Channel Access Portable Server:

Reference Guide

Philip Stanley
November 1997 (Draft)
EPICS Release 3.13

Copyright

Experimental Physics and Industrial Control System (EPICS)
Copyright, 1995, The University of California, The University of Chicago

Portions of this material resulted from work developed under a U.S. Government contract and are
subject to the following license: For a period of five years from March 30, 1993, the Government
is granted for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable worldwide
license in this computer software to reproduce, prepare derivative works, and perform publicly
and display publicly. Upon request of Licensee, and with DOE and Licensors approval, this period
may be renewed for two additional five year periods. Following the expiration of this period or
periods, the Government is granted for itself and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in this computer software to reproduce, prepare
derivative works, distribute copies to the public, perform publicly and display publicly, and to
permit others to do so. NEITHER THE UNITED STATES NOR THE UNITED STATES
DEPARTMENT OF ENERGY, NOR ANY OF THEIR EMPLOYEES, MAKES ANY
WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LEGAL LIABILITY OR
RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR USEFULNESS OF ANY
INFORMATION, APPARATUS, PRODUCT, OR PROCESS DISCLOSED, OR REPRESENTS
THAT ITS USE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS.

Initial development by:

The Controls and Automation Group (AOT-8),
Ground Test Accelerator,

Accelerator Technology Division,

Los Alamos National Laboratory.

Co-developed with:

The Controls and Computing Group,
Accelerator Systems Division,
Advanced Photon Source,

Argonne National Laboratory.

REFERENCE GUIDE...........coo i iisiessss s s sss s s s mmm s s s s ssmmnns 1
Introduction 4
CLASS: caServer 8
CLASS: casPV 15
CLASS: casChannel 25
CLASS: casAsynclO 32
CLASS: casAsyncReadlO 35
CLASS: casAsyncWritelO 39
CLASS: casAsyncPVExistIO 43
CLASS: casAsyncCreatePVIO 47
CLASS: gdd 51
CLASS: gddAtomic 74
CLASS: gddScalar 77
CLASS: gddContainer 79
CLASS: aitString 81
CLASS: aitTimeStamp 86
CLASS: osiTime 91
CLASS: osiTimer 99

CLASS: gddAppFuncTable<PV> 105

Introduction

This reference covers the classes in the Portable Server's interface and the relevant public

or protected members of each class. No private members are explained here because such

members are generally not to be accessed by server tools. In addition, the gdd and
osi Ti mer classes as well as the gddAppFuncTabl e<PV> template is covered,
though not all of the public members will be covered since.

Common Types

These are some of the types used by the server library and its interface. Many of them are

t ypedef s; some are classes. The classes are included here so that the programmer

doesn't confuse simple defined types with class objects or vice versa, i.e., doesn't take
gdd or casCt x to be simple t ypedef s.

t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef

Type aitint8

Type aitUint8

Type aitintl6

Type aitUint16
aitUint16 aitEnuml6
Type aitlnt32

Type aitUi nt32

Type aitFl oat 32
Type aitFl oat 64

ai tUint32 aitlndex
voi d* aitPointer
aitUint32 aitStatus;

Here, Type will vary according to the architecture of the EPICS buildAsun4, Linux,
WIN32, hkv2f, etc. For example, ai t | nt 8 should correspond to the eight-bit signed
integer type on an architecture, often type char . After the EPICS build, aitTypes.h

should indicate the appropriate types.

typedef enum {aitFal se=0, aitTrue} aitBool

This is an architecture-independent boolean enumeration returned by some of the virtual

functions from the server interface. Defined in aitTypes.h.

typedef struct {
char fixed_string[Al T_FI XED STRI NG _SI ZE]
} aitFixedString;

Not used by the server library. Instead the server library uses ai t St ri ng, a class, to
represent strings. Maybe useful for non-C++ applications. Defined in aitTypes.h.

t ypedef struct {
aituint32 tv_sec;
aituint32 tv_nsec;} aitTineStanp;

This is the architecture-independent time stamp structure. Used by 0Si Ti me and other
classes. The first member is seconds; the second, nanoseconds. Defined in aitTypes.h.

class aitString;

This is a class whose declaration appears in aitHelpers.h which is included in aitTypes.h
and so doesn't need to be included. The server library uses it to represent strings.

t ypedef enum {
ai t Enum nval i d=0, aitEnum nt8, aitEnunlints,
ai t Enum nt 16, ai t Enunli nt 16, ait EnunEnuml6,
ai t Enum nt 32, ait Enunli nt 32, aitEnunfl oat 32,
ai t Enunfl oat 64, aitEnunfi xedString, aitEnunString,
ai t EnunCont ai ner } aitEnum

This is an enumerated type. Each enumerator corresponds to an architecture-independent
type except for ai t EnumCont ai ner which is used to indicate a container object such
as gddCont ai ner and except for ai t Enuml nval i d which indicates an invalid type.

t ypedef union {
aitInt8 int8; aitU nt8 U nt8§;
aitlntl6 Int16; aitU ntl1l6 U nt16;
ai t Enuml6 Enuml6; aitlnt32 |nt32;
aituUint32 Unt32; aitFloat32 Float32;
ai t Fl oat 64 Fl oat 64; aitlndex |ndex;
ai tPointer Pointer; aitFixedString* FString;
aitUint8 Dunbl[sizeof (aitString)]; // aitString
aitU nt8 Dunmb3[sizeof (aitTinmeStanmp)];// timestanp
} aitType;

This is a union of all architecture-independent types. Note how ai t St r i ng and
ai t Ti meSt anp are included.

enum pvExi st Ret ur nEnum { pver Exi st sHer e,
pver DoesNot Exi st Her e,
pver AsyncConpl eti on};

This is an enumerated type used to communicate the existence/non-existence of a PV
between the server library and the pvExistTest() function. The third enumerator indicates
that the server tool wishes to determine the existence of the PV later. This enumerated
type is actually used by the pvExistReturn class, which has a member of type

pvExi st Ret ur nEnum

cl ass gdd;

This is the Data Descriptor class used extensively by the server library to represent data.
The actual data is represented by an ai t Type member (see above). For scalar values,

the corresponding union member is used. For instance, if the value is of type ai t | nt 8,
the member used is | nt 8. For arrays, the Poi nt er member of the ai t Type union
points to the array. The gdd class is a base class for gddScal ar , used only for scalar
values, gddAt omi ¢, used for array values, and gddCont ai ner , used to contain other
gdd objects.

cl ass pvEXi st Return;

The pvEXi st Ret ur n class is used for communication between the server tool's

pvEXi st Test () function and the server library. pvEXi st Test () contains a
member of type pvEXi st Ret ur nEnum whose three

enumeratorsApver Exi st sHer e, pver DoesNot Exi st Her e, and

pver AsyncConpl et i onAindicate that pvEXi st TEst () found the PV in this server
tool, didn't find the PV, or wishes to determine the existence of the PV asynchronously.

Although strictly speaking the return value of the pvEXi st Test () function is a

pVvEXi st Ret ur n object, C++ allows a function to initialize and return an object
indirectly. Thus, pvEXi st Test () can simply return one of the three possible values of
pvEXi st Ret ur nEnum in which case a pvEXi st Ret ur n object will be returned to
the server library initialized with the specified enumerator.

cl ass casCt x;

This is the Channel Access Server Context Class. The server library uses it mostly for
asynchronous completion and access control, passing it to many virtual functions in the
server interface. However, a server tool should almost never use it directly, but should
only pass it to the appropriate constructors when doing asynchronous completion and
access control, i.e., when dealing with the asynchronous IO classes and the
casChannel class.

cl ass casEvent Mask;

This is the Channel Access Server Event Mask class. casEvent Mask objects can be
defined to represent different types of events. The server library allows a server tool to
create any number of different types of events, each represented by its casEvent Mask
object. However, the three main event types are initialized in the caServer base class.
These objects are part of the caSer ver class. The unary operators | and & can be used
with casEvent Mask objects as well as the == and ! = binary operators.

typedef aitU nt32 caStatus

This is the type of the status codes returned by the interface's functions to the server
library.

#define S casApp_success 0

#define S casApp_noMenory (M casApp | 1)
#define S casApp_pvNot Found (M casApp | 2)
#define S casApp_badPVid (M casApp | 3)
#define S casApp_noSupport (M casApp | 4)

#defi ne S _casApp_asyncConpl etion (M casApp | 5)

#defi ne S_casApp_badDi mensi on (M. casApp | 6)
#defi ne S_casApp_cancel edAsyncl O (M. casApp | 7)
#defi ne S_casApp_out Of Bounds (M casApp | 8)
#define S _casApp_undefined (McasApp | 9)

These are the status codes returned to the server library by those server tool functions
that return status codes. The value of M_casApp may be architecture dependent.

CLASS: caServer

Declared: casdef.h

Destruction:

The caSer ver class is the basic class for a server tool.

It is the server tool's responsibility to perform the necessary cleanup prior to an object's
destruction. A virtual destructor, ~caSer ver (), performs any cleanup necessary for
the base class and its internals.

A virtual destructor, recall, is not inherited in C++. Instead, when a base class declares a
destructor to be virtual, then all destructors in the derivation hierarchy are virtual. Virtual
destructors are different than other virtual functions in that the virtual function in the base
class, rather than providing a default function, guarantees instead an order of execution
for the destructors in the derivation hierarchy. Thus, when a server tool derives a class
from caSer ver , if the class provides a destructor, that destructor is called when a class
object goes out of scope or, for free-store objects, when del et e is applied to the free-
store object. After the derived class' destructor is called, the base class virtual destructor
is called.

Public Member Functions:

Non-Virtual

caServer (unsigned pvCount Esti nmat e=1024u) ;
casEvent Mask regi sterEvent (const char *pNane);
voi d set DebuglLevel (unsigned |evel);

unsi gned get DebuglLevel ();

Virtual

Public Members

Name:

Synopsis:

Description:

Name:

Synopsis:

virtual ~caServer();
virtual void show (unsigned |evel);
virtual pvExi stReturn pvExi stTest (const casCtx &ctx,
const char *pPVNane) =0;
virtual casPV *createPV (const casCtx &ctx,
const char *pPVNane) =0;

const casEvent Maskval ueEvent Mask;
const casEvent Maskl ogEvent Mask;
const casEvent Maskal ar nEvent Mask;

caServer ()

#i ncl ude <casdef. h>
caServer (unsigned pvCountEsti mate=1024u);

caSer ver () is the class constructor. Its only argument pvCount Est i mat e, is
simply an unsigned integer representing a rough estimate of the number of PVs that will
be attached to the server tool. It is used by the server library to create a hash table. If the
number of PVs actually attached to the server tool exceeds this number, a new hash table
is created that is large enough to include the new PV as well.

The default for the argument is 1,024.

regi sterEvent ()

#i ncl ude <casdef. h>
casEvent Mask regi sterEvent (const char *pNane);

Description:

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

10

regi st er Event () allows a server tool to register an event type with the server
library. It accepts a character string as its argument, and returns a cas Event Mask
object. The three main event types are provided as public members of caSer ver , so
they don't need to be registered by calling r egi st er Event () . These three events are
val ueEvent Mask, | ogEvent Mask, and al ar nEvent Mask, which are provided
as public members of the caSer ver class. Currently, the client-side API only
recognizes these three types of events.

set DebugLevel ()

#i ncl ude <casdef. h>
voi d set DebuglLevel (unsigned |evel);

The server tool can call set DebuglLevel () to change the default debug level which is
zero. The debug level determines how much run-time information is printed to the
console during normal run-time operations and when show() is called. When the debug
level is zero, the least amount of information--only error messages--are printed to the
console. When the debug level is above two, the greatest amount of information is
printed to the console.

get DebugLevel ()

#i ncl ude <casdef. h>
unsi gned get DebuglLevel ();

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

11

The server tool can call get DebugLevel () to retrieve the level set by
set DebuglLevel () . Most likely, the server tool will use this function if it decides to
provide an implementation of caSer ver : : show() .

~caServer ()

#i ncl ude <casdef. h>
virtual ~caServer();

~caSer ver () is the class destructor. Only in rare circumstances will the server tool
want to call it explicitly. It is called automatically when any caSer ver or derived
object goes out of scope, or, for objects on the free-store, when the object is deleted.

According to the C++ standard, it is called after the destructor(s) of the derived class(es).

The server tool doesn't have to know what it actually does, only that it will provide the
appropriate cleanup for the server internals.

show()

#i ncl ude <casdef. h>
virtual void show (unsigned |evel);

show() is provided mostly for diagnostic purposes. It must be called by the server tool,
unlike most virtual functions in the interface which are called by the server library. Its
default implementation calls other Show() functions from the server library's internal
classes. As its only argument it accepts an unsigned integer representing the debug level,
the level of diagnostic information printed out. Typically, the integer would be retrieved
using get DebugLevel () and passed to show() .

Name:

Synopsis:

Name:

12

You can redefine Show() to print whatever. If you want to print a message before doing
what the default version does, calling the show() function of internal classes, you can
call the show function of the object pointed to by the pCAS private member.

pvExi st Test ()

#i ncl ude <casdef. h>
virtual pvExistReturn pvExi stTest (const casCx &ctx,
const char *pPVAlIi asNane) ;

pvEXi st Test () is a virtual function. The two arguments to pvExi st Test () area
casCt x object, Ct X, and a character string, pPVNanme. The basic task of

pVvEXi st Test () is check to see if a PV identified by pPVNane exists within the
server. How the server tool determines if the PV exists is up to the server tool.

pvExistTest() should return pvEXi st Ret ur n object whenever it's called. A

pvExi st Ret ur n object is a container for a pvEXi st Ret ur nEnummember. The
pvExi st Ret ur nEnumtype is an enumerated type whose values are

pver Exi st sHer e, pver DoesNot Exi st Her e, and pver AsyncConpl eti on
The pvEXi st Ret ur n object returned to the server library by pvEXi st Test () must
have one of these values, which indicate that pvEXi st Test () found the PV in this
server tool, didn't find the PV, or wishes to determine the existence of the PV
asynchronously, respectively.

Although strictly speaking the return value of the pvEXi st Test () function is a
pVvEXi st Ret ur n object, C++ allows a function to initialize and return an object
indirectly to the calling function. Thus, pvEXi st Test () can simply return one of the
three possible values of pvEXi st Ret ur nEnum in which case a pvExi st Ret urn
object will be returned to the server library initialized with the specified enumerator.

If the server tool returns pver AsyncConpl et i on, it should create a
casAsyncPVEXi st | O whose member function, post | OConpl et i on(), can be
called to inform the server library that the server tool has completed the operation.

creat ePV()

Synopsis:

Description:

Names:

13

#i ncl ude <casdef. h>
virtual pvCreateReturn createPV (const casCtx &ctx,
const char *pPVAlIi asNane);

The server library calls cr eat ePV() when a client is attached to the server tool for the
first time. This occurs when a PV is found to exist in the server, i.e., when

pvEXxi st Test () returns S_casApp_success, and cr eat ePV() has not already
been called for that PV before. In other words, when the first client requests a connection
to a PV and the PV does in fact exist in the server, the server library will call
createPV().

The basic task of cr eat ePV() is to create an object of the casPV class or of a derived
class and return a pointer to that object inside a pvCr eat eRet ur n object, which is a
container object for a pointer to a cas PV object as well as a status code. Because C++
allows a function to initialize and return an object indirectly to the calling function,
creat ePV() can simply return a pointer to a PV object, a PV object (by reference), or
a status code. The three possible status codes are S_casApp_pvNot Found,

S casApp_noMenory,and S casApp_asyncConpl eti on. A

pVvEXi st Ret ur n object will be created and returned to the server library, initialized
with the appropriate members. If a NULL PV pointer is returned, the

pvCr eat eRet ur n object is initialized with the status code

S _casApp_pvNot Found.

If cr eat ePV() plans to return S_casApp_asyncConpl et i on, it should create a
casAsyncCr eat ePVI Oobject, and call post | OConpl et i on() when the
operation is completed.

creat ePV() accepts two arguments: a casCt X object, ct X, and a string,

pPVAI i asNane. The argument ct X can be ignored except in cases of asynchronous
completion, in which cases it should be passed to the constructor of the

casAsyncCr eat ePVI Oclass. The argument pPVAl i asNarme can be used to verify
that the PV object exists, and it can be used to detect if the server library is attempting to
create an object for a PV which already has had an object created for it.

val ueEvent Mask
| ogEvent Mask
al ar nEvent Mask

Synopsis:

Description:

14

#i ncl ude <casdef. h>

const casEvent Maskval ueEvent Mask;
const casEvent Maskl ogEvent Mask;
const casEvent Maskal ar nEvent Mask;

These are the three main event types. They are currently the only ones recognized by
clients. r egi st er Event () is called for these event types in the constructor to
caServer () .val ueEvent Mask is for value events, | ogEvent Mask is for archival
events, and al ar mEvent Mask is for alarm status events. Although it is possible to add
events statically to the client-side API (before run-time). In the future, the client-side API
will allow clients to register new types of events statically, as will the server-side API.
For the server-side API, each event will be represented by a casEvent Mask object.

For now, the only cas Event Mask objects recognized by the server library are

val ueEvent Mask, | ogEvent Mask, and al ar mEvent Mask. They can be passed
to the casPV: : post Event () object. The & and | operators are overloaded so that
they can be combined and separated.

15

CLASS: casPV

Declared: casdef.h

Destruction:

One casPV object must exist for each PV which a client has attached to. When
caServer: :createPV() is called, a casPV object should be created, though it's
perfectly acceptable for a server tool to "precreate” a set of PV objects. In other words, it
doesn't matter when a casPV or derived-class object is created, as long as one exists for
a PV after cr eat ePV() is called. The server library calls cr eat ePV() when the first
client attaches to a PV.

The casPV class itself consists of virtual and non-virtual functions that together satisfy
client requests to read, write, and monitor channels. The casPV class has one pure
virtual function, get Name(), so it is an abstract class. A server tool must derive a class
from casPV and redefine get Name() so that it returns a string representing the class
name. As with the other base classes in the server interface, the default implementations
of the casPV virtual functions are empty or trivial implementations so that a server tool
can create a cas PV object without having to provide implementations for virtual
functions which it doesn't intend to use. All virtual functions in the casPV class are
called by the server library.

The most important virtual functions which the server tool will probably want to provide
definitions for are the r ead() andwr i t e() functions which satisfy a client's request
to read a PV's value (and possibly its attributes) and to change a PV's value.

The dest r oy() virtual function is provided as part of the casPV class to aid the server
tool in destroying all casPV objects. The server library calls dest r oy() for a PV
either when the last client disconnects from a PV or when the server tool itself is deleted,
i.e., when caSer ver is deleted or destroyed, in which case the dest r oy () member
function of each casPV object is called. The default version of dest r oy() does a
delete this. Since the del et e operator only works for objects on the free store, unless
the casPV object was created with the new operator in cr eat ePV() , the default
version of dest r oy () won't work. Therefore, if the server tool creates casPV objects

16

by another method other than the new operator, it should redefine the dest r oy()
function in a derived class.

The server interface also provides a virtual destructor, ~casPV() . This destructor will
provide the necessary cleanup for the internals of the casPV class before an object's
container is destroyed. If the server tool derives a class from the casPV class, it is
responsible for cleaning up any members that need to be explicitly deleted (such as
members on the free-store) before the object's container is destroyed. It should do this in
its own destructor. Recall that when the destructor of a base class is declared vi r t ual ,
the destructors of all classes derived from that class will be vi rt ual . Virtual
destructors differ from other virtual functions in that the base class' destructor is not
really a default, but instead guarantees a certain order of execution of destructors in the
derivation hierarchy before an object is destroyed.

For example, if a server tool derives a class from casPV called aPV and in

creat ePV() creates aPV objects using the new operator, the default version of
destroy() will correctly cause destroy all aPV objects. If aPV provides its own
destructor, then when the server library calls dest r oy () , the del et e operator will
cause the object to be destroyed. Before the object's container is actually destroyed, the
destructors of the casPV derivation hierarchy will be executed, that is, the derived class
destructor will execute, ~aPV(') , and then the base class destructor will execute,
~casPV().

Public Member Functions:

Non-Virtual

Virtual

casPV (const casCtx &ctx, const char * const pPVNane);
caServer *get CAS();
voi d post Event (const casEvent Mask &sel ect, gdd &event);

virtual ~casPV ();

virtual void show (unsigned |evel);

virtual caStatus interestRegister ();

virtual void interestDelete ();

virtual caStatus begi nTransaction ();

virtual void endTransaction ();

virtual caStatus read (const casCtx &ctx, gdd &prototype);

Pure Virtual

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

17

\'
\'

rtual caStatus wite (const casCx &ctx, gdd &val ue);

rtual casChannel *createChannel (const casCtx &ctx,
const char * const pUser Nane,
const char * const pHost Name);

rtual void destroy ();

rtual aitEnum best External Type ();

rtual unsigned nmaxDi nension() const;

rtual aitlndex maxBound (unsigned di nension) const;

\'
\'
\'
\'

virtual const char *getNanme() const = 0;

casPV()

#i ncl ude <casdef. h>
casPV (caServer &cas);

casPV() is the class constructor. The server tool shouldn't be concerned with what the
constructor does, only with passing it the correct argument, the caSer ver object (or
derived class) that is associated with the current PV.

get CAS()

#i ncl ude <casdef. h>
caServer *get CAS();

get CAS() returns a pointer to the caSer ver object associated with the current PV.
The server tool may need to access the PV's caSer ver object and its member functions

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

18

for any one of several purposes. However, this function is used mostly by the server
library.

post Event ()

#i ncl ude <casdef. h>
voi d post Event (const casEvent Mask &sel ect, gdd &event);

The server tool calls post Event () to post events for the PV. Its two arguments are a
casEvent Mask object, sel ect, and a gdd object, event . sel ect can be any event
mask currently registered with the server library. In addition, sel ect can be any
combination of event masks. This can be done by ORing (val ueEvent Mask |

| ogEvent Mask) any combination of the masks together. event should be the value to
be posted, such as the new value or alarm status.

~casPV()

#i ncl ude <casdef. h>
virtual ~casPV ();

~casPV() is the casPV class destructor. Only in freak circumstances will the server
tool call it directly. It is called automatically when any casPV or derived class object
goes out of scope, or, for objects on the free-store, when the object is deleted. According
to the C++ standard, it is called after the destructor(s) of any derived class(es). The server
tool doesn't have to know what it actually cleans, only that it will provide the appropriate
cleanup for the casPV internals.

Name:

Synopsis:

Description:

Names:

Synopsis:

Description:

Names:

19

show()

#i ncl ude <casdef. h>
virtual void show (unsigned |evel);

show() is called if caSer ver: : show() is called and the debug level is high enough.
The default definition of casPV: : show() prints out the best external type, i.e., the
type returned by best Ext er nal Type() . The server tool can redefine show() as it
sees fit.

interestRegister(), interestDelete()

#i ncl ude <casdef. h>
virtual caStatus interestRegister ();
virtual void interestDelete ();

The server library calls i nt er est Regi st er () when the first client establishes a
monitor on the PV, and it calls i nt er est Del et e() when the last client removes its
monitor on the PV. Thus, these functions are meant to indicate whether or not a client or
clients are monitoring the PV.

The default versions of these functions are empty or NULL functions, so if the server
tool wishes to implement monitors, it must redefine both of these functions. The basic
task of these functions is to provide a way to indicate whether or not any clients have
monitors on a PV. One way to do this is for i nt er est Regi st er () to set a member
True and i nt er est Del et e() to set it False. i nt er est Regi st er () must return a
status code to the server library.

Synopsis:

Description:

Name:

Synopsis:

Description:

20

begi nTransaction(), endTransaction()

#i ncl ude <casdef. h>
virtual caStatus begi nTransaction ();
virtual void endTransaction ();

The server library calls begi nTr ansact i on() before it calls either r ead() or
write().ItcallsendTransacti on() after acall to eitherread() orwrite().
The default implementation of begi nTr ansact i on() merely returns

S _casApp_success, and the default version of endTr ansact i on() is empty. The
server tool can redefine them in a derived class to perform any pre-1O or post-10 tasks
which it needs. If begi nTransacti on() returns an error code as opposed to

S _casApp_success, the server library will not call r ead() orwite().

read()

#i ncl ude <casdef. h>
virtual caStatus read (const casCtx &ctx, gdd &prototype);

The server library calls r ead() when a client requests a read operation for the PV and
begi nTransact i on() returns S_casApp_success. Its two arguments are a
casCt x object, ct X, and a gdd object, prototype. Ct X is used by the server library
when asynchronous IO is involved; the server tool should not be concerned with it,
except that for asynchronous operations it should be passed to the constructor for the
casAsyncReadl Oclass. pr ot ot ype can be agddScal ar,agddAt omi c, ora
gddCont ai ner object. The basic task of r ead() is to write the PV's value into the
gdd object. In addition, if prototype is a gddCont ai ner object, r ead() should write
the PV's value as well as its attributes into the gdd container object.

Each gdd object passed to r ead() should have an application type, returned by

gdd: : appl i cati onType() . An application type refers to an unsigned integer code
that represents a predefined use for a piece of data. For example, one application type is
the constant gddAppType_st at us which identifies the value contained in a gdd
object as representing an alarm status code. New application types can be defined to

Name:

Synopsis:

Description:

21

encompass new applications. Application types for EPICS applications can be found in
gddApps.h.

If prototype is a gddScal ar or gddAt oni c, then its application type is most likely
gddAppType_val ue, at least for EPICS applications. When the object is
gddAppType_val ue, thenr ead() must write the PV's value into the object using
gdd: : put () orgdd: : put Convert ().If prototype is a gddScal ar object, then a
single value must be written into it. If a gddAt omi ¢ object, then the appropriate number
of elements must be written into pr ot ot ype. If pr ot ot ype is a gddCont ai ner,
then that means that it itself contains other gdd objects, each having its own application
type. r ead() must then provide a way to step through the container and its objects,
writing the appropriate value that corresponds to the objects' application type into each
object.

There are several ways to step through a gdd container and call the appropriate
functions. The easiest way is to use the gddAppFuncTabl e<PV> template. This class
provides a way to install functions and to specify an application type for each function.
Then when gddAppFuncTabl e: : read() is called and provided with the appropriate
arguments, it will step through the gdd container object, calling the appropriate function
for each gdd object.

Basically, the r ead() function must write the appropriate value or values into

pr ot ot ype in order to satisfy client requests. Whatever method it chooses to
implement this functionality will work as long as it provides a way to satisfy any
expected client requests. r ead() must return a status code to the server library. The
appropriate code and a message will be sent to the client.

Normally, r ead() completes synchronously. However, r ead() can complete
asynchronously creating a casAsyncReadl Oor derived object and returning the status
code S_casApp_asyncConpl eti on

wite()

#i ncl ude <casdef. h>
virtual caStatus wite (const casCtx &ctx, gdd &val ue);

Name:

Synopsis:

Description:

22

The server library callswr i t () when a client makes a "put" or write request for the

PV and after begi nTransacti on() returns S_casApp_success. Its two
arguments are a casCt X object, ct X, and a gdd object, val ue. ct X is used by the
server library when asynchronous IO is involved; the server tool should not be concerned
with it, except that for asynchronous operations it should be passed to the constructor for
the casAsyncW i t el Oclass. val ue contains the value which the client has requested
the server tool to write to the PV. The server tool must somehow update the current value
of the PV. The ways to do this are numerous and depend totally on the server tool. The
default version of wr i t e() is a NULL function.

write() is somewhat easier to implement than r ead() because as of release 3.13, the
client-side API doesn't allow put or write requests for compound types. Thus, val ue
will never be a gddCont ai ner object, but either a gddAt oni ¢ or gddScal ar
object. The task of wr i t e() will be, for gddAt omi ¢ objects, to write the elements
from the array to the PV's array and, for gddScal ar objects, to write the gddScal ar
value to the PV's value. wr i t () should never have to step through a gddCont ai ner
object. wri t () should return S_casApp_success if the operation was successful,
or the appropriate error code if the operation was not.

Likeread(),w it e() can complete asynchronously by creating a casAsyncl Oor
derived-class object and returning the status code S_casApp_asyncConpl eti on to
the server library.

cr eat eChannel ()

#i ncl ude <casdef. h>

virtual casChannel *createChannel (const casCtx &ctx,
const char * const pUser Nane,
const char * const pHost Name);

Recall that the term channel refers to the connection between a PV and a client. The
server library calls cr eat eChannel () for each new client that attaches to the PV. The
default version of cr eat eChannel () simply creates a casChannel object, passing
the first argument, Ct X, to its constructor.

A server tool will only want to redefine cr eat eChannel () when it wishes to
implement access control. To restrict access rights, it will have to derive a new class from

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

23

the casChannel class and redefine the proper functions. casChannel () can be
redefined to create an object of the derived class and can use the second and third
arguments, pUser Nanme and pHost Nane to grant or restrict a a client access to read
and/or write to a PV. pUser Nane points to a string of the user's name, while

pHost Nanme points to a string of the host's name. If the server tool is going to restrict
access rights, it will probably use these two names.

cr eat eChannel () should return a pointer to the casChannel or derived-class
object to the server library.

destroy()

#i ncl ude <casdef. h>
virtual void destroy ();

The server library calls destroy when the last client disconnects from the PV or when the
server itself (the caSer ver object) is deleted, in which case the dest r oy () functions
of all casPV or derived-class objects are called. The default version of dest r oy()
deletes the t hi s pointer, so unless the casPV or derived-class object is on the free
store, the server tool will have to redefine dest r oy () to delete the casPV or derived-
class objects.

best Ext er nal Type()

#i ncl ude <casdef. h>
virtual aitEnum best External Type ();

best Ext er nal Type() returns the recommended architecture-independent type for
requests, one of the enumerators of the enumerated type ai t Enum The server tool can
recommend a type because it's most efficient, or because it's the easiest, or because it

Name:

Synopsis:

Description:

24

matches the PV's type. The default version of best Ext er nal Type() returns
ai t Enunttri ng.

The server library calls best Ext er nal Type() for its own purposes as well as to
satisfy client requests for the PV's native type.

maxDi mensi on(), naxBound()

#i ncl ude <casdef. h>
virtual unsigned maxDi nension() const;
virtual aitlndex maxBound (unsi gned di mension) const;

maxDi mensi on() and maxBound() are virtual functions that a server tool must
redefine to accurately describe the "size" of the PV's value. For scalar PVs, both
functions should return zero. The default versions of these functions both return zero, so
by default they describe a scalar PV. Thus, a server tool will want to redefine these
functions for array PVs.

For an array PV, maxDi mensi on() should return an integer representing the number
of dimensions of the PV's array. For a one dimensional array, it should return one. For a
two dimensional array, it should return two, and so on. maxBound() should return the
size of the dimension indexed by the integer passed to it. If passed an argument of zero,
for instance, it should return the number of elements in the first dimension of the array. If
passed an argument of one, it should return the number of elements in the second
dimension and so on. Note that for scalar PVs, maxBound() should return zero no
matter what dimension its argument specifies.

25

CLASS: casChannel

Declared: casdef.h

A casChannel object or an object of a derived class must exist for each client
connection to each PV. Thus, if client X and client Y have each established connections
to PVs A and B, then there are four channels: two channels on PV A, one for client X and
one for Y; and two channels on PV B, one for client X and one for Y. Each time a new
client attaches to a PV, the server library calls casPV: : cr eat eChannel ().

cr eat eChannel () is a virtual function whose default creates a casChannel object.

The casChannel class provides the server tool with the ability to restrict or control
access rights to PV. It consists of some virtual and non-virtual functions. By deriving a
class from the casChannel class and redefining the appropriate virtual functions, a
server tool can control access rights to a PV. By default, none of the casChannel
functions implement access control. By default, most are empty or NULL functions.

Access rights consist of read access and write access. The server tool can grant one and
deny the other, or grant both, or deny both, whatever it deems to be appropriate.

Basically, to implement access rights, a server tool needs to derive a class from the
casChannel class. Recall that the server library calls casPV: : cr eat eChannel ()
each time a client attaches to a PV. Two of the arguments passed to

creat eChannel () are the user's name and the client's host name. If the server tool
wishes to control access rights based upon who the user is and on what machine the client
is running, it should provide a way to keep track of the user and host names, such as
providing members to keep track of the names as part of a class derived from
casChannel .

The two basic functions that control access rights are r eadAccess() and

wri t eAccess() . Both of these return an enumerated type, ai t Bool , whose
enumerators are ai t Tr ue and ai t Fal se. If readAccess() returns ai t Fal se,
the client will be denied read access to the PV, i.e., will not be able to read its value. If
readAccess() returns ai t Tr ue, the client will be granted read access to the PV.
wri t eAccess() works the same, except that whether it returns ai t Tr ue or

ai t Fal se controls whether or not a client has write access to a PV, i.e., can change its
value.

Destruction:

26

Bothr eadAccess() andw it eAccess() are virtual functions whose default
definitions always return ai t Tr ue. A server tool can derive a class from casChannel
and then redefine these functions to grant/deny access depending on whatever condition
is deems appropriateAfor example, because the user's name is 'hacker' or because write
operations are not allowed after 5:00 PM.

The server tool should not itself directly delete or destroy a casChannel or derived-
class object. Instead, the server library calls the virtual function dest r oy() . It calls
dest r oy() in any one of the following three situations:

* When a client disconnects from a PV, the server library deletes the casChannel
or derived-class object for the client.

* When a PV is destroyed, the server library deletes all casChannel or derived-
class objects associated with the PV.

* When a server is destroyed, all PVs are deleted, before which all casChannel or
derived-class objects associated with all PVs are destroyed.

The default version of dest r oy () deletes the t hi s operator using the del et e
operator. Thus, it will work only if the object is on the free store, i.e., was created using
the new operator. If the object is not on the free store, dest r oy() will have to be
redefined so that it duly deletes or destroys the derived-class object.

The casChannel class has a virtual destructor, ~casChannel () . The destructor
cleans up any internals related to the casChannel class and its internals. If the server
tool derives a class from the casChannel class, it is responsible for providing a
constructor that will perform the necessary cleanup. Remember that a virtual destructor
in the base class automatically makes all destructors in the derived classes virtual,
whether declared so or not. Virtual destructors are always called in the same order when
an object is deleted: the derived class constructor first, then the constructor of next
class(es) in the hierarchy, and so on until the destructor(s) of the base class(es) are called.
After all destructors are called, the object's container is destroyed.

Public Member Functions:

Non-Virtual

Virtual

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

27

casChannel (const casCtx &ctx);
casPV *get PV();
voi d post AccessRi ght sEvent ();

virtual void destroy();

virtual void show(unsigned |evel);

virtual aitBool confirmati onRequested () const;

virtual aitBool readAccess () const;

virtual aitBool witeAccess () const;

virtual void setOmer(const char * const pUser Nane,
const char * const pHost Nane);

casChannel ()

#i ncl ude <casdef. h>
casChannel (const casCtx &ctx);

casChannel () is the class constructor. It initializes the internals of casChannel
and its base class. The server tool should not be concerned with what it does, but should

only make sure that the proper casCt X object gets passed as its argument.

get PV()

#i ncl ude <casdef. h>
casPV *get PV();

get PV() returns a pointer to the casPV or derived-class object associated with the

current casChannel or derived-class object.

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

28

readAccess()

#i ncl ude <casdef. h>
virtual aitBool readAccess () const;

The server library calls r eadAccess() to determine if a client should be granted
access to read a PV's value. r eadAccess() returns an enumerated type, ai t Bool ,
whose enumerators are ai t Tr ue or ai t Fal se. If readAccess() returns

ai t Tr ue, the client will be granted access to read the PV. If it returns ai t Fal se, the
client will be denied access to read the PV.

The default version of r eadAccess() always returns ai t Tr ue. A server tool can
control access to a PV by returning ai t Tr ue or ai t Fal se as it deems appropriate,
based on whatever conditions are relevant, though usually it will deny/grant access
according to the user name and host name passed to cr eat eChannel ().

It's entirely valid for r eadAccess() to return different values throughout a channel's
lifetime, that is, for r eadAccess() to return ai t Fal se at one time, and then return
ai t Tr ue at another time. The client will be denied/granted access accordingly.

writeAccess()

#i ncl ude <casdef. h>
virtual aitBool writeAccess () const;

The server library calls wr i t eAccess() to determine if a client should have write
accesstoa PV.wri t eAccess() returns the enumerated type ai t Bool , whose
enumerators are ai t Fal se andai t True. IfwiteAccess() returns ai t True,
the client will be granted access to write to the PV. If it returns ai t Fal se, the client
will be denied access to write to the PV.

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

29

The default version of wr i t eAccess() always returns ai t Tr ue. A server tool can
control write access to a PV by redefining the function to return ai t Fal se or

ai t Tr ue as it deems appropriate, based on whatever conditions it chooses to use,
though usually it will deny/grant access according to the user name and host name passed
as arguments to casPV: : cr eat eChannel ().

It's entirely valid for wr i t eAccess() to return different values throughout a channel's
lifetime, that is, for wr i t eAccess() toreturn ai t Fal se at one time, and then return
ai t Tr ue at another time. The client will be denied/granted access accordingly.

show()

#i ncl ude <casdef. h>
virtual void show(unsigned |evel);

If the default version of caSer ver: : show() is called and the level is high enough,
the server library will call show() . If the debug level is above two, the default version
of show() will print the values returned by r eadAccess(),w it eAccess(),and
confirmati onRequest ed() . The server tool can redefine Show() to print
whatever information it deems appropriate.

set Oaner ()

#i ncl ude <casdef. h>
virtual void setOmner(const char * const pUser Nane,
const char * const pHost Nane);

If either the user name or host name should change throughout the life of the channel, the
server library calls set Oawner () and passes the names of the user and host to the
function. The default version of set Owner () is a NULL or empty function. If the

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

30

server tool wishes to control access rights based upon who the user is and the machine
the client is running on, it should redefine set Oaner () so that it can keep track of the
new names.

confirmati onRequest ed()

#i ncl ude <casdef. h>
virtual aitBool confirmati onRequested () const;

The server library calls conf i r mat i onRequest ed() to determine if the OPI should
prompt the user for confirmation before writing to this PV.

confirmati onRequest ed() returns an enumerated type, ai t Bool , whose
enumerators are ai t Tr ue and ai t Fal se. If it returns ai t Tr ue, the OPI display will
prompt the user for confirmation when the user tries to write to the PV. If it returns

ai t Fal se, no such prompting will occur when the user writes to a PV.

Currently, neither DM nor the client-side API allows for such a confirmation request.
This is meant to change in a future EPICS release.

destroy()

#i ncl ude <casdef. h>
virtual void destroy();

The server library calls dest r oy() to delete the casChannel or derived-class object.
It calls destroy when a client disconnects from a PV, when a PV is deletedAin which case
dest roy() is called for all casChannel or derived-class objects associated with the
PVAor when a server is deleted, all PVs associated with the server are deleted, in which
case dest r oy () is called for all casChannel or derived-class objects associated with
the PV.

Name:

Synopsis:

Description:

31

The default version of dest r oy () deletes the object's t hi S pointer. Since it uses the
del et e operator, it is only valid for objects created using the new operator, objects on
the free store. If the server tool creates casChannel or derived-class objects using
another method other than the new operator, it should redefine the dest r oy() function
so that the object is duly deleted when the server library calls dest r oy () .

post AccessRi ght sEvent ()

#i ncl ude <casdef. h>
voi d post AccessRi ghtsEvent ();

The Channel Access client-side API allows a client to monitor a PV for access rights
events. That is, a client can request the server tool to inform the client when the client's
access rights change, when it doesn't have access rights where it did before or when it has
access rights where it didn't before.

If a server tool implements access control and the access for a particular channel changes
during the channel's lifetime, then post AccessRi ght sEvent () should be called for
the casChannel object associated with the channel. The server library will then inform
the client of the access rights event.

32

CLASS: casAsynclO

Declared: casdef.h

The casAsynclO class is provided as a base class to the casAsyncReadlO,
casAsyncWritelO, casAsyncCreatePVIO, and casAsyncPVExistIO classes. These classes
allow asynchronous completion of casPV::read(), casPV::write(), caServer::createPV(),
and caServer::pvExistTest(), respectively. If one of these functions chooses to complete
asynchronously, it must create a casAsyncReadlO, casAsyncWritelO,
casAsyncCreatePVIO, or casPVExistlO object, and then use the postilOCompletion()
function to post the necessary status codes and values. postlOCompletion() is a member
of all four of the above classes.

The casAsyncl Oclass provides for a consistent method of destruction for the
casAsyncReadl Q casAsyncWitel Q casAsyncCreat ePVI O and
casAsyncPVEXxi st | Oclasses. It provides a virtual destructor ~casAsyncl () and
a virtual function called dest r oy () . The server library calls dest r oy () after the
message posted using post | OConpl et i on() has been successfully queued to the
client. The default version of dest r oy () deletes the t hi s pointer of the object using
the del et e operator. Thus, if the object was created using the new operator and is on
the free store, the default version of dest r oy () will cause the object's destructor to be
called and the object's container to be destroyed. If the server tool wishes to create a
casAsyncReadl Q casAsyncWitel Q casAsyncCreat ePVI O or
casAsyncPVEXi st | Oobject by another method than the new operator, it should
redefine the dest r oy() function in a derived class if it wants the object to be duly
destroyed.

The virtual destructor ~casAsyncl () performs no real clean up, but instead
guarantees the order in which the destructors of any derived classes are called. Since the
casAsyncReadl Q casAsyncWitel QcasAsyncCreat ePVI O and
casAsyncPVEXi st | Oclasses are derived from casAsyncl O if the server tool
derives a class from any of these classes, when the object is destroyed, the destructor of
the derived class is called first, the destructor of the casAsyncReadl O
casAsyncWitel O casAsyncCreat ePVI O or casAsyncPVEXi st | Oclass is
called second, and finally ~casAsyncl () is called.

33

Public Member Functions:

Virtual

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

virtual ~casAsyncl);
virtual void destroy();

~casAsyncl)

#i ncl ude <casdef. h>
virtual ~casAsyncl (();

~casAsyncl () is the class destructor. It is an empty or NULL function, and is only
provided to guarantee the execution order of the destructors of the casAsyncReadl O,
casAsyncWitel O casAsyncCreat ePVI O and casAsyncPVEXi st | Oclass,
as well as any classes derived from these classes.

The server tool should never call this destructor directly. The server tool should also
never directly delete any asynchronous IO object such as casAsyncReadl O

destroy()

#i ncl ude <casdef. h>
virtual void destroy();

The server library calls dest r oy() after the message posted by
post | OConpl et i on() has been successfully queued to the client. The default
version of dest r oy () deletes the t hi s pointer to the object using the del et e

34

operator. Since the del et e operator only deletes objects on the free store, i.e., those
created using the new operator, the default version will only work if the
casAsyncReadl Q casAsyncWitel QcasAsyncCreat ePVI O
casAsyncPVEXi st | O or derived-class object was created using the new operator. If
the asynchronous object is to be created without the new operator, dest r oy() should
be redefined so that it duly destroys the object.

Note that the server library calls dest r oy (') . The server tool should never directly call
dest roy() . This may cause the message to be deleted before the server library has had
a chance to queue it to the client. If the server tool wishes to cancel an asynchronous
operation after the asynchronous object has already been created, it should call

post | OConpl et i on() and pass it the status code

S casApp_cancel edAsyncl O Post | OConpl eti on() is a member function of
all four asynchronous classes.

35

CLASS: casAsyncReadl O

Declared: casdef.h

The casAsyncReadl Oclass provides asynchronous completion for read operations. A
read operation is one in which the client requests a value of a PV from the server. When
such an operation is requested, the server library calls casPV: : r ead() ora
redefinition of it in a derived class. The server tool can choose to perform the operation
inread() or to postpone completing the operation, called asynchronous completion, by
creating a casAsyncReadl Oor derived object and then returning

S casApp_asyncConpl et i on.

How the server tool chooses to complete an asynchronous operation depends on the
application and is the concern of the server tool. For instance, the server tool could use a
callback function, or a timer, or whatever. After the server tool completes the read
operation, it should call post | OConpl et i on(), which is a member of the class. If the
operation is successfully completed, the status code S_casApp_success should be
passed as the first argument to post | OConpl et i on(), and a gdd object that contains
the requested value should be passed as the second argument. The server library will
create a message containing the value and the status code and put this message on a
queue to be sent to the client. If the operation is unsuccessful, the appropriate error code
should be passed as the first argument. A gdd object must be passed as the second
argument, but this object will be ignored if the status code is not S_casApp_success.

If the server tool wishes to cancel an asynchronous IO operation, it should call

post | OConpl et i on() and pass to it the status code

S casApp_cancel edAsyncl O The server library will then take care of destroying
the object. The server tool should never delete an asynchronous object itself. Deleting the
object before the server library is able to queue it to the client will cause an error.

Destruction:

When the server library has successfully queued the response message posted by
post | OConpl et i on(), when the server tool cancels the IO operations, or when the
client disconnects before the asynchronous operation completes, the server library will

36

call the dest r oy () virtual function. dest r oy () is a member of the casAsyncl O
class, a class from which casAsyncRead| Ois derived. It deletes the t hi S pointer,
therefore causing the object to be destroyed if the object is on the free store. If the object
was not created with new, dest r oy () should be redefined in a derived class so that the
object is duly destroyed. The server tool should never directly call dest r oy () , should
never directly call a casAsyncReadl Oor derived-class destructor, and should never
itself del et e a casAsyncReadl Oobject. This is because a casAsyncReadl O
object should not be destroyed until the server library has successfully queued the
response message.

The casAsyncl Oand casAsyncReadl Oclasses each have a virtual destructor,
~casAsyncl) and ~casAsyncReadl () . Because the destructors are virtual,
they guarantee that the destructors in the casAsyncRead| Oclass and any derived
classes are executed in order. If the server tool derives a class from casAsyncReadl O
it is responsible for providing a destructor that will perform any necessary clean up for
that class prior to destruction.

For example, suppose a server tool derived a class called myAsyncReadl Ofrom
casAsyncReadl Oand provided a destructor for the class, ~myAsyncReadl () . If
a myAsyncReadl Oobject is created, when the operation completes and the server tool
calls post | OConpl eti on(), the server library will queue the response to the client,
after which it will call dest r oy () . Assuming that the ny AsyncRead| Oobject was
created using the new operator, then the default version of dest r oy () will delete the
object, causing ~myAsyncReadl () to be called before ~casAsyncReadl () is
executed, after which ~casAsyncl () is called, after which the object's container is
destroyed.

Public Member Functions:

Non-Virtual

Virtual

casAsyncReadl (const casCtx &ctx);

caSt at us post | OConpl eti on(caSt atus conpl eti onSt atusln,
gdd &val ueRead) ;

caServer *get CAS();

virtual ~casAsyncReadl);

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

37

casAsyncReadl ()

#i ncl ude <casdef. h>
casAsyncReadl (const casCtx &ctx);

casAsyncReadlO() is the class constructor. As with the other constructors, the server tool
doesn't need to be concerned with what it does, only in passing it the right arguments. Its
only argument is a casCtx object, ctx. ctx is used by the server library; the server tool
need not be concerned with it, except as far as making sure that it gets passed to the
constructor.

post | OConpl eti on()

#i ncl ude <casdef. h>
caSt at us post | OConpl eti on(caSt atus conpl eti onStatuslin
gdd &val ueRead) ;

The server tool should call post | OConpl eti on() after it has completed the read
operation. If successful, the first argument should be the status code

S casApp_success and the second argument should be a gdd object that contains
the requested value (or values when the client has requested a compound type). If the
read operation was not successful, the first argument should be an error code and the
second argument a gdd object whose contents are not important.

If the server tool wishes to cancel an asynchronous read operation, it should call

post | OConpl et i on() with the first argument the status code

S casApp_cancel edAsyncl Oand the second argument an empty gdd object. The
server library will then call dest r oy () and forward the appropriate status code to the
client.

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

38

get CAS()

#i ncl ude <casdef. h>
caServer *get CAS();

get CAS() returns a pointer to the caSer ver object associated with the
casAsyncReadl Oor derived-class object.

~casAsyncReadl ()

#i ncl ude <casdef. h>
virtual ~casAsyncReadl);

~casAsyncReadl () is the class destructor. It is an empty or NULL function, and is
only provided to guarantee the execution order of any destructors declared in any derived
class or classes. Thus, if a server tool derives a class from the casAsyncReadl Oclass
and provides a destructor for that class, when the object is deleted or destroyed, the
destructor for the derived class will be called before the destructor of the base class.

The server tool should never call this destructor directly. The server tool should also
never directly delete a casAsyncReadl Oobject.

39

CLASS: casAsyncWritelO

Declared: casdef.h

Destruction:

The casAsyncW i t el Oclass provides asynchronous completion for write operations.
A write operation is one in which the client requests that a PV's value be changed. The
client, of course, provides the value. When such an operation is requested, the server
library calls casPV: : wri t e() or a redefinition of it in a derived class. The server tool
can choose to perform the operation in W i t €() , synchronous completion, or to
postpone completing the operation, asynchronous completion, in which case wri t e()
should create a casAsyncW i t el Oobject and then return

S casApp_asyncConpl et i on.

How the server tool chooses to complete the operation depends on the application and is
the concern of the server tool. For instance, the server tool could use a callback function,
or a timer, or whatever. After the server tool completes the write operation, it should call
post | OConpl et i on() . If the operation is successfully completed, the status code

S _casApp_success should be passed to post | OConpl et i on() . The server
library will create a message consisting of the status and put this message on a queue to
be sent to the client. No gdd object should be posted for asynchronous write operations.

The value to be written to the PV in the operation is contained in the gdd object that the
server library sends to wr i t () . The server tool will need to keep track of this gdd
object or the value inside it, and then write this value to the PV when the server tool
completes the operation. The easiest way to do this would be to derive a class from the
casAsyncW i t el Oclass. The derived class would have a member that would be
assigned the gdd object passed to Wr i t e() . When the operation is ready to complete,
this member can be accessed and its value written to the PV.

If the server tool wishes to cancel an asynchronous IO operation, it should call

post | OConpl eti on() and pass it the status code

S casApp_cancel edAsyncl O Deleting the object before the server library is able
to queue it to the client will cause error.

40

When the server library has successfully queued the response message posted by

post | OConpl eti on() or when the client disconnects before the asynchronous
operation completes, the server library will call the dest r oy() virtual function.
destroy() isamember of the casAsyncl Oclass, a class from which
casAsyncWi t el Ois derived. dest r oy() deletes the t hi s pointer to the object,
therefore causing the object to be destroyed if the object is on the free store. If the object
is not created with new, dest r oy() should be redefined in a derived class so that the
object is duly destroyed. The server tool should never directly call dest r oy () , should
never directly call a casAsyncl Oor derived-class destructor, and should never itself
delete a casAsyncW i t el Oobject. This is because a casAsyncW i t el Oobject
should not be destroyed until the server library has successfully queued the response
message to the client.

The casAsyncl Oand casAsyncWritelO classes each have a virtual destructor,
~casAsyncl () and ~casAsyncW it el () . Because the destructors are virtual,
they guarantee that the destructors in the casAsyncW i t el Oclass and any derived
classes are executed in order. If the server tool derives a class from

casAsyncW i t el Q, it is responsible for providing a destructor that will perform any
necessary clean up prior to destruction.

For example, suppose a server tool derived a class from casAsyncW i t el Ocalled
nyAsyncW i t el Oand provided a destructor for the class, ~myAsyncWitel () .If
a nyAsyncW it el Oobject is created, when the operation completes and the server
tool calls post | OConpl et i on(), the server library will queue the response to the
client, after which it will call dest r oy () . Assuming that the myAsyncWitel O
object was created using the new operator, then the default version of dest r oy () will
delete the object causing ~myAsyncW it el () to be executed before
~casAsyncWitel () isexecuted, after which ~casAsyncl () is called, after
which the object's container is destroyed.

Public Member Functions:

Non-Virtual

casAsyncWitel Q(const casCtx &ctx);
caSt at us post| OConpl eti on(caStatus conpl etionStatusln);
caServer *get CAS();

Virtual

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

41

virtual ~casAsyncWitel Q);

casAsyncWitel ()

#i ncl ude <casdef. h>
casAsyncWitel Q(const casCtx &ctx);

casAsyncWi tel Q) is the class constructor. As with the other constructors, the
server tool doesn't need to be concerned with what it does, only in passing it the right
arguments. Its only argument is a casCt X object, Ct X. Ct X is used by the server
library; the server tool need not be concerned with it, except as far as making sure that it
gets passed to the constructor.

post | OConpl eti on()

#i ncl ude <casdef. h>
caSt at us post | OConpl eti on(caSt atus conpl eti onSt atusln);

The server tool should call post | OConpl et i on() after it has completed the write
operation. If successful, the status should be S_casApp_success. If the write
operation was not successful, the status should be the appropriate error code.

If the server tool wishes to cancel an asynchronous read operation, it should call
post | OConpl et i on() with the status code S_casApp_cancel edAsyncl QO The
server library will then call destroy and forward the appropriate status code to the client.

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

42

get CAS()

#i ncl ude <casdef. h>
caServer *get CAS();

get CAS() returns a pointer to the caSer ver object associated with the
casAsyncW i t el Oor derived-class object.

~casAsyncWitel)

#i ncl ude <casdef. h>
virtual ~casAsyncWitel Q();

~casAsyncWitel) is the class destructor. It is an empty or NULL function, and
is only provided to guarantee the execution order of any destructors declared in any
derived class or classes. Thus, if a server tool derives a class from the

casAsyncW i t el Oclass and provides a destructor for that class, when the object is
deleted or destroyed, the destructor for the derived class will be called before the
destructor of the base class.

The server tool should never call this destructor directly. The server tool should also
never directly delete a casAsyncW i t el Oobject.

43

CLASS: casAsyncPVExistIO

Declared: casdef.h

The casAsyncPVEXi st | Oclass provides asynchronous completion for

pVEXi st Test () . The server library calls pvExi st Test () when a client requests a
connection to a PV, broadcasting the PV's name over the network. The server library will
pick up the broadcast and call the server tool's implementation of pvEXi st Test ().
The task of pvEXi st Test () is to check to see if the PV is associated with this server,
and if it is, to return pver Exi st sHer e. If it isn't, it should return

pver DoesNot Exi st Her e. If the server tool wants to perform the search later, it can
postpone the operation using asynchronous completion, in which case it should create a
casAsyncPVEXi st | Oobject and then return pver AsyncConpl et i on. Of course,
like all asynchronous objects, the cas AsyncPVEXi st | Oobject must exist after the
function which created it returns.

Although strictly speaking the return value of the pvEXi st Test () function is a
pVEXi st Ret ur n object, C++ allows a function to initialize and return an object
indirectly to the calling function. Thus, pvEXi st Test () can simply return one of the
three possible values of pvEXi st Ret ur nEnum in which case a pvExi st Ret urn
object will be returned to the server library initialized with the specified enumerator. A
pVEXi st Ret ur n object is a container for a pvEXi st Ret ur nEnummember. For
asynchronous completion, a pvEXi st Ret ur n object must be explicitly initialized and
passed to post | OConpl eti on() . A pvEXi st Ret ur n object can be initialized
simply by passing it a pvEXi st Ret ur nEnumvalue:

pvExi st Return *pPver = new pvExi st Return(pver Exi st sHer e) ;
status = postl OConpl eti on(*pPver);

Destruction:

When the server library has successfully queued the response message posted by
post | OConpl et i on() or when the client disconnects before the asynchronous
operation completes, the server library will call the dest r oy() virtual function.
destroy() is a member of the casAsyncl Oclass, a class from which
casAsyncPVEXi st | Ois derived. dest r oy() deletes thet hi S pointer, therefore

44

causing the object to be destroyed if the object is on the free store. If the object was not
created with new, dest r oy() should be redefined in a derived class so that the object
is duly destroyed. The server tool should never directly call dest r oy (), should never
directly call a casAsyncPVEXi st | Oor derived-class destructor, and should never
itself delete a casAsyncPVExi st | Oobject. This is because a

casAsyncPVEXi st | Oobject should not be destroyed until the server library has
successfully queued the response message to the client.

The casAsyncl Oand casAsyncPVEXi st 10 classes each have a virtual destructor,
~casAsyncl () and ~casAsyncPVEXi st | () . Because the destructors are
virtual, they guarantee that the destructors in the casAsyncPVEXi st 10 class and any
derived classes are executed in order. If the server tool derives a class from
casAsyncPVEXi st 10, it is responsible for providing a destructor that will perform any
necessary clean up prior to destruction.

For example, suppose a server tool derived a class called myAsyncPVEXxi st | Ofrom
casAsyncPVEXxi st | Oand provided a destructor for the class,

~myAsyncPVExi st 1 () .If a myAsyncPVExi st | Oobject is created, when the
operation completes and the server tool calls post | OConpl et i on(), the server
library will queue the response to the client, after which it will call dest r oy() .
Assuming that the my AsyncPVEXi st | Oobject was created using the new operator,
then the default version of dest r oy() will delete the object causing
~myAsyncPVEXi st | () to be executed before ~casAsyncPVEXi st | Q() is
executed, after which ~casAsyncl Q() is called, after which the object's container is
destroyed.

Public Member Functions:

Non-Virtual

Virtual

casAsyncPVExi st 1 (const casCtx &ctx);
caSt at us post| OConpl eti on(const pvExi stReturn & etValln);
caServer *get CAS();

virtual ~casAsyncPVExistlQ();

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

45

casAsyncPVExi st 1 Q()

#i ncl ude <casdef. h>
casAsyncPVExi st 1 Q(const casCtx &ctx);

casAsyncPVEXxistIO() is the class constructor. The server tool doesn't need to be
concerned with what it does, only in passing it the right arguments. Its only argument is a
casCtx object, ctx. ctx is used by the server library; the server tool need not be concerned
with it, except as far as making sure that it gets passed to the constructor.

post | OConpl et i on()

#i ncl ude <casdef. h>
caSt at us post| OConpl eti on(const pvExi stReturn &retValln);

The server tool should call post | OConpl et i on() after it has completed the PV
search, passing to it a pvEXi st Ret ur n object which contains pver Exi st sHer e or
pver DoesNot Exi st Her e.

get CAS()

#i ncl ude <casdef. h>
caServer *get CAS();

Name:

Synopsis:

Description:

46

get CAS() returns a pointer to the caSer ver object associated with the
casAsyncPVEXi st | Oor derived-class object.

~casAsyncPVExi st | ()

#i ncl ude <casdef. h>
virtual ~casAsyncPVExistlQ();

~casAsyncPVExistIO() is the class destructor. It is an empty or NULL function, and is
only provided to guarantee the execution order of any destructors declared in any derived
class or classes. Thus, if a server tool derives a class from the casAsyncPVExistIO class
and provides a destructor for that class, when the object is deleted or destroyed, the
destructor for the derived class will be called before the destructor of the base class.

The server tool should never call this destructor directly. The server tool should also
never directly delete a casAsyncPVEXi st | Oobject.

47

CLASS: casAsyncCreatePVIO

Declared: casdef.h

Destruction:

The casAsyncCr eat ePVI Oclass provides asynchronous completion for

creat ePV() . The server library calls cr eat ePV() when a client requests a
connection to a PV and pvEXi st Test () has returned pver Exi st sHer e. The task
of cr eat ePV() is to create a PV object (an object derived from the casPV class) and
to return a pointer to it, to return the object itself (by reference), or to return a status code
indicating the error that occurred or indicating that it wants to complete asynchronously.
The three possible status codes cr eat ePV() can return are

S casApp_pvNot Found, S_casApp_noMenory, and

S _casApp_asyncConpl et i on. It should return the last code if it wishes to delay
completing its task, in which case it should create a casAsyncCr eat ePVI Oobject
before returning.

The actual return value of cr eat ePV() is a pvCr eat eRet ur n object, which is a
container for a pointer to a PV object and a status code (of type caSt at us). Since C++
allows a function to initialize and return an object indirectly to the calling function, when
cr eat ePV() returns one of the above-mentioned values, a pvCr eat eRet ur n object
is properly initialized and returned to the server library. However, asynchronous
operations will have to explicitly initialize a pvCr eat eRet ur n object and pass it to
post | OConpl eti on() after the operation completes. The pvCr eat eRet ur n class
has two constructors which can be used to initialize it: one accepts a PV object by
reference and the other simply accepts a status code.

pvCreat eRet urn(caSt atus statln)
pvCr eat eRet urn(casPV &pv);

With the first constructor, the status code member of the class is initialized to the status
code indicated by st at | n, and the PV pointer is initialized to NULL. With the second
constructor, the PV pointer is set to point to the address &0V, and the status code is
initialized to S_casApp_success.

48

When the server library has successfully queued the response message posted by

post | OConpl eti on() or when the client disconnects before the asynchronous
operation completes, the server library will call the dest r oy() virtual function.
destroy() is a member of the casAsyncl Oclass, a class from which

casAsyncCr eat ePVI Ois derived. dest r oy() deletes the t hi s pointer, therefore
causing the object to be destroyed if the object is on the free store. If the object was not
created with new, dest r oy() should be redefined in a derived class so that the object
is duly destroyed. The server tool should never directly call dest r oy (), should never
directly call a casAsyncCr eat ePVI Oor derived-class destructor, and should never
itself delete a casAsyncCr eat ePVI Oobject. This is because a

casAsyncCr eat ePVI Oobject should not be destroyed until the server library has
successfully queued the response message to the client.

The casAsyncl Oand casAsyncCr eat ePVI Oclasses each have a virtual destructor,
~casAsyncl) and ~casAsyncCr eat ePVI () . Because the destructors are
virtual, they guarantee that the destructors in the casAsyncCr eat ePVI Oclass and
any derived classes are executed in order. If the server tool derives a class from
casAsyncCr eat ePVI Q it is responsible for providing a destructor that will perform
any necessary clean up prior to destruction.

For example, suppose a server tool derived a class called nyAsyncCr eat ePVI Ofrom
casAsyncCr eat ePVI Oand provided a destructor for the class,

~myAsyncCr eat ePVI () . If a nyAsyncCr eat ePVI Oobject is created, when the
operation completes and the server tool calls post | OConpl et i on(), the server
library will queue the response to the client, after which it will call dest r oy() .
Assuming that the my AsyncPVEXi st | Oobject was created using the new operator,
then the default version of dest r oy () will delete the object causing

~myAsyncCr eat ePVI Q() to be executed before ~casAsyncCr eat ePVI () is
executed, after which ~casAsyncl Q() is called, after which the object's container is
destroyed.

Public Member Functions:

Non-Virtual

casAsyncCreat ePVI Q(const casCtx &ctx);
caSt at us post| OConpl eti on(const pvCreateReturn & etValln);
caServer *get CAS();

Virtual

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

Name:

Synopsis:

49

virtual ~casAsyncCreatePVIQ);

casAsyncCreat ePVI ()

#i ncl ude <casdef. h>
casAsyncCreat ePVI Q(const casCtx &ctx);

casAsyncCreat ePVI () is the class constructor. The server tool doesn't need to be
concerned with what it does, only in passing it the right arguments. Its only argument is a
casCt x object, Ct X. Ct X is used by the server library; the server tool need not be
concerned with it, except as far as making sure that it gets passed to the constructor.

post | OConpl eti on()

#i ncl ude <casdef. h>
caSt at us post| OConpl eti on(const pvExi stReturn & etValln);

The server tool should call post | OConpl et i on() after it has completed the PV
search, passing to it a pvCr eat eRet ur n object which contains a status code and
pointer to a PV object. The pointer can be NULL if the status code isn't

S _casApp_success.

get CAS()

Description:

Name:

Synopsis:

Description:

50

#i ncl ude <casdef. h>
caServer *get CAS();

get CAS() returns a pointer to the caSer ver object associated with the
casAsyncCr eat ePVI Oor derived-class object.

~casAsyncPVExi st |1 ()

#i ncl ude <casdef. h>
virtual ~casAsyncPVExistlQ);

~casAsyncCreat ePVI () is the class destructor. It is an empty or NULL function,
and is only provided to guarantee the execution order of any destructors declared in any
derived class or classes. Thus, if a server tool derives a class from the

casAsyncCr eat ePVI Oclass and provides a destructor for that class, when the object
is deleted or destroyed, the destructor for the derived class will be called before the
destructor of the base class.

The server tool should never call this destructor directly. The server tool should also
never directly delete a casAsyncCr eat ePVI Oobject.

51

CLASS: gdd

The gdd class is not actually part of the Portable Server interface. However, both the
server library and the functions in the interface use it extensively, so anyone using the
interface to write a server must have a basic familiarity with the gdd class and its derived
classes, gddAt om ¢, gddScal ar, and gddCont ai ner .

Basically, the gdd class is a way of encapsulating architecture-independent data so that
its characteristics can be described and so that it can be easily exchanged and converted
from one type to another. Its core member is a union which has members for each of the
architecture-independent types including ai t Fi xedStri ngandai t St ri ng. The
union has also has a voi d pointer that can be used to point to an array of whatever type.

A gdd object is described by its primitive type and its application type. Its primitive type
is its architecture-independent type, i.e., @i t | nt 8 or ai t Fl oat 32, etc. Its application
type describes what the data is used for and what it represents. For example, a certain
application type can describe data as representing an alarm status code or a PV's value or
a PV's units. New application types can be defined to describe new uses for data. The
gdd library comes with pre-defined application types that describe EPICS data.

The following describes some of the member functions of the gdd class. Not all of the
functions are covered here. The gdd class consists of many functions; many of them are
meant for internal use. The functions described here are those that are most likely to be of
interest to users.

Note that there are three classes that are derived from the gdd class: gddScal ar,
which is used for scalar data, gddAt omi ¢, which is used for array data, and

gddCont ai ner which is used to contain multiple gddAt om ¢ and/or gddScal ar
objects. For the most part, most of the functions used to deal with gddScal ar and
gddAt omi ¢ objects are part of the gdd base class and not the gddScal ar or

gddAt omi ¢ objects. For instance, the gdd class contains the functions needed to deal
with array data. This is meant to support flexibility in dealing with different gdd objects.
Also note that the following is not an exhaustive treatment of the gdd class.

Public Member Functions:

gdd(), applicationType(),primtiveType(), dinmension()

Name:

Synopsis:

Description:

52

set PrinType(), setAppl Type(), reset(), clear(),
changeType(), setBound(), getBound(), dataPointer(),
get Ti meSt amp() ,

set Ti meStanp(), setStatus(), getStatus(), setStat(),
get Sevr(), getStat(), getSevr(), setStatSevr(),

get Stat Sevr (), copylnfo(), copy(), Dup(), noReferencing(),
reference(), unreference(), isScalar(), isContainer(),
i SAtom c(), isManaged(),

i sConstant (), isNoRef(), markConstant(), markManaged(),
mar kUnManaged(), getRef(), putRef(), getConver(),

put Convert(), put(), get(), operator=()

gdd()

#i ncl ude <casdef. h>

gdd(voi d);

gdd(gdd*);

gdd(int app);

gdd(i nt app, aitEnumprinmn;

gdd(int app, aitEnumprim int dinmen);

gdd(int app, aitEnumprim int dinen, aitU nt32*
size_array);

gdd() is the class constructor. It is an overloaded consructor with constructors for
initializing scalar data and array data, gddScal ar objects and gddAt om ¢ objects. In
fact the constructors for the gddScal ar and gddAt oni ¢ classes just call these
constructors.

Basically, all gdd objects have three characteristics: their application type, their
primitive type, and their dimensions. For scalar data, the dimensions are zero; for array
data, one or above. The first constructor, which accepts no arguments, initializes the the
application type to zero, i.e., no application type, the primitive type to aitEnumInvalid,
and the dimensions to zero. The second constructor which accepts a pointer to an already
initialized gdd object initializes the gdd object with the characteristics of the already-
initialized object.

The third constructor accepts an application type for its sole argument. It initializes the
application type to app, and then initializes the primitive type to ai t Enum nval i d
and the dimensions to zero.

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

53

The fourth constructor initializes the application type to app, the primitive type to pri m
and the dimensions to zero. The fifth constructor does the same except it initializes the
dimensions to di men.

For array data, in addition to the dimensions, the size of each dimension can be specified.
For example, the sizes of a two dimensional array might be 5 X 10. In order to initialize
the size of the array, you must pass an array of ai t Ui nt 32 integers as the fifth
argument to the last constructor. It must have at least as many elements as array
dimensions. The size of each dimension will be initialized to the corresponding element
in the array: the first dimension will be initialized with the first element of the array, the
second with the second element, and so on.

Note that the last two constructors do not allocate space for an array. The dimensions and

the size merely describe the actual array which must be created by the user.

applicationType()

#i ncl ude <gdd. h>
unsi gned applicationType(void) const;

Returns the gdd object's application type, an unsigned integer.

primtiveType()

#i ncl ude <gdd. h>
aitEnum primtiveType(void) const;

Returns the gdd object's primitive type, the type of the scalar or array data it contains.
ai t Enumis an enumerated type whose enumerators correspond to the architecture-
independent types. In addtion, ai t Enumhas the enumerators ai t Enum nval i d to

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

Name:

Synopsis:

54

describe a gdd object which has not been initialized with a primitive type or that
contains an unrecognized type, and ai t EnumCont ai ner to describe a
gddCont ai ner object.

di mensi on()

#i ncl ude <gdd. h>
unsi gned di mensi on(voi d) const;

di mensi on() returns the number of dimensions of an array. If di mensi on() returns
zero, the object is a scalar object. If it returns anything greater than zero, the number
represents the number of dimensions of the arrayAone means that the array is a one-
dimensional array, two means that the array is a two-dimensional array, and so on.

set PrinType()

#i ncl ude <gdd. h>
voi d setPriniType(aitEnumt);

A user can use set Pri nlType() to change or initialize the object's primitive type by
passing it an enumerator of the ai t Enumtype such as ai t Enum nt 8. Note that
changing an object's primitive type does not convert its data.

set Appl Type()

Description:

Name:

Synopsis:

Description:

Name:

Synopsis:

55

#i ncl ude <gdd. h>
voi d set Appl Type(int t);

set Appl Type() allows the user to change the gdd object's existing application type.
An application type is an integer constant, a code that describes the object's data and what
it representsAa PV's value, its alarm status, its alarm severity, etc.

reset ()

#i ncl ude <gdd. h>
gddSt at us reset (aitEnum printype, int dinension
ai tl ndex* di mcounts);

reset () changes the object's primitive type, the number of its dimensions, and the size
of each of the dimension. It sets the primitive type to pri nmt ype, the number of
dimensions to di mensi on, and the size of each dimension it sets to the corresponding
element in the array di m_count s; it sets the size of the first dimension to element 1,
the second to element two, etc.

Note that changing the object's primitive type using r eset () does not convert the
existing data to the new data type. Nor does changing its array dimensions allocate
memory for a new array or delete the old array or otherwise perform any operation on the
array.

reset () will not work for gddCont ai ner objects or managed objects.

cl ear ()

#i ncl ude <gdd. h>
gddSt at us cl ear (voi d);

Description:

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

56

For gddAt omi ¢ or array objects, it destroys the array, and sets the dimensions to zero.
It also changes the primitive type to ai t Enuml nval i d and the application type to
zero. For gddCont ai ner objects, it steps through the container, destroying all the gdd
objects within. For gddScal ar objects, it does nothing.

changeType()

#i ncl ude <gdd. h>
gddSt at us changeType(i nt appltype, aitEnum printype);

changeType() will change the object's application type to appl t ype and the
object's primitive type to pr i nt ype. The function will only work if the object is a
scalar object or the primitive type is uninitialized, i.e., ai t Enum nval i d. Otherwise,
the function returns gddEr r or Not Al | owed.

set Bound()

#i ncl ude <gdd. h>
gddSt at us set Bound(unsi gned dimto_set, aitlndex first,
ai tlndex count);

set Bound() lets the user set the bounds of the array's dimensions. The bounds refer to
the index of the first element and the element-count of the dimension. For instance, if you
wish to describe a two-dimensional array that is 10 X 5, the bounds for the first
dimension might be 0 and 10, 0 being the index of the first element, and 10 being the
number of elements; and the bounds of the second dimension might be 2 and 5, 2 being
the index of the first element and 5 being the number of elements.

Name:

Synopsis:

Description:

Name:

Synopsis:

57

The first argument to set Bound(), di m t o_set , indexes the dimension whose
bounds are to be set. Note that the dimensions are indexed as they would be in C or C++,
i.e., starting at zero. Therefore, to set the bounds of the first dimension, di m t o_set
should be zero. The second argument, f i r St , sets the index of the first element, and the
third argument, count , sets the element count.

Note that this function is invalid when called for gddScal ar objects;

gddEr r or Not Al | owed is returned when set Bound() is called for gddScal ar
objects. Also, if di m t 0_set exceeds n-1, where n is the number of dimensions in the
array, gddEr r or Qut OF Bounds is returned.

get Bound()

#i ncl ude <gdd. h>
gddSt at us get Bound(unsi gned dimto_get, aitlndex& first,
ai tl ndex& count);

get Bound() allows the user to retrieve the bounds for the dimension indexed by

di m t o_get . Recall the an array's dimensions are indexed with the first dimension
starting at zero. The second and third arguments are passed by reference. The index of
the first element is written into first, and the number of elements is written into count.

Note that if di m t 0_get exceeds n-1, where n is the number of dimensions,
gddEr r or Qut Of Bounds will be returned. In addition, get Bound() is not
supported for gddScal ar objects.

dat aPoi nt er ()

#i ncl ude <gdd. h>
voi d* dat aPoi nter(voi d) const;
voi d* dat aPoi nter(aitlndex el ement_offset) const;

Description:

Name:

Synopsis:

Description:

Name:

Synopsis:

58

dat aPoi nt er () returns the void pointer of the data member. Recall that a gdd
object's data member is a union that has members for all the architecture-independent
types as well as a voi d pointer that can point to arrays for gddAt omni ¢ objects. This
voi d pointer can be retrieved by calling dat aPoi nt er () .

dat aPoi nt er () has two forms, one which accepts no arguments and one which
accepts an ai t | ndex argument. The former simply returns the voi d pointer, which
will be the address of the array if the array is initialized and exists. The latter will return
the address indexed by the ai t | ndex argument el ement _of f set . Note that

dat aPoi nt er () doesn't check to make sure that index does not exceed the array's
bounds, so the user must be careful when using the latter form of dat aPoi nter ().

set Ti meSt anmp()

#i ncl ude <gdd. h>
voi d set Ti meSt anp(const struct tinmespec* const ts);
voi d set Ti meSt anp(const aitTi neStamp* const ts);

A gdd object has the ability to store a timestamp, in addition to a piece of architecure-
independent data. The user can set a timestamp for the gdd object using

set Ti meSt anp() . set Ti meSt anp() has two forms; each accepts a pointer to one
of two types. The firstis at i mespec structure for POSIX applications. This structure is
defined in gdd.h. The second is an architecture-independent timestamp structure,

ai t Ti meSt anp.

get Ti meSt anp()

#i ncl ude <gdd. h>
voi d get Ti meStanmp(struct timespec* const ts) const;
voi d get Ti meStanp(aitTi meStanp* const ts) const;

Description:

Name:

Synopsis:

Description:

59

get Ti meSt anp() can be used to retrieve a gdd object's timestamp. It has two forms:
one which accepts a pointer to t i mespec structure and one which accepts a pointer to
ai t Ti meSt anp objects. For the t i mespec structure, it will write the appropriate
values into the structure. Thus, memory must already be allocated for t s. For the pointer
to an ai t Ti meSt anp object, the pointer is merely set to point to the object's
aitTimeStamp object. Thus, t S does not have to point to an existing aitTimeStamp
object, i.e., it can be NULL.

Note that get Ti neSt anp() will only work if set Ti meSt anp() has already been
called. Also note that the type of argument passed to get Ti meSt anp() must match
the type passed to set Ti meSt anp() . For instance, if set Ti meSt anp(const
struct tinespec* const ts) iscalled, then get Ti meSt anp(struct

ti mespec* const ts) mustbe called to retrieve the timestamp and not

get Ti meSt anp(ai t Ti neSt anp* const ts).

set St at us()

#i ncl ude <gdd. h>
voi d set Status(aitU nt32);
voi d setStatus(aitU nt16 high, aitU nt16 | ow);

A gdd object has the ability to store a status value, in addition to architecture-
independent data. Status values stem from EPICS alarm status values, but they don't
necessarily have to be EPICS-related, as long as the values are positive integers.
set St at us() can be used to write these values into the gdd object.

set St at us() has two forms. The first sets a single value of type ai t Ui nt 32; the
second actually sets two values of type ai t Ui nt 16, a high value and a low value. In
addition, a gdd object can also hold a value which represents the alarm severity.
However, in order for a gdd object to hold both, it must call set St at () and

set Sevr (),orset St at Sevr (). Calling set St at us() and then set Sevr ()
will cause part of the status value to be overwritten.

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

60

get St at us()

#i ncl ude <gdd. h>
voi d getStatus(aitU nt32&)
void getStatus(aitU nt16& high, aitU ntl1l6& | ow);

get St at us() retrieves an object's status. All gdd objects have the ability to store a
status value, which is an unsigned integer that represents, in EPICS applications at least,
the status of an alarm condition. There are two forms: one which retrieves a single value
of type ai t Ui nt 32 and one which retrieves two values of type ai t Ui nt 32, a high
status value and a low status value. To call the first form, pass an lvalue of type

ai t Ui nt 32 to get St at us() . To call the second form, pass two lvalues of type

ai t Ui nt 16, where the first Ivalue will hold the high value, and the second, the low
value. Note the arguments of both forms are passed by reference, so the proper values
will be written into the arguments.

Note that get St at us() is only valid if set St at us() has been called previously at
least once. If set St at us() hasn't been called, the values written into the arguments
will be garbage. Also not that the form of get St at us() called must correspond to the
form of set St at us() what was called. For instance, if set St at us(ai t Ui nt 32)
is called, the user must call get St at us(ai t Ui nt 32&) , not

get Status(aitU nt16& high, aitU nt16& | ow).If the wrong form is
called, the result will not be unpredictable or erroneous results.

set St at ()

#i ncl ude <gdd. h>
void setStat(aitU ntl6);

A gdd object can hold both an alarm status value and an alarm severity value. However,
if the user intends to hold both the status and the severity. It must call set St at () and

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

Name:

61

then set Sevr (), orelse set St at Sevr () . Calling set St at us() and then
set Sevr () or the other way around will cause the first value to be overwritten.

set St at () accepts a value of type ai t Ui nt 16. It will set the alarm status to this
value. If you set the status using set St at () instead of set St at us() , you must
retrieve the value using either get St at () or get St at Sevr ().

get Stat ()

#i ncl ude<gdd. h>
aitUi nt16 getStat(void) const;

get St at () can be used to retrieve an object's status value that was written using
set St at () orset St at Sevr () . It should not be used to retrieve the status value
when the value was written using set St at us() .

set Sevr ()

#i ncl ude <gdd. h>
void setSevr(aitU ntl6 s);

With set Sevr (), the user can set the severity of a gdd object. Simply pass a value of

type ai t Ui nt 16 as an argument.

get Sevr ()

Synopsis:

Description:

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

62

#i ncl ude <gdd. h>
aitU nt16 get Sevr(void) const;

get Sevr () returns the object's alarm severity, written into the object using either
set Sevr () orset St at Sevr ().

set St at Sevr ()

#i ncl ude <gdd. h>
void setStatSevr(aitintl6 stat, aitlntl6 sevr);

With set St at Sevr () the user can set the severity and status for the object by passing
to it two arguments of type ai t | nt 16, where the first is the status and the second the
severity. The status and severity can retrieved using get St at (), get Sevr (), or

get St at Sevr ().

get St at Sevr ()

#i ncl ude <gdd. h>
void getStat Sevr(aitlntl6& stat, aitlntl1l6& sevr)

get St at Sevr () can be used to retrieve the status and severity by passing to it two
Ivalues of type ai t | nt 16. It will then write the appropriate values into each lvalue, as
long as the values were written using set St at (), set Sevr (), or

set St at Sevr ().

Names:

Synopsis:

Description:

63

copylnfo(), copy(), Dup()

#i ncl ude <gdd. h>

gddsSt at us copyl nf o(gdd*) ;
gddsSt at us copy(gdd*);
gddsSt at us Dup(gdd*);

These three functions can be used to copy the characteristics and data from another gdd
object to the object for which they are called. For instance, if t hat Cbj ect isa
gddScal ar object, whose primitive type is ai t EnumJi nt 16, whose application type
is "severity", and whose value is 197, then if copy| nf o() is called for the gdd object

t hi sQbj ect , t hat Qbj ect 's application type, primitive type, and value will be
copied to t hi sCbj ect sothatt hi sObj ect will have the primitive type

ai t Enunli nt 16, the application type "severity," and the value 197.

All these functions accept the same argument, a pointer to a gdd object which can be a
gddCont ai ner object, agddScal ar object, or a gddAt omi ¢ object.

When the pointer points to a gddCont ai ner object, all three functions have the same
results. They copy the primitive type, the application type, and all the references to the
gdd objects contained within. Thus, the contained objects are not actually reproduced,
but instead the references to them are copied from the referenced object.

When the pointer points to a gddScal ar, all three functions also have the same results.
They copy the primitive type, the application type, and the data contained in the data
member from the referenced object to the object for which the function is called.

When the pointer points to a gddAt o ¢ object on the other hand, the three functions
have different results. Copyl nf o() will copy the information about the object, its
characteristics, but will not copy the array from the referenced object to the object for
which copyl nf o() is called; that is, it will copy the primitive type, the application
type, the dimensions, and the bounds of the dimensions, but not the actual array.
copy() does the same things as copy| nf o() except that it allocates space for an
array and copies the array data from the referenced object to the object for which
copy() was called. Dup() , on the other hand, does the same thing as copy() , but
instead of copying the array data, it merely references it with a pointer.

Name:

Synopsis:

Description:

Names:

Synopsis:

Description:

64

i sScal ar (), isAtonmic(), isContainer()

#i ncl ude <gdd. h>

int isScalar(void) const;
int isAtom c(void) const;

i nt isContainer(void) const;

These functions can be called to find out whether the object is a gddScal ar,

gddAt omi ¢, or gddCont ai ner object. For instance, i sScal ar () returns a non-
zero value if the object is a gddScal ar object or a zero if the object is not a
gddScal ar object. Each returns a non-zero, zero if the object is, is not the specified
object type.

The conditions which distinguish one object from another are simple: if the dimensions
are zero the object is a gddScal ar object; if the primitive type is

ai t EnunCont ai ner, the object is a gddCont ai ner object; if the dimensions are
greater than 0 and the primitive type is not ai t EnumCont ai ner, the object is a
gddAt omi ¢ object.

NoRef erence(), Reference(), Unreference()

#i ncl ude <gdd. h>

gddsSt at us NoRef er enci ng(voi d);
gddSt at us Ref erence(voi d);
gddSt at us Unref erence(voi d);

Each gdd object has a counter that indicates how many times it is being referenced.
When an object is created, this counter is incremented by one. For each additional pointer
that is set to point to the object, Ref er ence() should be called. Each time that a
pointer to a gdd object is set to point somewhere else or is no longer needed,

Unr ef er ence() should be called, this includes the original pointer to the object. This

Name:

Synopsis:

Description:

65

goes for objects not on the free store. Unr ef er ence() should be called when the
object is no longer needed.

Ref er ence() causes the counter to be incremented by one. Since the counter is
automatically incremented when an object is first created, it doesn't have to be
incremented for the original reference. Unr ef er ence() causes the counter to be
decremented. When the counter reaches zero, gddDest ruct or: : Dest roy() is
called. Destroy() calls gddDest ructor: : Run().Run() is a virtual function that
is meant to destroy or clean up the object's data. It is passed a pointer to the object's data.
By default Run() does adel ete [] onan array of ai t | nt 8 elements. The user
should redefine Run() if the data contained in the gdd object is of a different type. Note
that no cleanup is necessary for scalar data.

By calling Nor ef er enci ng() for an object, the user can disallow any any references
to the gdd object other than the current one provided that the reference count is no greater
than one, i.e., the object hasn't already been referenced.

mar kConst ant (), mar kManaged(), markUnnmanaged()

#i ncl ude<gdd. h>

voi d mar kConst ant (voi d) ;
voi d mar kManaged(voi d);
voi d mar kUnnmanaged(voi d) ;

These three somewhat unrelated functions all mark the gdd object with a certain
characteristic. None accepts any arguments or returns any value. mar kConst ant ()
marks the data as constant, meaning that it cannot be changed in its lifetime.

mar kManaged() marks the object as a managed object. Usually, a managed object is a
gddCont ai ner object that has a predefined structure, i.e., a predefined number of
contained objects in a predefined order. Examples of managed containers are those
mapped to DBR structures. Clients can make requests using data structures. The general
idea is that the server will write a set of attributes into the structure as well as the PV's
value. For instance, the DBR_STS structure can be used to request a PV's value as well
as its alarm status and severity. These structures can be mapped to a gddCont ai ner
object. They are marked as managed to indicate that they have a predefined mapping or
structure.

Name:

Synopsis:

Description:

Name:

66

markUnmanaged() will reverse markManaged().

get Ref ()

#i nl cude <gdd. h>

voi d get Ref (aitFl oat 64*& d);
voi d get Ref (aitFl oat 32*& d);
void getRef (aitUi nt32*& d);
void getRef (aitlnt32*& d);
void getRef (aitUi nt16*& d);
void getRef(aitlntl1l6*& d);
void getRef (aitUi nt8*& d);
void getRef(aitInt8*& d);
void getRef(aitString*& d);
voi d get Ref (aitFixedString*& d);
voi d get Ref (voi d*& d);

get Ref () is used to reference a gdd object's data member. Remember that an object's
data member is a union which is typedefed as ai t Type. The declaration of this union
can be found in aitTypes.h. get Ref () typecasts the union according to the pointer
passed to it, thus accessing the correct member. Note that the pointer is passed by
reference so that the correct address is directly assigned to it. Also note that the
typecasting a gdd object will have the same effect, as in

aitlnt8* pValue = (aitlnt8*)gDDject;

where gDDObj ect is the gdd object whose data is being referenced.

Since the the value is being referenced using a pointer, it is possible that gDDObj ect
may be destroyed while its data is being referenced. To keep pVal ue from pointing to a
non-existant piece of data, Ref er ence() should be called after get Ref () is called.
However, Unr ef er ence() will have to be called for the object whose data is
referenced, after the pointer is no longer needed.

put Ref ()

Synopsis:

Description:

Name:

Synopsis:

67

#i ncl ude <gdd. h>

voi d put Ref (voi d* v, ai t Enum code, gddDestructor* d = NULL);
voi d put Ref (aitFl oat 64* v, gddDestructor* d = NULL);

voi d put Ref (aitFl oat 32* v, gddDestructor* d = NULL);

void putRef(aitUi nt8* v, gddDestructor* d NULL) ;

void putRef(aitlnt8* v, gddDestructor* d = NULL);

void putRef(aitUi nt16* v, gddDestructor* d = NULL);

void putRef(aitlntl16* v, gddDestructor* d = NULL);

voi d putRef (aitUi nt32* v, gddDestructor* d = NULL);

voi d putRef (aitlnt32* v, gddDestructor* d = NULL);

void putRef(aitString* v, gddDestructor* d = NULL);

voi d put Ref (aitFixedString* v, gddDestructor* d = NULL);
voi d put Ref (const aitFl oat64* v, gddDestructor* d = NULL);
voi d put Ref (const aitFloat32* v, gddDestructor* d = NULL);
voi d put Ref (const aitU nt8* v, gddDestructor* d = NULL);
voi d put Ref (const aitInt8* v, gddDestructor* d = NULL);
voi d put Ref (const aitUi nt16* v, gddDestructor* d = NULL);
voi d put Ref (const aitlntl1l6* v, gddDestructor* d = NULL);
voi d put Ref (const aitUi nt32* v, gddDestructor* d = NULL);
voi d putRef (const aitlnt32* v, gddDestructor* d = NULL);
voi d put Ref (const aitString* v, gddDestructor* d=NULL);
voi d put Ref (const aitFixedString* v, gddDestructor* d=NULL);

put Ref () allows a user to set the void pointer of a gdd object's data member to point
to an "outside" piece of data, which can be either an array or a scalar value. put Ref ()
accepts a pointer to any of the architecture-independent types. If the pointer is a constant
pointer, the object will be marked as constant, i.e., its data cannot be changed through the
gdd class.

put Ref () allows a pointer to a gddDest r uct or to be passed as the second
argument, though this argument is optional. The idea here is that the object that will be
referenced data will be destroyed when the object referencing it is destroyed.

get Convert ()

#i ncl ude <gdd. h>
voi d get Convert (aitFloat64& d);
voi d get Convert (aitFloat32& d);

Description:

Name:

Synopsis:

Description:

Name:

68

voi d get Convert (aitU nt32& d);

voi d get Convert(aitlnt32& d);

voi d get Convert(aitU nt16& d);

voi d get Convert(aitlnt16& d);

voi d get Convert (aitU nt8& d);

voi d get Convert(aitlnt8& d);

voi d get Convert(aitString& d);

voi d get Convert (aitFi xedString& d);

get Convert () allows the user to retrieve an object's data in a form that may be
different from the object's primitive type. get Convert () accepts any lvalue of an
architecture-independent type. It will perform the proper conversion of the data and write
it into the lvalue.

put Convert ()

#i ncl ude <gdd. h>

voi d put Convert(aitFloat64 d);
voi d put Convert(aitFloat32 d);
voi d put Convert(aitU nt32 d);
voi d putConvert(aitlnt32 d);
voi d putConvert(aitUi ntl6 d);
voi d putConvert(aitlntl6 d);
voi d putConvert(aitUint8 d);
voi d putConvert(aitlint8 d);
voi d putConvert(aitString d);
voi d put Convert (aitFixedString& d);

put Convert () accepts a value and writes it into the gdd object's data member. If the
value does not match the object's primitive type, it will convert the value to the object's
primitive type. It cannot be called for gddCont ai ner or gddAt omi ¢ objects.

put ()

Synopsis:

Description:

69

#i ncl ude <gdd. h>

gddsSt at us
gddsSt at us
gddsSt at us
gddsSt at us
gddsSt at us
gddsSt at us
gddsSt at us
gddsSt at us
gddsSt at us
gddsSt at us
gddsSt at us

put (const
put (const
put (const
put (const
put (const
put (const
put (const
put (const
put (const
put (const
put (const

ai t Fl oat 64* const d);
ai t Fl oat 32* const d);
ai tUint32* const d);
aitlnt32* const d);
aitU nt16* const d);
aitlntl6* const d);
aitUint8* const d);
aitlnt8* const d);
aitString* const d);
ai t Fi xedString* const d);
gdd* dd);

This form of put () can accept a pointer to any architecture-independent type or a
pointer to a gdd object. The results depend on the type of object for which put () is
called and the data type to which the pointer d points.

If the object for which put () was called is a scalar object and d points to an
architecture-independent scalar value, then * d will be written into the the object's data
member. If d points to an array, only the first element will be written.

If the object for which put () was called is an atomic object (gddAt oni ¢) and d points
to an architecture-independent array or scalar value, then n elements will be copied into
the array of the object for which put () was called, where n is the smallest element
count of either array, or 1 if d points to a scalar value. For example, if d points to a five-
element array and put () is called for a gddAt omi ¢ object which contains a ten-
element array, then five-elements will be copied from d to the gddAt omi ¢ object for
which put () was called. If d points to a scalar value, then it will be copied into the first
element of the gddAt omi ¢ object. If put () is called for a gddAt omi ¢ object which
already has memory allocated for an array that may or may not contain values, n values
of the array will be overwritten starting with the first element, where n is the number of
elements written into the array. If put () is called for a gddAt om ¢ object which
doesn't already have memory allocated for its array, memory will be allocated and will be
written into. However, the gddAt omni ¢ object must have its dimensions and bounds
initialized in order for memory to be allocated. Instead, put () may treat such an object
as a scalar value.

The last function, put (const gdd* dd), works a little bit differently from the other
functions. It cannot be called for a gddCont ai ner object, and its argument, dd, cannot
point to a gddCont ai ner object. If the destination object and the source object are

both gddAt omi ¢ objects, then the source object's array will be copied to the destination
object's array. However, put () will not copy the array if the source object's array is not

Name:

Synopsis:

Description:

70

a one-dimensional array, for instance, if it's a two- or three-dimensional array, in which
case put () will return gddEr r or Not Suppor t ed. In addition, the put () will fail if
the source array has a greater number of elements from the destination object, in which
case put () will return gddEr r or Qut Of Bounds.

The source object can be a scalar object or the destination object can be a scalar object. If
both are scalar objects, put (const gdd* dd) the data member from the source
object is simply written into the data member of the destination object. If the source
object is a gddAt om ¢ object and the destination object a gddScal ar object, the first
element from the source array will be copied into the data member of the destination
object. If the source object is a gddScal ar object and the destination object a

gddAt omi ¢ object, the source object's scalar value will be written into the first element
of the destination object's array.

put ()

#i ncl ude <gdd. h>

void put(aitFloat64 d);
void put(aitFloat32 d);
void put(aitU nt32 d);
void put(aitlnt32 d);
void put(aitUntl6 d);
void put(aitlintl6 d);
void put(aitlint8 d);
void put(aitint8 d);
void put(aitString d);
void put(aitFixedString& d);
voi d put(aitType* d);

This form of put () doesn't return a gddSt at us value. Except for the last function,
put (ait Type* d),eachput () accepts an architecture-independent scalar value and
writes it into the gdd object for which put () was called.

The last function, put (ai t Type* d), accepts a pointer to an ai t Type union. It will
then assign the value from the union d to the object's own union.

Name:

Synopsis:

Description:

71

operat or =()

#i ncl ude <gdd. h>

gdd& oper at or =(const gdd& v);
gdd& oper at or=(ai t Fl oat 64* v);
gdd& oper at or=(ai t Fl oat 32* v);
gdd& operat or=(ait U nt32* v);
gdd& operator=(aitlnt32* v);
gdd& operator=(aitU nt16* v);
gdd& operator=(aitlnt16* v);
gdd& operator=(aitU nt8* v);
gdd& operator=(aitlnt8* v);
gdd& operator=(aitString* v);
gdd& operator=(aitFi xedString* v);
gdd& operator=(aitFl oat64 d);
gdd& operator=(aitFloat32 d);
gdd& operator=(aitU nt32 d);
gdd& operator=(aitlnt32 d);
gdd& operator=(aitU nt16 d);
gdd& operator=(aitlnt16 d);
gdd& operator=(aitUnt8 d);
gdd& operator=(aitint8 d);
gdd& operator=(aitString d);

The overloaded oper at or =() functions provide a simple way to copy information
from one gdd object to another and to write data into arrays. When a gdd object appears
on the right side of an assignment expression, oper at or =(const gdd& v) is
invoked, the contents of the gdd source object are copied to the gdd destination object.
However, only the container is actually copied. The data referenced by the source object
is not copied, though the references are.

When a pointer to an architecture-independent value appears on the right side of the
operator, the oper at or =() functions like oper at or =(ai t Fl oat 64* v) are
invoked. These functions achieve the same result as calling put Ref () for the same
architecture-independent type; that is, the data that appears on the right side of the
assignment oper at or =() , is referenced by the voi d pointer in the data member of the
gdd object on the left side of the operator.

When a value of an architecture-independent type appears on right side of the assigment
operator, the oper at or =() functions like oper at or =(ai t Fl oat 64 d) are
invoked. These accomplish the same results as the voi d put () functions (different

Name

Synopsis:

Description:

72

from the gddStatus put () functions). In this case, the value is written into the data
member of the source object, the object that appears on the left side of the assignment
operator.

get ()

#i ncl ude <gdd. h>

voi d get(void* d);

voi d get(aitFloat64* d);
voi d get(aitFloat32* d);
void get(aitU nt32* d);
void get(aitlnt32* d);
void get(aitU ntl1l6* d);
void get(aitlnt16* d);
void get(aitU nt8* d);
void get(aitlnt8* d);
void get(aitString* d);
void get(aitFixedString* d);
voi d get(aitFloat64& d);
voi d get(aitFloat32& d);
void get(aitU nt32& d);
void get(aitlnt32& d);
void get(aitU nt16& d);
void get(aitlntl6& d);
void get(aitU nt8& d);
void get(aitlnt8& d);
void get(aitString& d);
void get(aitFixedString& d);
void get(aitType& d);

get () is basically used to retrieve a value from the gdd object for which it is called. It
has two basic forms. One form accepts a pointer to an architecture-independent array or
scalar value and the other form accepts either an architecture-independent value or an
ai t Type union.

The functions which accept a pointer are made to retrieve an array of values from a
gddAt omi ¢ object. The values from the gddAt omi ¢ object are written into the array
pointed to by d. Note, however, that d should point to an array which contains at least as
many elements as the gddAt oni ¢ object's array. If d points to an array of an
architecture-independent type as in get (ai t | nt 8* d), then the values from the

73

gddAt omi ¢ object's array will be converted to the architecture-independent type of the
destination array. For example, if get (ai t | nt 8* d) is invoked, the values of the
array elements from the gddAt om ¢ object will be converted to aitInt8 values. When
the type d points to is undefined, get (voi d* d) is called, which copies the elements
from the gddAt omi ¢ array to d without converting the values, in which case d will
point to an array of values which are the same type as the primitive type of the

gddAt omi ¢ object.

The get () functions which accept an architecture-independent lvalue are used to
retrieve values from gddScal ar objects. The value from the data member of the source
object, the object for which the get () function was called, will be written into the
Ivalue passed to the function. For instance, if get (ai t Fl oat 64& d) is called, the

FI oat 64 member of the data union will be written into d.

74

CLASS: gddAtomic

Declared: gdd.h

Name:

Synopsis:

Description:

The gddAt omi c class is a class derived from the gdd class. It is used to store arrays.
Except for the gddAt oni ¢ constructors and the oper at or =() functions, there are no
other functions currently defined for it. All functions needed to deal with arrays are part
of the gdd class. Event the constructor or constructors simply call gdd class constructors
in order to initialize a gddAt omi ¢ object.

i SAt om c() will return True if any gdd object has dimensions greater than zero and
the object is not a gddCont ai ner object. Thus, it's possible to create a gdd object not
using the gddAt omi ¢ class that can contain arrays if the proper constructors are called.
However, this is not recommended.

See the gdd class for more information on the functions that can be used with
gddAtomic objects.

gddAt omi c()

#i ncl ude <gdd. h>
gddAt omi c(voi d);
gddAt om c(gddAt omi c* ad);
gddAt omi c(i nt app);
gddAt omi c(int app, aitEnumprim;
gddAtom c(int app, aitEnumprim int dinen,
aitUint32* size array);
gddAtomic(int app, aitEnumprim int dinmen, ...);

Name:

Synopsis:

75

The gddAt oni ¢ constructors can be used to initialize a gddAt omi ¢ object. However,
none of them can be used to allocate memory for an array or otherwise create an actual
array. The most any do is to define the dimensions and the bounds of the array.

The first constructor, gddAt om c(voi d) , accepts no arguments an merely creates the
object. The application type, primitive type, dimensions, and bounds of the array will
have to be initialized subsequently. The second constructor,

gddAt om c(gddAt om c* gdd), accepts a pointer to gddAt omi ¢ object. It will
initialize the object with the characteristics of the object pointed to by the pointer.

The third constructor accepts an application type for its sole argument. It initializes the
application type to app, and then initializes the primitive type to ai t Enum nval i d
and the dimensions to zero.

The fourth constructor initializes the application type to app, the primitive type to pri m
and the dimensions to zero. The fifth constructor does the same except it initializes the
dimensions to di men.

For array data, in addition to the dimensions, the size of each dimension can be specified.
For example, the sizes of a two dimensional array might be 5 X 10. In order to initialize
the size of the array, you must pass an array of ai t Ui nt 32 integers as the fifth
argument to the this constructor. It must have at least as many elements as array
dimensions. The size of each dimension will be initialized to the corresponding element
in the array: the first dimension will be initialized with the first element of the array, the
second with the second element, and so on.

As an alternative to the last constructor, instead of passing an array of integers to specify
the bounds, for each dimension you can simply pass an integer to specify the bounds.
Thus, in order to specify the bounds for a three dimensional array, you can simply pass
three integers after dimen. The first integer determines the bounds of the first dimension,
the second, of the second dimension, and the third, of the third dimension.

oper at or =()

#i ncl ude <gdd. h>

gddAt om c& operat or=(aitFl oat 64* v)
gddAt om c& operat or=(aitFl oat 32* v)
gddAt om c& operator=(aitU nt32* v)
gddAt om c& operator=(aitlnt32* v)
gddAt om c& operator=(aitU nt16* v)

Description:

76

gddAt om c& operator=(aitlntl6* v)
gddAt om c& operat or=(aitU nt8* v)
gddAt om c& operator=(aitlnt8* v)

The oper at or =() functions accept a pointer to an architecture-independent type. They
will set the void pointer of the gddAt om ¢ object's to point to the location pointed to by
V.V is assumed to point to an array, but it can point to a scalar value.

77

CLASS: gddScalar

Declared: gdd.h

Name:

Synopsis:

Description:

The gddScal ar class is actually derived from the gddAt omi ¢ class. In fact, it is just a
gddAt omi ¢ class whose dimension is zero. And as with the gddAt omi ¢ class, most of
the functions needed to deal with scalar values are part of the gdd base class. The only
functions specifically defined for the gddScal ar class are the constructors and the
oper at or =() functions.

gddScal ar ()

#i ncl ude <gdd. h>
gddScal ar (voi d) ;
gddScal ar (gddScal ar* ad);
gddScal ar (i nt app);
gddScal ar (i nt app, ai t Enum prim;

The gddScal ar () constructors can be used to create gddScal ar objects. Once
again, a gddScal ar object is a gdd object whose dimensions are zero; that is, if
gdd: : di nensi on() is called for agddScal ar object, a zero should be returned.

The first constructor, gddScal ar (voi d) , accepts no arguments and initializes the
object's application type to zero (no application type), the object's primitive type to
ai t Enum nval i d, and the object's dimensions to zero.

The second constructor, gddScal ar (gddScal ar* ad), accepts a pointer to another
gddScal ar object, ad, as its only argument and intializes the object with the

characteristics of ad.

Name:

Synopsis:

Description:

78

The third constructor, gddScal ar (i nt app) , accepts an application type as its only
argument and initializes the object's application type to zero. It initializes the object's
primitive type to ai t Enumni nval i d and the object's dimensions to zero.

The fourth constructor, gddScal ar (i nt app, aitEnhum pri m, initializes the
gddScal ar object's application type to app, its primitive type to pri m and its
dimensions to zero.

oper at or =()

#i ncl ude <gdd. h>

gddScal ar & operat or=(aitFl oat64 d);
gddScal ar & operat or=(aitFl oat32 d);
gddScal ar & operator=(aitUi nt32 d);
gddScal ar & operator=(aitlnt32 d);
gddScal ar & operator=(aitUi nt16 d);
gddScal ar & operator=(aitlnt16 d);
gddScal ar & operator=(aitlint8 d);
gddScal ar & operator=(aitint8 d);

The gddScal ar : : oper at or =() function is invoked whenever a gddScal ar

object appears on the righthand side of the assigment operator and an architecture
independent value appears on the left hand side. The value is then written into the object's
data member.

79

CLASS: gddContainer

Declared: gdd.h

The gddCont ai ner class is derived directly from the gdd base class. It is used to
contain other gdd objects. An example of the use of the gdd class is for mapping
compound types to gdd objects. A Channel Access client can make a request using one
of several database request types. Some of these types are simple types such as
DBR_FLQAT that can simply retrieve a PV's value. Others are compound types such as
DBR_CTRL_FLOAT that consist of a data structure which has members for the PV's
value as well as several of its attributes such as its units, alarm status, control limits, etc.

All DBR types are mapped to a gdd object when the Portable Server receives the request.
Simple reqeust types such as DBR_FLQOAT are mapped into a single gdd object since
they are a reqeust for a single value. However, compound request types consists of
several values and can't be mapped into a single gdd object. Therefore, they are mapped
into many objects which are contained in a gddCont ai ner object. The

gddCont ai ner object will have an application type that describes what DBR request
type it's for. For example, the application type for a gddCont ai ner that has been
mapped for the request type DBR_CTRL_FLQOAT is represented by the constant
gddAppType_dbr _ctrl float.

Currently, the client-side API only allows read or get operations to request compound
types. That is, a client can reqeust to read a PV's value using DBR_CTRL_FLOAT or
some other compound type, but it cannot write to the PV's value using
DBR_CTRL_FLQAT or any other compound type. Write opertions can only use simple
DBR types. Therefore, currently, a server tool only need prepare to read a

gddCont ai ner object, not write one.

The gddCont ai ner class has members to add and remove objects. It also has a way to
step through it, accessing all its members. However, the gddAppFuncTabl e<PV>
class is provided to help server tools perform read operations on a gddCont ai ner
object. Thus, it's not necessary for a server tool to directly access a gddCont ai ner
object. See the gddAppFuncTabl e class for more information.

80

81

CLASS: aitString

Declared: aitHelpers.h

The ai t St ri ng class is an architecture-independent way to deal with strings. It is a
simple class which contains a pointer to a string, members for initializing the string,
deleting it, and for keeping track of and accessing attributes such as its length. The

ai t St ri ng class can contain two types of strings, constant strings and "mallocated"”
strings. For the former type, the ai t St r i ng merely references the string. For the latter
type, the ai t St r i ng object creates and references its own array of char s. If an

ai t St ri ng object is initialized with a string when it is created, its string is constant.
Afterwards if the string is installed in the object, the string is automatically not constant.
Not all functions of the ai t St r i ng class are presented here.

Destruction:

The ai t St ri ng class has no destructors. To provide clean-up before the object is
destroyed, the application can make an explicit call to cl ear () . cl ear (), however,
only does a del et e [] on mallocated strings, not on constant strings. Remember that
the ai t St ri ng only references constant strings, so it provides no method to delete such
strings.

Public Member Functions:

aitString(void)

aitString(const char* x)
aitString(char* x)

aitU nt32 I ength(void)

voi d cl ear (void)

const char* string(void)

aitString& operator=(const char* p)
ai tString& operator=(char* p)

int install String(const char* p)
int installString(char* p)

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

82

static aitUint32 total Length(aitString* array,
aitlndex arraySize)

static aitU nt32 stringsLength(aitString* array,
aitlndex arraySize)

aitString()

#i ncl ude <ait Types. h>
aitString(void);
aitString(const char* x);
aitString(char* x);

There are three ai t St r i ng constructors. The first form of the function,

ai t String(voi d), allows an application to create an ai t St r i ng object without
specifying a string to initialize it with, thus making the contained string a NULL string.
Then, a string can be written into the @i t St r i ng object, in which case the string will
be a non-constant string. For all ai t St ri ng objects that are going to deal with non-
constant strings, they should use ai t St ri ng(voi d), that is, they should not pass a
pointer to the constructor when the object is created.

The other two constructors, ai t St ri ng(const char* x) and

ai tString(char* x),will initialize the ai t St r i ng object with the string, in
which case the string will be a constant string. For constant strings, the ai t St ri ng
object merely references the string, i.e., it doesn't have its own copy of the string.
Remember that the cl ear () cannot be called for constant strings.

I engt h()

#i ncl ude <ait Types. h>
aitU nt32 | ength(void);

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

Name:

Synopsis:

83

| engt h() returns the length of the string. It returns the length for constant as well as

non-constant strings.

cl ear ()

#i ncl ude <ait Types. h>
void cl ear(void);

cl ear () will delete non-constant strings. ¢l ear () must be called explicitly, though it
iscalled by i nstal | String() to delete the old string before the new string is
written.

string()

#i ncl ude <ait Types. h>
const char* string(void) const;

string() returns the string contained in the ai t St r i ng object, that is, it returns a
pointer-to-char, unless the string is NULL, in which case st ri ng() returns NULL.

oper at or =()

#i ncl ude <ait Types. h>
aitString& operator=(const char* p);
aitString& operator=(char* p);

Description:

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

84

The oper at or =() functions are invoked when an ai t St r i ng object appears on the
left-hand side of the assignment operator and when a character string, either constant or
non-constant, appears on the right. The old string contained in the ai t St r i ng object is
cleared, and the new string pointer is referenced as a constant string, regardless of
whether or not the assigned string is constant or non-constant. If the old string is a
constant string, it is dereferenced and the string pointer points to the new string.

installString()

#i ncl ude <ait Types. h>
int install String(const char* p);
int install String(char* p);

install String() canbe used to write a new string into an ai t St r i ng object. If
the object already contains a string, it will be deleted if a non-constant string, and the new
string will be copied into the ai t St r i ng object, so it will be a mallocated, non-
constant string.

total Lent h()

#i ncl ude <ait Types. h>
static aitUint32 total Length(aitString* array,

ai t 1 ndex
arraySi ze) ;

This is a static, public function. It returns the total bytes used by an array of aitStrings. It
accepts an array of ai t St ri ng objects and an ai t | ndex value indicating the size of
that array.

Name:

Synopsis:

Description:

85

stringsLengt h()

#i ncl ude <ait Types. h>
static aitUint32 total Length(aitString* array,

ai t | ndex
arraySi ze) ;

st ringsLengt h() returns the total combined lengths of all the strings in an array of
strings, including the NULL character of each string. It accepts an array of ai t St ri ng
objects and an ai t | ndex value indicating the length of the array.

86

CLASS: aitTimeStamp

Declared: aitHelpers.h

The aitTimeStamp class is an architecture-independent way to represent a time stamp. It
is used by the gdd library and can be used with the 0si Ti e class. Basically, it has two
unsi gned | ong members, one to represent the seconds and one the nanoseconds.
Each of these members can be retrieved individually, or a floating-point value can be
retrieved where

floating_point_val ue = nanoseconds + seconds

Thus, the floating-point value will equal the number of seconds plus the fractional part
represented by the nanoseconds.

Constructors are provided to give the ai t Ti meSt anp object initial values for its
second and nanosecond members, after which the + and - operators can be used to change
the values of the second and nanosecond members. In addition, the >= operator has been
overloaded to allow an application to compare two ai t Ti meSt anp objects.

Destruction:

The ai t Ti meSt anp needs no destructor. If an application derives a class from the
aitTimeStamp class, it alone is responsible for providing a destructor if necessary. The
aitTimeStamp object will be destroyed as all other classes in C++.

Public Member Functions:

aitTimeStanp ()
aitTimeStanp (const aitTi meStanp &t)
ait Ti meStanp (const unsigned long tv_secln,
const unsigned | ong tv_nsecln)
friend aitTi mneStanp operator+ (const aitTi neStanp & hs,
const aitTi neStanp &rhs)
friend aitTi meStanp operator- (const aitTineStanmp & hs,

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

87

const aitTimeStanp &rhs)
friend int operator>=(const aitTimeStanp & hs,
const aitTimeStanp &rhs)
voi d get(unsigned |ong & v_secQut, unsigned |ong
& v_nsecCut)
oper at or doubl e()
operator float()

ai t Ti meStanp()

#i ncl ude <ait Types. h>

aitTimeStanmp ();

aitTimeStanp (const aitTimeStanp &t);

ai t Ti meSt anp(const unsi gned | ong tv_secln,
const unsigned long tv_nsecln);

There are three ai t Ti neSt anp constructors. The first, ai t Ti meSt anp() , accepts
no arguments. It initializes the seconds and nanoseconds of the time stamp to zero. The
second, ai t Ti meSt anp(const ait Ti meStanp &t), accepts another

ai t Ti meSt anp object, t , and will initialize the object with the seconds and
nanoseconds of t . The third, ai t Ti meSt anp(const unsi gned | ong
tv_secln, const unsigned | ong tv_nsecln), allows the application to
give the ai t Ti meSt anp object initial values for its seconds and nanoseconds
members.

oper at or +()

#i ncl ude <ait Types. h>
friend aitTimeStanp operator+ (const aitTi neStanp &l hs,
const aitTimeStanp &rhs);

Name:

Synopsis:

Description:

Name:

Synopsis:

88

The oper at or +() function is invoked when an ai t Ti meSt anp object appears on
the right and left sides of the addition (+) operator. The seconds from the object on the
left are added to the seconds from the object on the right; likewise, the nanoseconds from
the lefthand object are added to the nanoseconds of the righthand object. The

ai t Ti meSt anp object that is assigned the value of the operation is assigned these two
sums.

operator-()

#include <aitTypes.h>

friend aitTi meStanp operator-(const aitTimeStanp &l hs,
const aitTimeStanp &rhs);

The oper at or - () function is invoked when an ai t Ti meSt anp object appears on
the righthand and lefthand sides of the subtraction operator (-) in an assignment
expression. If the seconds of the righthand object are less than the seconds of the
lefthand, the righthand object's seconds are subtracted from the lefthand object's seconds.
Likewise, if the nanoseconds of the righthand object are less than that of the lefthand
object, the righthand object's nanoseconds are subtracted from that of the lefthand object.
If the righthand object's seconds or nanoseconds are not less than the lefthand's, then the
righthand object's seconds or nanoseconds are subtracted from ULONG_MAX, the
largest number possible for unsi gned | ong integers on the system.

The ai t Ti meSt anp object that is assigned the value of the operation is assigned the
result values.

oper at or >=()

#i ncl ude <ait Types. h>
i nt operator>=(const aitTi neStanp &l hs,
const aitTi meStanp &rhs);

Destruction:

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

89

The oper at or >=() function is invoked whenever two ai t Ti meSt anp operators are
compared using the >= operator. If the seconds from the lefthand ai t Ti meSt anp
object are greater than the righthand object's seconds, True (1) is returned. If the seconds
are equal and the nanoseconds from the lefthand ai t Ti meSt anp object are greater
than or equal to the righthand object's nanoseconds, True (1) is also returned. Otherwise,
False (0) is returned.

get ()

#i ncl ude <ait Types. h>
voi d get(unsigned |ong & v_secQut, unsigned |ong
& v_nsecCut);

The get () function can be used to retrieve the seconds and nanoseconds of an

ai t Ti meSt anp object. The function accepts two arguments by reference, so both
arguments must be lvalues. The seconds are written into the first Ivalue and the
nanoseconds into the second lvalue.

operat or doubl e(), operator float()

#i ncl ude <ait Types. h>
operator float();
oper at or doubl e();

The operat or fl oat () and operator doubl e() functions return a value of
fl oat or doubl e when an ai t Ti meSt anp object is typecast as f | oat or doubl e
as in,

Name:

Synopsis:

Description:

90

doubl e Seconds;
Seconds = (doubl e)aitTi mreSt anpObj ect ;

The value returned will be a floating-point number the timestamp in seconds.

get Current ()

#i ncl ude <ait Types. h>
static aitTimeStanp getCurrent();

get Current () is a public, static member function that returns an ai t Ti meSt anp
object with the current time.

91

CLASS: osiTime

Declared: osiTime.h

The osi Ti ne class or operating system-independent time class keeps track of a
timestamp. It is used by the server library in conjunction with the 0si Ti mer class. It
has two members of type unsi gned | ong that represent seconds and nanoseconds.
These members can be written and retrieved separately, or they can be written and
retrieved combined as one floating-point number. By overloading the +, -, >, <, >=, and
<= operators, the class allows for 0si Ti ne objects to be compared to each other, added
to each other, or subtracted from each other.

Destruction:

The osi Ti me class has no destructor because it needs no pre-destruction cleanup. If an
application derives a class from 0si Ti ne, it is reponsible for providing any necessary
cleanup for that class.

Public Member Functions:

osiTime ();
osi Tinme (const osiTine &);
osi Time (const unsigned | ong secln,
const unsigned | ong nSecln);
osi Time (double t);
osi Ti me operator+= (const osiTinme & hs);
osi Time operator-= (const osiTinme & hs);
static friend osi Tine operator+ (const osiTinme & hs,
const osiTinme &rhs);
static friend osi Tine operator- (const osiTinme & hs,
const osiTinme &rhs);
static friend int operator>= (const osiTinme & hs,
const osiTinme &rhs);
static friend int operator>(const osiTine & hs,
const osiTinme &rhs);

Name:

Synopsis:

Description:

Name

92

static friend int operator<= (const osiTinme & hs,
const osiTime & hs);
static friend int operator<(const osiTinme & hs,
const osiTime & hs);
void get(long &ecQut, |ong &SecCQut) const;
voi d get (unsigned | ong &ecQut, unsigned |ong & SecQut);
voi d get (unsigned &secQut, unsigned &nSecCQut) const;
voi d get(unsigned | ong &secQut, |ong &nSecQut) const;
operator doubl e() const; operator float() const;
voi d show(unsi gned) ;
static osiTime getCurrent();

osi Ti me()

#i ncl ude <osi Ti nme. h>

osiTime ();

osi Time (const osiTime &t);

osi Time (const unsigned | ong secln,
const unsigned [ong nSecln);

osi Time (double t);

osi Ti me() is the class constructor. It's overloaded to provide several means to
initialize the class, i.e., initialize the seconds and nanoseconds of the class. The first
constructor, osiTime(), accepts no arguments and initializes both the seconds and
nanoseconds to zero. The second constructor, 0si Ti me(const osi Tine &t),
accepts an 0Si Ti e object, t , by reference and initializes the object for the constructor
was called with the seconds and nanoseconds of t .

The third constructor accepts two unsi gned | ong integers, secl n and nsecl n, as
its arguments and initializes the seconds to secl n and the nanoseconds to nsecl n.

The fourth constructor accepts a value of type doubl e. It initializes the seconds and
nanoseconds using this value. The seconds are initialized to the integral part of the
double value while the nanoseconds are initialized to the fractional part.

oper at or +=()

Synopsis:

Description:

Name:

Synopsis:

Description:

Name:

93

#i ncl ude <osi Ti me. h>
osi Ti me operator+= (const osiTine & hs);

The oper at or +=() function is a public member function. It's invoked when the two
osi Ti me objects appear on both sides of a += sign in an expression. The seconds of the
object on the righthand side are added to the seconds of the object on the lefthand side.
The nanoseconds of the object on the lefthand side are also added to the nanoseconds of
the object on the lefthand side. Thus, the seconds/nanoseconds of the object on the
lefthand side are incremented by the seconds/nanoseconds of the object on the righthand
side.

operator-=()

#i ncl ude <osi Ti nme. h>
osi Ti me operator-= (const osiTime & hs);

The oper at or - =() function is a public member function that is invoked when two
osi Ti me objects appear on either side of the -= operator in an expression. The seconds
and nanoseconds of the righthand object are subtracted from the seconds and
nanoseconds of the lefthand object. However, if the seconds from the lefthand object are
less than the seconds from the righthand object, the seconds from the righthand object are
subtracted from ULONG_MAX. And if the nanoseconds from the lefthand object are less
than the those from the righthand object, the nanoseconds from the righthand object are
subtracted from the number of nanoseconds in a second, and then the nanoseconds from
the lefthand object are added to the result. The seconds member is then decremented.

The results of the -= operation are of course assigned to the object on the lefthand side of
the operator.

operat or +()

Synopsis:

Description:

Name:

Synopsis:

Description:

94

#i ncl ude <osi Ti me. h>
static friend osi Tine operator+ (const osiTine & hs,
const osiTime &rhs);

The oper at or +() function is a friend function that is invoked when two osi Ti e
objects appear on either side of the + operator in an assignment expression as in,

hjectl = hject2 + bject3;

The seconds from Cbj ect 2 are added to Obj ect 3; the nanoseconds from CObj ect 2
are also added to Qbj ect 3. The resulting values are written into the object on the
lefthand side of the assignment operator, Obj ect 1 in this case.

operator-()

#i ncl ude <osi Ti me. h>
static friend osi Tine operator- (const osiTine & hs,
const osiTime &rhs);

The oper at or - () function is a friend function that is invoked when two osi Ti ne
objects appear on either side of the - operator in an assignment expression as in,

hjectl = hject2 - bject3;

If the seconds from Obj ect 2 are less than the seconds of Obj ect 3, the seconds from
hj ect 3 are subtracted from ULONG_MAX; the largest number possible for an unsigned
integer on the system. Otherwise, the seconds of Obj ect 3 are subtracted from the
seconds of Qbj ect 2. If the nanoseconds from Obj ect 2 are less than those of

hj ect 3, then one second is borrowed from the seconds value, the nanoseconds of

hj ect 3 are subtracted from that second, and the nanoseconds of Cbj ect 2 added to
those nanoseconds. Otherwise, the nanoseconds of Obj ect 3 are subtracted from those
of Qbj ect 2.

The resulting values are written into the object on the lefthand side of the assigment
operator, Obj ect 1 in this case.

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

Name:

Synopsis:

95

oper at or >=()

#i ncl ude <osi Ti me. h>
static friend int operator>= (const osiTinme & hs,
const osiTinme & hs);

The oper at or >=(') function is invoked when two 0Si Ti e objects appear on either
side of the >= operator. The seconds/nanoseconds of the lefthand object are compared
with seconds/nanoseconds of the righthand object. If the the seconds/nanoseconds of the
lefthand object are indeed greater than or equal to those of the righthand object, True (1)
is returned. Otherwise, False (0) is returned.

operat or >()

#i ncl ude <osi Ti me. h>
static friend int operator>(const osiTinme & hs,
const osiTime & hs);

The oper at or >() function is a static friend function that is invoked when two

osi Ti me objects appear on either side of the > operator. The seconds/nanoseconds of
the lefthand object are compared with seconds/nanoseconds of the righthand object. If the
the seconds/nanoseconds of the lefthand object are indeed greater than those of the
righthand object, True (1) is returned. Otherwise, False (0) is returned.

oper at or <=()

#i ncl ude <osi Ti ne. h>

Description:

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

96

static friend int operator<= (const osiTinme & hs,
const osiTime & hs);

The oper at or <=() function is a static friend function that is invoked when two

osi Ti me objects appear on either side of the <= operator. The seconds/nanoseconds of
the lefthand object are compared with the seconds/nanoseconds of the righthand object. If
the seconds/nanoseconds of the lefthand object are indeed less than or equal to those of
the righthand object, True (1) is returned. Otherwise, False (0) is returned.

operator< ()

#i ncl ude <osi Ti me. h>
static friend int operator<(const osiTinme & hs,
const osiTime & hs);

The oper at or <() function is a static friend function that is invoked when two

osi Ti me objects appear on either side of the < operator. The seconds/nanoseconds of
the lefthand object are compared with the seconds/nanoseconds of the righthand object. If
the seconds/nanoseconds of the lefthand object are indeed less than those of the righthand
object, True (1) is returned. Otherwise, False (0) is returned.

get ()

#i ncl ude <osi Ti me. h>

void get(long &secQut, |ong &SecCQut) const;

voi d get(unsigned | ong &ecQut, unsigned | ong &SecCut)
const ;

voi d get (unsigned &ecQut, unsigned &SecCQut) const;
voi d get(unsigned | ong &ecQut, |ong &nSecQut) const;

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

Name:

97

get () can be used retrieve the seconds and nanoseconds from the 0Si Ti ne object. All
forms accept two integer-type arguments, SecQut and nSecQut , which are passed by
reference; therfore, the arguments passed to them should be lvalues. The object's seconds
will be written into SsecQut and nanoseconds into NSecQut . The variations for get ()
are simply provided to allow for different types to be retrieved.

operat or doubl e(), operator float()

#i ncl ude <osi Ti me. h>
oper at or doubl e() const;
operator float() const;

The oper at or doubl e() and oper at or fl oat () functions are invoked
whenver an osiTime object is typecast using (doubl e) or (f | oat). These functions
return floating-point value that represents seconds and nanoseconds of the object, where
the seconds determine the integral part and the nanoseconds the fractional part. Of
course, the oper at or doubl e() function returns a value of type doubl e, and the
operator fl oat () function returns a value of type f | oat .

show()

#i ncl ude <osi Ti me. h>
voi d show(unsi gned) ;

show() displays the seconds and nanoseconds of the 0si Ti ne object.

Synopsis:

Description:

98

get Current ()

#i ncl ude <osi Ti me. h>
static osi Tinme getCurrent();

get Current () is a static, public member function that returns an 0Si Ti me object
that is stamped with the current time.

99

CLASS: osiTimer

Declared: osiTimer.h

Destruction:

w

The osi Ti mer provides applications with a way to sleep or delay a task for a specified
time. After the specified time expires, the member function expi r e() is called.

expi re() isa pure virtual function that an application will need to redefine in a
derived class. It can be redefined to perform whatever task is needed upon expiration,
i.e., after the specified time has expired.

Before expi r e() is called, the virtual function agai n() is called. agai n() is called
to determine if the 0Si Ti mer object should sleep for another delay period. agai n()
returns an enumerated value, 0Si Bool , whose enumerators are 0Si Tr ue and

osi Fal se.If agai n() returns 0si Tr ue, the 0si Ti e object will call del ay(), a
virtual function that by default returns an 0Ssi Ti me object of one second but which can
be redefined to return an 0Si Ti me object that has longer time period. After agai n()
returns 0Si Tr ue and del ay() returns, the 0Si Ti e object sleeps for the amount of
seconds specified by the 0Si Ti me object returned by the last call to del ay() . If

agai n() returns osi Fal se, destroy() is called. dest roy() is also a virtual
function which by default deletes the this pointer using the del et e operator.

Thus, the algorithm for an 0si Ti ner or derived-class object is,

Initialize 0si Ti mer base class with initial delay time.
After time expires, agai n() is called.

If agai n() returns 0si Tr ue, call del ay(), then expi r e(), then sleep for
the amount of time returned by delay.

If agai n() returns osi Fal se, expire() is first called, after which
destroy() is called.

When agai n() returns osi Fal se, expi re() is called and then dest r oy () is
called to delete the object. dest r oy () is a virtual function that by default deletes the
t hi s pointer using the del et e operator. Thus, dest r oy() will only work if the

100

derived class object is created using the new operator. dest r oy() can be redefined so
that it duly destroys the 0si Ti e or derived-class function.

The osi Ti mer class has a virtual destructor, ~0si Ti nmer (), that will perform any
necessary cleanup for the 0Si Ti e base class and its base classes. A virtual destructor
guarantees a certain calling order in the destructors of derived classes. If the destructor of
a base class is virtual, then when a derived class object is deleted, the derived class'
destructor is called, after which the base class destructor is called.

Thus, the application is responsible for providing for any necessary cleanup for any class
derived from osi Ti ner.

Public Member Functions:

Non-Virtual
osi Timer (const osiTinme &del ay);
Virtual
virtual ~osiTimer();
virtual void expire()=0;
virtual void destroy();
virtual osiBool again();
virtual const osiTinme delay();
virtual void show (unsigned |evel);
virtual const char *name();
Name:
osi Ti mer ()
Synopsis:

#i ncl ude <osi Ti mer. h>
osi Timer (const osiTinme &del ay);

Description:

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

101

osi Ti mer () is the class constructor. It accepts on argument by reference: an

osi Ti e object. The osi Ti mer object will use the seconds specified in the osi Ti e
object as the initial delay period. If agai n() returns osi Tr ue after the initial delay
period, then the number of seconds used for the subsequent delay are returned by the

del ay() virtual function, which returns an 0Si Ti ne object specifying a number of
seconds. Therefore, the 0Si Ti me object passed to the constructor is only used for the
initial delay period. That returned by del ay () is used for all subsequent delay period.

~osi Ti mer ()

#i ncl ude <osi Ti mer. h>
virtual -~osiTimer();

~o0si Ti mer () is the class destructor. It is a virtual destructor that provides the
necessary cleanup for the 0si Ti mer base class. It also guarantees that when a derived-
class object is destroyed, the destructors in the hierarchy are called in a certain order
where the last derived class destructor is called first and the base class destructor is called
last.

expire()

#i ncl ude <osi Ti ner. h>
virtual void expire()=0;

expi re() isa pure virtual function. It is called after the delay period expires. It can be
redefined to perform whatever task is needed. It is called after agai n() and del ay().

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

Name:

Synopsis:

102

destroy()

#i ncl ude <osi Ti ner. h>
virtual void destroy();

destroy() is called when the 0Si Ti mer or derived-class object is no longer needed,
that is, after agai n() returns 0si Fal se and after expi r e() is called. It is meant to
duly cause the 0si Ti mer object to be destroyed. It is a virtual function that by default
deletes the t hi s pointer using the del et e operator. Thus, the default version will only
work if the object was created using the new operator.

agai n()

#i ncl ude <osi Ti mer. h>
virtual osiBool again();

The internals of the 0Si Ti mer base class call agai n() to determine if the cycle
should repeat, that is, if after calling expi r () , the object should arm the delay timer
again. agai n() returns either 0Si Tr ue or osi Fal se. If it returns 0Si Tr ue,

del ay() will be called to determine the number of seconds of the delay, expi r e()
will be called, and then the object will sleep for the specified delay period again. If it
returns 0Si Fal se, expi re() and then dest r oy() are called.

agai n() is a virtual function that by default returns osi Fal se.

del ay()

Description:

Name:

Synopsis:

Description:

Name:

Synopsis:

Description:

103

#i ncl ude <osi Ti mer. h>
virtual const osiTinme delay();

del ay() is a virtual function called by the base class internals after agai n() returns
0si Tr ue. By default, it returns an 0Si Ti me object of one second. An application can
redefine del ay() to return an 0Si Ti me object that specifies a longer or shorter time
period.

show()

#i ncl ude <osi Ti mer. h>
virtual void show (unsigned |evel);

show() is a virtual function that can be called to display the current state of the

osi Ti mer object. It's a virtual function that by default displays the amount of time
remaining in the delay, whether agai n() returns 0si Tr ue or 0si Fal se, the name
of the derived class, and the state of the object. It can be redefined to display whatever.

It accepts an unsigned integer that represents the debug level.

name()

#i ncl ude <osi Ti mer. h>
virtual const char *name();

name() is called by the default version of Show() but can be called by the application.
It's a virtual function that should display the name of the class derived from the

104

osi Ti me class. By default it returns the string "unknown class deriving from
osi Ti mer."

105

CLASS: gddAppFuncTable<PV>

Declared: gddAppFuncTable.h

The gddAppFuncTabl e<PV> template class allows a server tool to install a number of
"read" functions in a function table. When the functions are installed, a server tool
specifies a corresponding application type for the function. Then when a read operation is
requested, the server tool can then call the gddAppFuncTabl e: : r ead() . As one of
its arguments, r ead() accepts a gdd object. This gdd object can be a

gddCont ai ner object, in which case it contains other gdd objects, or it can be a single
gdd object such as a gddScal ar object. If a gddCont ai ner object, r ead() will
step through the object. For each gdd object within the container type, r ead() will
access its application type and call the function that was installed for its application type.
If the object passed to r ead() isn't agddCont ai ner object, r ead() will simply call
the function installed for its application type.

If no function is found for a particular application type, that is, no function has been
installed for that application type, an error message will be printed and the next gdd
object in the container will be accessed.

Each function to be installed must return a gddAppFuncTabl eSt at us code,
which indicates the error or success of the read function. In addition, the
function accepts only one argument, a gdd object. Thus, a basic format is

gddAppFuncTabl eSt at us casPV: : your Functi on(gdd &val ue);

where casPV is the class which the function is a member of. The function must
be a member of a class derived from the casPV class and your Funct i on()
is the name of the function. It can, of course, have any name, as long as the
format is the same.

To understand how the gddAppFuncTabl e operates, it's necessary to
understand what an application type is. An application type is simply an
unsigned integer (ai t Ui nt 16) that is part of a series of unsigned integers that
represent a code. In this code, an unsi gned i nt eger can be defined to
represent an application type. Each application type describes a piece of data
and its purpose.

Name:

Synopsis:

Description:

Name:

106

A set of predefined application types is provided for EPICS data. Each of these
application types describes a piece of data for EPICS applications. For example,
one application type is represented by the constant gddAppType_st at us.
The "status" application type describes the data as representing the alarm status
for a Process Variable. The application type gddAppType_val ue represents
the actual value of the process variable. Other application types can be added to
the predefined application types for EPICS applications or even non-EPICS
applications.

The existing application types appear in the header file gddApps.h. In addition,
some of these application types have corresponding strings such as "status" for
the application type gddAppType_st at us.

To use the gddAppFuncTabl e<PV> template, you must declare an instance
of the template, specifying the casPV or derived class of the functions. For
instance, if a server tool had a class called our PV derived from casPV and it
wanted to install read functions for that PV class, it would declare a function
table in the following manner:

gddAppFuncTabl e<our PV> our FuncTabl e;

The most important functions in the gddAppFuncTabl e class-template are

i nst al | ReadFunc() and r ead() . None of the other members should be

of any concern to the user.

gddAppFuncTabl e()

#i ncl ude <gddAppFuncTabl e. h>
gddAppFuncTabl e<PV>: : gddAppFuncTabl e(voi d);

gddAppFuncTabl e() accepts no arguments and thus when the class-
template is instanced, the application should not specify any arguments.

i nstal | ReadFunc()

Synopsis:

Description:

Name:

107

#i ncl ude <gddAppFuncTabl e. h>
gddAppFuncTabl eSt at us
gddAppFuncTabl e<PV>: : i nst al | ReadFunc(
const unsi gned type,
gddAppReadFunc pM-uncl n);
gddAppFuncTabl eSt at us
gddAppFuncTabl e<PV>: : i nst al | ReadFunc(
const char * const pNane,
gddAppReadFunc pM-uncl n);

An application uses i nst al | ReadFunc() to install functions in the
application table that it has created. There are two forms of

i nstal | ReadFunc() . One accepts a character string for the application type
as its first argument and the name of the function as its second argument. The
other accepts a constant for the application type as its first argument and the
name of a function as its second argument.

Here is an example of the call to i nst al | ReadFunc() where the application
type is a represented by a character string and where our FuncTabl e is the
name of the function table:

our FuncTabl e. i nstal | ReadFunc("st atus", readStatus);

Here, the application type is the "status" application, a type predefined for
EPICS applications. The function r eadSt at us() is being installed to read
the status of a PV's alarm.

And here is an example of the call to i nst al | ReadFunc() where the
application type is a constant defined in gddApps.h:

our FuncTabl e. i nst al | ReadFunc(gddAppType_st at us,
readSt at us) ;

Here, the application type and function name are the same except that the
application type is an unsigned integer constant defined in gddApps.h.

Note that if the application type is passed as a character string, the string must
have already been defined to represent a particular application type, that is, they
must have been installed in a table of application types.

Synopsis:

Description:

108

read()

#i ncl ude <gddAppFuncTabl e. h>
gddAppFuncTabl eSt at us gddAppFuncTabl e<PV>: : read(PV
&pv,
gdd &val ue);

An application calls read when it wants to read a gdd object's value or values.
Whether a gddCont ai ner object or any other gdd object, by calling
read() and passing it the casPV or derived-class object for the PV that is
being read, and the gdd object passed to the casPV: : r ead() function.
read() then calls the appropriate function to read the appropriate value(s)
from the gdd object(s).

For instance, suppose a server tool defined all the functions required to read all
predefined EPICS application types and that it installed these in the application
table myFuncTabl e. Suppose these functions are members of the class my PV,
which is derived from the casPV class. When myPV: : r ead() is called, it
passes itself, that is, the my PV object for which r ead() was called, and the
gdd object passed to nyPV: : r ead() to gddAppFuncTabl e: : read().
Provided that all the appropriate functions have been installed,
gddAppFuncTabl e: : read() will call all the necessary read functions for
the gdd object.

