Multi-threaded GUI Design

An Object Oriented Approach

= a& = November 19-22

< W -’ EPICS Collaboration Contvels Grewp

GUI Application Requirements

> Responsive GUI

« GUI does not freeze when handling a lengthy
request

> Simple design
+ Reliable
« VIaintainable

iﬁﬁ Ay a& T November 19-22
o -’ EPICS Collaboration Cantrals Grawp

Typical GUI Design

> Program execution is turned over to an event
dispatcher, which calls program event
handlers.

» Keyboard /Mouse
« Window manager
« System clock

« I/O completion

g — November 19-22 ?‘ Z '0/‘

o
< o S EPICS Collaboration

Serial Execution Score Card

> GUI works well when ...
+ Event handlers complete rapidly

> GUI works poorly when ...
+ Event handlers perform lengthy procedures
« Other procedures want the “driver’s seat”

g — November 19-22 ?‘ Z '0/‘

o
< o S EPICS Collaboration

Unresponsive GUI Solutions

> Timer events

> Idle time processing

> Forced event loop iterations
> Multi-tasking

> Multi-threading

iﬁﬁ Ay a& T November 19-22
< W - EPICS Collaboration antrels Grouf

Unresponsive GUI Solutions

> Timer events %3

> Idle time processing

> Forced event loop iterations
> Multi-tasking

> Multi-threading

—_— ag/ — November 19-22

< W - EPICS Collaboration

Caritvals Growp

Unresponsive GUI Solutions

> Timer events %3

> Idle time processing @
> Forced event loop iterations

> Multi-tasking

» Multi-threading

iﬁﬁ Ay a& T November 19-22
< W - EPICS Collaboration antrels Grouf

Unresponsive GUI Solutions

> Timer events %B

> Idle time processing @

» Forced event loop iterations gl’s
> Multi-tasking

> Multi-threading

iﬁﬁ Ay a& T November 19-22
< W - EPICS Collaboration antrels Grouf

Unresponsive GUI Solutions

> Timer events %B

> Idle time processing @

> Forced event loop iterations @
> Multi-tasking R

> Multi-threading

iﬁﬁ Ay a& T November 19-22
< W - EPICS Collaboration antrels Grouf

Unresponsive GUI Solutions

> Timer events %3
> Idle time processing @
> Forced event loop iterations %ﬁ
> Multi-tasking Fro
> Multi-threading s
e T — e 1822 Controts Grouap
O o T EPICS Collaboration

Multi-threaded Objects

> Leaves the job of breaking execution into discrete
chunks up to the OS.

> Exposes public interfaces of objects to other instances
of execution.

> Complexity of threading mechanism hidden from
developer through inheritance.

o
g — November 19-22 ?‘ Z '0/‘

o
< o S EPICS Collaboration

Thread/class Interaction

Class Instance

Thread ‘A’

Write ‘x’

Class Function N

Read ‘5’

Class Function }‘

Thread ‘B’

Class
Data

C

Write ‘5’

A Class Function

Read ‘x’

*‘ Class Function

MMMA;;
o e s’ g

November 19-22

EPICS Collaboration Contrals Group

Sample C++ Code (1 of 2)

/7 This class creates a GUI that handles event
/7 processing 1n 1ts own thread of execution
class GUI : public Thread
{
public:
vold NewData(double *wvalue)
I /- Runs in context of another thread.
77 Perform mutual exclusion and initiates
77 display update with the new wvalue.
}
protected:
int ThreadMain(wvoid)
{ 7~ create GUI and give this thread's
77 control to the event dispatcher.
}
I

AN S g,

o~
- %5 a& o November 19-22
& o o S EPICS Collaboration Contrals Group

Sample C++ Code (2 of 2)

~/~ This is the channel access monitor callback
s/ Toutine.

void Handler(event_handler_args args)

{

GUI *guli = static_cast<GUI *>(args.usr);
guli->NewData(static_cast<double *>(args.dbr)):

}

7 The main thread instantiates a GUI object
/7 and turns execution over to EPICS to

77 monitor for a PV update.

int main(wvoid)

{
GUI myGui;
/7 Set up a channel access monitor and turn
s/ execution over to EPICS.
ca_add_masked_array_event(Handler, &myGui)
ca_pend_event(0);

}

AN S g,

Py
— %5 a& T November 19-22
< W - EPICS Collaboration Cantrals Growp

Example Application

The Beam Raster Display

o~ o~ p—
= a& = November 19-22

< W -’ EPICS Collaboration Contvels Grewp

2D Display

November 19-22

EPICS Collaboration

Cantvals Graup

3D Display

»¢ Beam Raster Display ¥2.0

|
o

ORI
XTI A N

Wi, “u#ﬁ ;.ﬁ.. v n’%ﬂ“’fﬁ‘f

KAORTA?
O
& U0

A...ﬁﬁ#’

N
e

x,.w = ._..w.q ._.. ._..”.v _.._ 1 x.rw : .rM\..v.. .._ a .._.._......_ ._.—.u..,._”.«._ ; ;.Jr,.. 1
- it = Tp = _ﬂ = e PRI .m. = = =
\ ' ® d \) ® - \ ' ® % m m i
e P N
Sl ,.
e e ne .

i ;

NS0

Cantvals Graup

November 19-22

EPICS Collaboration

d&;
g

—

iochlc2 = RasterReader
E ThreadMain P Ot
— ChannelAccess — . E
P . ThreadMain >
I < Monitor < AV
— Selector
C DecodeData Notify > custom Event E
S - N
Fill < — Panel2D
T
— Scope
customEvent d
« Vi - ? L
ey: . _
Box — Object of type indicated by label. Heavy black paintEven % O
outline indicates a normal object. Blue double outline G =——m 0)
indicates an object whose methods run in their own
thread. P
, — Panel3D
Text — Method of a class. Green is a normal method, .
while brown indicates a method that executes in the — Histo3D
context of some other thread. Mutual exclusion is customEvent
required when amber methods access member data \/
of their object. A 47 d
paintGL—
Line — Method invocation. Solid means direct. Dotted -
means indirect. Indirect invocation is performed by
queuing events. The large teal arrow line indicates
direct calls to all event handlers.

A~ a& " November 19-22
< o S EPICS Collaboration

Cartvals Growp

	Multi-threaded GUI Design
	GUI Application Requirements
	Typical GUI Design
	Serial Execution Score Card
	Unresponsive GUI Solutions
	Unresponsive GUI Solutions
	Unresponsive GUI Solutions
	Unresponsive GUI Solutions
	Unresponsive GUI Solutions
	Unresponsive GUI Solutions
	Multi-threaded Objects
	Thread/class Interaction
	Sample C++ Code (1 of 2)
	Sample C++ Code (2 of 2)
	Example Application
	2D Display
	3D Display

