Chapter 8
Software Considerations
and Program Examples

SOFTWARE CONSIDERATIONS ANG PROGRAM
EXAMPLES

A davice with the versatiity of the Ama513 is necessarily com-
piex.%issoﬂwareappﬁwﬁonsecﬁmsimpﬁﬁesﬂwpmgmm-
mer's view of the Ama513 and faciitates guicker understanding
and the implementation of the facilifes provided. Hartiware con-
sidorations are generally not discussed; indend, with few excep-
ﬁmmeymdaﬁberareiyemmdedjoradewiledd'mof
system implemerdation with the AmO513, the reader is referved
to garfior chapters of this manual.

Example Languages

Software apphcation notes generally provide specific exampies
of code writteh in one or more languages, siructured as emsch to
fllustrate the puapose of the code clearly a5 well as to provide
compact, warking progeams. Most languages have drawbacks,
a fact that is of lite importance in an apgdication note, although it
is desiratle that examples shouid be presented in both high-
ievel and assembly-level languages. :

This software application note presents high-level consiructs
and exampies in the G language, which now is seeing a fairly
wide acceptance and is currently supported on Systems
mppﬁedbyAdvarmdMiaoDwices.Cisablock-stucmrad
muagemmmughmdnginmﬁsumasmngtype
d-wec!dng,pmvidssemaembhmarﬁpulaﬁmfaﬁ&ﬁasinrem
fislds, allowing such statements as:

#oefine OFF 1
Master FOUT _gate = OFF;

Thic statement is part of a record inftialization that fiags the
FDUTgmasbeing:isabled.The“#daﬁne"smamamaﬁigns
the value “1” 1o the constant identifier “OFF". The bit field
“ FOUT _gate” of the record sfuctrre “Master” is then as-
signed the value of the identifor “OFF, Le. “1*. A simiiar
Z8000" assambler Fsting might take the form:

COMNST OFF = 0X1000 ; % AMD Mnemonics
LD R4,0FF i

OR R4, MASTER :

LD MASTER.B4

Wm@mmmmeralcmhmbeenmmﬁnad.
Manypmgra‘nmamarefmniﬁarwmmuagasommﬂﬁnc,
possﬂ:lyufﬂmePasﬂorPUXvariety,somﬁoﬁawingdaﬁni-
fions have been used M an atternpt 1o achicve SOMe common
ground:

#dafine BEGIN

#define END

#dafine RECORD struct
#define THEN

These definitions aliow the use of the type identifier “RECORD”™
for structure definitions rather than the normal C type idemtifior
*stuct”.

Assembly language examples are presered using AmBOoR0/
AmS086, Z80 and ZB000 source mnemonics having formats
compatible with the AMD or Zilog assemblers. Macros are used
wherever it is feft that they aid the programmer, masty within the:
AmMS513 command structure. The macros are generally op-
ﬁmized,suchﬁalbettermdecannutbegeneratedbyhand.
and mostly employ strict parameter checking {efiminating ex-
cuses for not using them). For example, 1o save counters 3, 4
and 5would be accomplished by the statement:

SAVE 345

Code genaratad by this statement would be (AmBOEC/AmBIB5):

MVI AQOBCH
QUT CONTROL

Matros are presented for setting the Courter registers and the
Master register and, atthough the expefionced AmISt3 user
mayﬁndﬂmofdubiwsusa,menovimvﬁuappmciMBm_
coxde gencrated. For example, to sat the Master registar, the
following command may be tsed:

MASTER TOD_50HZ DISABLE DISABLE,GATE—1,
+,0N,BUS 5,0N,BCD

The following colle sequence will De generated (AmSOSY/
AmB0B5):

MVI AT7TH

OUT CONTROL Point 1o Master rag

MV AGIH

OUT DATA Sand Low command byte
MV AEEH

ouUT DATA High comman byte

By examining the code ganerated (35 above) by the macro as-
sambler, the user may gain ¢uick understanding of the usage of
the: AmBE513. (Notice that the above assembly code does not use
intermediate storage records for the data. Use of assembly lan-
guage often implies high efficiency or compact code S re-
guited.) ¢ examples have been compited 10 AmMBOBO/AMBOBS
code using the Whitesmith's C compiler and Z8000 ¢ode using
the AMD C cfoss compiler, both running on the AMD System

8/8. All executable AMBOBO/AMBOBS and Z80 target code has
been tested using an AMD Systern 8/8 with an Am9S/5032
ROM/EPECOM board installed, supporfing an Ama513 with con-
trol and data ports decoded at YO addresses DAM and D8H,
respectively. All execttable ZB000 code has been tested using
the abave system with an AmS6/4116 ZB0O0 bus master card
installed.

FUNCTIONAL DESCRIFTION

{See Chapter 1 for detafied description)

The AmS8513 includes five general purpose 16-bit counters. A
variety of intema! frequency sources and external pins may be
selacted a3 inputs for individual counters with software select-
able active-fugh or active-tow input polarity. Hardware gating of
sach counter is available. Each counter provides either pulsecd
or level 2s well as ti-state and fixed low ottputs. The counters
can be individually programmed 10 count up or down in BCD or
binary modes. The accumulated count may be read without
Geturbing the counting process. Any of the counters may be
internally concatenated o form an effective counter length of up
to 80 bits_

Associated with each counter are a2 Load register and a Hold
register. The Load register antomatically reloads the courter to
a predefined 16-bit value, thus controlling the effective count
period. The Hold register acts either as a second 16-bit Load
ragister for complex wavafort generation or as a 16-bit storage:
register to save count values withowt disturbing the counting
process, thereby permitling the host processor to read inter-
mediate couttt valties,

Two coumnters have addiional Alarm registers and comparators
with associated logic 1o allow operation in a 24-hour ime-of-day
mode with alarm facility. Clocking may be either int real ime or
programmed over the full dynamic clocking range of the
Amas13.

Each of the five counters has a dedicated output pin that may be
programmed to provide a vatiety of outputs. General-purpose
counter inputs are available for configuration under software
- controt, aliowing dynamic reassignment of mputs with the faci-
ity, for example, to use 2 single gate pin simultaneously as a
clock nput to one counter and as & gate input 1o ancther.

HARDWARE CONSIDERATIONS
Prefetch

in order to miniize the read access time 1o imternal AM9S13
registers, a prefetch circutt is used for all read operations
through the Data port. Following each read or write operation
through the Data port, the Data Pointer register is updated to
point to the next register to be accessed. Immediately foliowing
this update, the new register daia is tansferred to a special
profetch latch at the: imerface pad logic. When the user performs
a subsequent read of the Data port, the data bus drivers are
enabled, oulputting the prefetched data on the bus. Since the
internal data register is accessed prior to the start of the read
operation, is access time is fransparent to e user. In order 1o
keep the prefetched data consistent with the Data Pointer, pre-
fetches are also performed after each write to the Data port and
after execution of te “Load Data Poimer” command. The fol-
Towing rules for Data port Transfers should be headed:

1. The Data Pointer regster should atways be roloaded Before
reading fror the Data port if 2 command othor than “Load

82

Datz Pointar” (point_to or POINT) was issued 10 the
Ama513 following the last Data port read or wiite. The Data
Pointer does not have to be loaded again if the first Bata port
transaction after a command entry is a write, since the Data
port write will zutomatically cause a new prefeteh to ooour.

Operating modes N, O, Q, R and X allow the user 1o save the
counier contents in the Hold register by applying an active-
going gate edge. If the Data Pointer register had been point-
ing %o the Hold register in question, the prefetched valuo wilt
not correspond to the new value saved in the: Hold reqister.
To avoid reading an incorrect value, 2 new “Load Data
Pointer™ command should be issued before attempting to
read the saved data. A Data port write (io another register)
will also imtiate a profetch; subsequent reads will access the
recently saved Hold register data. Many systems use the
“saving” gate edge to interrupt the host CPUL In such sys-
terns, the interrupt service routine should issue & “Load Data
Pointer” command prior to reading the saved data.

Memory Mapping

Assocized with the Am9513 are four parameters known collec-
tively as read/write recovery times. Certain ¢oding sequences
can violate these parameters in sometimes non-obvious ways.
Consider a Motorola 6800-based systom, employving memory-
mapped input/output. Reading the hold register on counter 4
may be accompiished by the following code sequence:

LDAA # 14 Point to counter 4 hold
STAA CONTROL
DX DATA Read the: register
&TX RESULT Store the data
Natice that the jart *LDX performs two 8-bit reads from

Iocation DATA and DATA+1 wsing two consecutive clock cydles.
For 2 12560ns read recovery ime the maximum system clock
frequency allowabls without viclating the read recovery time is
680ki4z. This is lower than many system clocks in use, $o the
following code sequence may be used 1o avoid this kmitaton:

LDAA #14 Poant to counter 4 hold

STAA CONTROL

LDAA DATA read low byte

STAA RESULT revarsed order for
compatability with above

LDAA DATA+1 read high byte

STAA RESULT :

The oquivaient multiple write operation is even more resinictive:
an 1800ns wiite recovery time limiting the system dock 1o
500kHz unlass the separate data byte write technique is
adopted.

Similar considerations apply for memory-mapped AmB0B0/
AmMENSS systems. Notice that in the case of normal IfQ mapped
Z80 and 28000 systems, the biock input/output structions: may

also viclate the readiwrite recovery ime patameters at very high
gystem clock rates. Using the normal input/output instructions
avoids viclations without recourse 1o the use of walt states,

DATA MODEL

The first task of the progranmer is 1o construct a data model of
the Ame513 around which the applicalions software may be
draped. A topdown, structured approach is adopted and al-
though for purposes here the data moded need not be oplimezed
eitherforspaﬂeuﬁﬁzauonorforammﬁm,bomaspemarein
fact afficiently implemented.

Fgure 8-1 shows the data moded 1o be adopted, which should be
contrasted with Figures 82, 8-3 and 8-4 depicting the: hardware
strcture being modeled. Noticethat the Comimand register and
" Data Pointter register ¢io not appear in the data moded.

The simplicity of Figure 8-1 flustrates that the Am9513 is singu-
karly well suited to this approach; rernoving exdraneous injemsat
hardware aspacts focuses the attention of the programmer on
the safient details. .

Cprovidesafadﬁtycaﬂad“typedef’forcreaﬁngnewdatatype
names, similar to the “TYPE™ faciiity in other languages. For
example, the declaration

typedef int LENGTH;

makes the name 'LENGTH' a synonym for ‘int. The type
‘LENGTH can be used wherever the type ‘int can be used.
Simikarly, the two record definitions of Figure 81 ¢an be re-
placed by their respactive type names; indeed, the definition of

typedef RECORD (count._.type
unsigned int
nsigred int

typedef RECORD

unsigned int
unsigreed ittt

Y charmel _twpe

(master _type
channel type

) AmI513__type ;

/* Single counter set *f
mode ;
load
hoid ;

* Ama513 chip sel

master
counter [5] ;
status
alarme 4
alarm_> ;

*f

Figure 8-1. Software Structure of the Amas13

SOURCE 1-5 5
GATE 15 -)
ow—
n osGLLATOR oy S COUNTER § LOGIC GROUP f—— ourts
mPUT
4ETT COUNTER SHECT GOUNTER 4 LOGIC GROUP f——= OUTE
¢ i
8T GBIT sBIT
—t DATA STATES COUNTER 3 LOGIC GROUP |-——= OUT3
REGISTER POMTER REGISTER
‘,!“
. 4 * 4 i
L BlrS 16
BUFFER - pitericid COUMTER 2 LOGIG GROUP }——— ouTz
ms%__ AND MUT L MODE HEGISTER
] T I |
W ————| Y FOWER ON | COUNTER 1 LOGIC GROUP |——=- ouT
[2:+] INTERFACE RESET
[s—— CONTROL
e p— vec ves 5 i

Figure 8-2. General Block Diagram

53

e]
GATE ==} pemT VT LOAD REGESTER
A S8 FoT
FREG 2= 5] oure
T =1 i ‘ i,
COUNTER
CONTRIcG T COUNTER. |) =
Lows QT
M
' L
¥
1E-BIT MOOE REGSTER 16-BIT HOLD REGISTER
r‘n_-_u—-.
BT Co
WY ALATN REGTAEA

M —]

GATE —aie] mOPUT 100 LOAL RECLETER
mea 5| B2
ToR -1 = }

ORFT
COWMTROL
GOUNTER
1T iy
1 ouT
L]

Figure 8-3. Counter Logic Groups 1and 2

the ‘AmaS13_dype’ uses the type ‘channel_type' 25 a field to
identify the armay of five courdars on the Am9513. Notice from
Figure 8-1 that each counter (of channel_tyhe) consiats of thres
ragisters krown as the Mode, Load and Hold registers. Addi-
tionally the Mode register itself is further defined via a typedef
in Fgure 8-5 to consist of a series of bit fields. The sum of the
fisid widths of thece bit fiolds i 16, that is, the Mode register is
16 bits wide.

it must be emphasized that a C typedef declaration does not
create a new type in any sense (unfike the TYPE declaration in
other languagesy; it merely adds a new name for some existing
type. The use of typadef’s makes C programs more portsble and
sigrificantty improves readabiity.

An application using an amay of 20 Am3513 devices with an
access pointer may be declared as shown in Figure 8-5a.

AmMISI2_type
/* recall we have a new “type™/

AmMI5i3[20], /= datastructore for 20 chips®/
“AMASI3_ptr ;[access pomter */
Figure 8-5a.

Notice that C uses armay subscripts commencing with zero; the
third Ame51¢ device would be referred to by Amos13{z].
Should the reader prefer, all arrays can bo declared with &
durnmy antry, such that all zero indices may be ignored as
shown in Figure 8-5b.

Ama513 type
Ama513[21], /21 devices, ignore deviee #0 ™/

Figure 8-5b.

Figure 8-4. Counter Logic Groups 3,4 and 5

The third Am3513 device may now be referenced by the formy
Amg513[3]. Throughout this software-application note the first
form: (zero subsoript alowed) will be emploved except where
claarly stated otherwise.

The following discussions of the data . model fields (the various
hardware registers on the AmM3513) ars accompeniied by exam-
ples of usage. The examples refer to the-model, which is trans-
ferred o the hardware devico via some input/ouiput operations.
Such operations are discussed with the data pointer sequencing
facility description, and are omittad from mast other C examples
for clarity.

Users of other languages should find the data model and C
exampies useful a5 an aid to understanding the Am9513. As-
sombly landuanges examples ars included for addiional clamty,

COMMAND REGISTER

The Command register providas direct control over each of the
five general cournters (via the Control port} and controls access
1o the counter registers (via the Data part) by updating the Data
Pointer register. Commands are instruction codes to the
AmMS513 and as such are not part of the data model. They are
genecally used in the form:

ag()
BEGIN
intreset = OXFF, [Coode®/
load —afl__countars = OXEF;
output (CONTROL, & recet);
output (CONTROL, & loacl. 2% . counters);
END

Notice that the varables * reset” and “load__all_counters™ are
daclared AUTO (LOCAL in some langrages) such that they re-
side on the stack while the procedure “e.g.()" is cument. The
opamﬁmofhpmmna"mm(x,v)"mﬂbadmmmr
i this section; suffice 1o say that the address of the veriabla Y™
10 be output (sent to the AMSS13) is passed as one parametor
and the dastination port “X* (Control or Data) of the Am9513
as the other. Thus the variable "Y™ s called by reference {s.q.,
&raaat}ammmmonpmt“r‘iscalladbyvalua{a.g..
Controf).

- 780 Macro Assembler code

RESET

1 Magro simplicity
RET :

“‘the "Command Doscription” section ixter in this chapter ex-
plains the detafled operation of commands available with exanm-
ple usage.

DATA POINTER REGISTER

The Data Pointet register is a wiite-only register controlled
soldybyacommndwﬂhmaswmlmilusu'amdinﬁgurea-ﬁ.
The detaled hardware format of the register s imelevant for
purposes here since the data pointer command provides all in-
formation necessary. As 2 command, it does not appear in the
ciata modeal.

/* Load data ptr register command */

typedet RECORD {unsigned group &
unsignad element =
unsigned crnd__code 3;
Jdata.type ;

Figure 8+6. Load Data Polnter Command Structure

The data pointer command selects which internal register is 10
be accassible via the Data port and consists of a conslant com-
mand code (000}, a 2-bit element field and a 3-bit group feld,
(SaaPagei-ﬁforhardwaredastﬁpﬁon.)Harﬂnmawesswany
availablei:mma!registerbmﬁoncanbeaomnmﬁshadbysim
ply sending the appropriate data pointer command to the Control
port and then petforming a2 Data read o write. Sequertial ac-
casstogrwpsoﬁmama!regimﬂrsmaybepamﬂnedhysaﬂ-
ingmeappropriamenableandda:apuimermnmandsmm
Corrol port and parforming muttiple Data reads andfor wrilss.

Far example, random access o the Load register of countor 4
may be performed as shown in Figure 8-7. Sequential access 10
tj\ahoidrag'ﬁtatsnfallﬁvemmmismrfonnedasshamh
Figure B+8. Suitable C inputioutput routines for an -bir data bus
may be definad as shown in Figure 5-9.

[* Gexample */
eg(}
BEGIN |
point_to (4,LOAL) ; * f* setup Data Pointer Regrster */
AmS513.counter| 3] Joad = inpu(DATA) ; /* Read in the data 1o appropriate
fiold ®/
END
point__to (channel, reg) G utiity *f
unsigned int chanmed, reg = set Data Pointer Register o
channelrag */
BEGIN
data typedata_pir * local command structure */
data__pir.group = channel |
data ._pir element = reg |
data_premndcode=0 :
ouiput (CONTROL &data_ptr} ; /= send Load Dats Pointer Comtand */
END
‘ » Z80 Macro example
STOREDEFSZ : Destination of data
ENTRY:
POINT ALOAD : Paint1o counter 4 E OAD register
LD C.DATA ; Sotup port address
LD HL.STORE 1 Setup data destination
NS ; Low byte of LOAD reqgister
it ; Highbyte of LOAD register
RET

Figure8-7. Random Accessto Registers

&5}
BEGIN
intindex = —1 ;

sequance (ENABLE) ;
point_to (1 HOLD._CYCLE) -
while ({indax +=1) <E)

I G exampie */

= counter inde, Oto 4"

* Tum on data pointer seq ™/
{* Sot Data Pointer register =/
M Counters Othns 4 %/

Am9513.counter{ index] hold = inputDATA) ; /* 16 bit transfer =/

END
it requast ;

int enable: = OXED |,
drsable = OXES ;

BEGIN

if (request = = ENABLE)

1 Cutility */

* commands for data pointer sequendirg ™

output (CONTROL, & enable)

alse

autput (CONTROL, & disable)

END

ENTRY:
DPS ON
POINT 1,HOLD_CY
LD HLAQLDS
L g.s"2
LDC.DATA
INIR
RET

HOLDS: DEFS10

ENTRY:
DPS ON
POINT 1,HOLD_.CY
LOHLHROLDS
LoBa*2
LD CDATA
INIR
RET
HOLDS: DEFS 10
DP3 ON
FOINT 1 MODE_.
LXKt HARRAY
MVI BS"3*2
LOOP;
IN DATA
MOV M,A
I 3]
DEC B
N LOOP
RET
ARRAY:
MODET DS 2
LOADT DS 2
HOLD1 DS 2
MODES DS 2
LOADSDS o)
HOLOS DS 2

»

dh ml w4 4w o

P T T

ZB0 Macro example

; Enabile data pointer sequencing

Daiz pointar to hoid cycle

Dtz area

Byte count, 5 holds, 2 bytes each
AmSS513 data port

Perform ransfer

Dats area
Z80 Macro example

Ermble data pointer sequending
Data pomterto hold cycls

Dats area

Bvie count, & holds, 2 bytes each
AmMS513 data port

Perform ransfer

Data area

; AMBOBO/AMBOBRS Macro example

: Enable data pointer sequencing

1wk our

Mode register 1
Storage area
“5oounters, 3 x 16 bit registers

Get a byte
Save abyte

Move the byte poirter

courter 1 data area

counter 5 data area

Figum-;B-B. Sequential Access to Registers

26

unsigned int input (port)
intport
BEGIN
urysigned int temp;
tormp = in (port) :
temp += in{port) *256
retumn (temp) ;
END

output (port, data)
unsigned port, *data;
BEGIN
out (port, (*data %258));
if (port == DATA)
out (port, (~data/256));
END

/* € example */
/~ Bead 2 bytes from port*/

* focal parameter to assembie word */
* Getlow byte */

J* Put high byte into temnp */

/™ Beturn the 16 bit value read */

J* 2 bytes to DATA portor 1 byte */
/ to CONTROL port (8 bit bus) */

/* 16 bit ransfer to DATA port ™/

Figure 8-9. Input/Output Routines for 8-Bit Data Bus

typedef RECORD

unsigned FOUTsourcs
unsigned FOUT—divisor
unsigned FOUT__gate
unsigned data s
urnsigned data-—pir
unsigned scaler
ymaster—type;

-h
BHRN

wn o A

nnB s

I
-5k
M

Figure 8-10, Master Mode Register ~ Software Strueture

MASTER MODE REGISTER

The f6-bit Master Mode Register controls those internal ac-
fivities that are not controlled by the individuat counter registers.
Figure 810 shows the record felds of the “‘Master-type’ struc-
ture. Figute 8-11 fustrates allowable fleld values.

The indvidual ficld declarations show, for example, that the
: FOUT__source” fistd i four bits wide, Notice that the summ of all
the field widths is 16; the Master Mode Register is 16 bits wide.

C compiters should be checked 10 ensure bit finid deciarations
are implemented with first fiold 2t the least significant bit ad-
dress. These definfions are cofrect for the AMD and White-
smith's compiers; some other compilars may heed the field
order reversed.

After power-on reset or & Software Reset command the Master
Mode Register is set to the following configuration {all field val-
e Zeo):

day-mode =TOD _OFF
compar.t = DISABLE
compar_.2 = DISABLE
FOUT _source =F1
FOUT_divisor =16
FOUT_gate: = 0N
data=bus =BUS.. 8
Adata-pir =0ON

Jsoater = BINARY

8-7

Notica that changing the FOUT status by altering the source
divisor or gate fields may genarate ransionts.

Thve=of-Dery

The day__mode field can be turned off, allowing coutars 1 and
2 to funcion the same way as countars 3, 4 and 5, or set o
TOR_50Hz, TOD__60Hz or TOD_100Hz allowing a 24-hour
clock funclion 1o be used. Refer o the software examples (in
Chapter 4) for further information.

Comparators

Comparator registers exist for counters 1 and 2. If a comparator
i5 anabled (o.3., .compar__1 = ENABLE), is output is substi-
titad for the associated countar output. The output will remain
achve while the comparison 5 true. The two compatators ¢an
abways be vsed individually in any operating mode. One special
case occurs when the Time-of-Day opion 5 mvoked and both
comparators are enabled. The oparation of Cormparator 2 will
ther be conditionad by Comparater 1 so that a fulf 32-bit com-
pare must be trua in order 1o generate a true signal on Output 2,
Quitput 7 will continoe, as usual, to reflect the state of the 16-bit
comparson batween Alarm 1 and Counter 1.

FOUT Source

The “FOUT_soures’ field specifies the source input for tho
FOUT divider. Fiftoen inputs are avallable for selection including

the five source pins (SRC1-SRCS), the five Gate pins (GATEL-
GATES) and the five intomal frequencias derived from the mas-
ter oscllator (F1-F5).

eg., AmMISiZ.master. FOUT __source = GATE4;

FOUT Divider

The *FOUT _divisor' field specifies the dividing ratio for the
FOUT divider. The .FOUT__sowrce is cdivided by an integer
value (1-16) and passed to the FOUT output butter,

FOUT Gater

The ' FOUT__gate’ provides a software gating fachty for the
FOUT output signat (ON or OFF). Notice that commands exist to
directy gate the FOUT output on and off without using the Mas-
ter register fialds (e.g., FOUT ON).

Bus Width

The ‘data._bus' field controls the width of the data bus interface
Uyconﬁgunngﬂ'lepartforanﬂ-bﬁorﬁ-bftm@maldaﬂbus.
Notice that tha CP/M-compatibla version of the AmOS13 avalua-
tion program and the AmBOBD/AMBOBS and ZB0 macros only

FOUT D

0000 = Divide by 18
0001 = Divide by 1
000 = Divide by 2
o011 = Divids by 5
0100 = Divide by 4
0191 m Divide by 5
0110 = Divide by &,
0111 = Divide by 7
1000 = Divide by 8
1001 = Divide by §
101Q = Divide by 10
1071 = Divide by 11
1100 = Divide by 12
1101 = Divide by 13
111QﬂDivideby14

———— bt AT SO
0000 = Fi
0001 = SRC 1
0010 = SRC 2
0011 = SRG 3
000 = SRC 4
0101 =SRC S
0110 = GATE 1
it =CATE 2
1000 = GATE 3
1001 = GATE 4
1010 = GATE S
W1 =K
1100 = F2
1101 = F3
1110 = F4

1111 = Divide by 15

1111 = F5

MM | MM14 | MM M2 | MMt | masra] s | e | same | ovavis | sees | vawe | veas | ez | v | voso

L rourGame
O = FOUT On

Dtz Beot Wity

& = 5-Bit Bus

1 =16-Bit Bus

Data Pointar Control
0 = Enable Increment
1 = Dicghig Incromend
Scader Control

= Binary Divizion

1 = BCO Division

1 = FOUT Off (Low Z to GND}

Compare 2 Erabie — e S—
0 = Dizablad

1 = Enablod
Compare 1 Enabie
0 = Bisabled

1 = Ercatlad
Timerof-Day Mode
00 = TOD Disabled

01 = TOD Enabled; « 5 loput
30 » TOD Enabled; = 6 Input
1 = TOD Enabled: + 10 Input

Figure 8-11. Master Mode Register — Hardware Structures

ailow an B-bit daxta bus configuration while the ZE(00 macros
only allow a 16-bit configuration. These constraints may be
changed by the user. Notice that the macros require the bus
wicith to ber passed as a parameter, aithough it & ignored.

Data Polnter Sequoncing

The '.data_ptr field enables or disables the automatic
sequencing functions, described under the Data Pointer Regis-
tar section. Commarnds exist 1o directly enable or disable this
function {e.g., DPS ON).

Sealer Ratio

The ‘scaler field condrols the counting configuration of the
frequency scaler counter. This configuration may be BCD or
BINARY.

COUNTER REGISTERS

Countor Mode Register

The Countar Mode register covfigures the individual counters for
various operating conditions. The Counter Mode register
software shucture is shown it Figure 8120 (For hardware
structure see Page 1-23.) On power-up or after Softwars Reset
the Counter Mode fegisters are set to the following (equivalent)
configurations:

/* Cexample */

-outout =QOFF1Q_TC
direction = DOWN
hase = BINARY
control = MODE._ABC
Source: =F1
etige =RISE
.gate = NO_GATE

‘ ; Macro example
MODE_REG 4,0FF—LO__TC,DOWN,BINARY,MODE _ABC,

F1.RISENO_GATE

Refer to Chaptar 1, Figure 1-16 and 1-17 for detalled descrip-
fions of the vanous modes avallabie.

t.oad/Hold Registers
The counter |oad register provides a base value for the counter,
ThamuntarHoldmgish&rpmvidesmerasamndbasamgistar
or & storage register for intarmediate count values. The regisiens
may be accessed as follows (Gm.mtaﬂitlusu'a:ted,setﬁngmad
register to 4000 Hex):

/~ C exampie =/
Ame518.counter| 3] Joad = (X4000

+ Macro example
LOAD_REG 4.4000H '

COMMAND DESCRIPTION

The Macto files and Macro command surmmary provide a de-
tafled syntax and description of the action of the various com-
mand sequences and e cemmands avariable (Appendices D
through G). For further details of the various modes of operation
and command interaction refer to Page 1-25,

Thefol!wﬁngdmmipﬁumofmemaﬁommmdseaﬁtpmvide
an example usage. For multiple register commands, counters 2,
2 and 4 are used For single register commands, counter 3
is used.

RESET ssues 3 ‘RESET and LOAD 1,2, 3,4,
5 command sequence, the iatter com-
miand to ensure no counters are in the
TC state. Refer to the register descip-
tions for the inftial setlings catsad by a
RESET. The ZB000 RESET Macro ad-
cﬁtionaﬂysetsmedatabuswidﬁttnm
bits and issues a dummy load daia
poirter command (POINT 1, MODE_).

Issues an ARM command for up o 5
counters. Enables the tisted counters to
courtt source pulses. In modes G-L the
next TG causes the counter 0 reload
from the Hold registet; n a2 other
modes the next TC catises the counter
to redoad from the Load register,

ARM 2,34

typedet RECORD {unsigned output

unsigned base
unsigned edge

unsigned gate
Jenunt_type;

unsgned direction

ungigned control -
unsigned source

/= Counter Mode Register =/

]

g

BHBBH

Figure 8-12. Counter Mode Register — Software Struchire

8-

OAD

2,3, 4

LD_ABM 2,3, 4

DISARM

SAVE

PRMEAV

SET

CLEAR

STEP

23,4

2,54

2,3,4

ON

Issues a LOAD command for up to 5
courtters. Causes the fisted counters 1o
be loaded with the [oad or Hold register
depending on the Mode register and the
state of the count cycle. i a listect
counter is in the TC state, the counter
counts once to leave TG, befora load-
ing, rogardless of whether the counter
is armed or the state of any gate input.
K a histed counter is in the cyde pre-
ceding TC, the courter immediately
goas to TC, regardiess of whether the
courter i armed or of the state of any
gate input.

lssues a LOAD AND ARM command for
up 10 5 courders. Operation is dentical
fo issuing separate LOAD and ARM
commands. i a listed counter is in the
TC state the counter will count once to
leave TG before lbading and aming,
regardiess of whether the counter is

" armed or of the state of any gate nput.

i 2 listed counter is in the cycle im-
mediately preceding TC the eourter wil
immediately go to TC regardiess of
whether the counter is ammed or of the
state: of any gate input. Avold this com-
mand, by using separate LOAD and
ARM commands wharea possiblo,
kssues 3 DISARM command for upto 5
counters. if a listed countsr is in the TC
state, the counter colnts one source
edge, 1o leave TC, before disarming.
Oneco disarmed all counting censes.
Issues a SAVE command for up o 5
counters., Transfers contents of Isted
countars into associated HOLD register
independent of, and without affecting
counter statisg.

lssues a DISARM AND SAVE com-
mand for up to 5 counters. Identical
to issuing a DISARM and 2 SAVE
command.

Issues a SET command 1o a single
counter. The output for the counter is
tdriven high provided TC toggle mode is
spectiiad, othetwise nothing happens.
lscues a CLEAR command to a single
courter. The oulput for the counter s
driven iow provided TC toggle mode is
specifiad, otherwise nothing happens.
Issues a STEF command o a single
cournter.-Increments o decrements: the
counter irespective of armed status or
gate conditions. The stap direction de-
pends on the Mode register. The results
of stepping an amed counter while
counting are undefined.

issues a2 GATE ON FQUT or GATE
OFF FOUT command. The FOUT out-
put becomes aclive/inactive. Notice
that a single transient pulse may be
producsad.

B-10

DPs ON Issues an ENABLEDISABLE DATA

POINTER SEQUENCE command See

the description of the Data Pointer reg-

igter for further detadls,

3, MODE __ Issues a.LOAD DATA POINTER REG-
ISTER command with group, clement
information. See the description of the
Data Pointer ragister for further details.

TOD_OFF, DISABLE, DXSABLE, F4, 15, ON.

BUS_g, ON, BINARY
Bsues a command sequence to set the
Master register. The nine parameters
correspond o the ninge data model
fields and as such are reversed m
order, reading low order bits o high
orger bits from left to right. Notce that
the nite: parameters are NOT checked
by the magyos for space reasons.

3, TCTQGGLE, UP, BCD, MODE_ABC, F4,

FALL, NQ GATE
lzsues g command sequence 1o sot the
Mode register for a courter. The first
parametes identifies the coanter and the
nexdt seven parameters comrespond to
the seven datz model fiekds. The seven
data modol fields road low order bit to
higher order bit from lfeft to right The
seven paramsters are NOT checked by
the macros for space reasons.

Issues the command sequence 1o et
the Load registar for 2 single countor to
a given value, in this case a constant,
4000H.

Issues the command sequence to sat
the Hoid register of 3 single counter to 2
given value, inths case the contants of
the address 4000H. The 728000 macro
does not require the indirection flag (1)
since the AMD Assemblar Maer is able
to dentify the mndirection mode from
cortext.

POINT

MASTER

MODE_REG

LOAD_ 3,4000H

HOLD_ 3, 4000H,!
REG

EXAMPLE: Ama513 EVALUATION PROGRAM

The AmS513 evaluation program it menu-driven alowing full
functional testing and evalustion of an AM2513 located within 2
host system /O address space. The evaluation program is writ-
ten entiraly in C and s provided under the CP/M (ver. 2.2} com-
patible AMDOS operating system to allow inferactve usage
without the necassity of & resident C compilar.

The Am9513 driver uses the data model and commands de-
scribed earfier, thus providing a useful example of Am9513 C
programming. Additionally, at certain points throughout the
driver program, further explanation is provided on request,
mastly inn the area of the various operating modes available Alf
functions associated with the Am9513 may be exercised, in-
cluding defining the port addresses associated with the device
undef test. However, since the target code is for the AmS080/
AmB085, the data bue width ts restrictad to 8 bits,

F‘rgureta-ﬁ provides an exampte of the coding used within the
evaluation program and Figure 8-14 shows an actual user mn-
e test session {user input is highlighted).

Am513_type

II
f

BEGIN

Am3513,

f* declare the storage */

"Am9513_pir :
read_oloment (mode)

SEQUENCE or random-accass dapending on the mode parameter requast.

intmode ;
mit loop_count ; ‘
unsigeed int A[3] ; [temp array for registet values */
int group, element | [indicas *f
if (made = = SEQUENCE)
THEN
BEGIN
sequetce (ENABLE) ;
point_to {(1,MODE} ;
Amo513_pir = 8AMO513 [0] ;
foop_count =0 ;
while { { foop_count +=1) <8}
BEGIN
Am3513__pitr—>-counter] group].mode = input (DATA) ;
AMA513_ptr—>countor| group] load = input (DATA) :
AmME513_ptr—>-counter{ group] hold = input (DATA) ;
‘ AmMI5IZ__pir++ ;
END
END
alse
BEGIN
AmIS13_pir = &Ama513{0] ;
group=10;
sequence {DISABLE) ;
while ({ group +=1 }<6)
BEGIN
element= ~1 ;
while ((element +=1 }<4)
BEGIN

point—to (group, eletnent) ;

A [etement| = mput (DATA) ;
Am9513__pir=>courter[group].mode = A [0] ;
AMS513_ptr—>courter]groupload = A [1] ;
AMS51Z _pir—>counter|group].hold = A[2] :
AmMS512 p++ ;

END
£ND

Figure 8-13. AmM9513 Evaluntion Program Segmaent

8-11

Main Manu

1. Satdata bus width
3. Setoutput channel
4. SatMastor register
5. Setport addrasses

€. A counters
7. Load

= gritet Option:>
0. All regs using data pir sequencing
1. All regs using random actess
2. Moreinfo

< orter oplion=

Last written

:

00001011 00000000
00001011 QOOOGD00
00011100 11101001
00001011 ©0000000
QGO 00100010

o W -
Qr<y»y

0. All regs using data pir sequercing
1. Al regs using random access
2. More o

qmﬁmmp

Main Menu

1. Setdata bus width
2. Softwara rasot
3. Setoutput charmel
4. Sat Mastor register
5. Setportaddresses
&, Ammn courters

7. Load

< antor oplionc-

Armn courters: enter 1+50on one fing

Code used 34H

3. Any regs, random accass

4. Any regs, random access, nlimas
5. Print entire 3513 reg. st

6. Rettm to main meny

Justreadd

%
%
22228 §

D. Recd registers, etc
£. Setcounter operating modes, etc
F. Clear output channel

coooo {

Figure 8-14. Am9513 Evaluation Program Session

812

