new CA_PROTO_RIGHT_CONTROL
 existing CA_PROTO_ACCESS_RIGHTS also used

 Add new keywords in AS file
 to specify record need or not need operational

exclusion
 to specify privileged user

 Merit
 realize all of requirements

 Demerit
 right control dialogue are desired on GUI’s
 too hard to update all of existing clients

Phase 2 implementation:
new CA_PROTO_RIGHT_CONTROL packet

the ‘type’ field is abused for sub-command
 query(0) query current status of right.

replay packet have payload
 request(1) request for a right
 return(2) return/pass a right
 deny(3) deny request for a right
 force(4) request for a right (force)

cmd (28) size (variable)

type (variable) count (0)

cid (variable)

sid (variable)

“username\0hostname\0”()

Phase 2 implementation:
procedure to pass a right

① A following client send a RIGHT_CONTROL/request
packet to CAS.

② CAS relay the packet to a client who has operational
right. Note that Channel Access has no way of inter-
client communication, so CAS should relay it.

③ The right holder client returns a
RIGHT_CONTROL/return or /deny reply packet
according to decision of permit or deny.
Note that this decision possibly done by operator.

④ After right returned, CAS send an ACCESS_RIGHT
packet to the previous client.

⑤ CAS relay the RIGHT_CONTROL packet to following
client. And also send an ACCESS_RIGHT packet when
operational right is passed.

Phase 2 implementation:
procedure to pass a right (accept)

following
client CAS

right
holder

RIGHT_CONTROL
/request

RIGHT_CONTROL
/request

RIGHT_CONTROL
/return

RIGHT_CONTROL
/return ACCESS_RIGHTS

ACCESS_RIGHTS

Phase 2 implementation:
procedure to pass a right (deny)

following
client CAS

right
holder

RIGHT_CONTROL
/request

RIGHT_CONTROL
/request

RIGHT_CONTROL
/deny

RIGHT_CONTROL
/deny

Phase 2 implementation:
procedure to force release a right

① A following client send a RIGHT_CONTROL/force
packet to CAS.
Note that following client must have privilege.

② CAS relay the packet to a right holder client.
No reply from the right holder client at this
point.

③ CAS send an ACCESS_RIGHT packet to the right
holder client.

④ CAS send a RIGHT_CONTROL/return packet and
an ACCESS_RIGHT packet to following client.

Phase 2 implementation:
procedure to force release a right

following
client CAS

right
holder

RIGHT_CONTROL
/force

RIGHT_CONTROL
/force

RIGHT_CONTROL
/return ACCESS_RIGHTS

ACCESS_RIGHTS

Phase 2 implementation:
procedure to return a right

① Right holder client send a
RIGHT_CONTROL/return packet to CAS.

② CAS send an ACCESS_RIGHT packet to
client.

Phase 2 implementation:
procedure to return a right

right
holder CAS

other
clients

RIGHT_CONTROL
/return

ACCESS_RIGHTS

Phase 2 implementation:
procedure to query status of a right

① A client send a RIGHT_CONTROL/query
packet to CAS.

② CAS returns a RIGHT_CONTROL/query
packet with right holder information.

Phase 2 implementation:
procedure to query status of a right

client CAS
other
clients

RIGHT_CONTROL
/query

RIGHT_CONTROL
/query

