Channel Access Portable Server

Application Interface (API)

Tutorial

Philip Stanley
August 20, 1999
EPICS Release 3.13

EPICS Release: R3.13

Copyright

Experimental Physics and Industrial Control System (EPICS)
Copyright, 1995, The University of California, The University of Chicago

Portions of this material resulted from work developed under a U.S.
Government contract and are subject to the following license: For a period of
five years from March 30, 1993, the Government is granted for itself and others
acting on its behalf a paid-up, nonexclusive, irrevocable worldwide license in
this computer software to reproduce, prepare derivative works, and perform
publicly and display publicly. Upon request of Licensee, and with DOE and
Licensors approval, this period may be renewed for two additional five year
periods. Following the expiration of this period or periods, the Government is
granted for itself and others acting on its behalf, a paid-up, nonexclusive,
irrevocable worldwide license in this computer software to reproduce, prepare
derivative works, distribute copies to the public, perform publicly and display
publicly, and to permit others to do so. NEITHER THE UNITED STATES
NOR THE UNITED STATES DEPARTMENT OF ENERGY, NOR ANY OF
THEIR EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED,
OR ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE
ACCURACY, COMPLETENESS, OR USEFULNESS OF ANY
INFORMATION, APPARATUS, PRODUCT, OR PROCESS DISCLOSED,
OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY
OWNED RIGHTS.

Initial development by:

The Controls and Automation Group (AOT-8),
Ground Test Accelerator,

Accelerator Technology Division,

Los Alamos National Laboratory.

Co-developed with:

The Controls and Computing Group,

Accelerator Systems Division,

Advanced Photon Source,

Argonne National Laboratory.

EPICS Release: R3.13

Channel Access Portable Server 1

Application Interface (API) Tutorial 1
Chapter 1: Introduction 4
1. Heretofore Organization of EPICS Software 4

Chapter 2: Getting Started 9
1. Basic Concepts 9

Chapter 3: The casChannel Class and the Asynchronous 1O Classes 41
Chapter 4: Working with Arrays 51

Appendix A: myServer 59

Appendix B: MyAsyncWritelO, MyAsyncReadlO, and myChannel Classes 68

Chapter 1: Introduction

1. Heretofore Organization of EPICS Software

The basic organization of the EPICS control system software can be divided into three parts:

1. The client-side tool set which consists of client applications like EDD/DM, the alarm
manager tool, and the archiver tool.

2. The Channel Access communications software, through which client applications can
communicate with remote databases.

3. The IOC database software which includes read and write routines, record support
modules, device-support routines, scanners, and monitors, among other components.

The client applications provide the interface to the system, Channel Access provides client
applications with a means to communicate with the database, and the database software
implements the control algorithms needed to control and monitor devices.

Channel Access is the gateway between the client applications and the database software. In its
entirety, Channel Access provides a way for applications to establish network-transparent
connections to process variables (PVs) that may be running on remotely-located hosts, usually on
the same LAN/WAN. In EPICS, a process variable refers to a record or a record's field. Once a
connection has been established, the client can, via Channel Access, change the process variable's
value, read its value, or establish monitors on the process variable, which instruct Channel Access
to notify the client application when the PV's value changes.

Channel Access is a client/server application. In a typical situation, the client would run on a
workstation and the server on an IOC. The server is loaded onto the IOC when the database is
initialized. The client is created when any client-side program calls any of the requests from the
Channel Access Client Library. This library consists of a number of simplified function calls that
a client application can use to establish connections or channels to process variables and then read
from or write to them. Because the Client Library is a simplified interface to communicating via
channels, the programmer who is developing a client application does not need to be concerned
with any of the complexities or internals involved in establishing network connections or sending
data to and reading data from those channels. For instance, to establish a connection, a
programmer simply has to call the following function,

ca_sear ch(Channel _nane, Channel _|ID);

and provide a channel ID and the name of a process variable; the programmer doesn't
have to bother with TCP/IP addresses and port numbers and all such details.

The client's requests are sent to the server, and the server attempts to fulfill each request.
Actually, the server merely calls the database routines to perform all read, write, or
monitor actions. So, for instance, when a client requests a process variable's value, the
server receives the request and calls the database routine dbGet () or one of its aliases.
The database routine then accesses the record and returns the value to the server which
returns it to the client. Thus, all Channel Access client requests that read data, write data,
or monitors data changes are mapped to specific EPICS database routines, and thus
Channel Access's functionality is tied to the EPICS IOC database software, though well-
isolated from changes to it.

2. Limitations Imposed by this Organization
Figure 1-1: Heretofore EPICS Organization.

The above approach has served EPICS users and developers well in the past, but there
are some limitations and problems that have accompanied it.

Limited Use of Client Tools

Heretofore, such useful tools as the Display Manager and the Archiver could only be
used with the EPICS function block database. Thus, a DM display could only be used to
monitor and control EPICS process variables in an EPICS database. This is because DM,
like all EPICS client applications, interfaces with the system by issuing requests from the
Channel Access Client Library which sends the requests to the server which maps the
requests to EPICS database routines which only operate on EPICS database records and
their fields.

There is currently a large number of client tools, including tools that enable an EPICS
user to interface the system to such commercial packages as Mathematica, TCL/TK, and
IDL. The usefulness and sophistication of client applications written specifically for
EPICS such as DM is growing. The generic nature of these interfaces and tools should
permit them to be used with non-EPICS applications if they weren't tied to the EPICS
database and its IO routines.

Storage of Intermediate Results

Another problem that has accompanied this approach occurs when two client-side tool
kits must compute an intermediate result. For instance, if a client application requests the
result from an operation that involves several steps or calculations such as an emittance
scan, the intermediate results must be stored in a soft record. (Soft records refer to
EPICS record that read or write data from other records rather than interface to devices.)
If another client application requests the same result that involves the same records, the
data sent by the two applications could collide producing an unexpected result if mutual
exclusion is not built into the algorithm.

Such an approach is also not congruent with the appropriate design and use of
client/server software in which the client side should hold most of the burden for storing
and converting data, leaving the server to perform more crucial tasks.

The Solution: a New Server-Level API for EPICS

The above limitations could be solved by making low-level changes to the source code.

However, this contradicts the tool-based approach of EPICS. In addition, users of
EPICS at one site could not benefit from the labor of individuals at another site without
changing source code.

The solution for these and other problems has been to develop a new server-level
application interface (API) for the Channel Access Server, called the Channel Access
Portable Server. Basically, instead of being tied to the I/O routines of the EPICS

database, the new server can be tied to non-EPICS /O routines, thus allowing any EPICS
client applications to interface with those applications. Another use for the server would
be to create a server dedicated to a specific low-priority task. In addition, the Portable
Server can be used to store intermediate data used by one client application without the
danger of collision with another client.

The Portable Server consists of a C++ library with a simple class interface. Using this
interface, a developer can create a Channel Access server that can interface with the
EPICS database as well as other applications. By making the server another module in
the EPICS tool set, significant improvements in cost, quality, and distribution can be
made. This represents a significant step in the evolution of EPICS.

4. The Server Interface
Figure 1-2: Evolution of EPICS.

This document's purpose is to describe the C++ interface to the Portable Server library.
This C++ interface consists of nine classes, each of which has several member functions
that can be used in a server application. Many functions are virtual functions that can be
re-defined in a derived class to provide more specific functionality. A few of these
functions are pure virtual functions, which means that a server application must provide

implementations for them. Nonetheless, the amount of code needed to implement a basic
server tool is minimal, and most of the complexity of Channel Access is hidden beneath
the interface using the object-oriented approach.

The following nine classes comprise the Portable Server API:

« the server class, caSer ver

* the process variable class, casPV
* pvExi stReturn

* pvCreateReturn

¢ the channel class, cas Channel

in addition to the asynchronous IO classes:

e casAsyncPVExistl O
e casAsyncCreat ePVI O
e casAsyncReadl O

* casAsyncWitel O

Only the first four classes listed above are required to implement a functional server tool.
The channel class and the asynchronous IO classes can be used to add more functionality,
but are not a necessary part of a server application.

This document describes the C++ API and not the internal workings of the server library
which are very complicated. The programmer does not have to be an expert in C++ in
order to understand how the interface works or even how to write a basic server tool.
However, some familiarity with virtual functions and class inheritance is necessary.

Because of the wide range of possible applications of the Portable Server, the examples
in this document cannot show all its possible uses or the possible implementations for the
virtual functions, but can only explain how to use the functions in its library.

Chapter 2: Getting Started

1. Basic Concepts

The Server Library and Server Tools

PVs

The server library refers to the software that lies beneath the C++ class-interface to the
Portable Server. The developer only needs to know how to use the interface in order to
create a server tool. A server tool is any specific application written by a developer using
this interface. A user should not be concerned with the server library because it has been
intentionally hidden from the user and deals with things like the TCP/IP and UDP
protocols, sending beacons to the client, and other @nternals®which the developer need
not know.

The server library interacts with the server tool by calling the functions that form the
C++ interface, the functions that the server tool provides. For instance, when a client
requests to write a value to the server, the server library receives the request and calls the
wri t e() function, which is part of the C++ interface and a member of the cas PV
class. The server tool provides its own specific implementation of the wr i t () function
or uses the default implementation provided in the base class. Thus, the server tool's

wri te() function will be called to change a process variable's value when the client
requests to change the value.

The term Process Variable or PV is a general term used throughout EPICS and other
control system applications. It basically refers to any changeable piece of data that, for
example, controls a device. For instance, speaking of the EPICS database software, a
stepper motor record that controls a stepper motor is a PV: changing the record's value
changes the behavior of the stepper motor.

10

As far as the Portable Server is concerned, a PV is a variable which the server tool keeps
track of. The server tool provides the client with the current value of the PV when the
client requests an update (a read operation). The server tool also changes the current
value of the PV when the client requests that the value be changed (a write operation).
The server tool can also inform the client when the PV's value has changed if a client
requests that it be informed (monitoring). When the client makes a request, the server
library receives it and calls the appropriate function provided by the server tool.

A channel differs from a PV in that a channel is a connection between a particular client
and a PV. For instance, on a particular server tool there is one PV called Process Variable
A. If client X and client Y each establish a connection to Process Variable A, then two
channels are created for Process Variable A, one channel for client X and one for client
Y. Potentially, both clients have access to read from the PV and write to the PV;
however, there can be different levels of access for each channel. For instance, client X
can have both read and write access to PV A, while client Y has read access only.

A PV can have several attributes. For example, suppose that there is an analog PV. In
addition to the actual analog value, an analog PV can have alarm limits, the alarm status,
the high operating range value, the low operating range value, and so on. Of course, these
are attributes from an EPICS PV. Generally, though, PVs from other applications will
also have attributes. The server tool will also want to keep track of a PVs attributes. In
fact, the term PV can also refer to the actual value of the PV in addition to its attributes.

Data Types and the gdd Library

Channel Access clients make requests to read or write data using database request types
or DBR types. These types can be found in the db_access. h header file. A client can
read data using simple data types like DBR_CHAR or DBR_| NT, and it can also read data
using compound data types like DBR_STS_CHAR or DBR_GR_| NT. The simple data
types are used by clients to read, write a single scalar value or a single array from, to a
database; for instance, DBR_FLQOAT can be used to read the floating-point value of an
analog channel. A compound type such as DBR_STS_FLOAT can be used to read the
value in addition to some of the PV's attributes. The server would then return a a
structure called dbr _st s_f | oat which had three members: the value of the PV, its
alarm status, and its severity.

A client can request a data type that is different from the native type of the PV. In an
EPICS database, the native types are of type DBF_FLOAT, DBF_STRI NG or one of the
other DBF types. For instance, if an analog PV were of type DBF_FLOAT and a client
requested to read it using the DBR_STRI NGrequest type, the Channel Access server
performs any conversions on the data before sending it back to the client; that is, it
converts the floating-point value to a character string representing the value.

11

The new Portable Channel Access Server is no longer tied to dealing only with DBR and
DBF types, though it is designed to be compatible with existing EPICS clients. Instead of
consisting of DBR or DBF types, the data in the Portable Server is described by two types:

1. The architecture-independent type. When EPICS clients communicate with a
server, the client is often running on a host with a different architecture than the
server. There must be a way for the client and the server to exchange data that is
independent of the architecture on each machine. The use of architecture-
independent types enables the client and the server to exchange data even though
they are running on hosts which represent data differently, for example, when the
client's host represents an i Nt object as 16 bits and the server's host represents an
i nt object as 32 bits. An example of an architecture-independent type is the type
ai t Ui nt 32, an unsigned integer-type of 32 bits, which on a Sun Sparc

workstation is defined as unsi gned i nt,
t ypedef unsigned int aitU nt32;

but could be defined as unsi gned | ong on a machine where type i nt is 16
bits and type | ong is 32 bits. The architecture-independent types can be found in
ai t Types. h.

2. The application type. The old CA Server also used architecture-independent types.
Application types are, on the other hand, a new way of dealing with data used by
the Portable CA Server and the gdd library. An application type is a way of
describing how a particular piece of data is used. For instance, there's a predefined

application type called @recision® This application type describes an attribute of
a floating-point PV that determines the decimal precision of the PV's value. The @
value®application type describes data that represents the current state of the PV,

i.e., its actual value.

The header file gddAppTabl e. h shows some of the pre-defined application types such
as value, limits, and status. These predefined application types enable a Portable Server
to communicate with existing EPICS client applications. New application types can be
created, however, to describe new uses of data. Thus, the use of application types creates

an @pen-ended®way for clients to communicate with the server. Channel Access client
applications are taken care of by mapping certain DBR types to application types. For

example, all simple or atomic data types like DBR_FLOAT can be described by the ©

value®application type since they simply retrieve a single value. Other application types
have been created to satisfy requests for compound types such as DBR_STS_FLOAT,

which itself is just a container for other application types, namely the @tatus,@@everity,

Oand @alue@application types. An application type can therefore be a container for
other application types.

A Portable Server tool doesn't have to know how to create application types, but it must
know how to satisfy requests of any application types with which it may have to deal

with. For instance, if a client defines a new application type called @oo,Othen the

Class Basics

12

Portable Server must know what to do when it receives a request to read a piece of data

that is described by the application type @00.©

The Portable CA Server uses the gdd library and its associated header files to deal with
data. This partially shields the Portable Server from having to deal with the different data
types. It simply deals with gdd objects which are objects of the gdd class or one of its
derived classes, gddAt oni ¢, gddScal ar, or gddCont ai ner . Taking an object-
oriented approach, the gdd class and its derived classes contain members for the actual
data and functions to manipulate the data. The most important member of a gdd class is
the dat a member, which should not be accessed directly. The dat a member is really a
union of all the existing architecture-independent types. The gdd class also contains
members and functions with which to identify the application type of the gdd object as
well as the current data type of the dat a member. All this information can be accessed
through the appropriate member functions of the gdd class. The gdd class and its
derived classes also have members for converting data from one architecture-independent
type to another.

The classes derived from gddAgddAt oni ¢, gddScal ar , and gddCont ai ner Aare
used in particular cases. The gddScal ar class is used to deal with single, scalar values,
while the gddAt oni ¢ class is used to deal with arrays. The gddCont ai ner class is
used to contain other gdd objects.

To write a server tool, a programmer should be familiar with the basics of using the gdd
library. This document will touch upon a few, but not all, of the basics of the gdd library.
The gdd classes are declared in gdd. h. The actual library to be linked with is

i bgdd. a.

As mentioned previously, the programmer's concern is with the C++ interface to the
Portable Server library and not the internals of the library itself. The interface has been
simplified as much as possible and consists of nine classes:

1. caServer

casPV

pvExistReturn
pvCreateReturn
casChannel
casAsyncPVEXxistIO
casAsyncCreatePVIO
casAsyncReadlO

e N o

13

9. casAsyncWritelO

A Portable Server tool must use the first four classes, caSer ver , casPV,

pvEXi st Ret ur n, and pvCr eat eRet ur n. The other five classes are optionalAt he
asynchronous IO classes such as casAsyncRead| Oare necessary only for
asynchronous IO while casChannel is only necessary in order to control access by
particular users to a PV. The definitions of all the classes are found in the header file
casdef.h.

Though a detailed knowledge of C++ is not necessary to write a server tool, some
knowledge of class inheritance and virtual functions is. A brief explanation of inheritance
and virtual functions follows.

A class consists of members, which can be either functions, frequently called methods, or
variables, structures, or other classes. These members can be either public, private, or
protected members. When a member is public, it can be used in any function, via any
object of that class. For instance, if mis a public member of class Y, mcan be used by the
function mai n() via the object obj , even though mai n() is not a member function of
Y:

mai n()
{ - -

int i;

Y obj;

i = obj.m
}

For public members that are functions, this means that they can be called by any other
function via an object of that class, even when the calling function has no association
with the member's class.

When a member is protected, it can only be used by member functions of the member's
class and by member functions of any classes derived from the member's class. Thus, in
the above example, the last statementi = 0bj . mwould be illegal if mwere a protected
member of class Y. It would be legal however, if the above statements occurred inside the
function V() which was a member of class X, which was derived from class Y, as in the

following:

void X :V()

{ . .
int i;
i=m

}

When a member is private, it can be used only by functions that are members of the same
class in which it was declared. Thus, the above example would be illegal because mis a
member of Y, and V() is a member function of class X which is derived from class Y.
Thus, mis accessible only by member functions of class Y.

Virtual Functions

14

Classes are derived from other classes as in the following declaration where class Xis
derived from class Y:

class X : public Y {

public:

int nmenber;
// . . . other stuff

}

The derived class inherits all the members of the base class, the class derived from.

A virtual function is a special kind of class member function. Ordinary virtual functions
have default implementations in a base class, but can be redefined in a derived class.
Using virtual functions is called dynamic linking because which function definition to
useAthe function in the base class or the function in the derived classAis undetermined
until compile time. For instance, if a base class A has a virtual function called oopy() as
in the following,

class A{
public:
virtual void oopy()
{
printf("Hello.\n");
}
/Il . . .nore stuff

}

and class B derives from class A, the user can redefine oopy() to do something else:

class B : public A{

public:
voi d oopy()
{
printf("Howdy.\n");
}
/1l ...nmore stuff...

}

If a class derived from class A, class B in this instance, redefines the virtual function
oopy() , then at compile time when 00py() is called for a B class object, the definition

found in class B will be linked with at compile time and @lowdy®will be printed when
oopy() is called at run-time. However, if class B chooses not to redefine oopy() , the

default implementation of oopy () will be linked with at compile time and @ello®will
be printed when oopy() is called at run-time for the object. It's important to understand
that although a virtual function can be redefined to do a different task, its arguments and
its return value cannot be changed. For instance, oopy() in the above example is declared
in class A as accepting no arguments and returning no value; its redefinition in class B
cannot then give it an argument of type i Nt and make it return a doubl e value. If a

15

function with the same name is redefined in a derived class but has different arguments
or return value, it's treated as a different function.

Pure Virtual Functions

There are special virtual functions called pure virtual functions which don't have default
implementations and so must be redefined in a derived class. The declaration of pure
virtual functions differs slightly from that of a virtual functionAto the left of it is the
assignment operator (=) and a zero, as if zero were being assigned to the function:

virtual const char *getName() const = 0;

Most functions in the interface classes are ordinary virtual and not pure virtual functions.
There is only one pure virtual functions and it is part of the casPV class. Any class with
one or more pure virtual functions is called an abstract class. An abstract class is one that
can only be used as a base class. You can never use an abstract class to create an object,
and any attempt to declare an object using an abstract class will fail. Thus, since casPV
is an abstract class, the following is illegal:

mai n()

{
}

As an example of a pure virtual function, suppose that class Y is an abstract base class

casPV pv(bject; // COVWPILER ERROR!

with one pure virtual function and one ordinary virtual function, as in the following
declaration:

class Y

{

public:
virtual void func(int arg) = O;
virtual void funcl(int arg)

{
}

cout <<"arg = "<<arg<<endl

}s

Since it has a pure virtual function, here class Y is an abstract class, so no objects can be
declared for it. However, by deriving a class from Y and redefining the pure virtual
function f unc() , you can create a class which you can use. The following is an example
that derives a class X from class Y, redefines the pure virtual function, but doesn't
redefine the other virtual function, f unc1(), as it intends to use the default
implementation for the function.

class X : public Y

{

public:
void func(int arg) { cout<<"arg = "<< arg + l<<endl; }
/1 other stuff

Destructors

16

}
Thus, the following code,
mai n()
{
X Qoj ;
int i = 1;
Qobj . funcl(i);
obj . func(i);
}
will print
arg = 1
arg = 2

Destructors are functions that provide for any necessary cleanup before a class object is
destroyed. They are called automatically before the object's container is destroyed. An
object is destroyed either when it goes out of scope, or if the object was created using the
new operator, when the del et e operator is applied to the object. Only rarely should a
program call a destructor directly. Since the object's container is automatically destroyed,
most class members do not have to be explicitly destroyed; only dynamically-allocated
members need to be cleaned up prior to the object's destruction. A destructor is declared
with the same name as the class preceded by a tilde '~'. For instance, the destructor for
class B is declared as ~B() .

A destructor can be declared to be virtual. Virtual destructors guarantee a specific calling
order of the class destructors in a derivation hierarchy. If the destructor in a base class is
declared virtual, then all the other destructors of any classes derived from the base class
are automatically virtual destructors. When an object of a class within the derivation
hierarchy is destroyed, its destructor is called in addition to the destructors of all the
classes which it is derived from. The order in which the destructors are called is: the base
class destructor is called first; then the destructor for the class derived from the base
class; then the destructor for the class derived from that class, and so on until the
destructor for the class of the object being destroyed is called.

For example, class Fi r st is a class which has the virtual destructor function
~First():

class First {

public:
First(); // Constructor
virtual ~First(); // Virtual Destructor
/1l OQther stuff

}s

The caServer Class

17

If class Second is derived from class Fi r st , and class Thi r d from class Second, the
destructors ~Second() and ~Thi r d() will also be virtual destructors, whether
declared so or not. If an object is created for class Thi r d, when the object is destroyed,
the destructors for the classes will be called in the following order: ~Fi r st (),
~Second(),and ~Thi rd().

Most of the classes in the Portable Server interface have virtual destructors. These virtual

destructors are defined to clean up any @nternals@of the base class and the server
library. What exactly they do shouldn't be of any concern to a programmer, except that
they guarantee that the above-described calling order will be invoked whenever an object
of a class derived from one of the base classes is destroyed, and thus that the necessary
cleanup will occur. The server tool is responsible for providing for any necessary cleanup
for classes derived from any of the base classes.

A brief description of the four essential classes of the Server's C++
interfaceAcaSer ver , casPV, pvCr eat eRet ur n, and pvEXxi st Ret ur nAfollows.

As mentioned above, each server tool must include a class derived from the caSer ver
class. It's two most important functions are the virtual functions, cr eat ePV() and
pvEXi st Test (), which a server tool must define in a derived class.

The caSer ver class determines the basic characteristics of the server tool such as how
many simultaneous IO operations are allowed, the maximum allowable length of a PV
name, the debug level, that is, the amount of information printed about the current status
of the server, and so on. The most important tasks of the caSer ver class are to inform
the server library (which will inform the client) if a PV "is associated with" the server
tool and to create a PV when a client wishes to establish a connection to a PV, given that
the PV is the server tool's responsibility.

These tasks are performed by the virtual functions pvExi st Test () and

cr eat ePV() . Since neither has a default implementation that really does anything, the
server tool must provide an implementation for each. The server library calls

pVEXi st Test () to determine if a PV exists. It does this when a client has issued a
search request for a PV. The server library receives this request, and calls

pVvEXi st Test (), which has as one of its arguments a character string representing the
PV name. The server tool should perform whatever algorithm necessary to determine if
the PV does exist (meaning, that the server tool is "responsible" for the specified PV) and
return an object of the pvEXi st Ret ur n class which is a container for an enumerated
type, pvEXi st Ret ur nEnum whose enumerations are pver Exi st sHer e,

pver DoesNot Exi st Her e, and pver AsyncConpl et i on. Actually, the server tool
doesn't have to directly initialize a pvEXi st Ret ur n class, but can instead simply

The casPV Class

18

return one of the enumerations. It should return pver Exi st sHer e to indicate that the
PV exists, pver DoesNot Exi st Her e to indicate that it doesn't exist, and

pver AsyncConpl et i on to indicate that the server tool will determine the PV's
existence at a later time.

After the PV has been found to exist, the server library will call cr eat ePV() . The
return value of cr eat ePV() is a pvCr eat eRet ur n object. However, as with
pvExi st Test (), the server tool doesn't have to explicitly initialize a

pvCr eat eRet ur n object. Instead, it can simply return the following: a pointer to a
casPV object (this includes an object of a class derived from casPV); a casPV object;
the status code S_casApp_pvNot Found, S_casApp_noMenory, or

S casApp_asyncConpl et i on. The first two return values will indicate a successful
operation whose status code is S_casApp_success, unless the pointer is a NULL
pointer, in which case the status of the operation will be S_casApp_pvNot Found.
The status code S_casApp_pvNot Found tells the server that the PV no longer exists
in this server tool, the status code S_casApp_noMenor y indicates an error allocating
memory for a casPV object, and the status code S_casApp_asyncConpl eti on
indicates that the server tool will perform the creation task at a later time.

The general idea is that the server tool will redefine cr eat ePV() to create a casPV
object; however, the server tool can also precreate a series of cas PV objects for all the
PVs it is responsible for, and then return a pointer or reference to them in cr eat ePV() .
As one of its arguments, cr eat ePV() is passed the name of the PV as a character
string.

There are other virtual functions in the caSer ver class which server tool may want to
provide definitions for, but redefining pvExi st Test () and cr eat ePV() is essential
for a server tool. The default definition of pvEXi st Test () returns

pver DoesNot Exi st Her e, and the default version of cr eat ePV() returns

S _casApp_pvNot Found. Thus, regarding the caSer ver class, the programmer's
main responsibility will be to derive a class from it and provide implementations of the
pvExi st Test () and cr eat ePV() functions.

The casPV class is used by the server library to interact with a particular PV. For
example, when a client issues a request to read a PV's value, it will issue the request, the
server library will receive the request, and call r ead() , which is a virtual function of
the casPV class. The function r ead() is designed so that a server tool can redefine it
to write the PV's current value into the gdd object that is passed by reference as one of its
arguments. The server library will then return this value back to the client. A similar
thing occurs when a client wants to write a value to a PV: it issues a request, the server
library receives the request and calls wr i t () , which is a member of the casPV class

19

and is also a virtual function. wr i t e() is designed so that a server tool can redefine it to
retrieve the value from the gdd object passed as on of its arguments and change the
current value of the PV to match the new value. Bothr ead() andwr it e() should
return a status code indicating the success/failure of the operation. These status codes are
defined in casdef.h, and have the form S_casApp_nnn, such as S_casApp_succcess.
These status codes were created specifically for the interaction between the server tool
and the server library.

Thus, the programmers main task in regards to the casPV class will be to derive a class
from casPV and redefine the virtual functions r ead() andw i te() init.

It should be noted that the default versions of r ead() andwr i t e() simply return a
status code indicating that the operation isn't supported, namely,

S casApp_nhoSuppor t. It should also be noted that r ead() andwri t e() will be
called for a PV.

Other important functions of the casPV class are the begi nTr ansacti on() and
endTr ansacti on() functions. begi nTransacti on() is called before either
read() orwite() iscalled; and endTr ansacti on() is called after either
read() orwite() iscalled. There are other important functions in the casPV class
such as the i nt er est Regi st er () function which is called when a client requests a
monitor on a PV and i nt er est Del et e() which is called when a client requests that
a monitor on a PV be terminated. As with most of the other member functions of the
casPV class, the above functions are virtual functions that have default implementations,
but these implementations perform no real task and are provided so that a server tool can
create cas PV objects and ignore those functions which it doesn't need.

A Simple Server Tool

This section presents an example of a simple, trivial server tool called ny Ser ver . It
derives classes from the casPV and caSer ver class, and only deals indirectly with the
pvCr eat eRet ur n and pvEXxi st Ret ur n classes. These are the minimum classes a
server tool must include to be functional.

The full listing for this program can be found in Appendix A, which also explains how to
compile server tools, i.e., what libraries to link with and in what order. Examples using
the channel and asynchronous I/O classes will be presented in a subsequent chapter when
access rights and asynchronous I/O are discussed. Though trivial, this program should
demonstrate the basics of Portable Server API and also the basics of using the gdd
library.

20

The Classes
Four separate source files comprise our program. Each of them contains relatively little
code.

* nySer ver . hAContains the class declarations.

* myPV. ccAContains the function definitions for the myPV class, a class derived
from casPV.

» nySer ver . ccAContains the function definitions for the mySer ver class, the
class derived from caSer ver .

* Server . ccAContains mai n() , the actual program to be run.

First, let's examine the classes in myServer.h. There are three:

* pvAttr, a class which is not part of the Portable Server interface but which is
used here to keep track of the attributes associated with each PV including its
value.

* nySer ver , which is derived from caSer ver .

* my PV, which is derived from casPV.

pVAttr

Each PV in our server will have a pvAt t r object associated with it. Its members keep
track of the PV's value and its attributes, and its functions can be used to access them.

Here is the class declaration for pvAt t r . Note that all the actual members are private
and the functions for accessing them are public. The program must initialize the class by
passing to its constructor the name of the PV.

class pvAttr {
public:
pvAttr (const char *pNanme) : nane(pNane)
{

pVal ue = new gddScal ar (gddAppType_val ue, ait Enunfl oat 64);
pVal ue- >ref erence();

hopr = 100, lopr = 0;

units = "Jolts";

hi gh_al arm = 101, hi gh_warning = 95;

low warning = 5, low.alarm= -1;
high_ctrl _limt = 100, lowctrl_limt = 0;

precision = 4;

}

const aitString &etNanme () const { return nane; }
doubl e getHopr () const { return this->hopr; }

doubl e getLopr () <const { return this->lopr; }

doubl e get Hi ghAlarm () const { return this->high_alarm }

21

doubl e get H ghWarning () const { return this->high_warning; }
doubl e get Lowarning () const { return this->low warning; }
doubl e getLowAl arm () const { return this->lowalarm }

doubl e getH ghCirl () const { return this->high ctrl_limt; }
doubl e getLowCtrl ()const { return this->lowectrl _limt; }
short getPrec () const { return this->precision; }

gdd* getVal () { return this->pValue; }

aitString getUnits () const { return this->units; }

private:
const aitString naneg;
doubl e hopr;

doubl e | opr;

aitString units;

doubl e high_al arm

doubl e hi gh_war ni ng;

doubl e | ow_war ni ng;

doubl e | ow_al arm

doubl e high_ctrl _limt;

double lowctrl _limt;

short precision;

gdd *pVal ue;
b
Most of the pvAt t r class declaration should be self-explanatory: a public member
function returns the value of a private member. For instance, get Uni t S() returns
units,anait String object that indicates the units of the PV. These functions will in
turn be called by other functions in order to read the sought after value or values. Each of
these values is an attribute of the PV; the hi gh_al ar mmember represents the high
alarm limit; the hopr member represents the high operating range; the | opr member,
the low operating range, and so on. Of course, these values have nothing to do with a real
application like a database, but are simply values that can satisfy a request for a
dbr _ctrl structure, which is the data type requested by DM clients. Therefore, our
program will be able to satisfy DM requests.

The value of the PV itself is stored in the gdd object pointed to by the member pVal ue.
Remember that there are several types of gdd objects which are types created for
specific purposes: a gddScal ar object is meant to hold a single value; a gddAt oni ¢
object is meant to hold an array, while a gddCont ai ner is meant to hold any number
of other gdd objects. Our server tool will support only the reading and writing of scalar
values, for simplicity's sake. Thus, we create a gddScal ar object pointed to by

pVal ue. This is done in pvAttr () :

pVal ue = new gddScal ar (gddAppType_val ue, ait Enunfl oat 64);
There are several ways to initialize a gdd object, depending on which type it

isAgddScal ar, gddAt oni ¢, or gddCont ai ner Aand on other factors. For instance,
to initialize a gddAt omi ¢ object, the dimensions of the array can be specified.

Two important characteristics describing a gddScal ar object are its application type
and its primitive type. An application type describes how a piece of data is used and what

22

it represents. For instance, the application type of a PV's value would be @alue®while

the application type of a PV's status is @tatus@ New application types can be created, but
a list of predefined ones appear in gddApps.h. The primitive type is simply the
architecture-independent type of the data, ai t Fl oat 64, for instance, which is a
floating-point number of 64 bits. The primitive type is actually an enumerated type, the
enumerators corresponding to each architecture-independent type. The enumerated type
is defined in the aitTypes.h and is called ai t Enum We initialize the gddScal ar

object with the constant gddAppType_val ue for the application type and the
enumerator ai t Enuntl oat 64 for the primitive type. Thus, our gdd object will be for
a floating-point scalar value of 64 bits that will represent the PV's value.

pvAt tr provides no functions for writing to its members because our server tool doesn't
intend to change any of the attributes, only the value of the PV, pointed to by pVal ue.
Instead of using a separate function for accessing and changing this value, the PV's value
will be written to directly by the myPV: : wri t e() function of the PV class.

Setting Up a Server Tool

pvExistTest()

A server tool must derive a class from the caSer ver class and provide implementations
for the pvEXi st Test () and cr eat ePV() functions, though it can provide
implementations for the other virtual functions that are part of the caSer ver class as
well as functions of its own. Any extra members needed for a particular implementation
can also be provided as part of the derived class. Our derivation of caSer ver is called
ny Ser ver and contains a constructor, implementations for the cr eat ePV() and
pvEXxi st Test () virtual functions, a function called f i ndPV() , and another member
function called r ead() . Two private members are also part of the class, pvLi st and
funcTabl e.

/'l The server class. Provides the pvExistTest() and createPV()
/1 functions as well as the function table.
class nyServer : public caServer{
public:
nmySer ver (unsi gned pvCount Esti mate) ;
pvExi st Return pvExi st Test (const casCix &ctx, const char
*pPVNane) ;
static const pvAttr *findPV(const char* Nane);
pvCreat eReturn createPV(const casCtx &ctx, const char *pPVNane);
static gddAppFuncTabl eSt atus read(nyPV &pv, gdd &val ue)
{

return nmyServer::funcTabl e.read(pv, value);
}.
private:
static const pvAttr pvList[];
stati c gddAppFuncTabl e<nyPV> funcTabl e;

b

23

pvExi st Test () is a virtual function defined in the caSer ver base class. It's called
by the server library when a client is searching for a PV. When the client broadcasts the
PV's name across the network, the server library receives the request and calls

pVvEXi st Test () . The server tool must provide an implementation of

pVvEXi st Test (), which should inform the server library which will inform the client
that the PV exists or doesn't exist in the server tool. It's the responsibility of the server
tool to determine if the PV exists or not.

Exactly how a server tool determines if a PV exists doesn't matter. Although if a server
tool keeps track of many PVs, an efficient algorithm such as a hashing algorithm is
recommended. pvEXi st Test () accepts two arguments as we can see from its
prototype:

virtual pvExi stReturn pvExi stTest (const casCtx &ctx, const char
*pPVAI i asNane) ;

The first argument is a casCt X or "client context" object. This type of object appears in
many of the calls in the API. It's a handle used by the internals of the server library, but
the server tool should never have to deal with it directly, except to make sure it's passed
to functions or constructors that require it. Here, it can be ignored. The second argument,
pPVNane, is a string that holds the name of the PV that the client is interested in. This is
the name that the server tool's search algorithm must use to find the PV.

Strictly speaking, the pvEXi st Test () should return an object of the

pvEXi st Ret ur n class. pvExi st Ret ur n is a class whose purpose is solely for
communication between the pvEXi st Test () function and the server interface. As
mentioned above, it's a container class for an enumerated type,

pver Exi st Ret ur nEnum whose three enumerators are pver Exi st sHer e,

pver DoesNot Exi st Her e, and pver AsyncConpl eti on. A pvExi st Ret urn
object whose enumerated type has the value pver Exi st sHer e indicates to the server
library that the PV was found, while the enumerator pver DoesNot Exi st Her e
indicates that it wasn't. The enumerator pver AsyncConpl et i on tells the server
library that the server tool wants to complete the task later. (See Chapter 3: The
casChannel Class and the Asynchronous 10 Classes for more information on
asynchronous completion.)

As also mentioned before, the server tool doesn't have to explicitly initialize a

pvExi st Ret ur n. Instead, pvEXi st Test () can simply return the appropriate
enumerated value to the server library, and a pvExi st Ret ur n object initialized with
the specified value will be returned to the server library, indicating the existence or
nonexistence of the PV. Thus, since our server tool doesn't support asynchronous
completion, our version of pvEXi st Test () merely returns either

pver Exi st sHer e, or pver DoesNot Exi st Her e.

The basic algorithm is

if PV Exists

24

return pver Exi st sHere.
el se
return pver DoesNot Exi st Her e.

Let's take a look at our implementation of pvEXxi st Test () . In the mySer ver class
there is a private member called pvLi st [] thatis an array of pvAt t r objects.
Remember that the pvAt t r class is simply a way to keep track of PVs.

pvExi st Return nyServer:: pvEXi st Test (const casCtx &ctx, /1 CA
Cont ext

const char
*pPVName, // PV nane

{
const pvAttr *pPVAttr;
/1 If the PV exists, wite its nane to the canonical PV nane
obj ect .
pPVAttr = nyServer::findPV(pPVNane);
if (pPVAttr)
return pver Exi st sHere;
el se
return pver DoesNot Exi st Her e;

}

Basically, our version of pvEXi st Test () creates a pointer to a pvAt t r object. It
then calls f i ndPV() , a function that simply searches through the elements of the
pvLi st array,

const pvAttr *nyServer::findPV(const char *pNane)

{
const pvAttr *pPVAttr;
int i =0;
short nel em = NELEMENTS(myServer: : pvLi st);

for(pPVAttr = nyServer::pvList; i < nelem i++, pPVAttr++){
if (strcrmp(pName, pPVAttr->getNane().string()) == 0)
return pPVAttr;

}
return NULL;

}

comparing the name of each pvAt t r object to the name passed to it. If the PV exists in
the pvLi st [] array, fi ndPV() returns a pointer to the pvAt t r object; otherwise it
returns NULL.

Note the if statement in the for loop. Because the nanme member of pvAt t r is, in fact,
an ai t St ri ng object instead of a character array like other strings, it must be accessed
differently if it is to be used as a character array, the type of argument expected by
strcnp() . The st ri ng() member function of the ai t St ri ng class accesses the
character string contained within the class. This function should be used when interfacing
ai t St ri ng objects to functions that expect strings to be character arrays instead of
class objects.

createPV()

25

If f i ndPV() returns a pointer to a pvAt t r object, pvEXi st Test () returns a
pver Exi st sHer e. Otherwise, if f i NdPV() returns NULL, our version of
pVEXi st Test () returns a pver DoesNot Exi st Her e.

After the server library confirms that the PV exists within the server toolAthat is, if
pVEXi st Test () returns pver Exi st sHer eAthe server library calls cr eat ePV() .
Thus, cr eat ePV() is called by the server library once and only once for each PV that
exists on the server tool if at least one client requests a connection to the PV.

The basic task of cr eat ePV() is to return either a casPV object, a pointer to a casPV
object, or a status code indicating why a casPV object wasn't returned (since the cas PV
class is an abstract class, the expected object should be a pointer to a derived class).
Actually, the return value of cr eat ePV() is a pvCr eat eRet ur n object which is just
a container for a casPV object and a status code. However, by simply returning a
casPV object or a status code, a pvCr eat eRet ur n object is returned to the server
library initialized with the appropriate values. Here's a summary of the possible return
values:

+ *casPVAsuccess (pass by pointer)

+ casPVAsuccess (pass by reference)

« S _casApp_pvNot FoundAno PV by that name here
+ S _casApp_noMenor yAno resource to create pv

« S _casApp_asyncConpl et i onAdeferred completion

If a pointer to a casPV object or a casPV object is returned, the status code in the

pvCr eat eRet ur n object willbe S_casApp_success. However, if the pointer is
NULL, the status code will be S_casApp_pvNot Found. The last three values that can
be returned are error codes. When these are returned, the pvCr eat eRet ur n will
contain the status code, and its pointer to the casPV object will be NULL.

Theoretically, cr eat ePV() should create an object of a class derived from casPV and
return it to the server library. However, it's possible to simply precreate all the necessary
PV objects before cr eat ePV() is calledAwhen the server tool is initialized for
instanceAand then return a pointer to one of these objects in cr eat ePV() . One of the
arguments to cas PV is the name of the PV. The server tool can use this name to
determine which PV object should be returned to the server library.

Here's the prototype:

virtual pvCreateReturn createPV (const casCtx &ctx, const char
*pPVAI i asNan®) ;

26

One again, the casCt X object can be ignored, but the second argument, the character
string representing the PV's name, should be used to confirm that a PV by this name
exists. Our implementation of cr eat ePV() calls f i ndPV() , which returns a pointer
toa pvAt t r object if the PV exists or else returns NULL. If NULL is returned by

fi ndPV(), then cr eat ePV() returns the status code S_casApp_pvNot Found.
Otherwise, it calls the new operator to create a my PV object on the free store. If a my PV
object is successfully allocated, the pointer to this object is returned. Otherwise, a
memory problem is assumed to have occurred and the status S_casApp_noMenory is
returned to the server library.

pvCreat eReturn myServer::createPV(const casCtx &ctx, const char
*pPVNane)
{
const pvAttr *pAttr;
nyPV *pPV;
/1 1f PV doesn't exist, return NULL. Otherw se, create PV
obj ect .
pAttr = nyServer::findPV(pPVNane);
if (IpAttr)
return S_casApp_pvNot Found;
pPV = new nyPV(*this, *pAttr);
if(pPV)
return S_casApp_noMenory;
el se
return pPV

}

Whether PV objects are created in cr eat ePV() or before cr eat ePV() is called, the
PV object must exist after cr eat ePV() returns. Thus, creating the PV object inside
creat ePV() as an automatic variable will not work, since the server library must have
a way to access the PV object in order to carry out any client-requested operations.

Other myServer Members

The casPV Class

The other members of the my Ser ver class are the constructor ny Ser ver (), the
function r ead() , and the private member f uncTabl e. All these will be discussed
when we discuss IO operations below.

As part of our server tool, we have derived a new class from the casPV class, myPV.
Since the casPV class is an abstract class, your server tool will want to derive a class. In
addition, many of the default versions of its virtual functions are really not useful. For
instance, the r ead() function is a virtual function whose default simply returns the
status code S_casApp_noSuppor t . Such default implementations are provided so
that a server tool may ignore those functions it doesn't wish to use.

casPV()

27

Each PV must have a PV object created for it. This can be done in the

caServer: : creat ePV() function which is called once for each PV in the server
tool (provided that at least one client has requested a connection with the PV). The
casPV class contains the functions that are responsible for 10, that is, reading and
writing to a PV, as well as implementing monitors on a PV. Thus, the core functions are
theread() andwr it e() functions provided as virtual functions in the casPV class
and which you will want to redefine if you want your server tool to perform IO. To be
able to implement an IO function you should have some knowledge of the gdd library
and its associated classesAgdd, gddScal ar, gddAt omi ¢, and gddCont ai ner .

The constructor for the casPV class has only one argument: an object of the caSer ver

class which is supposed to be the current server object, the server associated with the PV.

No matter what other tasks the constructor for a class derived from casPV class does, it
must pass the current server's object to the cas PV constructor. Our server tool creates a
nmy PV object in the cr eat ePV() function, passing to it the current object (*t hi s) and
apVvAttr object.

pPV = new nyPV(*this, *pAttr);

The nmy PV constructor passes the myServer object to the casPV constructor. Here is a
representation of the call hierarchy that creates the casPV object:

server library

|
\/
pvCreat eReturn createPV(const casCtx &ctx, const char *pPVNane);

I
\/
myPV(const caServer &cas, const pvAttr &attributes);
I

I
\/

casPV (caServer &cas);

What the casPV constructor actually does should not be the programmer's concern, only
that the right arguments are passed to it. The constructor of the derived class, ny PV,
other than initializing the casPV class, gives the value of the PV an initial value. Let's
take a glance at myPV() .

nyPV: : nyPV(const caServer &cas, const pvAttr &attributes)
attr(attributes),
casPV(cas),
interest(aitFal se)

doubl e val ue; /'l The initial value of the PV.
gdd *pValue = attr.getVal (); /] Get pointer to gdd object.
if(!pVal ue)

28

return;

/1 rand() is used to generate a random nunber fromO to
RAND_MAX.
/1 This nunmber is made to fit in the O - 100 range.
val ue = (doubl e)rand();
while (value < 100.0)
val ue/ =100. O;

/1 Use the gdd:: putConvert() function to put the value in the
gdd
/1 object. Then use the gdd::setStat() and gdd::setSevr() to set
/1 the appropriate status and severity for the PV.
pVal ue- >put Convert (val ue);
if (value >= 95){
pVal ue- >set St at (epi csAl ar nHi gh) ;
pVal ue- >set Sevr (epi csSevM nor) ;

else if (value <=5){
pVal ue- >set St at (epi csAl ar mLow) ;
pVal ue- >set Sevr (epi csSevM nor) ;

}

el se {
pVal ue- >set St at (epi csAl ar mNone) ;
pVal ue- >set Sevr (epi csSevNone) ;

}
}

Firstly, note that the casPV constructor is properly initialized by passing to it the
my Ser ver object .

casPV(cas), // initialize base class

Also initialized by the constructor are the at t r and i nt er est members of the my PV
class.

attr(attributes),
interest(aitFal se)

The at t r member is an object of the pvAt t r class. The objects of the pvAt t r class
will keep track of the PV's value and its attribute. The i nt er est member is initialized
to ai t Fal se. We will discuss the significance of the i nt er est member when we
discuss monitors.

The rest of our constructor gives an initial value to the PV's value: a random number is
generated using r and() . If this number is greater than 100, it is divided by 100 until it
is within the 0-100 range.

val ue = (doubl e)rand();

while (value > 100.0)
val ue/ =100. 0;

The value is written to the gdd object using the put Convert () function, which is a
member function of the gdd class:

29

pVal ue- >put Convert (val ue);

The put Convert () function writes the value into the gdd object; it also converts the
value to the object's primitive type. It may not always be obvious what the primitive type
is. In our server tool, we know it's aitEnumFloat64. Depending on the architecture of the
machine the server tool is running on, this may or may not correspond to type double, the
type of the value being written into the gdd object.. Therefore, we may or may not have
to convert the value to the primitive type of a gdd object. If the server tool is going to be
compiles on different architectures, the best way to write a value to a gdd object is to use
the gdd: : put Convert () function which will convert the type of its argument to the
object's primitive type, if the types are different. If we used gdd: : put () function
instead of gdd: : put Convert (), the value would be written into the gdd object as is,
and the primitive type of the object would be changed to reflect the type of the new
value.

The rest of the constructor sets the status and severity of the PV. All gdd objects have a
member which can keep track of both the status and severity of a PV. This member is of
type ai t St at us, defined in ai t Types. h. The severity and status can be set by using
the set St at () and set Sevr () functions. In our constructor, if the value is over 95
we set the status to epi ¢SAl ar nHi gh and the severity to epi csAl ar mM nor . If the
value is under 5, we set the status to epi cSAl ar mLowand the severity to

epi csAl ar mM nor . Otherwise, we set the status to epi CSAl ar nNone and the
severity to epi csSevNone. These status and severity levels are taken from the header
file alarm.h and are EPICS-specific. You can provide your own severity codes if you
wish, but must remember that the ai t St at us type is an unsigned integer, so severity
codes such as -1 or 2.5 are incompatible with the gdd library.

Reading PV Values and Their Attributes

The casPV: : r ead() function is a virtual function that the server library calls when a
client requests to read a value from a PV already attached to the server tool, that is, a PV
for which a class derived from casPV has already been created. It has two arguments.
The first is a casCt X object which can be ignored. The second argument is a gdd
object. It is the main task of the r ead() function to write the current value of the PV
into this gdd object. Note that this gdd object is passed by reference to r ead() . Thus,
after r ead()) returns, the server library can then retrieve the current value of the PV
from the gdd object and forward this value to the client.

If the operation is successful, r ead() should return the success status code,
S_casApp_success. Otherwise, it should return the appropriate error code. The
status code S_casApp_asyncConpl et i on can also be returned if the server tool
supports asynchronous completion for that PV. See Chapter 3: The casChannel Class
and the Asynchronous 10 Classes for more information on asynchronous completion.

Here is the prototype for r ead() :

30

virtual caStatus read (const casCx &ctx, gdd &prototype);

What complicates satisfying read requests is that a server tool may have to satisfy
requests for various types. The second argument, pr ot ot ype, should specify an
application type. An EPICS client makes requests using database request types such as
DBR_I NT or DBR_STS_| NT. When the server library receives a client request, it maps
it to a gdd object or objects and assigns to each object an application type. For instance,
if an existing EPICS client makes a request to read the value of a PV using the request
type DBR_STS_DOUBLE, the server library will receive the request and map it to an
application type or types. Since DBR_STS DOUBLE is a request for three valuesAthe
PV's value, its status, and its severityAthe server library will map the request to a
gddCont ai ner object and flag the object as the dbr _st s_doubl e application type.
The server library will then assign three gdd objects to the container object: one will be
of the "value" application type for the PV's value, another will be of the "status"
application type for the PV's value, and the last will be of the "severity" application type
for the PV's severity. In this way, all requests are mapped to gdd objects and assigned
application types. Compound DBR types like DBR_STS_DOUBLE are mapped to
gddCont ai ner objects, while other DBR types like DBR_DOUBLE are mapped to
either gddScal ar or gddAt omi ¢ objects.

The server library then forwards the gdd object to the r ead() function via

pr ot ot ype, which is passed by reference to r ead() as the second argument. By
checking the application type of the object, the server tool can tell which application type
or types it's dealing with, and write the appropriate value or values into the gdd object.

Thus, quite a burden is placed on r ead()) to be able to deal with requests for multiple
application types, and yet at the same time deal with simple requests for a single
application type. There are several ways to do this. One way is simply check to see if
pr ot ot ype is a container, and if so step through the container writing the appropriate
values to the appropriate gdd objects in the container. Most of the functions to do this
are already provided. However, another, simpler way is to create a function table, which
is the approach our server takes. To do this, you use the gddAppFuncTabl e<>
template in the header file gddAppFuncTable.h.

Our function table is a private, static member of the mySer ver class. Here is its
declaration:

gddAppFuncTabl e<nmyPV> funcTabl e;

The template is initialized for my PV objects. A function table is basically an array of
function pointers. A function is installed for each application type. When the
gddAppFuncTabl e: : read() is called, it is passed a pointer to the my PV class
which called it and the gdd object. The gddAppFuncTabl e: : r ead() function will
step through the gdd prototype if it's a container and call the appropriate functions
corresponding to the application types of the gdd objects.

31

For instance, suppose we wanted our server to read DBR_CGR requests. For all such
DBR_GRrequests, the gdd prototype passed to casPV: : r ead() would be a container.
The application type of the container would be gddAppType_dbr _gr_short or
gddAppType_dbr _gr fl oat or whatever. The container, in turn, would consist of
several gdd objects, each of which would have its own application type such as
gddAppType_st at us or gddAppType_seconds (see gddApps.h). If this object is
passed to gddAppFuncTabl e: : read(), gddAppFuncTabl e: : read() calls the
appropriate function from the function table for each application type in the object.

To install a function in the function table, use the gdd: : i nst al | ReadFunc()
function, and as its first argument pass an application type and a function that
corresponds to that application type, i.ei., the address of the function that retrieves the
value for that application type. The application type can be either a constant such as those
from gddApps.h or a string describing a valid application type, such as the default
application types in gddAppDefs.h. For example, to install a function to read the PV's

status, we would pass the string @tatus®as the first argument to
i nst al | ReadFunc() and the address of the function as the second argument.

Let's see how our server tool does this. Since we want our server tool to satisfy DM
requests and we know that DM makes an initial DBR_CTRL request for each PV it
wishes to connect to, our server tool must create a function for each application type in
the DBR_CTRL structure and install that function in the function table. All these
functions are members of the my PV class. For example, one of the members of
DBR_CTRL is upper _war ni ng_| i m t, a value that in the EPICS database comes
from the HI GHfield of a record. The DBR_CTRL structure is mapped to a gdd container
object that is of the appropriate application type, gddAppType_dbr ctrl fl oat.
The members of the DBR_CTRL structure are, in turn, each mapped to a gdd object in
the container, each identified by its own application type. The application type for the
upper _war ni ng_l i m t member of the DBR_CTRL structure is

gddAppType_Al ar nHi ghWar ni ng. Our function r eadHi ghAl ar n() , will write
a value into the gdd object that is identified by gddAppType_Al ar mHi ghWar ni ng.
Here is the function itself:

gddAppFuncTabl eSt at us nyPV: : readH ghAl ar m(gdd &val ue)

{
val ue. put Convert (attr.get H ghAl arn());

return S_casApp_success;

}

Each function that is installed in a function table must return the status code of type
gddAppFuncTabl eSt at us, which is basically the same type as caSt at us. The
main task of all such @ead®functions is to write a value into the gdd object passed to
them. Thus, our function uses the put Convert () function, discussed above, to write
the value of the high warning limit of the PV into the gdd object. The other read
functions such as r eadSt at us() appear in Appendix A.

32

The functions must be installed in the function table. Our server chooses to install the
functions in the constructor to the my Ser ver class:

/1 Constructor for nmyServer. After passing argunments to caServer
/'l constructor all of the read functions are installed in the
function
/1 table.
nmyServer:: nyServer (unsi gned pvCount Esti mat e)
caServer (pvCount Esti mat e)
{
funcTabl e. i nstal | ReadFunc("status", nyPV::readStatus);
funcTabl e. i nstal | ReadFunc("severity", myPV::readSeverity);
funcTabl e. i nstal | ReadFunc(" preci sion", nmyPV::readPrecision);
funcTabl e. i nstal | ReadFunc("al ar nHi gh", nyPV::readH ghAl arm;
funcTabl e. i nstal | ReadFunc("al ar nHi ghWar ni ng",
nyPV: : readH ghWarn) ;

funcTabl e. i nstal | ReadFunc("al ar mLowar ni ng", nyPV::readLowarn);
funcTabl e. i nstal | ReadFunc("al armLow', myPV::readLowAl arm ;
funcTabl e. i nstal | ReadFunc("val ue", nyPV::readVal ue);

funcTabl e. i nstal | ReadFunc(" graphi cH gh", nyPV::readHopr);
funcTabl e. i nstal | ReadFunc("graphi cLow', nyPV::readLopr);
funcTabl e. i nstal | ReadFunc("control H gh", nyPV::readH ghCirl);
funcTabl e. i nstal | ReadFunc("control Low', nyPV::readLowCtrl);
funcTabl e. i nstal | ReadFunc("units", nyPV::readUnits);

}

The first argument to the calls to i nst al | ReadFunc() is the character string
equivalent of an application type, though constants can be passed as the first argument.
These names can be found in the header file gddAppDefs.h and are default application
types for EPICS-type data.

Thus, when a client makes a DBR_CTRL read request of our server tool, the server
library will call myPV: : r ead() , a redefinition of the casPV: : r ead() virtual
function:

caStatus nyPV::read(const casCtx &ctx, gdd &prototype)

{

/1 Calls nyServer::read() which calls the appropriate function
from

/1 the application table.

return nyServer::read(*this, prototype);

}

All nyPV: : read() doesistocall nyServer: :read() whose definition is
static gddAppFuncTabl eSt at us read(nyPV &pv, gdd &val ue)
{
}

which calls gddAppFuncTabl e::r ead() . This function accepts two arguments: the
first is an object of the type for which the template was instantiated, a my PV object in this

return myServer::funcTabl e.read(pv, value);

case. Its second argument is a gdd object. It will then call the functions for the
application type(s) in the gdd object. Thus, for DBR_CTRL requests all the functions

33

installed in the function table will be called, each writing the requested value into the
gdd object.

If the request, on the other hand, were only for the PV's value, then the same thing would

occur, but only the function for the &alue®application type, myPV: : r eadVal ue()
would be called. Let's take a look at the r eadVal ue() function:

gddAppFuncTabl eSt at us nmyPV: : readVal ue(gdd &val ue)
{
/1 |'f pvAttr::pValue exists, then use the gdd::get() function to
/1 assign the current value of pValue to currentVal; then use
t he
/1 gdd::putConvert() to wite the value into val ue.
gdd *pValue = attr.getVal ();
doubl e current Val ;

i f(!pVval ue)
return S_casApp_undefi ned;
el se {

pVal ue- >get Convert (currentVal);
val ue. put Convert (currentVal);
return S_casApp_success;

}
}

When r eadVal ue() is called from the function table, it is passed a gdd object. The
server library expects the current value of the PV to be written into this object. Our
function makes a pointer to the gdd object member of the at t r , whichisa pvAttr
class object. After making sure that the pointer is not NULL, the value of the gdd object
now pointed to by pVal ue is retrieved using the get Convert () member function.
get Convert () is a member function of the gdd class. It accepts by reference any
valid lvalue (variable) as an argument, and assigns to it the current value of the PV.

readVal ue() then writes the current value of the PV into the gdd object val ue using
put Convert () and passing to it the same Ivalue just passed to get Convert ().

get Convert () will convert the data of the gdd object to the data type of the lvalue
passed to it, converting strings, for instance, to their numerical representation.

put Convert (), as mentioned earlier, converts the data of the value passed to it to the
primitive data type of the gdd object's data.

Note that our function returns an error code, S_casApp_undef i ned, if an error
occurred, and the success code, S_casApp_success if the operation was successful.

Thus, the call hierarchy would look like this when a client requests a PV's value:

Server Library

|
\/
caStatus nyPV::read(const casCtx &ctx, gdd &prototype)
I
I

Writing Values to PVs

34

\/
stati c gddAppFuncTabl eSt at us nyServer: :read(nyPV &v, gdd &val ue)

|
\/
gddAppFuncTabl eSt at us gddAppFuncTabl e: : read(PV &pv, gdd &val ue)
I

I
\/

gddAppFuncTabl eSt at us nmyPV: : readVal ue(gdd &val ue)

Although this my seem like great lengths to go to read a value, when one considers the
complexity involved in dealing with different data types, converting between those data
types, and dealing with compound data types, that is, requests for multiple values, much
of the complexity has been reduced by the gdd library and the server library. For
example, our server, even though it consists of relatively little code, can satisfy read
requests by most existing EPICS clients.

Currently, no existing EPICS clients can make Channel Access @ut®requests using
compound types like DBR_STS or DBR_GR. That is, by using a DBR_STS request type,
for instance, a client cannot change the PV's value, status, and severity. Although
possible, implementing the ability to make such requests is of limited value for the
simple fact that clients don't need to change a PV's attributes that often, and when they
do, it is possible, at least in an EPICS database, to simply connect to the field that holds
the attribute. The attribute field then simply becomes its own PV and can be changed as
any other PV. In our server, this won't work for there is no way to attach to an attribute as
its own PV, but in an EPICS database this is possible.

Thus, when writing to a PV, a server tool should, as yet, not be concerned with writing a
set of values.

Any fully functional server tool must have the ability to read and write arrays or sub-
arrays. Writing and reading arrays with the server tool brings up several complications
which will be covered in a subsequent chapter.

Thus, the task of our wr i t () function is very simple: to write a single, scalar value to
aPV.

Like casPV: : read(),casPV::wite() isa virtual function which a server tool
can redefine in a derived class and will probably want to because the default version
simply returns the error code S_casApp_noSuppor t . The server library calls
write() when aclient wants to write a value to a PV. The wr i t e() function accepts
the same arguments as the r ead() function, a casCt X object and a gdd object. Here is
the prototype:

virtual caStatus casPV::wite (const casCtx &ctx, gdd &val ue);

35

The basic task of the write function is to copy or reference the data of the gdd object,
val ue, to the PV.

If val ue contains a large array, to copy it would represent a significant amount of
memory lost. However, one could merely reference it, that is, set a gdd-type pointer to
point to the data, thus not using up that amount of memory. However, this approach is
only possible if your server tool is storing the value using a gdd or derived classAgdd,
gddScal ar, gddAt om ¢, or gddCont ai ner . Otherwise, you will have to copy the
data. For scalar values, simply copying the data is efficient. Since our function only deals
with writing scalar values, this is what we will do.

The other task of the wr i t () function is to return the appropriate status code
indicating success or error.

Here is our wr i t e() function as redefined in myPV:

caStatus nyPV::wite(const casCtx &ctx, gdd &val ue)
{

struct tinespec t;

osi Tinme current(osi Time::getCurrent());

gdd *pVal ue;

caServer *pServer = this->getCAS();

doubl e newal ;

/1 Doesn't support witing to arrays or container objects
/1 (gddAtom c or gddCont ai ner).
if(!(value.isScalar()) || !pServer)

return S_casApp_noSupport;

pVal ue = attr.getVal ();

/1 |f pValue exists, unreference it, set the pointer to the new
gdd

/1 object, and reference it.

i f(pVval ue)

pVal ue->unr ef erence();
pVal ue = &val ue;
pVal ue->reference();

/1 Set the timespec structure to the current tine stanp the gdd.
current.get(t.tv_sec, t.tv_nsec);
pVal ue- >set Ti neSt anp(&t) ;

/1l Get the new value and set the severity and status according
/1 to its value.
val ue. get (newal) ;
if (newal > 100)({
val ue. set Stat (epi csAlarnH Hi) ;
val ue. set Sevr (epi csSevMaj or) ;
}
else if (newal >= 95){
val ue. set St at (epi csAl arnHi gh) ;
val ue. set Sevr (epi csSevM nor) ;

36

}
else if (newal <=5){

val ue. set St at (epi csAl arnlLow) ;
val ue. set Sevr (epi csSevM nor) ;

}
else if (newal < 0){

val ue. set St at (epi csAl armLoLo) ;
val ue. set Sevr (epi csSevMaj or) ;

}
if(interest == aitTrue){
casEvent Mask sel ect (pServer->val ueEvent Mask |
pServer -
>al ar mEvent Mask) ;
post Event (sel ect, *pVal ue);
}

return S_casApp_success;

}

Let's look at the declarations first. t is at i mespec structure that will be used to
timestamp the value being written. In addition to having a member to hold the value's
status, all gdd classes have a way to keep track of a timestamp.

The next declaration is for an 0Si Ti e object, cur r ent , which we will use to assign
the current time to the t i mespec structure. The 0si Ti ne or operating-system-
independent timer class, is an easy way for a server tool to keep track of time on a
system. Its declaration is in the osiTimer.h header file.

pVal ue will of course reference the PV's value, the gdd object contained by the pvAttr
class. pSer ver will point to the server to which this PV is attached. We do this by
calling get CAS() which is a member function of the casPV class that returns a pointer
to the server object associated with the current PV. We will see the reason for doing this
shortly. And we'll assign to newMal the actual numerical value of the new value to be
written so that we may check it and determine the severity of the PV.

Our first task is to make sure that the value passed to wr i t e() is a scalar value, for our
server tool only supports writing a single scalar value as opposed to an array of values or
a container of gdd object. We can do this using the i sScal ar () function, part of the
gdd class. At the same time we'll make sure that there actually is a server attached to this
PV.

if(!(value.isScaler()) || !pServer)
return S_casApp_noSupport;

Next, we set pVal ue to point to the PV's value,

pVal ue = attr.getVal ();

If get Val () returns a pointer to a gdd object and not NULL, the referenced object is @
unreferenced @ the pointer is set to point to the new object, and the new object is then @

referenced.©

37

i f(pVval ue)

pVal ue->unr ef erence();
pVal ue = &val ue;
pVal ue->reference();

It is possible for a gdd object to be referenced by multiple applications like multiple
servers tools at the same time. For instance, in the above example, val ue may also be
referenced by another server tool at the same time that it is referenced by our server tool.
However, each server tool must indicate that it is referencing the gdd object using the
gdd: : ref erence() function, which increments the reference count by one. When a
server tool wishes to indicate that it has no more interest in the gdd object, it should call
gdd: : unr ef er ence(), which decrements the reference count by one. When the
reference count reaches zero, the gdd object is deleted. It's important that a server tool
not attempt to destroy or delete a gdd object explicitly. Instead, by using
reference() and unreference() aserver tool can use the gdd library's own
internal mechanism for destroying classes.

Another way to write to a PV's value would be simply to copy the information from
val ue to pVal ue, or to simply get the value from val ue and write it into pVal ue as
in the following bit of code:

pVal ue = attr.getVal ();
val ue. get Convert (newal) ;
pVal ue- >put Convert (newal) ;

In this case since we are not referencing the new value, we don't have to call
reference() orunreference() foreither pVal ue or val ue. Either way of
implementing W i t () will work, but each has its advantages and drawbacks.

The rest of our code timestamps the new value,

current.get(t.tv_sec, t.tv_nsec);
pVal ue- >set Ti neSt anp(&t) ;

and then sets the status and severity of the value depending on the value.

val ue. get (newal) ;
if (newal > 100){
val ue. set St at (epi csAlarnHi H) ;
val ue. set Sevr (epi csSevMaj or) ;
}
else if (newal >= 95){
val ue. set St at (epi csAl ar nHi gh) ;
val ue. set Sevr (epi csSevM nor) ;
}
else if (newal < 0){
val ue. set St at (epi csAl arLoLo) ;
val ue. set Sevr (epi csSevMaj or) ;
}
else if (newal <=5){
val ue. set St at (epi csAl ar mLow) ;
val ue. set Sevr (epi csSevM nor) ;

Monitoring PVs

38

el se{
val ue. set St at (epi csAl ar mNone) ;
val ue. set Sevr (epi csSevNone) ;

}

All the status codes and alarm codes in the above code are EPICS-specific and appear in
the alarm.h header file.

The following bit of code from wr i t €() then posts a monitor for the value:

if (interest == aitTrue){
casEvent Mask sel ect (pServer->val ueEvent Mask |
pSer ver - >al ar nEvent Mask) ;
post Event (sel ect, *pVal ue);

}

The server library calls casPV: : i nt er est Regi st er () when a client wishes to
subscribe for monitor events from the server tool for a particular PV. The server library
calls casPV: : i nt er est Del et e() when a client wishes to remove its monitor for
that PV. Usually, this means that i nt er est Regi st er () will be called when the first
clients has requested to monitor the PV and that i nt er est Del et e() will be called
when the last client has removed its monitor.

i nterestRegi ster() andi nterestDel et e() are virtual functions of the

casPV class whose default implementations are @mpty ©functions that perform no real
task. Thus, if a server tool is going to support monitors for its PVs, it must provide an
implementation of both functions in a derived class. Typically, the functions will provide
a way for a server tool to keep track of whether or not there are monitors on this PV. Our
version of i nt er est Regi st er () merely sets the i nt er est member of the ny PV
classtoai t True. i nt er est is a variable of type ai t Bool , an enumerated type
whose enumerators are ai t Tr ue and ai t Fal se. When interest is ai t Tr ue, it means
that a client or clients have established monitor(s) on the PV. Our version of

i nterestDel ete() setsi nterest toaitFal se. When interest is ai t Fal se, it
means that no more clients have monitors on this PV. Here are the implementations for

i nterestRegi ster() andi nterestDel et e() ascan be seen in the class
declaration for ny PV. Note that i nt er est Regi st er () returns a status code, while

i nterestDel et e() does not.

caStatus interestRegister()

{

interest = aitTrue;
return S_casApp_success;

}

void interestDelete() { interest = aitFalse; }

39

The server tool is responsible for posting all monitors on a PV. An ideal time to do this is
when the PV's value is changed, asinawr i t e() operation. Thus, w i t €() checks to
see if monitors have been established for this PV,

if (interest == aitTrue){

and if so, posts a monitor event for the PV using casPV: : post Event ().

post Event () is a member of the casPV class and can be used by a server tool to
inform the server library that the PV's value has changed; the library then notifies the
client that a monitor event occurred. post Event () accepts an object of the
casEvent Mask class as its first argument and a gdd object containing the PV's new
value as its second argument.

voi d post Event (const casEvent Mask &sel ect, gdd &event);

casEvent Mask objects simply provide a way to represent event masks by the server
library and to combine them by ORing or to unmask them by ANDing them. Thus, we
create a casEvent Mask object called sel ect and pass as an argument two
casEvent Mask objects ORed together. These two casEvent Mask arguments are
public members of the caSer ver class and represent two of the three types of masks
currently available in the Portable Server API. Here they are as they appear in
caServer:

const casEvent Mask val ueEvent Mask; // DBE_VALUE

const casEvent Mask | ogEvent Mask; // DBE_LOG
const casEvent Mask al arnEvent Mask; // DBE_ALARM

The first mask, val ueEvent Mask, is a mask for value-change events; the second,
| ogEvent Mask, for archival-change events; and the third, al ar mEvent Mask, for
alarm-change events. However, we choose to merely implement the first two for this PV.
Thus, the following code, posts value-change and archival monitors for our PV:
if (interest == aitTrue){

casEvent Mask sel ect (pServer->val ueEvent Mask |

pSer ver - >al ar nEvent Mask) ;
post Event (sel ect, *pVal ue);

}
Lastly, w i t e() returns the success error code:

return S_casApp_success;

There are, of course, numerous other ways to implement casPV: : wri t e() , but the
above is a simple and obvious one.

beginTransaction () and endTransaction()

There are other virtual functions that form part of the casPV base class. The two that
haven't already been discussed are begi nTransacti on() and

endTr ansacti on(), both of which are virtual functions whose default
implementations perform no real task. Neither accepts any arguments.

40

begi nTransact i on() must return a status code, while endTr ansact i on()
returns nothing. Here are their prototypes:

virtual caStatus begi nTransaction ();
virtual void endTransaction ();

The server library calls begi nTr ansact i on() before it calls either
casPV::read() orcasPV::write() (orthe redefinitions of them in a derived
class). The server library calls endTr ansact i on() after it calls either

casPV: :read() orcasPV: :write().Neither function has to perform a specific
task, but can do whatever the server tool needs them to do. For instance, our
implementation of begi nTransact i on() merely increments the counter
current Qps:

caStatus nyPV:: begi nTransaction()
{

/1 Trivial definition that inforns the user of the nunber of
current

/1 10 operations in progress for the server tool. currentOps is
a

/1 static menber.

current Ops++;

cerr<<"Nunber of current operations = "<<currentOps<<"\n";

return S_casApp_success;

}

cur r ent Ops is a static member of My PV. Since it is a static member, its value will be
common to all my PV objects and hence to all PVs. Hence, it will keep track of the total
number of operations in progress on all PVs in this server tool. S_casApp_success is
then returned. endTr ansact i on() decrements the counter cur r ent Ops after each
read() orwrite() function is called.

That is our simple server tool. The code in its entirety can be found in Appendix A. The
next chapter will discuss how to deal with the casAsyncReadl O,

casAsyncWit el O casAsyncPVEXxi st | O casAsyncCreatePVIO, and the
casChannel class.

Chapter 3

41

: The casChannel Class and the

Asynchronous 10 Classes

The casChannel class and the asynchronous IO classes: casAsyncReadl O
casAsyncPVExi st1 O, casAsyncCreatePVIQ and casAsyncWit el Qlare
optional classes: a server tool only needs to use the casChannel class if it's going to
implement some type of access control, and it only needs to use the asynchronous 10
classes if it's going to support some type of asynchronous IO completion. Since it's
anticipated that most server tools will probably not want to implement either access
rights or asynchronous completion, most server tools will not need these classes.
Nevertheless, they are provided in case a server tool wishes to provide full functionality.

This chapter will explain these classes and how to use them. As an example, a simple
program is provided which is just a revision of the program in the previous chapter, with
the added capability of asynchronous IO and access control. The listing for this program
can be found in Appendix B.

Asynchronous 10

The casAsyncReadl Oclass provides a server tool with the ability to delay satisfying a
read request, completing the request later. The casAsyncW i t el Oclass provides the
server tool with the ability to delay satisfying a write request when wr i t () is called.
The casAsyncCr eat ePVI Oprovides the server tool with the ability to delay creating
a PV when cr eat ePV() is called. The casAsyncPVEXi st | Oprovides the server
tool with the ability to delay informing the server library whether or not a PV exists in
the server tool when pvEXi st Test () is called. There may be several reasons a server
tool might want to delay completing such requests:

* For read operations, the requested value may not be immediately available.

 For write operations, the server tool may have to wait until another application or
server tool has completed its own write operation.

For all operations, it's more efficient if a server tool satisfies read or write
operations in batches. When passing through software layers and when being sent
over the network, requests are more efficient in batches rather than one at a time.

42

However, these are only the most obvious reasons. The server library is not concerned
with why the server tool wishes to use asynchronous IO: it merely provides a way to @

post®the completion of the operation at a later time.

Asynchronous completion is available for the following three functions:

e caServer:: pvExi st Test ()
e caServer::createPV()

e casPV::read()

e casPV::wite()

For any of these to complete asynchronously, they must create the appropriate
asynchronous 10 class and return the appropriate status code. When the operation is
complete, post | OConpl et i on() must be called. post | OConpl eti on() isa
member of all three asynchronous IO classes, though its exact form is different for each
class. How the operation is completed is left up to the server tool.

The basic steps for an asynchronous read operation are,

1. In a redefinition of casPV: : r ead(), create a casAsyncReadl O or derived-
class object and return S_casApp_asyncConpl et i on.

2. When operation is ready to complete, write current value into the gdd object
passed toread() .

3. Call casAsyncReadl O : post| OConpl eti on() with two arguments: a
status code and a gdd object containing the PV's value.

The basic steps for an asynchronous write operation are,

4. In a redefinition of casPV::write(), create a casAsyncWitel O or
derived class object and return S_casApp_asyncConpl eti on.

5. When operation is ready to complete, write the value from the gdd object passed
tocasPV: :write() into the PV.

6. Call casAsyncWitel O : postl OConpl etion() with one arguments: a
status code, S_casApp_success for instance.

In order to complete the second step for asynchronous read and write operations, the
server tool must keep track of the gdd object passed to r ead() andwri t e() . For
read() operations, the server tool should write the requested values into the gdd
object, and forwr i t e() operations, the server tool needs to write the value contained in
the gdd object to the PV. The best and most efficient way for a server tool to keep the
gdd object until the operation is ready to be completed is to reference the object with a
pointer, and then call r ef er ence() for the object. If r ef er ence() is not called, the
object will be deleted after either r ead() orwr i t e() returns.

The basic algorithm for asynchronous completion of pvExi st Test () is,

Example

43

7. In a redefinition of caServer::pvExi st Test (), return the enumerated
value pver AsyncConpl et i on.

8. When operation is ready to complete, determine if PV exists.

9. Call casAsyncPVExi st 1 O : post | OConpl eti on() with a
pVEXi st Ret ur n object as the argument. This pvEXi st Ret ur n object should
be created and initialized with the value pver Exi st sHere or the value
pver DoesNot Exi st Her e.

We have modified the program presented in the last chapter in order to implement
asynchronous read and write operations. Asynchronous completion for the
pVvExi st Test () and cr eat ePV() functions works much the same way.

Basically, we've created two classes:

* myAsyncReadl O which is derived from casAsyncReadl O and also from a
class called osi Ti mer .

* nyAsyncW i t el O which is derived from casAsyncW it el Oand also from
osi Ti ner.

myAsyncReadl Oand nyAsyncW i t el Ohave two base classes, casAsyncReadl O
orcasAsyncWitel O andosi Ti ner. Anosi Tl mer object can sleep for a
specified number of seconds, after which its member function expi r e() is called.

expi re() isa virtual function which can be redefined to perform any task; we will
redefine it to complete the read or write operation when it's called. Thus, for write
operations, our algorithm is as follows:

1. Whenwrite() iscalled, create a nyAsyncW i t el Oobject.

2. InmyAsyncWi t el Oconstructor, initialize 0Si Ti mer object with a sleep time
of 10 seconds.

3. When expire() is called, unreference current PV value and reference gdd
object passed towrite().

4. Call postlOConpletion(), passing to it the status code
S _casApp_success.

For read operations, the algorithm is similar, but note that a pointer to a gdd object is
passed to post | OConpl et i on() as the second argument.

5. Whenread() is called, create a myAsyncl Oobject.

6. Initialize 0Si Ti mer object with a sleep time of 10 seconds.

44

7. When expi re() is called, get pointer to gdd object passed to r ead() and
write current value of PV into gdd object.

8. Call post | OConpl etion(), passing S_casApp_success as first argument
and a pointer to the gdd object as its second.

Thus, we will have to change the definitions of nyPV: : r ead() and
nmyPV: i wri t e() . Here are the new definitions:

caStatus nyPV::read(const casCtx &ctx, gdd &prototype)

{
nyAsyncReadl O *pl G,
pl O = new nyAsyncReadl O(ctx, prototype, *this);
if (!'plO
return S_casApp_noMenory;
el se
return S_casApp_asyncConpl eti on;

}

caStatus nyPV::wite(const casCtx &ctx, gdd &val ue)

{
myAsyncWitel O *pl O
pl O = new nmyAsyncWitel O(ctx, value, *this);
if ('plO
return S_casApp_noMenory;
el se
return S _casApp_asyncConpl eti on;

Basically, the functions create a ny AsyncReadl Oor myAsyncW i t el Oobject using
the new operator. Each function then makes sure the object was indeed created. If it
wasn't, S_casApp_noMenory. Otherwise, S_casApp_asyncConpl eti on is
returned.

The actual 10 is performed by the expi r e() function of the nyAsyncW i t el Oand
myAsyncReadl Oclasses. Remember that expi r () is a virtual function of the

osi Ti mer class and it is called after the delay time expires. The 0si Ti mer class is
initialized with an 0si Ti ne object. The 0si Ti Me object is an operating-system
independent way to represent time in seconds/nanoseconds. It can be initialized in several
waysAthe easiest way is to pass its constructor a floating-point value representing the
number of seconds for the delay. The 0si Ti mer object, when initialized, will sleep for
the number of seconds represented by the 0Si Ti e object. When it awakes, it will call
the virtual function expi r e() , which is a pure virtual function.

We will redefine expi r e() to perform the actual IO operation. After expi r e()
returns, the virtual function 0si t Ti mer : : agai n() is called, which must return either
ait True orait Fal se.Ifagai n() returns ai t Tr ue, the osi Ti ner object will
call del ay(), another virtual function which should return another 0Si Ti nme object
representing a time period in seconds. Thus, if agai n() returns ai t Tr ue, the

osi Ti mer object will sleep again for the time period returned by del ay() . The

45

default version of agai n() returns ai t Fal se, meaning that the 0si Ti mer object is
to sleep only once, wake up, call expi r €(), and then destroy itself. Since we want the
timer to execute only once, we will not redefine agai n() , only expi re().

Here are the class declarations for myAsyncReadl Oand nyAsyncWitel O

cl ass nyAsyncReadl O : public casAsyncReadl O, public osiTiner {
public:
nyAsyncReadl O(const casCtx &ctx, gdd &Val ue, nmyPV &pv)
casAsyncReadl Q(ctx), PV(pv), osiTiner(osiTime(10.0))

{
pVal ue = &Val ue;

pVal ue- >ref erence();

}
voi d expire();
gdd *pVal ue;
private:
nmyPV &PV;

b

cl ass nyAsyncWitel O : public casAsyncWitel QO public osiTinmer {
public:
nyAsyncWitel Q(const casCtx &ctx, gdd &Vval ue, nyPV &pv)
casAsyncWitel O(ctx), PV(pv), osiTiner(osiTime(10.0))

{
pVal ue = &Val ue;

pVal ue->reference();

}
voi d expire();
gdd *pVal ue;
private:
nyPV &PV,

b

Note the constructors to both classes. Each constructor accepts three arguments: a
casCt x object, a gdd object, and a my PV object.

The first two arguments are the arguments that were passedtoread() orwite(),a
casCt x object and a gdd object. The first argument must be passed to the constructor
for the casAsyncReadl Oand casAsyncW i t el Oclasses. The second argument is
the gdd object passed to r ead() /wri t e() . For read operations, the server tool must
write the PV's current value into this object. For write operations, the value in this object
must be written to the PV. The last argument is the myPV class for which
read()/wite() was called. Note that the constructors initialize the 0Si Ti mer base
class by passing to it an 0Si Ti me object initialized with a value of 10 or ten seconds.
Thus, when created, the myAsyncReadl Oand nyAsyncW i t el Oobjects will sleep
for ten seconds and, upon waking, will call expi r e() . Note also that the constructors
calls r ef er ence() for the gdd object. Thus, after r ead() /wri t e() return, the gdd
object will not be destroyed.

46

The nyAsyncReadl O : expi re() and myAsyncReadl O : expi re() functions
are simple to follow. They merely perform what would normally be performed in
read() orwite():

voi d nyAsyncReadl O : expire()
{
caStatus status, statusil;
status = nyServer::read(PV, *pVal ue);
statusl = post| OConpl eti on(status, *pVal ue);
if (statusl != S casApp_success)
cerr <<"Error returned by postl| OConpl eti on:
<<"myAsyncReadl O : expire()."<<endl;

}

void nmyAsyncWitel O :expire()
{
gdd *pVal uel;
caSt at us stat us;
pVal uel = PV.getAttr().getVal ();

/1 Just reference the darn thing!
i f(pVal uel)
pVal uel- >unref erence();
pVal uel = pVal ue;
status = post| OConpl etion(S_casApp_success);
if (status !'= S casApp_success)
cerr <<"Error returned by postl CConpl eti on:
<<"nmyAsyncWitel O :expire()."<<endl;

nmyAsyncReadl O : expi re() simply passes the PV and the gdd object to the
nySer ver : : read() function. This function calls the r ead() function of
gddAppFuncTabl e, which will call the appropriate functions from the function table
needed to read the value from pVal ue. Note that pVal ue is dereferenced (* pVal ue)
before it is passed to ny Ser ver : : r ead() . The status from mySer ver : : read()
and the pointer to the gdd object are then passed to post | OConpl et i on().

nmyAsyncWitel O : expire() setsthe pointer pVal uel to the PV's value,
pVal uel = PV.getAttr().getVal ();

If pVal uel is not NULL, it is unreferenced:

pVal uel- >unref erence();

Remember that it's possible for more than one application to reference the same gdd
object. When a server tool first references a gdd object by pointer, it should call

ref erence(), and when it sets the pointer to point to another object, it should call
unref erence().reference() causes a counter to be incremented, thus keeping
track of the number of pointers that are referencing it. unr ef er ence() decrements the
same counter. When the counter reaches zero, the gdd object is destroyed. Therefore, a
server tool should never directly destroy or delete a gdd object that is has referenced.

47

Our server tool calls r ef er ence() inthe nyAsyncReadl () and

nyAsyncW it el Q) constructors: this is so that the gdd object will not be destroyed
while the operation is waiting to complete. myAsyncReadl O : expi r e() posts the
gdd object, after which the server library will forward the appropriate values to the client
and unreference the object, so the server tool doesn't have to call unr ef er ence() for
read operations. nyAsyncW it el O : expi re() also references the new value,
unreferencing the old one first. Since the gdd object passed to write() represents the new
value of the PV, by referencing it we can update the PV's value. This method is an
efficient and simple way to deal with arrays and scalar values. However, because the
value is simply referenced, no write operations to part of an array are supported.

Next, the status code S_casApp_success is passed to post | OConpl eti on().
Note that casAsyncW it el O : post | OConpl eti on() is not passed a gdd
object; this is because, for write operations, the client is not interested in a return value,
only in the success/failure of the operation.

Access Control and the casChannel Class

Access control refers to restricting access to a PV according to the user or to the host or
to some combination thereof. For instance, if the user is @erry®and the host is @
machine@ then the user can be granted read access only and not write access. Hence, ®

terry®can only read the PV's value and cannot change it. As mentioned in the
introduction, a channel refers to the connection between a specific client and a specific
PV. Thus, for each client attached to a PV, there is a separate channel. For instance, if
two clients establish a connection to the same PV, two separate channels are created, one
for each client.

For server tools that don't wish to implement access control, the server library
automatically creates a casChannel object for each client that establishes a connection
to a PV. By default, the casChannel class imposes no access control; all clients are
given both read and write access. However, by deriving a class from the casChannel
class and redefining several of its virtual functions, a server tool can implement its own
access control. In addition, a server tool that wishes to implement its own access control
must redefine casPV: : cr eat eChannel (), a virtual function that by default, creates
and returns a casChannel object, but which a server tool should can redefine to create
a class derived from casChannel .

The casChannel Class

48

When any client establishes a connection to a PV, the server library calls the
casPV: : creat eChannel () function of the casPV class or of a derived class. The
primary task of the cr eat eChannel () function is to create and return a pointer to a
casChannel object or an object of a derived class. Here is the prototype:
virtual casChannel *createChannel (const casCix &ctx,

const char *
const pUser Nane,

const char *
const pHost Nane) ;

It accepts three arguments: a casCt x object, and two string pointers, pUser Nane and
pHost Nanme. pUser Nane, of course, points to a string representing the user's name,
and pHost Nane points to a string representing the server tool's host. To implement
access control, a server tool will most likely want to keep track of the user and host
names. The first argument, ct X, must be passed to the constructor for the casChannel
base class.

Implementing access control with the casChannel class is relatively easy. The
important functions are:

* readAccess(). This is a virtual function that returns a value of type ai t Bool .
Thus, it can return either ai t True or aitFal se. By default, it returns
aitTrue. If aitTrue is returned, then that means the current client has
permission to read the PV's value and/or its attributes. If ai t Fal se is returned,
then that means the current client does not have permission to read the PV's value
or any of its attributes.

* writeAccess(). The same as r eadAccess() Aa return value of ai t Fal se
indicates that the current client doesn't have permission to write to the PV, and a
return value of @i t Tr ue indicates that it does.

The value returned by wr i t eAccess() andr eadAccess() is encouraged to change
over a channel's lifetime. That means if r eadAccess() returns, for instance,

ai t Tr ue at first, it's perfectly possible and valid for the server tool to change its mind
and for r eadAccess() toreturn ai t Fal se at a later time.

Note that it's entirely possible for the user and the host name to change during a channel's
lifetime. Thus, the strings passed to cr eat eChannel () may not remain accurate
throughout a channel's lifetime. When either the user name or the host name changes, the
server library will call set Oaner () which is passed two arguments, a pointer to a
string representing the user's new name and a pointer to a string representing the host's
new name.

virtual void setOaner(const char * const pUserNane,
const char * const pHost Nane)

set Oamner () must be redefined to update the user and host name kept track of by the
server tool, if it keeps track of the two names at all.

Example

49

The current Portable Server API also allows a the server tool to post access rights events.
Access rights events occur when a client's access to a PV changes. The current client-side
Channel Access API allows a client to request that it be notified when its access rights to
a channel change, thus establishing a monitor for access rights events on that channel.
Thus, if a server tool decides to implement access control, and a client's access to a PV
changes throughout the lifetime of the channel, then the server tool should call

post AccessRi ght sEvent () when the change occurs.

post AccessRi ght sEvent () is a member function of the casChannel class
which the server tool can use to inform the server library that the access rights for the
current channel have changed. The server library will then inform the client.

As an example of access control, here is the class myChannel , which is derived from
the casChannel class and which provides implementations for r eadAccess(),
writeAccess(),and set Oaner (). It's easy to understand, and all its functions are
defined in the class declaration:

cl ass nyChannel : public casChannel {
public:
nyChannel (const casCx &ctx,
const char * const pUser Nane,
const char * const pHost Nane)
casChannel (ct x)

{
User = pUser Nane;
Host = pHost Nane;
}
ai tBool witeAccess () const
{
if (strcnp(User.string(), "John") == 0)
return aitFal se;
el se return aitTrue;
}

voi d set Omer (const char *const pUser Nane, const char *const
pHost Nane) {
User = pUser Nane;
Host = pHost Nane;
}
private:
aitString User;
aitString Host;
s

The class will keep track of the name of the user and host with the two private members,
User and Host , which are ai t St ri ng objects (see aitTypes.h). The constructor
initializes them both, as well as the casChannel base class. set Omner () resets each

50

of the members. Remember that set Oawner () is called when the user or host name
changes during the time the channel is active.

Our redefinition of wr i t eAccess() returns ai t Fal se if @ohn®is the user;

otherwise, it returns ai t Tr ue. We don't redefine r eadAccess() . The default of
readAccess() simply returns ai t Tr ue each time it's called. Thus, myChannel
allows read access to all clients. It allows write access to all clients except when the

user's name is @ohn.©

51

Chapter 4: Working with Arrays

The current Channel Access client-side API allows the client to make a request to read or
write n elements of an array, as long as n does not exceed the maximum number of
elements in the array. However, the client-side API doesn't allow a client's request to
specify the starting element of the request. The starting element is always the first
element, at index 0. For example, if a client requested to read 5 elements from a 15
element array, the elements read would be elements 0-4.

Therefore, in order for a server tool to be fully compatible with the client-side API, a
server tool must provide a way to read O through n-1 elements of an array, provided that
n does not exceed the total number of elements in the array. Of course, other server tools
may provide more flexibility when dealing with arrays, such as reading the four middle
elements of a ten-element array, though there is currently no way for a Channel Access
client to make such a request. This chapter will show how to manipulate arrays using the
gddAt omi ¢ class.

1. The gddAtomic Class

The gdd library provides a class, gddAt oni c, as a container for arrays. gddAt omni ¢
is derived from the gdd class. It provides a way to define the size of an array of any
dimensions. As mentioned in the first chapter, a gdd object contains a union member
which itself contains members of all the architecture-independent types as well as pointer
to voi d. For gddAt omi ¢ objects, the voi d pointer should point to the array. The
architecture-independent type of the array can be retrieved by calling the

gdd: :primtiveType() which returns an enumerated type, ai t Enum The

ai t Enumtype has enumerators for all the architecture-independent types,

ai t Enum nt 8 for an eight-byte integer type, for example, as well as an enumerator for
unknown types, ai t Enum nval i d.

Defining a gddAtomic Object

As an example, let's create a small, two dimensional array as part of a gddAt omi ¢
object, give it some values, and then write those values to standard output.

52

Firstly, a gddAt omi c array's size is defined by its dimensions as well as the size of
those dimensions. Using a gddAt oni ¢ class, an array of one, two, three, four, or more
dimensions can be created. There are several ways to initialize a gddAt om ¢ object.
One way, which we won't discuss here, is to simply pass the gddAt omi ¢ constructor
another gddAt omi ¢ object, in which case the gddAt omi ¢ object will be initialized
with all the characteristics of the argument as well as its data. Another way is to pass the
gddAt omi ¢ constructor an integer representing an application type and an ai t Enum
type representing the architecture-independent type that the array will hold. Or a

gddAt omi ¢ object can be initialized with only an application type. Each of these two
methods, of course, doesn't define the array's bounds, but is provided so that the bounds
can be defined later. Here are the prototypes for these three constructors:

gddAt omi c(gddAt omi c* ad);

gddAt omi c(i nt app);
gddAtomi c(int app, aitEnumprin;

There are two other constructors that let you define a gddAt om ¢ object's array size
when you create the object. For these, in addition to the object's application type and
primitive type, you must provide the dimensions of the array as well as the size of each
dimension called the bounds of the dimension. There are two ways to do this. For the
first, pass the constructor an application type (i nt), a primitive type (ai t Enum, the
dimensions of the array (i nt), and an array of type ai t Ui nt 32. The number of
elements in the last argument must have at least as many elements as dimensions in the
array. For example, for a three-dimensional array, the last argument must contain at least
three elements; any additional elements are ignored. Each element represents the size of
each dimension, starting with the first dimension.

As an alternative way of creating a gddAt omi ¢ object, you can pass, instead of an
array, integers as additional arguments, each of which represents the size of the array's
dimensions. So, instead of an array of three elements, you would pass three additional
arguments to the constructor. For example, to initialize a three-dimensional array of 5
columns, 4 rows, and 2 planes, we would initialize the gddAt oni ¢ object like so:

#i ncl ude <gdd. h>

int main()

{
gddAtomic Array(l, aitEnum nt8, 3, 5, 4, 2);
return (0);

}

Here are the prototypes for these two gddAt omi ¢ constructors:

gddAtomi c(int app, aitEnumprim int dimen, aitUnt32*
size_array);
gddAtomi c(int app, aitEnumprim int dinen, ...);

A gddAt omi ¢ object is defined by its dimensionsAi.e., whether it's a one-, two-, or
three-dimensional arrayAand by the bounds of each dimension. Each dimension has its

bounds. The array's bounds are the index of the first element and the number of elements
in the array. By default, when you initialize a gddAt omi ¢ object and specify the

Accessing Arrays

53

bounds, the index of the first element is 0, but can be adjusted to be another positive
integer. Thus, if we initialized a two-dimensional array like so,

gddAtomic Array(l, aitEnum nt8, 2, 4, 3);

the result would be an array where the first dimension has the bounds 0 and 4, and the
second dimension has the bounds 0 and 3. This is the equivalent of creating a
conventional C array as in,

aitint8 Array[3][4];

The bounds of a gddAt ommi ¢ object can be retrieved using the get Bound() function,
whose prototype is:

gddSt at us get Bound(unsi gned dimto_get, aitlndex& first,
ai tl ndex& count);

For the first argument, pass a positive integer that specifies the dimensions whose bounds
you wish to retrieve; the second and third arguments must be Ivalues of type ai t | ndex.
These last two arguments are passed by reference. The function will write the index
number of the first element to the second argument, and the element count to the third
argument. Thus, for an array initialized as

gddAtomi ¢ Array(l, aitEnum nt8, 2, 4, 3);

the following call to get Bound() will write O into Fi r st and 3 into Nel em

aitlndex First;
ai t I ndex Nel em
Array. getBound(2, First, Nelen);

because the index of the first element by default is 0 and the size of the second dimension
is 3. You can also change the bounds of an object using the set Bound(') function. It
also accepts three arguments, the first being the dimension for which you want the
bounds changed, the second being the new value of the first element index, and the third
argument being the new element count. Using the set Bound() function, you cannot,
however, increase or decrease the array's original dimensions. Thus, to adjust the bounds
of a two-dimensional array so that the first dimension consists of 10 elements and its first
element is 1, you would make the following call:

Array.setBound(1, 1, 10);

The gddAt oni ¢ class does nothing more than hold the actual array and information
about it. It doesn't allocate memory for the actual array. The server library uses it because
the server library treats all data as gdd objects, gddAt om ¢ being a derived class of the
gdd class.

54

Destroying gddAt oni ¢ objects differs somewhat from gddScal ar objects. Firstly, all
gdd objects should be put on the "free store", i.e., they should be created using the new
operator or otherwise dynamically allocated. When the reference count of the object
decrements to zero, the gdd library will destroy a gdd object. Since a gddAt oni ¢
object may reference a dynamically allocated array, this array should also be destroyed
when the gddAt omi ¢ container is destroyed. The way the library accomplishes this is
to call the r un() function, which is a virtual function of the gddDest r uct or class.
The library passes the pointer that references the array in the gddAt o ¢ object to
run() . The argument to r un() is a pointer to vVoi d, voi d*. Thus, to deallocate a
dynamically allocated array referenced by a gddAt omni ¢ object, a program should
derive a class from gddDest r uct or and redefine the r un() virtual function. This
redefinition of r un() should cast the voi d pointer to the appropriate type and then
deallocate it.

As mentioned previously, a gdd object contains a uni on member which has members
for each of the architecture-independent types, as well as a pointer to VOi d. This pointer
is used for arrays. It can be any valid type, though it should match the architecture-
independent type indicated by the primitive type (ai t Enum primti veType()).
This pointer can be retrieved using the dat aPoi nt er () function. After the pointer is
retrieved, the array can be manipulated like a normal array. Another function that may be
of use when dealing with arrays is the put Ref () function. By passing an array pointer
to this function, you can set the Voi d pointer to point to the new array. In addition, the
second argument to put Ref () can be a pointer to a gddDest r uct or object or an
object derived from gddDest r uct or . Thus, as well as passing a reference to an array,
a program can pass a reference to a gddDest r uct or object that will take care of the
deallocation of the array.

The = operator is overloaded for the gddAt omi ¢ class. The oper at or =() function is
invoked whenever a gddAt omi ¢ object appears to the right of the assignment operator
and a pointer to a valid architecture-independent type appears to the left of the operator.
The pointer is then set to point to the array contained in the gddAt omi ¢ object. It
essentially does the same thing as dat aPoi nter ().

Here is a small program that creates an array, uses the put Ref () function to install it in
a gddAt oni ¢ object, and then prints out the elements of the array. In addition, it
derives a class from gddDest r uct or to destroy the dynamically allocated array
referenced by the gddAt omi ¢ object:

#include <gdd.h>

cl ass nyDestructor : public gddDestructor ({
public:

nyDestructor() : gddDestructor() { }

voi d run(voi d*);

55

voi d myDestructor::run(void* v)

{
aitIntl16* pl6= (aitlntl16*)v;
delete [] pl6;
}
int main()
{
gddAt om ¢ *pCdd;
aitlUint16 *pArray;
pGdd = new gddAtoni c(1, aitEnunmlintl16, 1, 10);
pArray = new aitU nt8[10];
aitlndex i, n;
for(int i =0; i < 10; i++)
pArray[i] = (aitUlint8)i;
pCGdd- >put Ref (pArray, new myDest);
pCGdd- >get Bound(1, i, n);
for(;i<n-1;i++)
cout <<* (pGdd- >dat aPoi nt er () +i) <<endl ;
return O;
}

It's important to note that when the pri ni ti veType() function of a gdd object
returns ai t Enunst r i ng, this does not mean that the void pointer points to a character
array. Instead, ai t St ri ng is a separate type. Thus, an array of type ai t St ri ng
would actually be an array of ai t St r i ng objects and thus an array of strings, instead
of an array of type char .

Using Arrays with the Server Tool

As mentioned above, existing Channel Access clients can make requests to read or write
multiple elements of an array channel. However, the current client-side API doesn't allow
a client to request the beginning index of operation. For instance, a client cannot make a
request to change elements 11-16 of a 20-element array. A client can make a request to
change elements 0-16, or 0-10, or 0-n-1, as long as n does not exceed the total number of
elements of the array.

There are basically two possible ways for a server tool to deal with arrays. The first and
easiest way does not fully support current CA client requests because it will not read n
elements from an array or write to n elements of an array. It simply references the array.

An example of this method was used in the last chapter. The server library calls
casPV::write() when aclient makes a write or put request for a PV. The second
argument passed towr i t e() is a gdd object which is passed by reference. This gdd
object can be either a gddScal ar object or a gddAt oni ¢ object, but forwri t e() it
cannot be a gddCont ai ner object. Whichever gdd class it is, it is the value sent by
the client, the value to which the client wants the PV changed. For arrays or scalar

56

objects, it's possible for the server tool to simply reference the object; that is, set a pointer
to point to it, and then call r ef er ence() for the object. At the nextcalltowrite(),
the old gdd object should be unreferenced by a call to unr ef er ence() and the new
value referenced. Here is an example of awr i t e() function which does this where
pVal is simply a pointer to a gdd object that contains the PV's current value:

caStatus nyPV::wite(const casCtx &ctx, gdd &val ue)

{
if (pVval)
pVal - >unr ef erence() ;
pVal = &Val ue;
pVal - >ref erence() ;
return S_casApp_success;

}

When called, the r ef er ence() function increments a counter. The unr ef er ence()
function decrements the same counter. If referenced properly, the gdd object's counter
should indicate the number of pointers that are referencing it. When the counter becomes
zero, it is destroyed.

By simply referencing the gdd object, a server tool doesn't have to duplicate any
information, and hence the amount of memory used is minimal. This is especially
desirable when dealing with large arrays.

The other way to handle arrays is to copy the information from them or the requested part
of them. Using this method, a server tool will fully support the current Channel Access
client-side API since the API allows requests to read from or write to n elements of a PV
array, where n-1 may not be the last element in the array. Therefore, a client can validly
request to read 0-n elements of a 20-element array, as long as n does not exceed the index
of the last element, 19 in this case.

Here is an example of an implementation that can write n elements from the array passed
to it where pVal is pointer to a gdd object that contains the PV's current value. For
simplicity's sake, assume that only arrays are going to be written to the PV.

caStatus nyPV::wite(const casCtx &ctx, gdd &val ue)
{
aitlndex firstl, first2, neleml, nelen?;
unsi gned di mL, din®2;
di nl = val ue. di mensi on();
di n2 = pVal - >di nensi on();
if(dink2>1 || dinml>1)
return S_casApp_out Of Bounds;
el se {
val ue. get Bound(0, firstl, neleml);
pVal - >get Bound(0, first2, nelenR);
if (firstl =0]| first2 I=0)
return S_casApp_out Of Bounds;
i f (nel em2<nel ent)
return S_casApp_out Of Bounds;
el se

57

ai t Convert(pVal ->primtiveType(), // dest. type
pVval , 1/
destination
value.primtiveType(), // src. type

&val ue, /1
source
nel en?); 1/
count
}

return S_casApp_success;

}

Our function is very simple. It retrieves the dimensions for each gddAt ormi ¢ object, and
if either object's dimensions are greater than zero, it returns

S _casApp_out OF Bounds. Currently, the client-side API won't allow clients to make
requests for multi-dimensional arrays, so our write function won't support writing to
arrays of more than one dimension. Note, however, that at certain EPICS sites, multi-
dimensional arrays have been used in requests by passing one wrapped by a single-
dimensional array. Whether a server tool wishes to provide the capability to deal with
arrays should depend on the site.

Next get Bound() is called. The zero as the first argument tells get Bound() to write
the index of the first element and the count of the array from the first dimension into the
second and third arguments. Remember that dimensions are indexed as they would be in
any normal array, that is O to n-1 where n is the number of dimensions.

Next, the first element count of each array object is checked; if it's not zero,

S _casApp_out O Bounds is returned. Thus, our wr i t () function does not support
write operations where the first index is something other than zero, which are not
necessary as the existing client API doesn't support such operations, though this may
change in a future release.

Then the element counts of the objects are compared. If the destination object, the
gddAt omi ¢ object to be changed, has an element count less than the element count of
the source object, the error code S_casApp_out O Bounds is returned once again.
Finally, ai t Convert () is called. ai t Convert () is a function provided as part of
the gdd library. It copies the data from an array of one architecture-independent type to
an array of another architecture-independent type, converting the data to the type of the
destination array. It will also convert scalar values. Actually, ai t Convert () merely
calls the appropriate function from an array of functions that contains all the functions
necessary to convert from one architecture-independent type to another. The limitation of
ai t Convert () is that only one-dimensional arrays are supported. Its prototype is as
follows

voi d aitConvert (aitEnum desttype, void* dest, aitEnum srctype,
const void* src, aitlndex count);

The first argument is the primitive type of the destination array, the type to be converted
to. The second argument is the address of the destination array. The third argument is the

58

primitive type of the source array, the type to be converted from, the fourth argument is
the address of the source array, and the fifth argument is the number of elements to be
copied. As the fifth argument, we passed the number of elements of the source array,
which is the number of elements that the client has requested to be written to the source
array. If the destination array's element count is less than the source array's, the error
code S_casApp_success is returned to the server library.

Ourwr it e() function will support all client requests for array @ut@operations. To
support more flexibility in dealing with arrays is not difficult. For instance, to implement
a function to deal with multi-dimensional arrays, one would simply have to index the
array as a series of one-dimensional arrays, passing the sub-array to ai t Convert ()
instead of the whole array. Because ai t Convert () automatically starts indexing both
the destination and source arrays at 0, copying chunks out of one array into another
presents a somewhat more difficult problem. For example, if you wanted to copy
elements 4-10 of a 15-elements array, you would have to do this by indexing each
element and calling ai t Convert ().

In any case, the documentation for the gdd Library should be consulted.

59

Appendix A: myServer

This is the full listing of the program presented in Chapter 2: Getting Started. The actual
executable program is called my Ser ver . It's related source files are myServer.h, which
contains all the class declarations, Server.cc, which contains mai n(), myServer.cc,
which contains all the function definitions for the myServer class, and myPV.cc, which
contains all the function definitions for the my PV class.

To compile my Ser ver , compile object files for myPV.cc, myServer.cc, and Server.cc.
Then link them along with the libraries libcas.a, libca.a, libCom.a, and libgdd.a. The
libraries should be linked in a that order:

libcas.a
libca.a
libCom.a
libgdd.a

Another order may cause compiler errors. The program has been compiled to run on a
Sun Sparc workstation.

This version of my Ser ver doesn't implement asynchronous IO or access rights. In
Appendix B is a listing of a different version of my Ser ver that does, though most of the
code is the same.

/*** myServer.h: Contains class declarations. ***/
#i ncl ude <casdef. h>

#i ncl ude <osi Ti mer. h>

#i ncl ude <gddApps. h>

#i ncl ude <gddAppFuncTabl e. h>

cl ass nyPV,
cl ass pvAttr;

/1 The server class. Provides the pvExi st Test() and createPV()

/1 functions as well as the function table
class nyServer : public caServer{

public:

nyServer (unsi gned pvCount Esti nate);

pvExi st Return pvExi st Test (const casCtx &ctx, const char
*pPVNane) ;

static const pvAttr *findPV(const char* Nane);

pvCreat eReturn createPV(const casCtx &ctx, const char *pPVNane);

static gddAppFuncTabl eSt at us read(nyPV &pv, gdd &val ue)

{

return myServer::funcTabl e.read(pv, value);

60

}

private:
static const pvAttr pvList[];
stati c gddAppFuncTabl e<nyPV> funcTabl e;

b

/1 The Process Variable class, nmyPV. Provides the read() and
wite()

/1 functions. The read() function calls the nyServer::read()
function

/1 which calls the appropriate function or functions fromits
function

/1 table. The actual functions to becalled are nenbers of
/1 the nyPV class, readStatus() to readUnits().

class nyPV : public casPV{

public:

nyPV (const caServer &cas,
caStatus interestRegister()
{

i nt erest ai t True;

return S_casApp_success;
}
void interestDelete() { interest
caSt at us begi nTransaction();
voi d endTransaction();
caSt atus read(const casCtx &ctx,
caStatus wite(const casCix &ctx,
ai t Enum best Ext er nal Type();

const pvAttr &attributes);

ait Fal se; }

gdd &prototype);
gdd &val ue);

gddAppFuncTabl eSt at us
gddAppFuncTabl eSt at us
gddAppFuncTabl eSt at us
gddAppFuncTabl eSt at us
gddAppFuncTabl eSt at us
gddAppFuncTabl eSt at us
gddAppFuncTabl eSt at us
gddAppFuncTabl eSt at us
gddAppFuncTabl eSt at us
gddAppFuncTabl eSt at us
gddAppFuncTabl eSt at us
gddAppFuncTabl eSt at us
gddAppFuncTabl eSt at us
private:
static int current Ops;

readSt at us(gdd &val ue);
readSeverity(gdd &val ue);
readPr eci si on(gdd &val ue);
readHopr (gdd &val ue);
readLopr (gdd &val ue);
readH ghAl arm(gdd &val ue);
readH ghWar n(gdd &val ue);
readLowMar n(gdd &val ue);
readLowAl ar m(gdd &val ue);
readH ghCtrl (gdd &val ue);
readLowCtrl (gdd &val ue);
readVal ue(gdd &val ue);
readUni t s(gdd &val ue);

const pvAttr& attr;

ai t Bool interest;
s
/1 This class is not part of the server interface, but is only
used
/1 here in order to keep track of PV values. It contains nenbers
for
/1 storing and accessing all the application types needed to
satisfy a

/1 DBR_CTRL request.
DM

DBR_STS requests can al so be satisfied. Since

61

/1 makes DBR _CTRL requests for each controller or nonitor
initially,
/1 and then nmakes DBR_STS requests subsequently,this class
cont ai ns
/1 the attributes needed to work with DM clients.
class pvAttr {
public:
pvAttr (const char *pNanme) : nane(pNane)
{
pVal ue = new gddScal er (gddAppType_val ue, ait Enunfl oat 64);
hopr = 100, lopr = 0;

units = "Jolts";
hi gh_al arm = 101, hi gh_warning = 95;
low warning = 5, low.alarm= -1;

high ctrl _limt = 100, lowctrl _limt = 0;
precision = 4;

}

const aitString &etName () const { return nane; }

doubl e getHopr () const { return this->hopr; }

doubl e getLopr () <const { return this->lopr; }

doubl e getHi ghAlarm () const { return this->high_alarm }
doubl e get H ghVWarning () const { return this->high_warning; }
doubl e getLowarning () const { return this->low warning; }
doubl e getLowAl arm () const { return this->low alarm }

doubl e getH ghCirl () const { return this->high_ctrl_limt; }
doubl e getLowCtrl ()const { return this->lowctrl_limt; }
short getPrec () const { return this->precision; }

gdd* getVal () const { return this->pValue; }

aitString getUnits () const { return this->units; }

private:
const aitString nane;
doubl e hopr;

doubl e | opr;

aitString units;

doubl e high_al arm
doubl e hi gh_war ni ng;
doubl e | ow_war ni ng;
doubl e | ow al arm

doubl e high_ctrl _limt;
double low ctrl _limt;
short precision;

gdd *pVal ue;

/*** myServer.cc: contains function for nyServer class. ***/
#i ncl ude "myServer.h"
/1l Here the myServer::pvList[] static nmenber is initialized with
t wo
/1 PVs called ProcessVariabl el and ProcessVari abl e2.
const pvAttr nyServer::pvList[] = {
pvAttr("ProcessVariabl el"),
pvAttr (" ProcessVariabl e2")};

62

/1l Constructor for myServer. After passing argunents to caServer
/1 constructor all of the read functions are installed in the
function
/1 table.
nmyServer: : nyServer (unsi gned pvCount Esti nat e)
caServer (pvCount Esti nat e)
{
funcTabl e. i nstal | ReadFunc("status", nyPV::readStatus);
funcTabl e. i nstal | ReadFunc("severity", nmyPV::readSeverity);
funcTabl e. i nstal | ReadFunc(" preci sion", nyPV::readPrecision);
funcTabl e. i nstal | ReadFunc("al arnHi gh", nyPV::readH ghAl arm;
funcTabl e. i nstal | ReadFunc("al ar nH ghWar ni ng",
nyPV: : r eadHi ghWarn) ;

funcTabl e. i nstal | ReadFunc("al ar mLowWar ni ng", mnyPV: :readLowMarn);
funcTabl e. i nstal | ReadFunc("al armLow', myPV::readLowAl arm;
funcTabl e. i nstal | ReadFunc("val ue", nyPV::readVal ue);

i
i
i
funcTabl e. i nstal | ReadFunc("graphi cH gh", nyPV::readHopr);
i
i
i
i

funcTabl e. i nstal | ReadFunc("graphi cLow', nyPV::readLopr);
funcTabl e. i nstal | ReadFunc("control H gh", myPV::readH ghCirl);
funcTabl e. i nstal | ReadFunc("control Low', nyPV::readLowCtrl);
funcTabl e. i nstal | ReadFunc("units", nyPV::readUnits);

}

pvExi st Return nyServer:: pvEXi st Test (const casCtx &ctx, /1 CA
Cont ext
const char
*pPVName, // PV nane
{
const pvAttr *pPVAttr,;
/1 If the PV exists, wite its nane to the canonical PV nane
obj ect .
pPVAttr = nyServer::findPV(pPVNane);
if (pPVAttr)
return pver Exi st sHere;
el se
return pver DoesNot Exi st Her e;

}

const pvAttr *nyServer::findPV(const char *pNane)
{

const pvAttr *pPVAttr,;

int i;

short nel em = NELEMENTS(myServer: : pvLi st);

for(pPVAttr = nmyServer::pvList, i = 0; i < neleny i++,
pPVAL t T ++) {
if (strcrmp(pName, pPVAttr->getNanme().string()) == 0)
return pPVAttr,;

}
return NULL;

}

pvCreat eReturn myServer::createPV(const casCtx &ctx, const char
* pPVNane)
{

63

const pvAttr *pAttr;
nmyPV *pPV,
/1 1f PV doesn't exist, return NULL. Otherw se, return a pointer
/!l to a new nyPV object.
pAttr = nyServer::findPV(pPVNane);
if (!'pAttr)
return S_casApp_pvNot Found;
pPV = new nyPV(*this, *pAttr);
i f(pPV)
return S_casApp_noMenory;
el se
return pPV
}
/*** myPV.cc: contains functions for nyPV class ***/
#i ncl ude "nyServer. h"
#i ncl ude <i ostream h>

nyPV: : nyPV(const caServer &cas, const pvAttr &attributes)
attr(attributes),
casPV(cas),
interest(aitFal se)

{
doubl e val ue; /] The initial value of the PV.
gdd *pValue = attr.getVal (); /] Get pointer to gdd object.
if(!pVal ue)
return;

/1 rand() is used to generate a random nunber fromO to
RAND_VAX.
/1 This nunber is made to fit in the O - 100 range.
val ue = (doubl e)rand();
while (value < 100.0)
val ue/ =100. 0;

/1 Use the gdd:: putConvert() function to put the value in the
gdd
/1 object. Then use the gdd::setStat() and gdd::setSevr() to set
/1 the appropriate status and serverity for the PV.
pVal ue- >put Convert (val ue);
if (value >= 95)({
pVal ue- >set St at (epi csAl ar nHi gh) ;
pVal ue- >set Sevr (epi csSevM nor) ;

else if (value <=5){
pVal ue- >set St at (epi csAl ar mLow) ;
pVal ue- >set Sevr (epi csSevM nor) ;

}

el se {
pVal ue- >set St at (epi csAl ar mNone) ;
pVal ue- >set Sevr (epi csSevNone) ;

}

}

caStatus nyPV:: begi nTransaction()
{

64

/1 Trivial inmplementation that inforns the user of the nunber of

/1 current 10 operations in progress for the server tool.
current Ops

/1 is a static menber.

current Ops++;

cerr << "Nunber of current operations = " << currentOps << "\n";

return S_casApp_success;

}
voi d myPV:: endTransaction()
{
current Ops--;
}

caStatus nyPV::read(const casCtx &ctx, gdd &prototype)

{
/1 Calls nyServer::read() which calls the appropriate function

/1 fromthe application table.
return myServer::read(*this, prototype);

}

gddAppFuncTabl eSt at us nyPV: : readSt at us(gdd &val ue)

{
gdd *pValue = attr.getVal ();

i f(pVval ue)
val ue. put Convert (pVal ue->get Stat ());
el se

val ue. put Convert (epi csAl ar mnJDF) ;
return S_casApp_success;

}

gddAppFuncTabl eSt at us nyPV: : readSeverity(gdd &val ue)

{
gdd *pValue = attr.getVal ();

i f(pVal ue)
val ue. put Convert (pVal ue- >get Sevr());
el se

val ue. put Convert (epi csSevNone) ;
return S_casApp_success;

}

gddAppFuncTabl eSt at us nyPV: : readPr eci si on(gdd &val ue)

{
val ue. put Convert (attr.getPrec());

return S_casApp_success;

}
gddAppFuncTabl eSt at us nmyPV: : r eadHopr (gdd &val ue)
{
val ue. put Convert (attr.getHopr());
return S_casApp_success;
}

gddAppFuncTabl eSt at us nmyPV: : readLopr (gdd &val ue)
{

65

val ue. put Convert (attr.getLopr());
return S_casApp_success;

}

gddAppFuncTabl eSt at us nmyPV: : r eadH ghAl ar m(gdd &val ue)
{

val ue. put Convert (attr.get H ghAlarm());

return S_casApp_success;

}

gddAppFuncTabl eSt at us nyPV: : r eadH ghWar n(gdd &val ue)
{

val ue. put Convert (attr.get H ghWarni ng());

return S_casApp_success;

}

gddAppFuncTabl eSt at us nmyPV: : r eadLowMar n(gdd &val ue)
{

val ue. put Convert (attr.get Lowarni ng());

return S_casApp_success;

}

gddAppFuncTabl eSt at us nmyPV: : readLowAl ar m(gdd &val ue)
{

val ue. put Convert (attr.get LowAl arn());

return S_casApp_success;

}

gddAppFuncTabl eSt at us nmyPV: : readH ghCtrl (gdd &val ue)
{

val ue. put Convert (attr.getH ghCrl());

return S_casApp_success;
}
gddAppFuncTabl eSt at us nyPV: : readLowCtr| (gdd &val ue)
{

val ue. put Convert (attr.getLowCtrl ());

return S_casApp_success;

}

gddAppFuncTabl eSt at us nmyPV: : r eadVal ue(gdd &val ue)
{
/1 |'f pvAttr::pValue exists, then use the gdd::get() function to
/1 assign the current value of pValue to currentVal; then use
t he
/1 gdd::putConvert() to wite the value into val ue.
gdd *pValue = attr.getVal ();
doubl e currentVal ;

i f(!pVval ue)
return S_casApp_undefi ned;
el se {

pVal ue- >get Convert (currentVal);
val ue. put Convert (currentVal);
return S_casApp_success;
}
}

66

gddAppFuncTabl eSt at us nyPV: : readUni t s(gdd &val ue)
{

val ue. put (attr.getUnits());

return S_casApp_success;

}

/'l bestExternal Type() is a virtual function that can redefined to
/1 return the best type with which to access the PV. Called by the
/1 server library to respond to client request for the best type.

ai t Enum myPV: : best Ext er nal Type()

{
gdd* pValue = attr.getVal ();
if(!pVal ue)
return aitEnund nvalid;
el se
return pVal ue->primtiveType();
}

caStatus nyPV::wite(const casCtx &ctx, gdd &val ue)
{

struct tinespec t;

osi Tinme current(osi Time::getCurrent());

gdd *pVal ue;

caServer *pServer = this->get CAS();

doubl e newal ;

/1 Doesn't support witing to arrays or container objects
/1 (gddAtom ¢ or gddCont ai ner).
if(!(value.isScalar()) || !pServer)

return S_casApp_noSupport;

pVal ue = attr.getVal ();

/1 |f pValue exists, unreference it, set the pointer to the new
gdd

/1 object, and reference it.

i f(pVval ue)

pVal ue->unr ef erence();
pVal ue = &val ue;
pVal ue->reference();

/1 Set the timespec structure to the current tine stanp the gdd.
current.get(t.tv_sec, t.tv_nsec);
pVal ue- >set Ti neSt anp(&t) ;

/1l Get the new value and set the severity and status according
/1 to its value.
val ue. get (newal) ;
if (newal > 100)({
val ue. set Stat (epi csAlarnmH Hi) ;
val ue. set Sevr (epi csSevMpj or) ;
}
else if (newal >= 95){
val ue. set St at (epi csAl arnHi gh) ;
val ue. set Sevr (epi csSevM nor) ;

67

}
else if (newal <=5){

val ue. set St at (epi csAl arnlLow) ;
val ue. set Sevr (epi csSevM nor) ;
}
else if (newal < 0){
val ue. set St at (epi csAl armLoLo) ;
val ue. set Sevr (epi csSevMaj or) ;

}

if(interest == aitTrue){

casEvent Mask sel ect (pServer->val ueEvent Mask |
pServer - >al ar nEvent Mask) ;

post Event (sel ect, *pVal ue);
}
return S_casApp_success;

}

/*** Server.cc: contains main(). ***/
#i ncl ude <fdMgr. h>
#i ncl ude "nyServer. h"

/'l These static nenmbers nust be re-declared
gddAppFuncTabl e<nyPV> nyServer: : funcTabl e;
int nyPV::current Ops;

mai n()
{
nmyServer *pCAS;
/1 Create server object.
pCAS = new myServer (5u);
i f(!pCAS)
return;
pCAS- >set DebugLevel (5u);

/1 Loop forever
osi Ti me del ay(1000u, Ou);
while (aitTrue)

inthis file.

/1 fileDescriptorManager is a predeclared object found in

fdmMgr. h
fileDescriptorManager. process(del ay);

}

68

Appendix B: MyAsyncWritel O,
MyAsyncReadlO, and myChannel

Classes

This a listing which presents a trivial implementation of the casChannel and
asynchronous IO completion. The derived classes are called nmy Channel ,
nmyAsyncReadl O, and myAsyncW it el O Because most of the code is the same as
that presented in Appendix A, only the declarations of the MyAsyncW i t el Q
MyAsyncReadl O, and myChannel classes are listed here, in addition to the
implementations for the nyPV: : r ead() and nyPV::wite() functions.

cl ass nyChannel : public casChannel {
public:
nyChannel (const casCtx &ctx, const char * const pUser Nane,
const char * const pHostNane) : casChannel (ctx)
{ User = pUserNane; Host = pHostNanme; }
ai t Bool readAccess () const { return aitTrue; }
ai t Bool witeAccess () const

{
if (strcnp(User.string(), "John") == 0)
return aitFal se;
el se
return aitTrue;
}

ai t Bool confirmationRequested () const { return aitTrue; }
voi d set Omner (const char *const pUser Nane,
const char *const pHost Nane)

{
User = pUser Nane;
Host = pHost Nane;
}
private:

aitString User;
aitString Host;
s

cl ass nyAsyncReadl O : public casAsyncReadl O public osiTinmer {
public:
nyAsyncReadl O(const casCtx &ctx, gdd &Val ue, nyPV &pv)
casAsyncReadl Q(ctx), PV(pv), osiTiner(osiTime(10.0))

{
pVal ue = &Val ue;

69

pVal ue->reference();
}
voi d expire();
gdd *pVal ue;
private:
nmyPV &PV;
s

class nyAsyncWitel O : public casAsyncWitel O public osiTinmer {

public:
nyAsyncWitel Q(const casCtx &ctx, gdd &Vval ue, nyPV &pv)
casAsyncWitel Q(ctx), PV(pv), osiTiner(osiTinme(10.0))
{
pVal ue = &Val ue;
pVal ue- >ref erence();
}
voi d expire();
gdd *pVal ue;
private:
nmyPV &PV;
b

/#** myAsynclO.cc: contains function definitions for expire(). ***/

#i ncl ude "myServer. h"
#i ncl ude <i ostream h>

voi d myAsyncReadl O : expire()

{
caStatus status, statusl;
status = nyServer::read(PV, *pVal ue);
statusl = post| OConpl etion(status, *pValue);
if (statusl !'= S casApp_success)
cerr <<"Error returned by postl| OConpl eti on:
<<"myAsyncReadl O : expire()."<<endl;
}
void nyAsyncWitel O :expire()
{

gdd *pVal uel;
caSt at us st at us;
pVal uel = PV.getAttr().getVal ();
/1 Just reference the darn thing!
i f(pVal uel)
pVal uel- >unref erence();
pVal uel = pVal ue;
status = post| OConpl eti on(S_casApp_success);
if (status = S casApp_success)
cerr <<"Error returned by postl| OConpl eti on:
<<"myAsyncReadl O : expire()."<<endl;

70

/***% myPV.cc: contains redefintions of read() and write() ***/

caStatus nyPV::read(const casCtx &ctx, gdd &prototype)
{
nyAsyncReadl O *pl G,
pl O = new nyAsyncReadl O(ctx, prototype, *this);
if (1plO
return S_casApp_noMenory;
el se
return S_casApp_asyncConpl eti on;

}

caStatus nyPV::wite(const casCtx &ctx, gdd &val ue)
{
nyAsyncWitel O *pl G
pl O = new nyAsyncWitel O(ctx, value, *this);
if (!'plO
return S_casApp_noMenory;
el se
return S _casApp_asyncConpl eti on;

