
Experimental Physics and Industrial Control System (EPICS)

Sequencer and State Notation Language

Tutorial Slides

Bob Dalesio & Andy Kozubal

August 11, 1999

Outline

• What is state notation and what function does it

serve

• Components of a state notation program

• Building, running and debugging a state notation

program

• Additional Features

• Some Notes on the Runtime Sequencer

Purpose

• A language to facilitate sequential programming in
the EPICS real-time environment

• Fast execution - compiled code

• Programming interface to extend EPICS in the
real-time environment

• Easy for first-time user to learn and apply

Common Uses of the State Notation Language

• Provide automated start-up sequences like vacuum
or RF where subsystems need coordination

• Provide fault recovery or transition to a safe state

• Provide access to the Unix file system for
save/restore or restoration of parameters on reboot

• Provide automatic calibration of equipment

State Transition Diagram

State A

State B

Event

Action
Transition

A to B

From State A:
when event occurs

perform action

then enter state B

Example of a STD

Start

Light is off

Light is on

v > 5.0

Turn light on

v < 4.5

Turn light off

State Definitions and State Transitions
state light_off
{

when (v > 5.0)
{

/*
* turn light on
*/

} state light_on
}

state light_on
{

when (v < 4.5)
{

/*
* turn light off
*/

} state light_off
}

Channel Access in SNL
Variables assigned to a channel

short light;
assign light to "PS1:Lt_High";

/* turn light on */
light = TRUE;
pvPut(light);

/* turn light off */
light = FALSE;
pvPut(light);

Asynchronous Channel Access
The "monitor" concept

float V1;
assign V1 to "PS1:Vout;

monitor V1;

when (V1 > 5.0) { . . .

A Complete Program
program example
float V1;
assign V1 to "PS1:Vout;
monitor V1;
short light;
assign light to "PS1:Lt_High";
ss volt_check
{

state light_off
{

when (V1 > 5.0)
{

/* turn light on */

light = TRUE;
pvPut(light);

} state light_on
}

state light_on
{

when (V1 < 4.5)
{

/* turn light off */
light = FALSE;
pvPut(light);

} state light_off
}

}

SNL: General Structure and Syntax

program program_name

declarations

ss state_set_name

{

state state_name

{

when (event)

{

action_statements

} state new_state

when...

state state_name

{

}

Declarations
int variable_name;
short variable_name;
long variable_name;
char variable_name;
float variable_name;
double variable_name;
string variable_name; /* this is used for db strings */

int variable_name[array_length];
short variable_name[array_length];
long variable_name[array_length];
char variable_name[array_length];
float variable_name[array_length];
double variable_name[array_length];

assign var_name to database_name;
*assign var_name[] = {db_name1, db_name2, db_name3};
monitor var_name;

Events
when (any C expression)

Possible events:
Change in value of a variable

A time delay:
delay(delay_in_seconds)

An internally generated event (event flag):
efTest(event_flag_name)
efTestAndClear(event_flag_name)

Change in the channel access connection status.

Actions

any C expression

%% escape one line of C code

%{
escape any number of lines of C code
}%

Built-in action function:
pvPut (variable_name);
pvGet (variable_name);
efSet (event_flag_name);
efClear (event_flag_name);

Event flags
1. Declaration:
evflag event_flag_name;

2. Communicate between state sets:
efSet(event_flag_name);
efTest(event_flag_name)
efClear(event_flag_name)
efTestAndClear(event_flag_name)

3. Notification when a monitor completes:
sync variable_name event_flag_name;

efTest(event_flag_name);

Building a state program
1. Use editor to build the source file: file name must end

with ".st", e.g. "example.st".

2. Compile the state program to produce C code:
snc example.st

This produces the file "example.c".

3. Compile "example.c" with the C compiler:
make example.o

This produces the file "example.o", which is ready to be
loaded by VxWorks.

The C preprocessor is generally used before snc is executed.

An applications Makefile simplifies these steps.

Executing a state program
Assume that VxWorks is running in an IOC and the proper database is

loaded. Also, assume the UNIX working directory is the same as
where to IOC was booted.

1. Telnet to the IOC:
telnet ts1
log in
ts1> you should get a prompt

2. Load the object module:
ts1> ld < example.o

3. Execute the state program:
ts1> seq &example this is the program name

 This will create one task for each state set.

4. Exercise the program.

5. Print a summary of state programs
ts1> seqShow

6. Delete any one of the tasks that were created in step 3.
ts1> td "example"

Hints for debugging a state program
Currently there is no source-level debugger for sequencer.
1. Use printf statements in program:

printf("entering state: light_on");
2. Manually enter database values using CAU:

cau: put hv03:temp1 150
3. Print database values using CAU:

cau: get hv03:temp1
150.00

4. Use special state program query commands:
seqShow

displays information on all running state programs
seqShow "example"

displays detailed information on program
seqChanShow "example"

displays information on all channels
5. Use spy to find infinite loops with no delays

Example of seqShow output

seqTest> seqShow

Program Name Task ID Task Name SS Name

mixTest 26 mixTest generate_waveform

29 mixTest_1 level_det
30 mixTest_2 test_status

31 mixTest_3 periodic_read

32 mixTest_4 mon_array

mixTestX 33 A_seq alpha

conTest 35 conTest conTest

value = 0 = 0x0

Example of seqShow Output
seqTest> seqShow "mixTest"
State Program: "mixTest"
initial task id=26=0x1a

task priority=1
number of state sets=5
number of channels=6
number of channels connected=6
options: async=0, debug=1, reent=1, conn=1, newef=1
log file fd=16
log file name="mix.log"

Hit RETURN to continue
State Set: "generate_waveform"
task name=mixTest; id=26=0x1a
First state = "start"
Current state = "gen_wf"
Previous state = "gen_wf"
Time state was entered = 269.4 seconds)
Elapsed time since state was entered = 0.0 seconds)
Number delays queued=1
timeout[0] = 269.5 seconds

Hit RETURN to continue
...........................

Additional Features
1. Connection management:

when (pvConnectCount() != pvChannelCount())
when (pvConnected(Vin))

2. Macros:
assign Vout to "{unit}:OutputV";
(must use the +r compiler options for this)
ts1> seq &example, "unit=HV01"

3. Compiler options:
+r make program reentrant
-c don't wait for all channel connections
+a asynchronous pvGet()
-w don't print compiler warnings

4. Pass parameters to programs at run time:
pStr = macValueGet("bias");
ts1> seq &example, "bias = 2.55"

5. Access to alarm status and severity:
pvStatus(var_name)
pvSeverity(var_name)

The Run-Time Sequencer

1. The sequencer executes the state program in the VxWorks
environment.

2. The sequencer supports the event-driven execution; no polling
needed.

3. Each state set becomes a VxWorks task.
4. The sequencer manages connections to database channels through

"channel access".
5. The sequencer provides support for channel access (put, get, and

monitor).
6. The sequencer supports asynchronous execution of delay and

event flag functions.
7. Only one copy (object module) of the sequencer is required on

each IOC.
8. Query commands display information about executing state

programs.

