
Introduction to the Channel Access
Client Library

Kenneth Evans, Jr.

Kay Kasemir

2

Channel Access Reference Manual

• The place to go for more information
• Found in the EPICS web pages

– http://www.aps.anl.gov/epics/index.php
– Look under Documents

– Also under Base, then a specific version of Base

http://www.aps.anl.gov/epics/index.php

3

EPICS Overview

MEDM MEDM Client Client Client MEDM

Server IOC IOC

Meter Power Supply Camera

IOC

Channel Access

4

Search and Connect Procedure

MEDM MEDM Client Client Client MEDM

Server IOC IOC

Meter Power Supply Camera

IOC

3. TCP Connection

Let’s talk !

1. UDP Broadcast Sequence

Who has it ?

Check Check CheckCheck

2. UDP Reply

I have it !

IOC

5

Search Request

• A search request consists of a sequence of UDP packets
– Only goes to EPICS_CA_ADDR_LIST
– Starts with a small interval (30 ms), that doubles each time

– Until it gets larger than 5 s, then it stays at 5 s

– Stops after 100 packets or when it gets a response
– Never tries again until it sees a beacon anomaly or creates a new PV
– Total time is about 8 minutes to do all 100

• Servers have to do an Exist Test for each packet
• Usually connects on the first packet or the first few
• Non-existent PVs cause a lot of traffic

– Try to eliminate them

6

• A Beacon is a UDP broadcast packet sent by a Server
• When it is healthy, each Server broadcasts a UDP beacon at regular

intervals (like a heartbeat)
– EPICS_CA_BEACON_PERIOD, 15 s by default

• When it is coming up, each Server broadcasts a startup sequence of UDP
beacons

– Starts with a small interval (25 ms, 75 ms for VxWorks)
– Interval doubles each time
– Until it gets larger than 15 s, then it stays at 15 s

• Takes about 10 beacons and 40 s to get to steady state

• Clients monitor the beacons
– Determine connection status, whether to reissue searches

Beacons

7

Virtual Circuit Disconnect

• 3.13 and early 3.14
– Hang-up message or no response from server for 30 sec.
– If not a hang-up, then client sends “Are you there” query
– If no response for 5 sec, TCP connection is closed

– MEDM screens go white

– Clients reissue search requests
• 3.14.5 and later

– Hang-up message from server

– TCP connection is closed

– MEDM screens go white
– Clients reissue search requests

8

Virtual Circuit Unresponsive

• 3.14.5 and later
– No response from server for 30 sec.
– Client then sends “Are you there” query
– If no response for 5 sec, TCP connection is not closed

• For several hours, at least

– MEDM screens go white
– Clients do not reissue search requests

• Helps with network storms

– Clients that do not call ca_poll frequently get a virtual circuit
disconnect even though the server may be OK
• Clients written for 3.13 but using 3.14 may have a problem
• May be changed in future versions

9

Important Environment Variables

• EPICS_CA_ADDR_LIST
– Determines where to search
– Is a list (separated by spaces)

• “123.45.1.255 123.45.2.14 123.45.2.108”

– Default is broadcast addresses of all interfaces on the host
• Works when servers are on same subnet as Clients

– Broadcast address
• Goes to all servers on a subnet
• Example: 123.45.1.255
• Use ifconfig –a on UNIX to find it (or ask an administrator)

• EPICS_CA_AUTO_ADDR_LIST
– YES: Include default addresses above in searches
– NO: Do not search on default addresses

– If you set EPICS_CA_ADDR_LIST, usually set this to NO

10

EPICS_CA_ADDR_LIST

MEDM MEDM Client Client Client MEDM

Server IOC IOC

Meter Power Supply Camera

IOC

Subnet 2Subnet 1

Specific

123.45.2.108

Broadcast

123.45.1.255

Not Included

11

Other Environment Variables

• CA Client
EPICS_CA_ADDR_LIST

EPICS_CA_AUTO_ADDR_LIST

EPICS_CA_CONN_TMO

EPICS_CA_BEACON_PERIOD

EPICS_CA_REPEATER_PORT

EPICS_CA_SERVER_PORT

EPICS_CA_MAX_ARRAY_BYTES

EPICS_TS_MIN_WEST

• See the Channel Access Reference Manual for more information

• CA Server
EPICS_CAS_SERVER_PORT

EPICS_CAS_AUTO_BEACON_ADDR_LIST

EPICS_CAS_BEACON_ADDR_LIST

EPICS_CAS_BEACON_PERIOD

EPICS_CAS_BEACON_PORT

EPICS_CAS_INTF_ADDR_LIST

EPICS_CAS_IGNORE_ADDR_LIST

12

Channel Access

• The main CA client interface is the "C" library that comes with EPICS base
– Internally uses C++, but API is pure C.

• Almost all other CA client interfaces use that C library
– Exception: New pure Java JAC

13

Basic Procedure for a Channel Access Client

• Initialize Channel Access
– ca_task_initialize or ca_context_create

• Search
– ca_search_and_connect or ca_create_channel

• Do get or put

– ca_get or ca_put
• Monitor

– ca_add_event or ca_create_subscription
• Give Channel Access a chance to work

– ca_poll, ca_pend_io, ca_pend_event
• Clear a channel

– ca_clear_channel
• Close Channel Access

– ca_task_exit or ca_context_destroy

14

makeBaseApp.pl

• Includes a template for basic CA client in C:
– Start with this:
makeBaseApp.pl ­t caClient cacApp
make

– Result:
bin/linux­x86/caExample <some PV>
bin/linux­x86/caMonitor <file with PV list>

– Then read the sources, compare with the reference manual, and edit/extend to
suit your needs.

15

makeBaseApp's caExample.c

• Minimal CA client program.
– Fixed timeout, waits until data arrives.
– Requests everything as 'DBR_DOUBLE'.

• … which results in values of C-type 'double'.
• See db_access.h header file for all the DBR_… constants and the

resulting C types or structures.
• In addition to the basic DBR_<type> requests, it is possible to

request packaged attributes like DBR_CTRL_<type> to get { value,
units, limits, …} in one request.

16

Excerpt from db_access.h

/* values returned for each field type
…
 * DBR_DOUBLE returns a double precision floating point number
…
 * DBR_CTRL_DOUBLE returns a control double structure (dbr_ctrl_double)
 */
…
/* structure for a control double field */
struct dbr_ctrl_double{
 dbr_short_t status; /* status of value */
 dbr_short_t severity; /* severity of alarm */
 dbr_short_t precision; /* number of decimal places */
 dbr_short_t RISC_pad0; /* RISC alignment */
 char units[MAX_UNITS_SIZE]; /* units of value */
 dbr_double_t upper_disp_limit; /* upper limit of graph */
 dbr_double_t lower_disp_limit; /* lower limit of graph */
 dbr_double_t upper_alarm_limit;
 dbr_double_t upper_warning_limit;
 dbr_double_t lower_warning_limit;
 dbr_double_t lower_alarm_limit;
 dbr_double_t upper_ctrl_limit; /* upper control limit */
 dbr_double_t lower_ctrl_limit; /* lower control limit */
 dbr_double_t value; /* current value */
};

17

makeBaseApp's caMonitor.c

• Better CA client program.
– Registers callbacks to get notified when connected ot disconnected
– Subscribes to value updates instead of waiting.
– … but still uses the same data type (DBR_STRING) for everything.

18

Ideal CA client?

• Use callbacks for everything
– no idle 'wait', no fixed time outs.

• Upon connection, check the channel's native type (int, double, string, …)
– to limit the type conversion burden on the IOC.

• … request the matching DBR_CTRL_<type> once

– to get the full channel detail (units, limits, …).
• … and then subscribe to DBR_TIME_<type> to get updates of only

time/status/value
– so now we always stay informed, yet limit the network traffic.

– Only subscribe once, not with each connection, because CA client
library will automatically re-activate subscriptions!

• This is what EDM, archiver, … do.
– Quirk: They don't learn about online changes of channel limits, units,

….
Doing that via a subscription means more network traffic, and CA

19

Side Note: SNL just to get CAC help

• This piece of SNL handles all the connection management and data type handling:
– double value;
assign value to "fred";
monitor value;

• Extend into a basic 'camonitor':
– evflag changed;
sync value changed;

ss monitor_pv
{

state check
{
 when (efTestAndClear(changed))
 {
 printf("Value is now %g\n", value);
 } state check
}

}

20

Quick Hacks, Scripts

• In many cases, one can get by just fine by invoking the command-line
'caget' from within bash/perl/python/php.

• Especially if you only need to read/write one value of a PV, not a
subscription!

• There are more elaborate CAC bindings available for perl/python/php
– But that means you have to find, build and later maintain these!

– A basic p* script is portable, but you'd have to install the CAC-for-p*
binding separately for Linux, Win32, MacOS…

21

Perl Example using external caget program

use English;

Get the current value of a PV
Argumment: PV name
Result: current value
sub caget($)
{
 my ($pv) = @ARG;
 open(F, "caget ­t $pv |") or die "Cannot run 'caget'\n";
 $result=<F>;
 close(F);
 chomp($result);
 return $result;
}

Do stuff with PVs
$fred = caget("fred");
$jane = caget("jane");
$sum = $fred + $jane;
printf("Sum: %g\n", $sum);

22

Matlab 'MCA' Extension (Works with Octave as well)

• Same setup & maintenance issue as for p/p/p!
– … but may be worth it, since Matlab adds tremendous number

crunching and graphing.
• Initial setup

– Get MCA sources (see links on APS EPICS web)

– Read the README, spend quality time with MEX.
• Assume that's done by somebody else

– You are in the SNS control room
– 'caget' from EPICS base works

– Matlab works (try "matlab -nojvm -nodesktop")
• Do this once:

cd $EPICS_EXTENSIONS/src/mca
source setup.matlab

– … and from now on, Matlab should include MCA support

23

MCA Notes

• Basically, it's a chain of
– pv = mcaopen('some_pv_name');
– value = mcaget(pv);
– mcaput(pv, new_value);

– mcaclose(pv);
• Your pv is 'connected' from ..open to ..close

– When getting more than one sample, staying connected is much
more efficient than repeated calls to 'caget'.

• Try 'mca<tab>' command-line completion to get a list of all the mca…
commands

• Run 'help mcaopen' etc. to get help

–

24

Matlab/MCA Examples

25

MCA Value Subscription

26

Java

• There is actually a JNI and a pure Java binding.
– Only difference in initialization, then same API.
– Usage very much like C interface, "real programming" as opposed to

Matlab, but in a more forgiving Java VM.
• See Docs/Java CA example.

27

Acknowledgements

• Channel Access on every level in detail:
– Jeff Hill (LANL)

• makeBaseApp.pl
– Ralph Lange (BESSY) and others

• MCA

– Andrei Terebilo (SLAC) is the original author,
– Carl Lionberger maintained it for a while (then SNS)

• Java CA

– Eric Boucher is the original author (then APS),

– Matej Sekoranja maintains it;
he added the pure java version (Cosylab)

	Introduction to the Channel Access Client Library
	Channel Access Reference Manual
	EPICS Overview
	Search and Connect Procedure
	Search Request
	Beacons
	Virtual Circuit Disconnect
	Virtual Circuit Unresponsive
	Important Environment Variables
	EPICS_CA_ADDR_LIST
	Other Environment Variables
	Channel Access
	Basic Procedure for a Channel Access Client
	makeBaseApp.pl
	makeBaseApp's caExample.c
	Excerpt from db_access.h
	makeBaseApp's caMonitor.c
	Ideal CA client?
	Side Note: SNL just to get CAC help
	Quick Hacks, Scripts
	Perl Example
	Matlab 'MCA' Extension (Works with Octave as well)
	MCA Notes
	Matlab/MCA Examples
	MCA Value Subscription
	Java
	Acknowledgements

