EPICS Data Archiving --- Channel Archiver

Aug. 2001

Tatsuro NAKAMURA @KEK

1. Overview of Data Archiving

2. Quick Tour to Channel Archiver

3. ArchiveEngine (More Details)

4. Retrieval

ArchiveExport

CGIExport

casi (Channel Archiver Scripting Interface)

LibIO
5. Summary

Ref. Channel Archiver web page:

http://mesa53.lanl.gov/lansce8/Epics/PC/Archiver/Default.htm
All figures in these slides are taken from there.

1. Overview of Data Archiving

AR --- The old archiving system for EPICS

Data archiving:
AR (GUI) or AR_cmd (command line)

Data retrieval:

arr (GUI) or ARR_cmd (command line)

Channel Archiver --- A new archiving system for EPICS

Written and maintained by Kay Kasemir @ LANL

Available for Win32 and many Unix platforms

Consists of several programs and API libraries.

Components of the Channel Archiver

[image: image1.png]
2. Quick Tour to Channel Archiver

Step 1 --- Create a configuration file

A simple example (file name: “excas.grp”)

Channels from excas

fred 5

freddy 5

jane 1

janet 0.1 Monitor

The basic layout of the configuration file is:

Comment. Empty lines are also allowed

<channel name> <scan period> [Monitor] [Disable]

Archiving modes --- periodically or monitor

Each channel can be configured either periodically or monitor.

The layout of each line in the configuration file is:

<channel name> <scan period> [Monitor] [Disable]

The <scan period> is given in second.

Periodically --- without “Monitor” option

The channel is archived every <scan period>.

Monitor --- with “Monitor” option

The channel is archived on every changes

<scan period> should be estimated rate.

(It is used to allocate internal buffers.)
Step 2 --- Start the ArchiveEngine

The ArchiveEngine program is run from the command line.

Minimal command to start the ArchiveEngine:

ArchiveEngine excas.grp

The ArchiveEngine will create a directory file.

In this minimal case, its name will be “freq_directory” (default).

All retrieval tools refer the archive data by this file name.

Without argument, the ArchiveEngine shows usage information.

Version 1.6.1, built Mar 6 2001, 19:46:55

USAGE: ArchiveEngine [Options] <config-file> [<directory-file>]

Options:

 -port <port> WWW server's TCP port (default 4812)

 -description <text> description for HTTP display

 -log <filename> write logfile

 Default directory-file: 'freq_directory'

Step 3 --- Access to the ArchiveEngine

The ArchiveEngine has a built-in HTTP server for status and

configuration information.

Use any web browser and point it to http://<hostname>:<port>

Default port is 4812 and if you are on the same machine, the URL is:

http://localhost:4812

The main page[image: image4.png] looks like …
Step 4 --- Stop the ArchiveEngine

To stop the ArchiveEngine, access to http://<hostname>:<port>/stop

There is no link to the stop URL. (hidden !)

For example, manually type following URL into your web browser.

http://localhost:4812/stop

Password protection is also available. (optional)

The password is coded in the ArchiveEngine at compile time.

Step 5 --- Check and retrieve the archive data

ArchiveManager is a command-line tool to maintain the archive files.

Using ArchiveManager, you can get some information of the archive

Examples:

List all channel names

ArchiveManager freq_directory

Show time range of archive

ArchiveManager freq_directory -i

Show time of first/last sample for specific channel

ArchiveManager freq_directory –c janet -i

You can also get archive data from the archive file.

Examples:

List all values for specific channel

ArchiveManager freq_directory –c janet

With time range

ArchiveManager freq_directory –c janet

-s ”08/16/2001 20:00:00” –e ”08/16/2001 20:15:00”

Sample output:

08/16/2001 20:10:35.439028903 23.5

08/16/2001 20:10:40.402837849 23.6

08/16/2001 20:10:41.139231000 - Archive_Off

ArchiveManager is convenient to check the contents of the archive file

athough other tools (ArchiveExport, CGIExport etc.) are more useful

for data retrieval.

Without argument, the ArchiveManager shows usage information.

Archive Manager version 1.6.1, built Mar 1 2001

USAGE: ArchiveManager [Options] <archive>

Options:

 -info Show archive information

 -test Test archive for errors

 -channel <channel> Specify channel name

 -match <regular expression> List matching channels

 -Match <regular expression> Dump values for matching channels

 -start <time> Start time as mm/dd/yyyy hh:mm:ss[.nano-secs]

 -end <time> End time (exclusive)

 -xport <new archive> export data into new archive

 -repeat_limit <seconds> remove 'repeat' entries beyond limit (export)

 -FileSize <days> Days per binary data file (export, binary file format detail)

 -headers <channel> show headers for channel

 -Output <channel> output ASCII dump for channel

 -Input <ascii file> read ASCII dump for channel into archive

 -Compare <target archive> Compare with target archive

 -Seek Seek test (use with -start)

3. ArchiveEngine (More Details)

Group

You can define several “group” configuration files and include them

from one master file.

Example:

My Master file ”main.grp”

!group powersup.grp

!group vacuum.grp

This mechanism is not hierarchical.

You can define only one flat list of groups.

The group is useful for “Disable” mechanism.

“Disable” option --- enable/disable archiving dynamically

A Disable channel will disable the current group of channels.

Example -- "powersup.grp" configuration file:

 # Power Supply Config

 # Most channels scanned every 30 seconds.

 # Disable this group when "PS_Off" != zero

 PS_Off 1 Monitor Disable

 PS_Setpoint 30

 PS_Readback 30

 PS_Current 30

The disabling channel “PS_Off” will stop archiving of the group

when it has a non-zero value.

Archive Files

ArchiveEngine creates a directory file and data files.

Directory File

The ArchiveEngine is started with the name of a directory file

Default name is “freq_directory”.

Data files

The data is stored in data files.

By default, the ArchiveEngine creates one data file per day.

The data file has the name such as “20010807-000000”.

You cannot directly use a single data file.

Always the combination of all data files and the directory file is used.

Retrieval tools refer the archive data by the name of the directory file.

Internal Format of the directory file and data files

[image: image2.png]
More than one ArchiveEngine

You can run multiple ArchiveEngines on the same computer.

But they must

1. be in separate directories

(Each directory holds a directory file and data files)

2. use a different port number for the built-in HTTP server

(run with different “-p <port>” options)

Options for the configuration file

……

Comment, ignored just like empty lines

!group <filename>

read “group” configuration file

!write_period <seconds>

Time between writes to disk (default: 30sec.)

More advanced options (see manual for detail)

!defauklt_period <seconds>

!ignore_future <hours>

!get_threshold <seconds>

!buffer_reserve

!file_size <hours>

Online configuration

“Config” page of built-in HTTP server allows you to add new groups

and add channels.

You can also “upgrade” a channel to a smaller scan period or

“Monitor” mode by adding it again.

But you cannot remove channels.

When configuration is changed via the Web interface,

the original configuration files are not changed.

Instead, a new set of configuration files is written in a “cfg” subdirectory.

(If “cfg” subdirectory does not exist, changes are not saved.)

The “Config” page[image: image5.png] looks like …
Performance

You can find benchmark results in the Channel Archiver　web pages.

They depend on the Low Level I/O configuration and compile options.

 Machine
Settings
Values/sec. written

 800Mhz NT4.0
fd
35000

 800Mhz NT4.0
FILE
20000

 500Mhz RH 6.1
debug
60 (!)

 500Mhz RH 6.1
FILE, -O
14500

 2x333Mhz, RAID5
debug
42 (!)

 2x333Mhz, RAID5
FILE, -O
8600
Ref. http://mesa53.lanl.gov/lansce8/Epics/PC/Archiver/doc/engine/perform.htm

Note:
fd
"fd" file descriptor I/O (open, write, lseek, ...)

FILE
"FILE *" calls from stdio (fopen, fwrite, ...).

debug
compiled with debug information

-O
compiled with optimizing –O flag

4. Retrieval

There are several retrieval tools.

Some tools are platform specific.

You can also develop new retrieval programs

using scripting language (tcl, Python, Perl)

or

using C++

The following slides introduce some retrieval tools.

For the other tools, see the manual.

ArchiveExport

ArchiveExport is a command line tool for viewing archive data.

It extracts data, then create files in several formats.

Create spreadsheet file (tab-separated ASCII text file)

Example:

ArchiveExport –start ”08/16/2001 20:00:00”

-end ”08/16/2001 20:15:00” freq_directory janet

Create data file for GNUplot

Use –gnuplot or –Gnuplot options

Create data file for Matlab

Use –Matlab option

CGIExport

CGIExport is a plug-in for web servers.

Users can access archive data with any web browser

from any computer on the network.

Setup:

Configure the security of the network and web server

Install GNUplot

Create and maintain web pages

…… Not so easy.

Sample HTML files are available in the distribution package.

[image: image6.png]

[image: image7.png]

[image: image8.png]

casi (Channel Archiver Scripting Interface)

casi provides scripting languages with access to archive data.

Currently tcl, Python and Perl are supported.

Example Python script --- dump all values for a given channel
import casiTools, casi

archiveName,channelName=("../../Engine/Test/freq_directory","fred")

archive = casi.archive()

channel = casi.channel()

value = casi.value()

archive.open (archiveName)

archive.findChannelByName (channelName, channel)

channel.getFirstValue (value)

while value.valid():

 print casiTools.formatValue (value)

 value.next()
More Examples with GUI

[image: image9.png]
XYPloy.py (

ListBrowser.py

 (
[image: image10.png]

LibIO --- Channel Archiver I/O Library

API to access the archive data

All Channel Archiver Tools are based on this I/O library.

C++ library

OOP style API design

Extensible to other formats by defining derived classes

(ex. some SDDS-based format, an RDB interface, …)

Currently BinArchive and MultiArchive are supported.

Relation of the basic interface classes in LibIO

[image: image3.png]
BinArchive Class

Binary Archive is the ordinal archive files that ArchiveEngine creates.

MultiArchive Class

If you want to look at more than one archive, create a text file like this:
 master_version=1

 # First check the "fast" archive

 /archives/fast/dir

 # Then check the "main" archive

 /archives/main/dir

 # Then check Fred's "xyz" archive

 /home/fred/xyzarchive/dir

Then use the name of this file instead of an individual directory file.
5. Summary

· EPICS Channel Archiver consists of the collection of tools.

· Most of the tools are available for many platforms.

· ArchiveEngine requires an ASCII configuration file.

· ArchiveEngine has a built-in HTTP server.

· ArchiveExport is a simple command-line tool to create spreadsheets, GNUPlot and Matlab data files.

· CGIExport allows you to access the archive data through web.

· Scripting languages (tcl, Python, Perl) has interface to access the archive data.

· All tools are built on LibIO.

