Argonne°

NATIONAL LABORATORY

How Motor Support Works (asynMotor)

17 February 2015

Joe Sullivan — EPICS Software Developer
Beamline Controls and Data Acquisition
Advanced Photon Source

e U.S. DEPARTMENT OF

Office of Science

Outline

= Acknowledgments

= Motor Support Development Framework

= Controller Level Support (asynMotorController)
= Axis Level Support (asynMotorAxis)

EPICS Training 2015 —How Motor Support Works (asynMotor) — 17 February 2015

o 2

Acknowledgments

= QOriginal asynMotor Developers (Motor R5.9 — 2006)
— Peter Denision (Diamond), Nick Rees (Diamond) and Mark Rivers (APS)

= Current Version (Model 3)
— Mark Rivers (APS)

= Content references for this class
— Model 3 EPICS Motor Driver Support, 2012 EPICS Collaboration Meeting (Mark
Rivers)

e https://portal.slac.stanford.edu/sites/conf public/epics_2012_04/presentations/River
s_Thursday_EPICS_Motor_Device.pdf

— asynMotor Class Documentation, 2012 Doxygen Generated (Mark Rivers)

e http://cars9.uchicago.edu/software/epics/motorDoxygenHTML/classasyn_motor_cont
roller.html

EPICS Training 2015 —How Motor Support Works (asynMotor) — 17 February 2015

o 3

EPICS Motor Support

=" Top-level object is the EPICS motor record

— Lots of code has been written to this object:
e spec, IDL and Python classes, etc.

= Next layer is EPICS device support
— Knows about the motor record, talks to the driver

" Lowest layer is EPICS driver
— Knows nothing about motor record, talks to the hardware

Current recommended device and driver development
framework is asynMotor (Model 3).

—asynPortDriver is used to extend this framework for
hardware features not supported by the motorRecord.

EPICS Training 2015 —How Motor Support Works (asynMotor) — 17 February 2015

asynMotor (Model 3)

= Available in the synApps motor module since 2011.
= C++ model.
= Two base classes, asynMotorController and asynMotorAxis.

= Base classes provide much functionality, only need to write
device-specific implementations.

= Easy to support controller-specific features
" Direct support for coordinated profile moves in the driver API.

asynPorDriver asynhotorisis
asynhdotorContraller ACRAxis motorsimaxis AP SAxS
| | ACRAXis XPSAxis
ACRCaontroller tnotarsimController APsController ACRAXis
ACRAXis

EPICS Training 2015 —How Motor Support Works (asynMotor) — 17 February 2015

synApps based motor driver development

= synApps motor module (requires ASYN, BUSY, IPAC and SNCSEQ)
— motorRecord (SMOTOR/motorApp/MotorSrc)
— asynMotor Device Support (devMotorAsyn.c)
— asynMotor Driver Base Classes
e asynMotorController.h, .cpp
e asynMotorAxis.h, .cpp

= Motor driver code to implement controller specific methods from
asynMotor base classes

— <Name>MotorDriver.cpp
— <Name>MotorDriver.h
— <Name>MotorSupport.dbd

EPICS Training 2015 —How Motor Support Works (asynMotor) — 17 February 2015

A 6

What does the ‘Controller’ constructor do?

Creates a Controller object (asynPortDriver) that implements
a ‘real’ motor controller.

— Necessary initializing of motor controller hardware.
Call the ‘Axis’ constructor for every motor channel requested
in the ‘CreateController’ argument for number of axis.

Starts the Poller task that will update the status of all the
motor channels.

Implement non-motorRecord features.

— asynPortDriver methods for additional controller parameters.
— Built-in ‘Profile Move’ (coordinated multi-axis) methods.

EPICS Training 2015 —How Motor Support Works (asynMotor) — 17 February 2015

N
ACRController - Constructor

Called before ioclnit() - from st.cmd
— asynMotor.cmd (BCDA standard IOC startup file)

ACR Example: motor/iocBoot/iocWithAsyn/st.cmd.acr
portName, asynPort, number of axes, active poll period (ms), idle poll period (ms)

ACRCreateController(*ACR1", “ARIES", 1, 20, 1000)

“"C" 1nt ACRCreateController(char *portName,
char *ACRPortName,
int numAxes,
!nt movingPollPeriod,
int idlePollPeriod)

ACRController(portName, ACRPortName, numAxes,
movingPollPeriod/1000., idlePollPeriod/1000.);

* <synApps>/motor/motorApp/ACRSrc/ACRMotorDriver.cop, M. Rivers

EPICS Training 2015 — How Motor Support Works — 17 February 2015

o 8

ACRController Constructor

ACRController(portName, ACRPortName, numAxes,
movingPollPeriod/1000., idlePollPeriod/1000.);

ACRController::ACRController { const char * portName,
const char * ACRPortName,

int numAxes,
double movingPollPeriod,
double idlePollPeriod

)

Creates a new ACRConftroller object.

Parameters:
[in] portName The name of the asyn port that will be created for this driver

[in] ACRPortName The name of the drvasynIPPPort that was created previcusly to
connect to the ACR controller

[in] numAxes The number of axes that this controller supports
[in] movingPollPeriod The time between polls when any axis is moving
[in] idlePollPeriod The time between polls when no axis is moving

e doxygen asynMotor page generated 2012, M. Rivers

EPICS Training 2015 — How Motor Support Works — 17 February 2015

N
ACRController Constructor

ACRController: :ACRController(char *portName, char *ACRPortName, int numAxes,
double movingPollPeriod, double idlePollPeriod)
asynMotorController(portName, numAxes, NUM ACR PARAMS,
asynUInt32DigitalMask,
[] asynUInt32DigitalMask,
ASYN CANBLOCK | ASYN MULTIDEVICE,
1, // autoconnect
0, 0) // Default priority and stack size

{ asynMotorController::asynMotorController { const char * portName,
int numAxes,
int numParams,
int interfaceMask,
int interruptMask,
int asynFlags,
int autoConnect,
int priority,
int stackSize

Creates a new asynMotorController object.

All of the arguments are simply passed to the constructer for the asynPortDriver base class. After calling the
base class constructor this method creates the motor parameters defined in asynMotorDriver.h.

EPICS Training 2015 — How Motor Support Works — 17 February 2015

a 10

asynPortDriver — Constructor (review)

asynPortDriver Parameters:

[in] portName The name of the asyn port that will be created for this
driver
[in] numAxes The number of axes that this controller supports
[in] numParams Number of parameters unique to the controller
(do not exist in the motorRecord).
[in] interfaceMask asyn interfaces unique to the controller (bit mask)
[in] interruptMask enable callbacks for unique asyn interfaces (bit mask)
[in] asynFlags ASYN CANBLOCK (asynchronous), ASYN MULTIDEVICE (addressed)
[in] autoConnect Yes/No
[in] priority For port thread if ASYN CANBLOCK
[in] stackSize For port thread if ASYN CANBLOCK

EPICS Training 2015 — How Motor Support Works — 17 February 2015

o 11

ACRController Constructor (cont)

ACRController: :ACRController(char *portName, char *ACRPortName, int numAxes,
double movingPollPeriod, double idlePollPeriod)
asynMotorController(portName, numAxes, NUM ACR PARAMS,
asynUInt32DigitalMask,
[] asynUInt32DigitalMask,
ASYN CANBLOCK | ASYN MULTIDEVICE,
1, // autoconnect
0, 0) // Default priority and stack size

{

// Create controller-specific parameters

createParam(ACRJerkString, asynParamFloat6d, &ACRJerk) ;
createParam(ACRReadBinaryI0String, asynParamInt32, &ACRReadBinaryIO) ;

/* Connect to ACR controller */
status = pasynOctetSynclO->connect(ACRPortName, 0, &pasynUserController , NULL});

// Turn off command echolng
sprintf(outS5tring , "ECHO 4%);
writeController();

* <synApps>/motor/motorApp/ACRSrc/ACRMotorDriver.cop, M. Rivers

EPICS Training 2015 — How Motor Support Works — 17 February 2015

o 12

ACRController Constructor (cont.)

// Create the axis objects
(axis=0; axis<numAxes; axis++) {
] ACRAXis (, axis);
1

ACRAxis::ACRAxis (class ACRController * pC,
int axisNo

Creates a new ACRAxis object.

Parameters:
[in] pC Pointer to the ACRController to which this axis belongs.
[in] axisNo Index number of this axis, range 0 to pC->numAxes -1,

Initializes register numbers, etc.

* doxygen asynMotor page generated 2012, M. Rivers
* <synApps>/motor/motorApp/ACRSrc/ACRMotorDriver.cop, M. Rivers

EPICS Training 2015 — How Motor Support Works — 17 February 2015

° 13

ACRController Constructor (cont)

startPoller({movingPollPeriod, 1idlePollPeriod, 2);
}

asynStatus asynMotorController::startPoller (double movingPollPeriod,

double idlePollPeriod,

int forcedFastPolls
)| [virtual]

Starts the motor poller thread.

Derived classes will typically call this at near the end of their constructor. Derived classes can typically
use the base class implementation of the poller thread, but are free to reimplement it if necessary.

Parameters:
[in] movingPollPeriod The time between polls when any axis is moving.
[in] idlePollPeriod The time between polls when no axis is moving.

[in] forcedFastPolls The number of times to force the movingPollPeriod after waking
up the poller. This can need to be non-zero for controllers that

do not immediately report that an axis is moving after it has
been told to start.

<synApps>/motor/motorApp/ACRSrc/ACRMotorDriver.cop, M. Rivers

EPICS Training 2015 — How Motor Support Works — 17 February 2015

14

asynMotorController Method
ACRController Custom Parameter

asynStatus ACRController: :writeFloat64(asynUser *pasynUser, epicsFloat6d value)
{
int function = pasynUser-=reason;
asynStatus status = asynSuccess;
ACRAx1s *pAxis = getAxis(pasynUser);
char *functionName = "writeFloatb4";

asynStatus ACRController::writeFloatéed (asynUser * pasynUser,
epicsFloat64 value
) [virtual]

Called when asyn clients call pasynFloat64-=write().

Extracts the function and axis number from pasynWUser. Sets the value in the parameter library. If the function is
ACRJerk_ it sets the jerk value in the controller. Calls any registered callbacks for this pasynUser-=reascn and
address. For all other functions it calls asynMotorController::writeFloate 4.

Parameters:
[in] pasynUser asynUser structure that encodes the reason and address.
[in] wvalue Value to write.

Reimplemented from asynMotorController.

EPICS Training 2015 — How Motor Support Works — 17 February 2015

o 15

asynMotorController Method
ACRController Custom Parameter (cont)

asynStatus ACRController: :writeFloat64(asynUser *pasynUser, epicsFloat6d value)
{
int function = pasynUser-=reason;
asynStatus status = asynSuccess;
ACRAx1s *pAxis = getAxis(pasynUser);
char *functionName = "writeFloatb4";

(function == ACRJerk)

{
sprintf(outString , "%s JOG JRK %f", pAxis-=axisName , value);
status = writeController();
} {
/* Call base class method */
status = asynMotorController: :writeFloatéd(pasynUser, value);
}

/* Do callbacks so higher layers see any changes */
pAxis-=callParamCallbacks();

EPICS Training 2015 — How Motor Support Works — 17 February 2015

o 16

asynMotorAxis — Constructor

= Creates a Axis object that is customized to a particular motor controller.
— Necessary initialization of motor axis in controller hardware.
— Characterize the axis with respect to the motorRecord
e GainSupport, HasEncoder,...

— Implement methods to provide all available motorRecord
functionality.

e Move, MoveVelocity, Home, SetPosition, ...
= |mplement ‘report’ method.

EPICS Training 2015 — How Motor Support Works — 17 February 2015

° 17

asynMotorAxis Constructor
ACRAXIS

£
ACRAxis: :ACRAxis(ACRController *pC, int axisNo)
asynMotorAxis(pC, axisNo),

pC_(pC)

asynMotorAxis::asynMotorAxis { class asynMotorController * pC,

int axisNo
)
Creates a new asynMotorAxis cbject.
Parameters:
[in] pC Pointer to the asynMotorController to which this axis belongs.

[in] axisNo Index number of this axis, range 0 to pC-=numAixes_-1.

Checks that pC is not null, and that axisMNo is in the valid range. Sets a pointer to itself in pC-
»phAxes[axisNo_]. Connects pasynUser_ to this asyn port and axisMNo.

* <synApps>/motor/motorApp/ACRSrc/ACRMotorDriver.cpp, M. Rivers

EPICS Training 2015 — How Motor Support Works — 17 February 2015

o 18

asynMotorAxis Methods
ACRAXxis Move

asynStatus ACRAxis::move(double position, int relative,

double minVelocity, double maxVelocity,
[buble acceleration)

asynStatus ACRAxis::move (double position,

int relative,

double minVelocity,

double maxVelocity,

double acceleration
)] [virtuwal]

Move the motor to an absclute location or by a relative amount.

Parameters:

[in]

[in]
[in]
[in]

[in]

position The absolute position to move to (if relative=0) or the relative distance to move by
(if relative=1). Units=steps.

relative Flag indicating relative move (1) or absolute move (0).

minVelocity The initial velocity, often called the base velocity. Units=steps/sec.

maxVelocity The maximum velocity, often called the slew velocity. Units=steps/sec.
acceleration The acceleration value. Units=steps/sec/sec.

Reimplemented from asynMotorAxis.

EPICS Training 2015 — How Motor Support Works — 17 February 2015

19

asynMotorAxis Methods
ACRAXxis Move

asynStatus ACRAxis::move(double position, int relative,
double minVelocity, double maxVelocity,
[buble acceleration)

{

sprintf(pC_-=outString , "%s JOG ACC %f", axisName , acceleration/pulsesPerUnit);
status = pC_->writeController();

sprintf(pC -=outString , "%s JOG VEL %", axisName , maxVelocity/pulsesPerUnit };

status = pC_->writeController();

// Note, the CtlY being send below clears the kKill for all axes, in case they had hit a 1
(relative) {

sprintf(pC -=outString , "%c:%s JOG INC s%f", CtlY, axisName , position/pulsesPerUnit);
status = pC_-=>writeController();

¥ {
sprintf(pC_-=outString , "%c:%s JOG ABS s%ft", CtlY, axisName , position/pulsesPerUnit);
status = pC_->writeController();

3

EPICS Training 2015 — How Motor Support Works — 17 February 2015

o 20

asynMotorAxis Methods
ACRAXxis MoveVelocity

asynStatus ACRAxis::moveVelocity (double minVelocity,

double maxVelocity,
double acceleration
) [vwirtual]

Maove the motor at a fixed velocity until told to stop.

Parameters:

[in] minVelocity The initial velocity, often called the base velocity, Units=steps/sec.
[in] maxVelocity The maximum velocity, often called the slew velocity. Units=steps/sec.
[in] acceleration The acceleration value. Units=steps/sec/sec.

Reimplemented from asynMotorAxis.

EPICS Training 2015 — How Motor Support Works — 17 February 2015

21

asynMotorAxis Methods
ACRAXxis Poll

asynStatus ACRAxis::poll(bool *moving)
{

asynStatus ACRAxis::poll (bool * moving) [virtual]

Polls the axis.

This function reads the controller position, encoder position, the limit status, the moving status, and the drive
power-on status. It does not current detect following error, etc. but this could be added. It calls
setIntegerParam() and setDoubleParam() for each item that it polls, and then calls callParamCallbacks() at

the end.

Parameters:
[cut] moving A flag that is set indicating that the axis is moving (1) or done (D).

Reimplemented from asynMotorAxis.

EPICS Training 2015 — How Motor Support Works — 17 February 2015
22

v

asynMotorAxis Methods
ACRAXxis Poll (cont)

asynStatus ACRAxis::poll(bool *moving)
{

// Read the current encoder position
sprintf(pC_-=outString , "7P%d", encoderPositionReg);
comStatus = pC ->writeReadController();

(comStatus) skip;
encoderPosition_ = atof(pC_-=inString);
setDoubleParam(pC_ -=>motorkEncoderPosition ,encoderPosition);

// Read the current flags

sprintf(pC -=outS5tring , "7?P%d"”, flagsReg);

comStatus = pC_ ->writeReadController();
(comStatus) skip;

currentFlags = atoi(pC -=in5tring);

done = (currentFlags & O0x1000000)70:1;

setIntegerParam(pC -=motorS5tatusDone , done);

*moving = done 7 false:true;

EPICS Training 2015 — How Motor Support Works — 17 February 2015

° 23

asynMotorAxis Methods
ACRAXxis Poll (cont)

asynStatus ACRAxis::poll(bool *moving)
{

// Read the current 1limit status
sprintf(pC_-=outString , "7?P%d”, limitsReg);
comStatus = pC_->writeReadController();
(comStatus) skip;
currentlimits = atoi(pC -=inString);
limit = (currentlLimits & 0x1)7?1:0;
setIntegerParam(pC_-=>motorS5tatusHighLimit , 1limit);
limit = (currentlLimits & 0Ox2)71:0;
setIntegerParam(pC -=>motorStatusLowlLimit , 1limit);
limit = (currentlLimits & 0Ox4)7?1:0;
setIntegerParam(pC_-=motorStatusAtHome , 1limit);

skip:
setIntegerParam(pC -=>motorStatusProblem , comStatus 7 1:0);
callParamCallbacks();

comStatus ? asynError : asynSuccess;

EPICS Training 2015 — How Motor Support Works — 17 February 2015

.\ 24

asynMotorAxis Methods
ACRAXxis Home

asynStatus ACRAxis::home (double minVelocity,
double maxVelocity,
double acceleration,

int forwards

] [virtual]

Move the motor to the home position.

Parameters:
[in] minVelocity The initial velocity, often called the base velocity. Units=steps/sec.

[in] maxVelocity The maximum velocity, often called the slew velocity. Units=steps/sec.
[in] acceleration The acceleration value. Units=steps/sec/sec.

[in] forwards Flag indicating to move the motor in the forward direction(1) or reverse direction(0).
Some controllers need to be told the direction, others know which way to go to
home.

Reimplemented from asynMotorAxis.

EPICS Training 2015 — How Motor Support Works — 17 February 2015
25

asynMotorAxis Methods
ACRAXxis Report

void ACRAxis::report (FILE * fp,
int level
) [virtual]

Reports on status of the driver.

Parameters:
[in] fp The file peinter on which report information will be written
[in] level The level of report detail desired

If details = 0 then information is printed about each axis. After printing controller-specific information calls
asynMotorController::report()

Reimplemented from asynMotorAxis.

EPICS Training 2015 — How Motor Support Works — 17 February 2015

° 26

asynMotorAxis Methods
ACRAXis setPosition

asynStatus ACRAxis::setPosition (double position) [virtual]

Set the current position of the motor.

Parameters:
[in] position The new absolute motor position that should be set in the hardware. Units=steps.

Reimplemented from asynMotorAxis.

EPICS Training 2015 — How Motor Support Works — 17 February 2015

o 27

asynMotorAxis Methods
ACRAXis Stop

asynStatus ACRAxis::stop (double acceleration) [virtual]

Stop the motor.

Parameters:
[in] acceleration The acceleration value. Units=steps/sec/sec.

Reimplemented from asynMotorAxis.

EPICS Training 2015 — How Motor Support Works — 17 February 2015

o 28

Class Class Method
Stop

EPICS Training 2015 — How Motor Support Works — 17 February 2015
S _ ?

