## Electric Vehicles

Battery Electric Vehicles, and Hybrid Electric Vehicles Ron Chestnut, EV Addict

August, 2001

#### Topics of Discussion

- California Air Resources Board
- Pollution and Health
- Zero Emission Vehicles
- Mandates and Free Market
- Hybrid Vehicles

#### CARB

- Part of mission is ZERO Emission
  Vehicles
- ZEV Mandate initiated in 1990
- Original goal was 2% in 1998
- Next goal was 10% in 2003
- Current goal is 4% in 2003
- Why Mandates?

#### **Auto Advances**

- Safety Glass
- Seat Belts
- Smog Control
- Air Bags
- Rear-view Mirrors
- Low speed impact effects
- Motor not entering cabin on crash

#### **Some Acronyms**

- EV Electric Vehicle
- ZEV Zero Emission Vehicle
- ICE Internal Combustion Engine
- LEV Low Emission Vehicle
- ULEV Ultra Low Emission Vehicle
- SULEV Super Ultra Low Emission Vehicle
- CARB California Air Resources Board

#### **Some Numbers**

- One kWh = 3.6 x 10^6 Joules =3410 BTU
- 100 kW = about 135 Horsepower
- 120,000 BTU = about 35 kWh or about 1 Gallon of gas
- EV-1 consumption is about 4.5 miles/kWh or 120 mpg or 2 liters/100 km equivalent

#### **1999 Smog Watch**



Source: DOE Fuel Cell Presentation

#### **Reactive Organic Gases**

#### **1995 Data - ARB Pollution Inventory**

| Source            | Tons/day  | Percent           |
|-------------------|-----------|-------------------|
| Stationary        | 735 (228) | 21% ( <b>6%</b> ) |
| Area-wide         | 779       | 22%               |
| Gasoline Vehicles | 1588      | 47%               |
| Other Mobile      | 385       | 11%               |
|                   |           |                   |
| Total             | 3487      | 100%              |
| Total Auto        | 1816      | <u>53%</u>        |

#### **1960 and ZEV**





#### CA Pollution Standards

Recent evolution of passenger car exhaust emissions 17 87 For a closer look at earlier HC and NOx Emissions (g/mi) 3.0 4 evels. 8 click here Emissions (g/mi) 0.8 2.4 0.6 1.8 For a closer look at 0.4 1.2 ZEV, click here 0.2 0.6 0 0 1993 Primary California and TEV LEV ULEV ZEV 1960s 1993 Federal Federal Tier 1 HC CO NOx

Source: DOE Fuel Cell Presentation

# **Standards' Data** (grams/mile)

| Category | NMOG | СО  | Nox | PM  | нсно |
|----------|------|-----|-----|-----|------|
| Tier I   | .31  | 4.2 | .6  |     |      |
| TLEV     | .156 | 4.2 | .6  | .08 | .018 |
| LEV      | .090 | 4.2 | .3  | .08 | .018 |
| ULEV     | .055 | 2.1 | .3  | .04 | .011 |
| SULEV    | .010 | 1.0 | .02 | .01 | .004 |

Source: www.dieselnet.com/standards/us/light.html

#### Fuel Cycle Emissions

- 5 of the top 7 stationary pollution sources are refineries in the Bay area
- For perfectly functioning ULEV cars, 1/3 of the pollution is upstream
- Gasoline itself is the problem!

## **Gasoline Supply**



#### U.S. Has Growing Dependence on Imported Oil



Source: DOE Fuel Cell Presentation





#### A few other EVs

#### Ford Ranger

#### Toyota RAV4





#### **EV Production**

| Manufacturer | Model         | Range (miles) | # on road |
|--------------|---------------|---------------|-----------|
| Chrysler     | EPIC Minivan  | 97            | 97        |
| Toyota       | RAV4          | 142           | 486       |
| Nissan       | Altra Wagon   | 120           | 37        |
| Honda        | EV+ 4 Seater  | 125           | 330       |
| Ford         | Ranger Truck  | 94            | 308       |
| GM           | EV1 Sport Car | 152           | 500       |
| GM           | S-10 Truck    | 99            | 76        |

Source: CARB 2000 Preliminary Report

#### City Electric Vehicles (CEV) Nissan Hyper-mini

#### **Ford Th!nk City**

# 

Speed < 60 mph

Range about 50 miles

#### Neighborhood EVs (NEV)





Product images may not be exact.



Speed < 25 mph

Range about 25 miles

#### **EV Pollution**

| Pollutant                 | grams/mile | % of ICE |
|---------------------------|------------|----------|
| Total organic gases       | .011       | 0.5%     |
| Reactive organic gases    | .002       | 0.13%    |
| Carbon monoxide           | .015       | 0.08%    |
| Nitrogen oxides           | .028       | 1.14%    |
| Sulfur oxides             | .0032      | 4.9%     |
| Total particulates        | .0025      | 2.6%     |
| Particulates < 10 microns | .0020      | 2.6%     |

From: Pollution data/Total miles driven/Total power generated 1996 / 1997 P. Karn, EV Driver These numbers are an approximation and most probably low, maybe up to a factor of two.

#### **Electric Production Mix**

- Old Fossil plants efficiency about 33%
- New plants will be combined-cycle gas plants, about 50-60% efficient
- Oil to refined gas efficiency is about 80%



Non-fossil is 22% hydro, 15% nuclear, 12% geothermal, solar, wind, and biomass.



#### Efficiency Comparison

- Oil to RefinedGas 80%
- Tank to Wheels 16%
- Energy Efficiency
  13%

- Power Plant to Plug - 33%
- Battery to Wheels 80%
- Energy Efficiency
  26%

#### EV Driver Enthusiasm

- Minimal Maintenance
- 1-2 cents per mile operating cost
- Quick and fast
- Wonderful support teams
- Pride in not polluting
- The wave of the future

#### Auto Maker Reluctance

- First Wave will be least profitable
- Final Configuration not yet clear
- Disruptive Technology Innovation
- Too expensive!?
- Range an issue?

## **Corporate Foresight**

"The telephone has too many shortcomings to be seriously considered as a means of communication. The device has no value to us."

Western Union Internal Memo, 1876

#### **Generic Battery Data**

| Technology | Energy<br>Density<br>W-hr/kg | Power<br>Density<br>W/kg | Current<br>\$/kW-hr | Future<br>\$/kW-hr |
|------------|------------------------------|--------------------------|---------------------|--------------------|
| Lead Acid  | 35                           | 412                      | 150                 | 100                |
| NiCd       | 50                           |                          | 300                 | 300                |
| NiMH       | 80                           | 220                      | 1000                | 200                |
| Li         | 183                          |                          |                     |                    |

Source: www.madkatz.com; hearsay, manufacturers, EE-times.

## **Hybrids**

- Electric & Other (ICE, Turbine, ...)
- Parallel or Series
- ICE dominant
- Electric dominant
- ZEV Credits

#### 1917 Woods Dualpower

2 Seat Sport CoupeGas/Electric Hybrid4 cylinder engine with electric boost

The electric motor/generator is on the end of the crankshaft. It provides electric assist during acceleration and acts as a generator to charge the batteries during braking and when the car is operating under gas power. The car could operate in pure electric mode up to 15 mph. Then the gas engine kicks in and takes over. When you stop, the gas motor shuts off.

#### **Series Hybrid**



Source: 1998 GM ATV Glossy

## **Parallel Hybrid**



Source: 1998 GM ATV Glossy



### **HEV Classifications**

Charge Depleting (Battery Dominant)

#### Parallel

Significant ZEV Range Grid charging Limited APU use Simple Efficient APU use

#### Series

Significant ZEV Range Grid charging Limited APU use Simple Less efficient APU use

Charge Sustaining Minimal ZEV range No grid charging Constant ICE use n/a

#### Performance Highlights (EV-1 Variations)

|               | NiMH    | Series       | Parallel     | Fuel Cell |
|---------------|---------|--------------|--------------|-----------|
| Fuel Economy  | N/A     | 60 mpg       | 80 mpg       | 80 mpg    |
| Emissions     | ZEV     | ULEV         | LEV          | ULEV      |
| Range (miles) | 160 ZEV | 350 (40 ZEV) | 550 (40 ZEV) | > 300     |
| 0-60 time     | 8.5     | 9            | 7            | 9         |
| Horsepower    | 137     | 137          | 219          | 137       |
| Weight (Ibs)  | 2,850   | 2,950        | 3,200        | 3,030     |
| Seating       | 2       | 4            | 4            | 4         |

Source: 1998 GM ATV Glossy

## **Current Hybrids**

| Make &<br>Model  | Emissions<br>Class | Secondary<br>Energy        | Primary<br>Propulsion      | Secondary<br>Propulsion     |
|------------------|--------------------|----------------------------|----------------------------|-----------------------------|
| Toyota<br>Prius  | SULEV<br>(target)  | .18kWh<br>useful<br>energy | Gasoline<br>ICE,<br>(43kW) | Electric<br>Motor<br>(30kW) |
| Honda<br>Insight | ULEV               | .09kWh<br>useful<br>energy | Gasoline<br>ICE (54kW)     | Electric<br>(10kW)          |

#### **Fuel Cells**

- Catalysts ionize hydrogen
- Recombination provides energy
- Hydrogen is the best fuel
- Ethanol, Methanol, Gas ???
- Lots of current research
- Many demonstration vehicles
- Promise for maybe 2005?

## **Fuel Cell Hybrid**



Source: 1998 GM ATV Glossy

## **EV Myths**

- Fuel Cells make EVs Obsolete EV still the gold standard
- Consumers will not buy EVs Real problem is supply
- EVs are too expensive Chicken and Egg
- Performance Inadequate
  150 Miles/ 0-60 in 8 seconds

#### An EV Plan for China

- Develop mass-produced advanced batteries for EVs
- Use these locally instead of old, very dirty ICE vehicles.
- Work with Korea or Japan, providing batteries for cars
- Sell these on the US market

#### A Stone Age Analogy

The stone age ended because a better technology was discovered, not because people ran out of rocks.

People speak of having 40 or 50 years of fossil fuel (coal & oil) left. Let us not wait until it runs out before we use better technology!

#### Literature

- Jack Doyle: "Taken For A Ride"
- John Motavalli: "Forward Drive"
- J. Decicco, J. Deluchi: "Technology, Energy, and Environment: How Far Can Technology Take Us?
- M. Shnayerson: "The Car That Could; the Inside Story of General Motors' Revolutionary Electric Vehicle"