
Next Generation Epics Interface 
To Abstract Data

Jeff Hill, Ralph Lange



In Pursuit of High Level 
Applications

• EPICS: a toolkit approach to process control
• EPICS: a toolkit approach to physics modeling 

and control?
– Physics toolkits integrated with EPICS not routinely shared
– They view EPICS as only a source and destination for data

• Can we better foster development of advanced 
toolkits above and beyond process control?
– Are limitations imposed by EPICS communication 

software interfaces?



Fundamentals We Don't Intend to 
Change

• Publish-and-subscribe communication strategies
• Message-batching capabilities
• Asynchronous callback synchronized with 

external events
• Interfaces encourage proper toolkit structure

– Robust response to loss of communication
– Avoidance of application programmer introduced deadlocks 

– Portability between workstations and embedded systems



Fostering Integration With High Level 
Applications

• Vigorous open source collaboration requires 
well-defined software interfaces breaking 
large effort into moderate sized modular 
components

• EPICS communication software interfaces 
lack capabilities encouraging layering of 
software modules above and beyond the 
requirements of distributed process control. 



Fixed Process Variable Attribute Set

Name Display limits 

Class Control Limits 

Data type Alarm Limits 

Vector dimension Alarm condition 

Value Alarm Acknowledge Transient 

Time Stamp Alarm acknowledge severity 

Units Number of decimal digits 

Multi-state label 
names 

 
 

 



Fixed Process Variable Subscription 
Event Set

Change of state (default dead band) 
Change of state (archiving dead band) 
Alarm condition change of state 

 

 



• Spool physics events off to disk
• Synchronize acquisition of property set with 

trigger event
– Event and property sets not extensible by plug-

ad-play applications
– Advanced toolkits need to define new complex 

data types and event types

Example Fixed Set Deficiency — Data 
Acquisition System



Example Fixed Set Deficiency —
Star Tracking System

• Two parameters set new telescope position
– EPICS can set only one process variable at a time 
– Risk of a less than optimal path to destination

• Ad-hoc methods must be contrived 
– Write position process variables and then write move 

command process variable
• Error prone and thread unsafe interface



Example Fixed Set Deficiency —
Star Tracking System

• Advanced toolkits need to install new complex 
data types initially unknown to core 
components

• This allows modern software communication 
paradigms such as message passing and 
command completion synchronization



Interfacing With Proprietary Data —
Current Practice

• Many self-describing data file formats and 
associated programming interfaces are 
available

• Two methods are commonly used by 
communications systems



Interfacing With Proprietary Data —
RPC systems such as CORBA

• Compiler reads file describing data structures 
and function call interfaces
– produces header files for target language
– produces object code stubs for transferring data on 

and off the wire
• Approach is very efficient at run time



• Cant extract arbitrary subset of elements 
from complex data type
– Purpose of fields in data structure unknown

• No route between arbitrary data structures in 
different programs

– Impacts flexibility of publish and subscribe 
systems such as EPICS

• Difficulties when multi-dimensional array 
bounds change at run time

Interfacing With Proprietary Data —
RPC systems such as CORBA



Interfacing With Proprietary Data —
GDD and CDEV

• C++ class encapsulates proprietary data
– Data stored internally as a union, or a linked list 

of unions if the data is compound
– Each entry in the data is assigned a property 

type such as “units”, “limits”, or “time-stamp”
• Extraction of arbitrary property subset
• Insertion of new properties at any time



• Large storage and execution overhead 
– Data description stored with every data instance
– GDD has modal, complex support library

• Users find approach daunting
– Frequent conversion between native storage 

formats and system’s imposed data container
– GDD efficiently indexes data by property 

identifier — but only in certain modes

Interfacing With Proprietary Data —
GDD and CDEV



• Toolkits exporting data derive from C++ abstract 
base class interface

• Programs aware of interface can examine or 
modify the data

• Support library provides functions for comparing, 
converting, copying between dissimilar data sets

• Toolkits export data in native format
• Data description can be fixed at compile time

Interfacing With Proprietary Data —
Another Approach



Interfacing With Proprietary Data —
Another Approach

• Compared with GDD and CDEV
– Less complex support library
– Data format not translated when  crossing 

system interfaces
– Lower storage and execution overhead

• Data description may be stored separately from each 
data instance



• Compared with RPC systems
– No compiler that generates stubs moving data 

on and off the wire
– RPC stubs are more efficient
– Similar per-instance storage overhead
– RPC systems do not have facilities to extract 

property subset

Interfacing With Proprietary Data —
Another Approach



Conclusions

• EPICS includes a comprehensive set of 
process control communications primitives

• But we aspire to cultivate advanced 
integration of high-level modular toolkits



Conclusions

• The fundamental endpoint for EPICS 
communication is the process variable with 
a fixed set of properties and subscription 
update events

• Advanced toolkits need to define new 
complex data types and new subscription 
update events initially unknown to system 
components



Conclusions

• New C++ based interface to arbitrary 
complex data eliminates existing barriers

• Important distinctions are revealed when 
comparing with existing practice
– Subset of properties can be extracted from 

arbitrary data
– Interface does not impose a storage format
– Structure of the data can be efficiently 

determined at compile time


