EPICS

Deuvice and Driver Support
(needs updating to R3.14.1)

Andrew Johnson
APS

2003/P571: Device and Driver Support

EPICS Outline

=

What is device support?
The .dbd file entry
The DSET

Device addresses

® & 6 o o

Facilities available from
¢ vxWorks
¢ EPICS

Using Interrupts
Asynchronous I/O
Callbacks and Watchdogs
Driver Support

The DrvET

® & 6 o o

2003/P571: Device and Driver Support

EPICS

What is device support
= PP

¢ Interface between record and hardware
¢ Provides an API for record support to call

¢ Record type determines routines needed

¢ Intimate knowledge of the record type

¢ Full read/write access to any record field

¢ Performs record I/O on request

¢ Determines whether a record is to be synchronous or
asynchronous

¢ Provides I/O Interrupt support
¢ Determines whether I/O Interrupt allowed

2003/P571: Device and Driver Support

EPICS Why use it
= /

¢ Why not make record types for each hardware interface, with
fields to allow full control over the facilities it provides?

¢ Users don't have to learn about a new record type for each I/O board
they want to use

¢ Changing the I/O hardware is much easier
¢ Record types provided are sufficient for most hardware interfacing tasks

¢ It is still possible to create new record types for special purposes if
necessary

¢ Device support is simpler than record support

¢ Device support isolates the hardware interface code from changes to the
record API

¢ Bug-fixes or enhancements to record support only need to happen in one
place

¢ Modularity (good software engineering practice)

2003/P571: Device and Driver Support

EPICS The .dbd file ent
T : Y

¢ The IOC discovers what device supports are present from
entries in the .dbd file

device (recType, addrType, dset, "name")

¢ addrType is one of

AB_IO BITBUS_IO BBGPIB_IO
CAMAC_IO GPIB_IO INST_IO
RF_IO VME_IO VXI_IO

¢ dset is the “C’ symbol name for the Device Support Entry Table
(DSET)

¢ By convention the dset name indicates the record type and hardware
interface

¢ This is how record support and the database code call device support
routines

¢ For example

device (ai, INST_I0,devAiSymb, "vxWorks wvariable")
device (bo, VME_TI0,devBoXy240, "Xycom XY240")

2003/P571: Device and Driver Support

EPICS The DSET
=

*

¢

*

2003/P571: Device and Driver Support

... 1sa ‘C’ struct containing function pointers, the content of which can vary

by record type

Each device support layer defines a named DSET with pointers to its own
routines

All DSET structure declarations start

struct dset {
long number;
long (*report) (int type);
long (*initialize) (int pass);
long (*initRecord) (struct .. *precord);
long (*getIoIntInfo) (..)

.. read/write and other routines as required
b7

number gives the number of function pointers in the DSET, usually 5 or 6 for
standard types

A NULL pointer is given when an optional routine is not implemented

DSET routines are usually declared static (local) as their symbol names are
not needed at runtime

EPICS DSET: initialize
=

long initialize (int pass);

¢ Initializes the device support layer
¢ Optional routine, not always needed

¢ Used for one-time startup operations, e.g.
¢ Start background tasks
¢ Create shared tables

¢ Routine called twice by ioclnit:

¢ pass=0 — Before record initialization

¢ Doesn’t usually access hardware as it doesn’t know what I/O is to be used by
this database

¢ pass=1 — After all record initialization

¢ Can be used as a final startup step, all devices addressed by database are
known by this point

2003/P571: Device and Driver Support

EPICS DSET: initRecord
=

long initRecord(struct .. *precord);

¢ Called at iocInit once for each record, to tell device support
about the record

¢ Optional routine, but usually supplied

¢ Device support code should
¢ Check the INP or OUT field address
¢ Check if addressed hardware is present
¢ Allocate any private storage required

¢ Every record type has a void *dpvt field for device support to use as it
wishes

¢ Program device registers etc. as needed

¢ Set some record-specific fields needed for I/O conversion to/from
engineering units

2003/P571: Device and Driver Support 8

EPICS DSET: read/write
= :

¢ Most record types need a DSET routine

long read(struct .. *precord);
or
long write(struct .. *precord);

¢ This implements the I/ O operation which occurs when the
record is processed.

¢ Precise action depends on the record type and whether the
device is synchronous or asynchronous.

¢ Generally, synchronous input support
¢ Reads hardware value into precord->rval
¢ Returns 0 (meaning OK)

¢ and synchronous output support

¢ Copies value in precord->rval to hardware
¢ Returns 0 (OK again)

Except in practice there’s usually a bit more than this to do...

2003/P571: Device and Driver Support

EPICS

= Device addresses

¢

Device support .dbd entry was

device (recType, addrType, dset, "name")

addrType tells database software what type to use for the
address link, e.g.

device (bo, VME_TI0,devBoXy240, "Xycom XY240")

applies to the pbo->out field:
¢ pbo—>out.type = VME_TIO

¢ Device support uses pbo->out.value.vmeio whichisa
struct vmeio {
short card;
short signalj;
char *parm;

bi
See <epics>/include/link.h for other structs, and my Database

lecture or IOC Application Developers Guide for the format of
addresses.

2003 /P571: Device and Driver Support 10

EPICS A first example ...

Iﬁi #include <sysLib.h>

#include <devSup.h>
#include <recSup.h>
#include <biRecord.h>

long initRecord(struct biRecord *prec) {
char *pbyte, dummy;

prec—>pact = 1;

if ((prec—>inp.type != VME_IO) ||
(prec—>inp.value.vmeio.signal < 0) ||
(prec—>inp.value.vmeio.signal > 7)) {

recGblRecordError (S_dev_badInpType, (void *)prec,
"devBiFirst: Bad INP address");
return S_dev_badInpType;
}
if (sysBusToLocalAdrs (VME_AM_SUP_SHORT_TIO,
(char *)prec->inp.value.vmeio.card,
&pbyte) == ERROR) {
recGblRecordError (S_dev_badCard, (void *)prec,
"devBiFirst: Can't convert VME address");
return S_dev_badCard;
}
if (vxMemProbe (pbyte,READ, 1, &dummy) < 0) {
recGblRecordError (S_dev_badCard, (void *)prec,
"devBiFirst: Nothing there!");
return S_dev_badCard;
}
prec—>dpvt = pbyte;
prec—>mask = 1 << prec—->inp.value.vmeio.signal;
prec—>pact = 0;
return OK;

}
2003/P571: Device and Driver Support

11

EPICS ... continued

long read(struct biRecord *prec) {
char *pbyte = (char *)prec—>dpvt;

prec—->rval = *pbyte;
return OK;

struct {
long number;
long (*report) (int);
long (*initialize) (int);
long (*initRecord) (struct biRecord ¥*);
long (
long (
b= A
5, NULL, NULL, initRecord, NULL, read

*getIoIntInfo) (int, struct biRecord *,
*read) (struct biRecord *);

|

2003/P571: Device and Driver Support

IOSCANPVT *)

12

EPICS

=

¢ vxWorks Operating System provides
¢ ANSI C libraries
¢ stdio.h — fopen, printf, sscanf, etc.
.4 string.h — memcpy, strcat, strcmp etc.
¢ math.h — sin, log, fabs etc.
¢ stdlib.h — strtol, calloc, cfree etc.
¢ Board Support Package: sysLib
¢ Bus address [Local address conversions
¢ Bus interrupt control (enable, disable)
¢ Other useful libraries
¢ wdLib — watchdog timers
¢ intLib, intArchLib — interrupt connection
¢ taskLib — creating and controlling tasks
¢ semlLib, semBLib, senCLib, semMLib — binary, counting and mutual exclusion
semaphores
¢ rmgLib — ring buffer handling
¢ msgQLib — inter-task message queues
¢ logLib — error messages from ISR
¢ Useman intLib to see the list of routines or man memcpy for individual

details

vxWorks Facilities

2003 /P571: Device and Driver Support 13

EPICS EPICS facilities
= !

¢ EPICS core software provides
¢ recGblh — error and alarm reporting for records
% callback.h — task level callbacks
¢ taskwd.h — callback if background task dies
.

devLib.h — OS-neutral h/w interface library
¢ Good idea but not widely used, API not brilliant

¢ ellLib.h — general-purpose linked-list support
¢ epicsAssert.h — preferred to ANSI assert.h
¢ errlog.h — error message logging (printf etc.)

¢ See IOC Application Developers Guide for descriptions of most
routines available

2003 /P571: Device and Driver Support 14

EPICS

Using Interrupts
= 8 THETER

¢ vxWorks ISRs can be written in ‘C’

¢ On VME two parameters are needed:

¢ Interrupt level — prioritization, 1-7
¢ Often set with I/O board DIP switches or jumpers
¢ Level 7 is non-maskable and can crash vxWorks
¢ Interrupt vector — unique within this CPU
¢ Vector numbers < 64 are reserved by MC680x0
¢ Use veclist on IOC to see vectors in use
¢ Written to a register on the card

¢ OS Initialization requires two actions:
¢ Connect ISR to relevent interrupt vector

intLib.h:
long intConnect (VOIDFUNCPTR *ivec,
void (*fp) (int param), int param);
iv.h:

#define INUM_TO_IVEC (num) ..

¢ Enable VME interrupt level onto CPU board
sysLib.h:

long sysIntEnable (int level); NB not intEnable

2003/P571: Device and Driver Support

15

EPICS

Interrupt Scannin
= g 3

¢

4

Records are processed when hardware signal occurs (e.g. input

bit changed)

Granularity depends on hardware and device support software
¢ Interrupt per signal ... Interrupt per card

¢ Can be simulated using a background task
#include <dbScan.h>

Call scanToInit once for each interrupt ‘source’ to initialize a

pointer
volid scanloInit (IOSCANPVT *ppvt);
¢ The same interrupt ‘source’ can be used for any number of records and
record types

DSET must have a getIoIntInfo routine which indicates which
‘source’ to use
When interrupt occurs, call scanIorequest passing back the

pointer for this source
void scanlIoRequest (IOSCANPVT pvt);

2003 /P571: Device and Driver Support 16

EPICS DSET: getlolntInfo
.~ setlomnting

long (*getIoIntInfo) (int cmd,
struct .. *precord, IOSCANPVT *ppvt),;

¢ Device support copies the roscanevT value for this record into
*
ppvt

¢ You may call scanIoInit from here if you haven’t done so yet for this
interrupt source

¢ Return 0 if Ok, else non-zero when scan will be reset to passive
¢ Can usually ignore the cmd value

¢ Whenever a record is set to scan=I/0 Intr the routine is called with
cmd=0

¢ If scan field is later to be changed to something else, routine will be called
again with cmd=1

2003 /P571: Device and Driver Support 17

EPICS DSET: report
= ’

long report (int type);

¢
¢

4

Optional, called by dbior shell command

Omitted if device support calls driver support, as this will give
the I/O status

Should print out information about current state, hardware
connected etc.

If type=0, just give a list of the hardware connected one card per
line

Higher values of type provide increasing amounts of data, or
different pages

Additional Suggestions:

¢ Collect I/O statistics (count successful reads, write, interrupts, errors etc.)
and use one page to display this data

¢ Have a page to list the card’s registers, which will help you to debug your
device support

2003 /P571: Device and Driver Support 18

EPICS

=

¢ Analogue Input and Output record DSETs include a sixth DSET
routine:

long speciallinconv (struct .. *precord,
int after);

Other routines

¢ (Called just before (after=0) and just after (atter=1) the database
changes the value of the linr, egul or eguf fields of the record

¢ “Before” usually does nothing.

¢ “After” call must recalculate eslo from egul, eguf and the
ADC/DAC range

¢ If 1inr=Linear, ail will convert rval using

val=((rval+roff) *aslo+aoff) *eslo+eoff

¢ The ao conversion is similar but in reverse

2003 /P571: Device and Driver Support 19

EPICS

Asynchronous 1/0O
i y 4

¢ Device support must not wait for slow I/O

¢ [If hardware read/ write operations take “a long time,” use asynchronous
record processing
¢ If the device doesn’t provide a suitable completion interrupt, a background task
can poll it periodically
¢ An asynchronous read/write routine
¢ Looks at precord->pact, and if false (idle) it:
¢ Starts the I/O operation
¢ Sets precord->pact true, then returns 0

¢ When the operation completes, device support must run the following code at
task level, not in the ISR:

struct rset *prset = (struct rset *)precord->rset;
dbScanLock ((dbCommon *) precord);
(*prset—>process) (precord);

dbScanUnlock ((dbCommon *) precord) ;

¢ The record’s process routine will call the device support read/write routine
again. Now pact is true

¢ Completes the I/O, sets the rval field etc.
¢ Returns 0

2003 /P571: Device and Driver Support 20

EPICS Using Callbacks
o °

¢ An ISR cannot call the record’s process routine directly

¢ Very few operations are allowed inside an ISR

¢ Use the callback system to do this

¢ It has ring buffers to queue callback requests, which can be made from
interrupt level

¢ One of three (prioritized) callback tasks executes the registered callback
function

¢ Header file callback.h contains
typedef struct .. CALLBACK;

These are defined as macros:

callbackSetCallback (void (*pfunc) (CALLBACK *cb),
CALLBACK *cb);

callbackSetPriority (int prio, CALLBACK *cb);

callbackSetUser (void *user, CALLBACK *cb);

callbackGetUser (void *user, CALLBACK *cb);

This is a procedure:
void callbackRequest (CALLBACK *cb);

2003/P571: Device and Driver Support

21

EPICS Watchdog Timers
= °

¢ A common requirement is for a timeout if the interrupt might
never occur

¢ Use vxWorks watchdog library wdLib

¢ Create watchdog timer, returns a wdld

¢ Start timer giving timeout period, wdld, callback routine, and an integer
context value

¢ Cancel timer, else callback executed in an ISR if not cancelled by end of
timeout period

¢ Header file wdrib.h defines:
typedef .. WDOG_ID;
WDOG_ID wdCreate (void);
long wdStart (WDOG_ID wdId, int delay,
void (*pfunc) (int param), int param);
long wdCancel (WDOG_ID wdId);

2003 /P571: Device and Driver Support 22

EPICS

=

Asynchronous example

/***\
* Copyright (c) 2002 The University of Chicago, as Operator of Argonne

* National Laboratory.

* Copyright (c) 2002 The Regents of the University of California, as

* Operator of Los Alamos National Laboratory.

* EPICS BASE Versions 3.13.7

* and higher are distributed subject to a Software License Agreement found
* in file LICENSE that is included with this distribution.
***/

/* devAiTestAsyn.c — Device Support to test async processing */
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "alarm.h"
#include "callback.h"
#include "cvtTable.h"
#include "dbDefs.h"
#include "dbAccess.h"
#include "recGbl.h"
#include "recSup.h"
#include "devSup.h"
#include "link.h"
#include "dbCommon.h"
#include "aiRecord.h"

2003/P571: Device and Driver Support

23

EPICS

=

/* Create the dset for devAiTestAsyn */
static long init_record();
static long read_ai();

... continued

struct {
long number;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_ai;
DEVSUPFUN special_linconv;
}devAiTestAsyn={
6,
NULL,
NULL,
init_record,
NULL,
read_ai,
NULL};

2003/P571: Device and Driver Support

EPICS

=

... continued

static long init_record(pai)

struct aiRecord *pai;

CALLBACK *pcallback;
/* ai.inp must be a CONSTANT*/
switch (pai->inp.type) {

(CONSTANT)
pcallback = (CALLBACK *) (calloc(l,sizeof (CALLBACK)));
pai->dpvt = (void *)pcallback;
if (recGblInitConstantLink (&pai->inp, DBF_DOUBLE, &pai->val))
pai—>udf = FALSE;
break;

default

recGblRecordError (S_db_badField, (void *)pai,
"devAiTestAsyn (init_record) Illegal INP field");
return (S_db_badField);

return (0) ;

2003 /P571: Device and Driver Support 25

EPICS

... continued
=

static long read_ai (struct aiRecord *pai)
{
CALLBACK *pcallback = (CALLBACK *)pai—>dpvt;
/* ai.inp must be a CONSTANT */
switch (pai->inp.type) {
case (CONSTANT)
if (pai—->pact) {
printf ("Completed asynchronous processing:
return(2); /* don't convert */
} else {
if (pai->disv<=0) return(2);
printf ("Starting asynchronous processing: %s\n",pai->name) ;
pai->pact=TRUE;
callbackRequestProcessCallbackDelayed (

pcallback,pai->prio, pai, (double)pai->disv) ;
return (0) ;

%s\n", pai—>name) ;

}
default

if (recGblSetSevr (pai, SOFT_ALARM, INVALID_ALARM)) {
if (pai->stat !=SOFT_ALARM) {
recGblRecordError (S_db_badField, (void *)pai,
"devAiTestAsyn (read_ai) Illegal INP field");

}

return(0) ;

’

}

2003/P571: Device and Driver Support

26

EPICS

Driver Support
= P

¢ Optional layer below device support

¢ No formal behavioral requirements

¢ Does not use the open/close/read/write interface, which doesn’t map
well into EPICS

¢ Usually used to:

¢ Share code between similar device support layers for different record

types
¢ Most digital I/O interfaces support record types bi, bo, mbbi, mbbo,
mbbiDirect and mbboDirect

¢ Initialize a software module before individual device layers using it are
initialized
¢ The order in which device support initialization is called is not guaranteed
¢ Provide a common interface to an I/O bus such as GPIB, Bitbus, Allen-
Bradley etc.

¢ 1/O devices placed on this bus need their own device support, but share the
interface hardware

¢ Provide a wrapper around commercial device drivers or other software
libraries

2003/P571: Device and Driver Support

27

EPICS The DroET
.~

¢ .. is a struct containing function pointers

¢ Each driver defines a named DrvET with pointers to its own
routines

¢ Drivers have an entry in the .dbd file:

driver (DrvETname)

¢ All DrvET structure declarations start

struct drvet {
long number;
long (*report) (int type);
long (*initialize) (int pass);

bi
¢ A driver may extend the DrvET, adding routines for device
support to call

¢ In practice very few do this, usually providing named library routines to
call instead

2003 /P571: Device and Driver Support 28

