
Getting started with EPICS on RTEMS

W. Eric Norum

October 19, 2009

Contents

1 Introduction 1

2 Infrastructure – Tools and Operating System 2
2.1 Create the RTEMS source and installation directories . 2
2.2 Add the directory containing the tools to your shell search path . 2
2.3 Get and build the development tools . 2

2.3.1 Download the tool source files . 3
2.3.2 Unpack the source archives: . 3
2.3.3 Apply any RTEMS-specific patches . 4
2.3.4 Configure, build and install the ‘binutils’: . 4
2.3.5 Configure, build and install the cross-compiler and libraries 5

2.4 Get, build and install RTEMS . 5
2.4.1 Download the RTEMS source from the OAR web server. 5
2.4.2 Unpack the RTEMS sources . 6
2.4.3 Make changes to the RTEMS source to reflect your local conditions. 6
2.4.4 Build and install RTEMS . 7

2.5 Get, build and install some RTEMS add-on packages . 8
2.5.1 Download the add-on package sources . 8
2.5.2 Unpack the add-on package sources . 8
2.5.3 Set the RTEMS MAKEFILE PATH environment variable 8
2.5.4 Build and install the add-on packages . 8

2.6 Try running some RTEMS sample applications (optional) . 9
2.7 Extended BSP routines . 9

3 EPICS Base 10
3.1 Specify the location of RTEMS tools and libraries . 10
3.2 Specify the network domain . 10
3.3 Specify the network interface . 11
3.4 Specify the target architectures . 11
3.5 Build EPICS base . 11

4 EPICS Applications 12
4.1 The EPICS example application . 12

4.1.1 Build the example application . 12

i

4.1.2 Install the EPICS IOC files on the TFTP/NFS server . 12
4.1.3 Run the example application on an RTEMS IOC . 13
4.1.4 Location of EPICS startup script . 13

A Script to get and build the cross-development tools 17
A.1 getAndBuildTools-4.9.2.sh . 17
A.2 getAndBuildTools-4.10.sh . 21

ii

Chapter 1

Introduction

This tutorial presents the steps needed to obtain and install the development tools and libraries required to run EPICS
IOC applications using RTEMS. As you can see by the size of this document the process isn’t trivial, but it’s not
terribly difficult either.
Chapter two deals with the problem of getting all the tools in place. This is the most difficult task. Once the tools and
operating system are working most of the work is complete. Chapter three shows the steps needed to configure and
build your first EPICS application for RTEMS. After you’ve completed those steps you can forget about this document
and use the generic EPICS documentation.
This is a living document. Please let me (norume@aps.anl.gov) know which of these instructions worked for you and
which did not.

1

mailto:norume@aps.anl.gov

Chapter 2

Infrastructure – Tools and Operating
System

If you will be using Linux as your development platform you might be able to skip this entire chapter. RPMs of the
toolchain and RTEMS are available from www.rtems.com.

2.1 Create the RTEMS source and installation directories

There should be at least 300 Mbytes of space available on the drive where these directories are located. I used
/usr/local/rtems/rtems-4.9.2 as the installation target directory. The location of the RTEMS source is not
critical. This document assumes that the root of the RTEMs source tree is /usr/local/rtems/source.
Create the directories where the source will be placed and the results of the build installed:

/usr/local/rtems/source
/usr/local/rtems/source/tools
/usr/local/rtems/rtems-4.9.2

2.2 Add the directory containing the tools to your shell search path

The following sections assume that the directory into which you will install the cross-development tools (/usr/local/rtems/rtems-4.9.2/bin)
is on your shell search path. For shells like sh, bash, zsh and ksh you can to this with

PATH="$PATH:/usr/local/rtems/rtems-4.9.2/bin"

For shells like csh and tcsh you can

set path = ($path /usr/local/rtems/rtems-4.9.2/bin)

2.3 Get and build the development tools

RTEMS uses the GNU toolchain to build the executive and libraries. Information about the GNU tools can be found
on the GNU home page. If you’re feeling brave you can skip the following sections and turn loose the script included
in appendixA. In either case, if you’re building on Solaris you’ll need to ensure that you have GNU make (gmake)
installed on your system and also set a couple of environment variables for things to build properly:

2

http://www.rtems.com
http://www.gnu.org

MAKE=gmake
INTLLIBS=-lintl

The script attempts to download, unpack, configure, build and install the GNU cross-development tools and libraries
for one or more target architectures. To use the script, set the ARCHS environment variable to the architectures you
wish to support, then

sh getAndBuildTools.sh

Set the MAKE environment variable to the name of whatever make program you need for your system.

2.3.1 Download the tool source files

The source for the GNU tools should be obtained from the On-line Applications Research (OAR) FTP server since
that server provides any RTEMS-specific patches that may have to be applied before the tools can be built.
The files in the OAR FTP server directory ftp://www.rtems.com/pub/rtems/SOURCES/4.9 should be downloaded to the
RTEMS/tools directory created above. The files can be downloaded using a web browser or a command-line program
such as curl or wget. (note that the command examples have been split to help them fit on the page):

curl --remote-name
ftp://www.rtems.com/pub/rtems/SOURCES/4.9/binutils-2.19.tar.bz2

curl --remote-name
ftp://www.rtems.com/pub/rtems/SOURCES/4.9/gcc-core-4.3.2.tar.bz2

curl --remote-name
ftp://www.rtems.com/pub/rtems/SOURCES/4.9/gcc-g++-4.3.2.tar.bz2

curl --remote-name
ftp://www.rtems.com/pub/rtems/SOURCES/4.9/newlib-1.16.0.tar.gz

curl --remote-name
ftp://www.rtems.com/pub/rtems/SOURCES/4.9/gcc-core-4.3.2-rtems4.9-20081214.diff

curl --remote-name
ftp://www.rtems.com/pub/rtems/SOURCES/4.9/newlib-1.16.0-rtems4.9-20090324.diff

or

wget --passive-ftp --no-directories --retr-symlinks
ftp://www.rtems.com/pub/rtems/SOURCES/4.9/binutils-2.19.tar.bz2

wget --passive-ftp --no-directories --retr-symlinks
ftp://www.rtems.com/pub/rtems/SOURCES/4.9/gcc-core-4.3.2.tar.bz2

...

Depending on the type of firewall between your machine and the OAR FTP server you may need to remove the
--passive-ftp option from the wget commands.

2.3.2 Unpack the source archives:

The following commands will extract the GNU tool sources from the downloaded tar archive files.

bzcat binutils-2.19.tar.bz2 | tar xf -
bzcat gcc-core-4.3.2.tar.bz2 | tar xf -
bzcat gcc-g++-4.3.2.tar.bz2 | tar xf -
zcat <newlib-1.16.0.tar.gz | tar xf -

To build the newlib libraries needed by RTEMS you must make a symbolic link to the newlib source directory from
the gcc source directory.

3

cd gcc-4.3.2
rm -rf newlib
ln -s ../1.16.0/newlib newlib
cd ..

2.3.3 Apply any RTEMS-specific patches

If any patch files (those with a .diff suffix) were downloaded from the OAR FTP server the patches in those files
must be applied before the tools can be compiled.
Here is how the patches can be applied to the gcc sources:

cd gcc-4.3.2
patch -p1 <../gcc-core-4.3.2-rtems4.9-20081214.diff
cd ..

Here is how the patches can be applied to the newlib sources:

cd newlib-1.16.0
patch -p1 <../newlib-1.16.0-rtems4.9-20090324.diff
cd ..

2.3.4 Configure, build and install the ‘binutils’:

The commands in this section must be repeated for each desired target architecture. The examples shown build the
tools for Motorola Power PC targets.

1. Create a directory in which the tools will be built and change to that directory.

rm -rf build
mkdir build
cd build

2. Configure the tools.

../binutils-2.19/configure --target=powerpc-rtems4.9.2 \
--prefix=/usr/local/rtems/rtems-4.9.2 \
--verbose --disable-nls \
--without-included-gettext \
--disable-win32-registry \
--disable-werror

You should replace the ‘powerpc’ with the name of the architecture for which you’re building the tools. Com-
mon alternatives are ‘m68k’ and ‘i386’ for the Motorola M68k and Intel x86 family of processors, respectively.

3. Build and install the tools.

make -w all install

In this and all subsequent cases the use of a GNU make program is required. On some hosts you’ll have to use
gmake instead of make.

4. Return to the directory containing the tool and library sources.

cd ..

4

2.3.5 Configure, build and install the cross-compiler and libraries

1. Create a directory in which the tools will be built and change to that directory.

rm -rf build
mkdir build
cd build

2. Configure the compiler and libraries.

../4.3.2/configure --target=powerpc-rtems4.9.2 \
--prefix=/usr/local/rtems/rtems-4.9.2 \
--disable-libstdcxx-pch \
--with-gnu-as --with-gnu-ld --verbose \
--with-newlib \
--with-system-zlib \
--disable-nls --without-included-gettext \
--disable-win32-registry \
--enable-version-specific-runtime-libs \
--enable-threads \
--enable-newlib-io-c99-formats \
--enable-languages="c,c++"

You should again replace the ’powerpc’ with the name of the architecture for which you’re building the cross-
compiler and libraries.

3. Build and install the cross-compiler and libraries by.

make -w all install

4. Return to the directory containing the tool and library sources.

cd ..

2.4 Get, build and install RTEMS

2.4.1 Download the RTEMS source from the OAR web server.

The source releases are available at

http://www.rtems.com/ftp/pub/rtems/4.9.2/rtems-4.9.2.tar.bz2

The compressed tar archive in this directory can be downloaded using a web browser or a command-line program
such as curl or wget:

curl --remote-name
http://www.rtems.com/ftp/pub/rtems/4.9.2/rtems4.9.2.tar.bz2

or

wget --passive-ftp --no-directories --retr-symlinks
http://www.rtems.com/ftp/pub/rtems/4.9.2/rtems4.9.2.tar.bz2

5

Depending on the type of firewall between your machine and the OAR FTP server you may need to remove the
--passive-ftp option from the wget command.
When you are done you should have the compressed archive with a name something like

rtems-4.9.2.tar.bz2

2.4.2 Unpack the RTEMS sources

Change to your RTEMS source directory and unpack the RTEMS sources by:

bzcat rtems-4.9.2.tar.bz2 | tar xf -

This will create the directory rtems-4.9.2 and unpack all the RTEMS source into that directory.

2.4.3 Make changes to the RTEMS source to reflect your local conditions.

Some of the board-support-packages distributed with RTEMS may require modifications to match the hardware in use
at your site. The following sections describe changes commonly made to two of these board-support-packages.

MVME167

The linker script distributed with RTEMS assumes an MVME167 with 4 Mbytes of on-board memory starting at
location 0x00800000. A more common configuration is 16 Mbytes of memory starting at location 0x00000000. To
reflect this configuration make the following changes to

rtems-4.9.2/c/src/lib/libbsp/m68k/mvme167/startup/linkcmds

@@ -24,8 +24,8 @@
/*
* Declare some sizes. Heap is sized at whatever ram space is left.

*/
-_RamBase = DEFINED(_RamBase) ? _RamBase : 0x00800000;
-_RamSize = DEFINED(_RamSize) ? _RamSize : 4M;
+_RamBase = DEFINED(_RamBase) ? _RamBase : 0x0;
+_RamSize = DEFINED(_RamSize) ? _RamSize : 16M;
_HeapSize = DEFINED(_HeapSize) ? _HeapSize : 0;
_StackSize = DEFINED(_StackSize) ? _StackSize : 0x1000;

@@ -35,7 +35,7 @@
This is where we put one board. The base address should be
passed as a parameter when building multiprocessor images
where each board resides at a different address. */

- ram : org = 0x00800000, l = 4M
+ ram : org = 0x00000000, l = 16M

rom : org = 0xFF800000, l = 4M
sram : org = 0xFFE00000, l = 128K

}

PC-x86

A change I like to make to the RTEMS pc386 source is to increase the number of lines on the console display from 25
to 50 since I find that the output from some EPICS commands scrolls off the display when only 25 lines are present.
To make this change, add the ‘#define’ line shown below

6

rtems-4.9.2/c/src/lib/libbsp/i386/pc386/start/start16.S

+--*/

#include <bspopts.h>
#define RTEMS_VIDEO_80x50

/*--+ | Constants

Another change I make is to automatically fall back to using COM2: as a serial-line console (9600-8N1) if no video
adapter is present. This allows the pc386 BSP to be used on conventional PCs with video adapters as well as with
embedded PCs (PC-104) which have no video adapters. To make this change, add the ‘#define’ line shown below

rtems-4.9.2/c/src/lib/libbsp/i386/pc386/console/console.c

*/
rtems_termios_initialize ();

#define RTEMS_RUNTIME_CONSOLE_SELECT
#ifdef RTEMS_RUNTIME_CONSOLE_SELECT

/*
* If no video card, fall back to serial port console

2.4.4 Build and install RTEMS

1. It is best to start with a clean slate. Create a new directory in which to build or clean out all files in your existing
build directory.

2. Configure RTEMS for your target architecture:

cd /usr/local/rtems-4.9.2/build
.../rtems-4.9.2/configure --target=powerpc-rtems4.9.2 \

--prefix=/usr/local/rtems/rtems-4.9.2 \
--enable-cxx --enable-rdbg --disable-tests --enable-networking \
--enable-posix --enable-rtemsbsp=mvme2100 \

You should replace the ‘powerpc’ with the name of the architecture for which you’re building RTEMS. Com-
mon alternatives are ‘m68k’ and ‘i386’ for the Motorola M68k and Intel x86 family of processors, respectively.
You should replace the ‘mvme2100’ with the board-support packages for your particular hardware.

If you’ve got lots of free time and disk space you can omit the --enable-rtemsbsp argument in which
case all possible board-support packages for that architecture will be built. You can build for more than one
board-support package by specifying more names on the command line. For example, you could build for a
Arcturus uCDIMM ColdFire 5282 system and an MVME-167 system by:

cd /usr/local/rtems-4.9.2/build
.../rtems-4.9.2/configure --target=m68k-rtems4.9.2 \

--prefix=/usr/local/rtems/rtems-4.9.2 \
--enable-cxx --enable-rdbg --disable-tests --enable-networking \
--enable-posix --enable-rtemsbsp="uC5282 mvme167" \

3. Compile and install:

make -w
make -w install

7

2.5 Get, build and install some RTEMS add-on packages

The EPICS IOC shell uses the the libtecla or GNU readline package to provide command-line editing and command
history. While the IOC shell can be compiled without these capabilities I think they’re important enough to warrant
making the effort to download and install the extra packages. GNU readline is more well-tested, but libtecla does not
bring along the issues associated with the GNU Public License.

2.5.1 Download the add-on package sources

The latest versions of these files are in

http://www.rtems.com/ftp/pub/rtems/4.9.2/rtems-addon-packages-4.9.2.tar.bz2

The compressed tar archive in this directory can be downloaded using a web browser or a command-line program
such a wget (note that the wget command example has been split to make it fit on this page):

wget --passive-ftp --no-directories --retr-symlinks
"http://www.rtems.com/ftp/pub/rtems/4.9.2/rtems-addon-packages-4.9.2.tar.bz2"

Depending on the type of firewall between your machine and the OAR FTP server you may need to remove the
--passive-ftp option from the wget command.
When you are done you should have the compressed archive with a name something like

rtems-addon-packages-4.9.2.tar.bz2

2.5.2 Unpack the add-on package sources

Change to your RTEMS source directory and unpack the RTEMS sources by:

cd /usr/local/rtems/source
bzcat rtems-addon-packages-4.9.2.tar.bz2 | tar xf -

This will unpack the source for all the RTEMS packages into a directory named

rtems-addon-packages-4.9.2

2.5.3 Set the RTEMS MAKEFILE PATH environment variable

The makefiles in the RTEMS packages use the RTEMS_MAKEFILE_PATH environment variable to determine the
target architecture and board-support package. For example,

export RTEMS_MAKEFILE_PATH=/usr/local/rtems/rtems-4.9.2/powerpc-rtems4.9.2/mvme2100

will select the Motorola Power PC architecture and the RTEMS mvme2100 board-support package.

2.5.4 Build and install the add-on packages

The bit script in the packages source directory builds and installs all the add-on packages. To run the script change
directories to the add-on packages directory and execute:

sh bit

If you are building for more than one architecture or board-support package, you must run the bit script once for each
variation with RTEMS_MAKEFILE_PATH set to the different architecture and board-support package.

8

2.6 Try running some RTEMS sample applications (optional)

The RTEMS build process creates some sample applications. If you’re just getting started with RTEMS it’s probably
a good idea to verify that you can actually run a simple RTEMS application on your target hardware before trying to
run a full-blown EPICS IOC application.
The actual method of loading an application into a target processor is hardware-dependent. Section 4.1.3 describes a
method which may be used with RTEMS mvme2100 targets.

2.7 Extended BSP routines

Some additional support routines are necessary to use EPICS/RTEMS with PowerPC VME cards such as the MVME2100
and MVME3100.

1. Download the libbspExt sources:

wget http://www.slac.stanford.edu/˜strauman/rtems/rtems_libbspExt_1.3.beta.tgz

2. Unpack

cd /usr/local/rtems/source
tar -xzf rtems_libbspExt_1.3.beta.tgz

3. Patch 2 files (add support for mvme2100 and correct install location)

cd rtems_libbspExt_1.3.beta
patch -p1 < libbspExt-1.3.beta.patch

4. Set the RTEMS_MAKEFILE_PATH environment variable

export RTEMS_MAKEFILE_PATH=/usr/local/rtems/rtems-4.9/powerpc-rtems4.9/mvme2100

5. Build and install the add-on packages

make
make install

9

Chapter 3

EPICS Base

The first step in building an EPICS application is to download the EPICS base source from the APS server and unpack
it. The details on how to perform these operations are described on the APS web pages and will not be repeated here.
Make sure you get the R3.14.9 or later release of EPICS.

3.1 Specify the location of RTEMS tools and libraries

You must first let the EPICS Makefiles know where you’ve installed the RTEMS development tools and libraries. The
default location is

/usr/local/rtems/rtems-4.9.2

If you’ve installed the RTEMS tools and libraries in a different location and have not created a symbolic link from

/usr/local/rtems/rtems-4.9.2

to wherever you’ve installed RTEMS you need to edit the EPICS configuration file

configure/os/CONFIG_SITE.Common.RTEMS

In this file you’ll find the lines

RTEMS_BASE=/usr/local/rtems/rtems-4.9.2
RTEMS_VERSION=4.9.2

while will have to be changed to reflect the directory where you installed RTEMS.
If you installed the RTEMS readline or tecla add-on packages you can change the EPICSCOMMANDLINE_LIBRARY
definition from EPICS to READLINE or LIBTECLA, respectively. If you don’t want to use NFS to access remote
files you can add

OP_SYS_CFLAGS += -DOMIT_NFS_SUPPORT

3.2 Specify the network domain

If you’re using neither DHCP/BOOTP not non-volatile RAM to provide network configuration information to your
RTEMS IOCs you should specify your Internet Domain Name as:

OP_SYS_CFLAGS += -DRTEMS_NETWORK_CONFIG_DNS_DOMAINNAME=your.dnsname.here

10

3.3 Specify the network interface

Some RTEMS board support packages support more than one type of network interface. The pc386 BSP, for example,
can be configured to use several different network interface cards. By default the EPICS network configuration for
the pc386 BSP loads network drivers for all network interfaces which support run-time probing so if you’ve got one
of these network interfaces you don’t need to make any changes to the EPICS network configuration. If not, see the
comments in

src/RTEMS/base/rtems_netconfig.c

for instructions on selecting a network interface card when building your EPICS application. Most RTEMS board
support packages support only a single network interface and need no changes to rtems netconfig.c.

3.4 Specify the target architectures

The configure/os/CONFIG_SITE.<host_architecture>.Common file specifies the target architectures
and board support packages to be supported. For example, I regularly build for a single target:

CROSS_COMPILER_TARGET_ARCHS=RTEMS-mvme2100

If you want to build for multiple RTEMS targets you would change this line to something like

CROSS_COMPILER_TARGET_ARCHS=RTEMS-mvme2100 RTEMS-uC5282 RTEMS-pc386

The format of the target architecture names is RTEMS-bspname, where RTEMS- indicates that the RTEMS develop-
ment tools and libraries should be used, and bspname is the name of the RTEMS target architecture and board support
package used back in section 2.4.4.

3.5 Build EPICS base

This step is very simple. Just change directories to the EPICS base directory and run

make

After a while you’ll end up with a working set of EPICS base libraries and tools.

11

Chapter 4

EPICS Applications

Now that you’ve built the EPICS base libraries you’re ready to build and run your first EPICS application. Once you’ve
got this application running you can forget about this tutorial and revert to using the standard EPICS documentation.
You can start with your own special application or you can start with the example application that is provided with the
EPICS distribution. The following sections describe the procedure to create, build and run this example application.

4.1 The EPICS example application

4.1.1 Build the example application

1. Create a new directory to hold the application source and then ‘cd’ to that directory.

2. Run the makeBaseApp.pl program to create the example application:

makeBaseApp.pl -t example test
makeBaseApp.pl -i -t example -a RTEMS-mvme2100 test

If you get complaints about not being able to run these commands you’ve probably forgotten to put the ‘bin’
directory created in the previous section on your shell executable search path.

The ‘test’ in the two makeBaseApp.pl commands can be replaced with whatever name you want to give
your example application. The ‘RTEMS-mvme2100’ can be replaced with whatever target architecture you
plan to use to run the example application.

3. Build the example application by running

make

4.1.2 Install the EPICS IOC files on the TFTP/NFS server

The application build process creates db and dbd directories in the top-level application directory and produces a
set of IOC shell commands in the st.cmd file in the iocBoot/ioctest directory. If you chose an application
name different than test in the previous step, the directory name will change accordingly. These directories and their
contents must be copied to your TFTP/NFS server. The actual location depends upon the remote file access technique
being used as described in the following section.

12

4.1.3 Run the example application on an RTEMS IOC

Everything’s now ready to go. The only item left is arranging some way of loading the RTEMS/EPICS application
executable image into the IOC. There are many ways of doing this (floppy disks, PROM images, etc.), but I find
using a BOOTP/DHCP/TFTP server to be the most convenient. The remainder of this section describes how I load
executables into my RTEMS-mvme2100 and RTEMS-pc386 IOCs. If you’re running a different type of IOC you’ll
have to figure out the required steps on your own. The RTEMS documentation may provide the required information
since an EPICS IOC application is an RTEMS application like any other.
Some RTEMS board-support packages require an NTP server on the network. If such an IOC doesn’t receive a time-
synchronization packet from an NTP server the IOC time will be set to 00:00:00, January 1, 2001.

4.1.4 Location of EPICS startup script

If you’re using BOOTP/DHCP to provide network configuration information to your IOC you should use DHCP site-
specific option 129 to specify the path to the IOC startup script. If you’re using PPCBUG you should set the NIOT
‘Argument File Name’ parameter to the IOC startup script path.
If you’re using NFS for remote file access the EPICS initialization uses the startup script pathname to determine the
parameters for the initial NFS mount. If the startup script pathname begins with a ‘/’ the first component of the
pathname is used as both the server path and the local mount point. If the startup script pathname does not begin with
a ‘/’ the first component of the pathname is used as the local mount point and the server path is “/tftpboot/”
followed by the first component of the pathname. This allows the NFS and TFTP clients to have a similar view of the
remote filesystem.
If you’re using TFTP for remote file access the RTEMS startup code first changes directories to /epics/hostname/
within the TFTP server, where hostname is the Internet host name of the IOC. The startup code then reads IOC shell
commands from the st.cmd script in that directory. The name (st.cmd) and location of the startup script are fixed
from the IOCs point of view so it must be installed in the corresponding location on the TFTP server. Many sites
run the TFTP server with an option which changes its root directory. On this type of system you’ll have to copy the
startup script to the /epics/hostname/ directory within the TFTP server’s root directory. On a system whose TFTP
server runs with its root directory set to /tftpboot the startup script for the IOC whose name is norumx1 would
be placed in

/tftpboot/epics/norumx1/st.cmd

The application build process creates db and dbd directories in the top-level application directory. These directories
and their contents must be copied to the IOC’s directory on the TFTP server. For the example described above the
command to install the files for the norumx1 IOC is

cp -r db dbd /tftpboot/epics/norumx1

MVME2100 Using PPCBUG

1. Use the PPCBUG ENV command to set the ‘Network PReP-Boot Mode Enable’ parameter to ‘Y’.

2. Use the PPCBUG NIOT command to set the network parameters. Here are the parameters for a test IOC I use:

Controller LUN =00
Device LUN =00
Node Control Memory Address =FFE10000
Client IP Address =www.xxx.yyy.8
Server IP Address =www.xxx.yyy.131
Subnet IP Address Mask =255.255.252.0
Broadcast IP Address =192.168.11.255
Gateway IP Address =0.0.0.0
Boot File Name ("NULL" for None) =/epics/test/bin/RTEMS-mvme2100/example.boot

13

Argument File Name ("NULL" for None) =www.xxx.yyy.98:/home/epics:test/iocBoot/iocexample/st.cmd
Boot File Load Address =001F0000
Boot File Execution Address =001F0000
Boot File Execution Delay =00000000
Boot File Length =00000000
Boot File Byte Offset =00000000
BOOTP/RARP Request Retry =00
TFTP/ARP Request Retry =00
Trace Character Buffer Address =00000000
BOOTP/RARP Request Control: Always/When-Needed (A/W)=W
BOOTP/RARP Reply Update Control: Yes/No (Y/N) =Y

• The Server IP Address is used as the address of the TFTP, NTP and domain name servers.

• On the TFTP server the path to the executable file is

/tftpboot/epics/test/bin/RTEMS-mvme2100/example.boot

• In the example above I have shown how to use a different address for the NFS server. On the NFS server
the path to the startup script would be

/home/epics/test/iocBoot/iocexample/st.cmd

• The Boot File Name and Argument File Name strings can be at most 64 characters long. You may have to
shuffle files around on your servers to accomodate this restriction.

3. Set up your TFTP/NFS servers. PPCBUG uses TFTP to load the executable image then the EPICS initialization
uses NFS to read the EPICS startup script (the ‘Argument File Name’ in the NIOT parameters). I set the TFTP
server root to /tftpboot and arrange for the NFS server to export /tftpboot/epics to the IOCs. This arrangement
lets me simply copy the application tree, beginning at the <top> directory to the TFTP/NFS server area.

Motorola Processors Using MOTLOAD

The following ‘Global Environment Variables’ are used. These are set using the MOTLOAD gevEdit command.

mot-script-boot These commands are run by MOTLOAD when the board is booted. A typical example is shown
below:

tftpGet -cww.ww.ww.ww -sxx.xx.xx.xxx -myy.yy.yy.yy -d/dev/enet0 -fpath
netShut
go

where ww.ww.ww.ww is the IP number of the client (VME card), xx.xx.xx.xx is the IP number of the TFTP server,
yy.yy.yy.yy is the IP subnet mask, and path is the path to the executable image file on the TFTP server.

The standard MOTLOAD download buffer may be too small to hold your application. If this is the case you can
call malloc to allocate a larger buffer and then use the -a option to pass the address of this buffer to the tftpGet
and go commands:

dla=malloc 0x280000
tftpGet -cww.ww.ww.ww -sxx.xx.xx.xxx -myy.yy.yy.yy -d/dev/enet0 -fpath -adla
netShut
go -adla

mot-/dev/enet0-cipa The client (VME card) IP address. If this variable is not set the client address is set to the value
of the ‘-c’ argument in the mot-script-boot variable.

mot-/dev/enet0-sipa The server IP address. If this variable is not set the server address is set to the value of the ‘-s’
argument in the mot-script-boot variable.

14

mot-/dev/enet0-gipa The gateway IP address. If this variable is not set the gateway IP address is set to the value of
the ‘-g’ argument in the mot-script-boot variable.

mot-/dev/enet0-snma The subnet mask. If this variable is not set the subnet mask is set to the value of the ‘-m’
argument in the mot-script-boot variable.

mot-/dev/enet0-file The name of the executable image. If this variable is not set the name is set to the value of the
‘-f’ argument in the mot-script-boot variable. The name is passed as the ‘argv[0]’ to the main() function.

rtems-dns-server The domain name server IP address. If this variable is not set the server address as described above
is used.

rtems-dns-domainname The domain name. If this variable is not set the value compiled into the executable image
is used.

rtems-client-name The client host name. If this variable is not set the client address as described above is used.

epics-script The path to the IOC startup script on the TFTP or NFS server. The value can be a simple path or be of
the form nfsServer:nfsExport:nfsPath. The nfsExport component is the directory exported from the NFS server
and is also used as the local mount point and as a prefix to nfsPath.

epics-nfsmount If set, this variable should be of the form nfsServer:nfsExport:nfsMount. The nfsExport component
is the directory exported from the NFS server and the nfsMount is the local mount point.

epics-ntpserver The NTP server IP address. If this variable is not set the server address as described above is used.

epics-tz Set the value of the TZ environment variable. This is useful for handling daylight-savings-time changes. A
value of CST6CDT5,M3.2.0,M11.1.0 is appropriate for Chicago in 2007 and perhaps subsequent years.

PC386

1. Install an EtherBoot bootstrap PROM image obtained from the ‘ROM-o-matic’ server (http://www.rom-o-
matic.net/) on the IOC network interface cards.

2. Set up your BOOTP/DHCP server to provide the network configuration parameters to the IOC.

3. The TFTP and NFS servers can be configured as noted above.

Arcturus uCDIMM ColdFire 5282

Use the bootstrap setenv command to set the EPICS and network configuration parameters:

IPADDR0=www.xxx.yyy.27
HOSTNAME=ioccoldfire
BOOTFILE=epics/ucdimm/bin/RTEMS-uC5282/ucdimm.boot
NAMESERVER=www.xxx.yyy.167
NETMASK=255.255.252.0
CMDLINE=epics/i2c/iocBoot/ioci2c/st.cmd
SERVER=www.xxx.yyy.161
NFSMOUNT=106.74@nfssrv:/export/nfssrv:/home/nfssrv

The environment variables used by the EPICS startup code are:

IPADDR0 The client (Coldfire processor) IP address.

HOSTNAME The client host name.

15

SERVER The server IP address. If this variable is not set the specific server addressses as described below must be
set.

GATEWAY The gateway IP address. If this variable is not set the Coldfire will be able to communicate only with
hosts on its local network.

NETMASK The subnet mask.

BOOTFILE The name of the executable image. The name is passed as the ‘argv[0]’ to the main() function.

NTPSERVER The NTP server IP address. If this variable is not set the server address as described above is used.

NAMESERVER The domain name server IP address. If this variable is not set the server address as described above
is used.

DOMAIN The domain name. If this variable is not set the value compiled into the executable image is used.

CMDLINE The path to the IOC startup script on the TFTP or NFS server. The value can be a simple path or be of
the form nfsServer:nfsExport:nfsPath. The nfsExport component is the directory exported from the NFS server
and is also used as the local mount point and as a prefix to nfsPath.

NFSMOUNT If set, this variable should be of the form nfsServer:nfsExport:nfsMount. The nfsExport component is
the directory exported from the NFS server and the nfsMount is the local mount point.

TZ Set the value of the TZ environment variable. This is useful for handling daylight-savings-time changes. A value
of CST6CDT5,M3.2.0,M11.1.0 is appropriate for Chicago in 2007 and perhaps subsequent years.

The uCDIMM ColdFire 5282 module is distributed with two types of bootstrap ROMs. One type provides a TFTP
server and the other provides a TFTP client. The steps required to boot an EPICS application differ depending on the
the bootstrap type.

Arcturus uCDIMM ColdFire 5282 with boostrap ROMs providing TFTP server Use the bootstrap tftp com-
mand to load the IOC application image (which may include a tar image of the in-memory filesystem contents in which
case the CMDLINE will likely look something like /st.cmd and the NFSMOUNT need not be present). You’ll need
to run a TFTP client on your host machine to transfer the file. An example using curl is:

curl -T bin/RTEMS-uC5282/example.boot tftp://192.168.1.93

where 192.168.1.93 is the IP address of the ColdFire target.
Use the bootstrap goram command to start the application or the program command to burn the image into the
on-board flash memory. In the latter case you may want to also use the setenv command to set the AUTOBOOT
environment variable.

Arcturus uCDIMM ColdFire 5282 with boostrap ROMs providing TFTP client The bootstrap procedure in this
case is similar to that for the Motorola VME processors in section 4.1.4.
The cexp package can be used to incrementally load your application components.

16

Appendix A

Script to get and build the
cross-development tools

If you’re feeling brave you can turn loose the following script. It attempts to download, unpack, configure, build and
install the GNU cross-development tools and libraries for one or more target architectures. To use the script, set the
ARCHS environment variable to the architectures you wish to support, then run the script.

A.1 getAndBuildTools-4.9.2.sh

#!/bin/sh

#
Get, build and install the latest cross-development tools and libraries
#

#
Specify the architectures for which the tools are to be built
To build for single target: ARCHS="m68k"
#
ARCHS="${ARCHS:-m68k i386 powerpc}"

#
Specify the versions
#
GCC=4.3.2
BINUTILS=2.19
NEWLIB=1.16.0
GDB=6.8
#BINUTILSDIFF=binutils-2.18-rtems4.9-20080211.diff
GCCDIFF=gcc-core-4.3.2-rtems4.9-20081214.diff
NEWLIBDIFF=newlib-1.16.0-rtems4.9-20090324.diff
GDBDIFF=gdb-6.8-rtems4.9-20090923.diff
RTEMS_BASE_VERSION=4.9
RTEMS_VERSION=4.9.2

#

17

Where to install
#
PREFIX="${PREFIX:-/usr/local/rtems/rtems-${RTEMS_VERSION}}"

#
Where to get the GNU tools
#
RTEMS_SOURCES_URL=ftp://www.rtems.com/pub/rtems/SOURCES/${RTEMS_BASE_VERSION}
RTEMS_BINUTILS_URL=${RTEMS_SOURCES_URL}/binutils-${BINUTILS}.tar.bz2
RTEMS_GCC_CORE_URL=${RTEMS_SOURCES_URL}/gcc-core-${GCC}.tar.bz2
RTEMS_GCC_GPP_URL=${RTEMS_SOURCES_URL}/gcc-g++-${GCC}.tar.bz2
RTEMS_NEWLIB_URL=${RTEMS_SOURCES_URL}/newlib-${NEWLIB}.tar.gz
RTEMS_GDB_URL=${RTEMS_SOURCES_URL}/gdb-${GDB}.tar.bz2
RTEMS_BINUTILS_DIFF_URL=${RTEMS_SOURCES_URL}/${BINUTILSDIFF}
RTEMS_GCC_DIFF_URL=${RTEMS_SOURCES_URL}/${GCCDIFF}
RTEMS_NEWLIB_DIFF_URL=${RTEMS_SOURCES_URL}/${NEWLIBDIFF}
RTEMS_GDB_DIFF_URL=${RTEMS_SOURCES_URL}/${GDBDIFF}

#
Uncomment one of the following depending upon which your system provides
#
GET_COMMAND="curl --remote-name"
#GET_COMMAND="wget --passive-ftp --no-directories --retr-symlinks "
#GET_COMMAND="wget --no-directories --retr-symlinks "

#
Solaris likely needs gmake and /bin/bash here.
#
MAKE="${MAKE:-make}"
export MAKE
SHELL=/bin/sh
export SHELL

#
Get the source
If you don’t have curl on your machine, try using
wget --passive-ftp --no-directories --retr-symlinks <<url>>
If that doesn’t work, try without the --passive-ftp option.
#
getSource() {

${GET_COMMAND} "${RTEMS_BINUTILS_URL}"
if [-n "$BINUTILSDIFF"]
then

${GET_COMMAND} "${RTEMS_BINUTILS_DIFF_URL}"
fi
${GET_COMMAND} "${RTEMS_GCC_CORE_URL}"
${GET_COMMAND} "${RTEMS_GCC_GPP_URL}"
if [-n "$GCCDIFF"]
then

${GET_COMMAND} "${RTEMS_GCC_DIFF_URL}"
fi

18

${GET_COMMAND} "${RTEMS_NEWLIB_URL}"
if [-n "$NEWLIBDIFF"]
then

${GET_COMMAND} "${RTEMS_NEWLIB_DIFF_URL}"
fi
${GET_COMMAND} "${RTEMS_GDB_URL}"

if [-n "$GDBDIFF"]
then

${GET_COMMAND} "${RTEMS_GDB_DIFF_URL}"
fi

}

#
Unpack the source
#
unpackSource() {

rm -rf "binutils-${BINUTILS}"
bzcat "binutils-${BINUTILS}.tar.bz2" | tar xf -
for d in "binutils-${BINUTILS}"*.diff
do

if [-r "$d"]
then

cat "$d" | (cd "binutils-${BINUTILS}" ; patch -p1)
fi

done

rm -rf "gcc-${GCC}"
bzcat "gcc-core-${GCC}.tar.bz2" | tar xf -
bzcat "gcc-g++-${GCC}.tar.bz2" | tar xf -
for d in gcc*.diff
do

if [-r "$d"]
then

cat "$d" | (cd "gcc-${GCC}" ; patch -p1)
fi

done

rm -rf "newlib-${NEWLIB}"
zcat <"newlib-${NEWLIB}.tar.gz" | tar xf -
for d in "newlib-${NEWLIB}"*.diff
do

if [-r "$d"]
then

cat "$d" | (cd "newlib-${NEWLIB}" ; patch -p1)
fi

done
(cd "gcc-${GCC}" ; ln -s "../newlib-${NEWLIB}/newlib" newlib)

rm -rf "gdb-${GDB}"
bzcat <"gdb-${GDB}.tar.bz2" | tar xf -
for d in "gdb-${GDB}"*.diff

19

do
if [-r "$d"]
then

cat "$d" | (cd "gdb-${GDB}" ; patch -p1)
fi

done
}

#
Build
#
build() {

PATH="${PREFIX}/bin:$PATH"
for arch in $ARCHS
do

rm -rf build
mkdir build
cd build
"${SHELL}" "../binutils-${BINUTILS}/configure" \

"--target=${arch}-rtems${RTEMS_VERSION}" "--prefix=${PREFIX}" \
--verbose --disable-nls \
--without-included-gettext \
--disable-win32-registry \
--disable-werror

${MAKE} -w all install
cd ..

rm -rf build
mkdir build
cd build

"${SHELL}" "../gcc-${GCC}/configure" \
"--target=${arch}-rtems${RTEMS_VERSION}" "--prefix=${PREFIX}" \
--disable-libstdcxx-pch \
--with-gnu-as --with-gnu-ld --verbose \
--with-newlib \
--with-system-zlib \
--disable-nls --without-included-gettext \
--disable-win32-registry \
--enable-version-specific-runtime-libs \
--enable-threads \
--enable-newlib-io-c99-formats \
--enable-languages="c,c++" \
--with-gmp="${PREFIX}" --with-mpfr="${PREFIX}"

${MAKE} -w all
${MAKE} -w install
cd ..

rm -rf build
mkdir build
cd build

"${SHELL}" "../gdb-${GDB}/configure" \

20

"--target=${arch}-rtems${RTEMS_VERSION}" "--prefix=${PREFIX}" \
--verbose --disable-nls --without-included-gettext \
--disable-win32-registry \
--enable-version-specific-runtime-libs \
--disable-win32-registry \
--disable-werror \
--enable-sim \
--with-expat

${MAKE} -w all
${MAKE} -w install
cd ..

done
}

#
Do everything
#
Comment out any activities you wish to omit
#
set -ex
getSource
unpackSource
export LD_LIBRARY_PATH="${PREFIX}/lib"
build

A.2 getAndBuildTools-4.10.sh

#!/bin/sh

#
Get, build and install the latest cross-development tools and libraries
#

#
Specify the architectures for which the tools are to be built
To build for single target: ARCHS="m68k"
#
ARCHS="${ARCHS:-m68k i386 powerpc}"

#
Specify the versions
#
GCC=4.4.2
BINUTILS=2.20
NEWLIB=1.17.0
GDB=7.0
#BINUTILSDIFF=binutils-2.19.1-rtems4.10-20090203.diff
GCCDIFF=gcc-core-4.4.2-rtems4.10-20091015.diff
NEWLIBDIFF=newlib-1.17.0-rtems4.10-20091009.diff
GDBDIFF=gdb-7.0-rtems4.10-20091007.diff
RTEMS_BASE_VERSION=4.10

21

RTEMS_VERSION=4.10

#
Where to install
#
PREFIX="${PREFIX:-/usr/local/rtems/rtems-${RTEMS_VERSION}}"

#
Where to get the GNU tools
#
RTEMS_SOURCES_URL=ftp://www.rtems.com/pub/rtems/SOURCES/${RTEMS_BASE_VERSION}
RTEMS_BINUTILS_URL=${RTEMS_SOURCES_URL}/binutils-${BINUTILS}.tar.bz2
RTEMS_GCC_CORE_URL=${RTEMS_SOURCES_URL}/gcc-core-${GCC}.tar.bz2
RTEMS_GCC_GPP_URL=${RTEMS_SOURCES_URL}/gcc-g++-${GCC}.tar.bz2
RTEMS_NEWLIB_URL=${RTEMS_SOURCES_URL}/newlib-${NEWLIB}.tar.gz
RTEMS_GDB_URL=${RTEMS_SOURCES_URL}/gdb-${GDB}.tar.bz2
RTEMS_BINUTILS_DIFF_URL=${RTEMS_SOURCES_URL}/${BINUTILSDIFF}
RTEMS_GCC_DIFF_URL=${RTEMS_SOURCES_URL}/${GCCDIFF}
RTEMS_NEWLIB_DIFF_URL=${RTEMS_SOURCES_URL}/${NEWLIBDIFF}
RTEMS_GDB_DIFF_URL=${RTEMS_SOURCES_URL}/${GDBDIFF}

#
Uncomment one of the following depending upon which your system provides
#
GET_COMMAND="curl --remote-name"
#GET_COMMAND="wget --passive-ftp --no-directories --retr-symlinks "
#GET_COMMAND="wget --no-directories --retr-symlinks "

#
Solaris likely needs gmake and /bin/bash here.
#
MAKE="${MAKE:-make}"
export MAKE
SHELL=/bin/sh
export SHELL

#
Get the source
If you don’t have curl on your machine, try using
wget --passive-ftp --no-directories --retr-symlinks <<url>>
If that doesn’t work, try without the --passive-ftp option.
#
getSource() {

${GET_COMMAND} "${RTEMS_BINUTILS_URL}"
if [-n "$BINUTILSDIFF"]
then

${GET_COMMAND} "${RTEMS_BINUTILS_DIFF_URL}"
fi
${GET_COMMAND} "${RTEMS_GCC_CORE_URL}"
${GET_COMMAND} "${RTEMS_GCC_GPP_URL}"
if [-n "$GCCDIFF"]

22

then
${GET_COMMAND} "${RTEMS_GCC_DIFF_URL}"

fi
${GET_COMMAND} "${RTEMS_NEWLIB_URL}"

if [-n "$NEWLIBDIFF"]
then

${GET_COMMAND} "${RTEMS_NEWLIB_DIFF_URL}"
fi
${GET_COMMAND} "${RTEMS_GDB_URL}"

if [-n "$GDBDIFF"]
then

${GET_COMMAND} "${RTEMS_GDB_DIFF_URL}"
fi

}

#
Unpack the source
#
unpackSource() {

rm -rf "binutils-${BINUTILS}"
bzcat "binutils-${BINUTILS}.tar.bz2" | tar xf -
for d in "binutils-${BINUTILS}"*.diff
do

if [-r "$d"]
then

cat "$d" | (cd "binutils-${BINUTILS}" ; patch -p1)
fi

done

rm -rf "gcc-${GCC}"
bzcat "gcc-core-${GCC}.tar.bz2" | tar xf -
bzcat "gcc-g++-${GCC}.tar.bz2" | tar xf -
for d in gcc*.diff
do

if [-r "$d"]
then

cat "$d" | (cd "gcc-${GCC}" ; patch -p1)
fi

done

rm -rf "newlib-${NEWLIB}"
zcat <"newlib-${NEWLIB}.tar.gz" | tar xf -
for d in "newlib-${NEWLIB}"*.diff
do

if [-r "$d"]
then

cat "$d" | (cd "newlib-${NEWLIB}" ; patch -p1)
fi

done
(cd "gcc-${GCC}" ; ln -s "../newlib-${NEWLIB}/newlib" newlib)

23

rm -rf "gdb-${GDB}"
bzcat <"gdb-${GDB}.tar.bz2" | tar xf -
for d in "gdb-${GDB}"*.diff
do

if [-r "$d"]
then

cat "$d" | (cd "gdb-${GDB}" ; patch -p1)
fi

done
}

#
Build
#
build() {

PATH="${PREFIX}/bin:$PATH"
for arch in $ARCHS
do

rm -rf build
mkdir build
cd build
"${SHELL}" "../binutils-${BINUTILS}/configure" \

"--target=${arch}-rtems${RTEMS_VERSION}" "--prefix=${PREFIX}" \
--verbose --disable-nls \
--without-included-gettext \
--disable-win32-registry \
--disable-werror

${MAKE} -w all install
cd ..

rm -rf build
mkdir build
cd build

"${SHELL}" "../gcc-${GCC}/configure" \
"--target=${arch}-rtems${RTEMS_VERSION}" "--prefix=${PREFIX}" \
--disable-libstdcxx-pch \
--with-gnu-as --with-gnu-ld --verbose \
--with-newlib \
--with-system-zlib \
--disable-nls --without-included-gettext \
--disable-win32-registry \
--enable-version-specific-runtime-libs \
--enable-threads \
--enable-newlib-io-c99-formats \
--enable-languages="c,c++" \
--with-gmp="${PREFIX}" --with-mpfr="${PREFIX}"

${MAKE} -w all
${MAKE} -w install
cd ..

rm -rf build

24

mkdir build
cd build

"${SHELL}" "../gdb-${GDB}/configure" \
"--target=${arch}-rtems${RTEMS_VERSION}" "--prefix=${PREFIX}" \
--verbose --disable-nls --without-included-gettext \
--disable-win32-registry \
--enable-version-specific-runtime-libs \
--disable-win32-registry \
--disable-werror \
--enable-sim \
--with-expat

${MAKE} -w all
${MAKE} -w install
cd ..

done
}

#
Do everything
#
Comment out any activities you wish to omit
#
set -ex
getSource
unpackSource
export LD_LIBRARY_PATH="${PREFIX}/lib"
build

25

	Introduction
	Infrastructure -- Tools and Operating System
	Create the RTEMS source and installation directories
	Add the directory containing the tools to your shell search path
	Get and build the development tools
	Download the tool source files
	Unpack the source archives:
	Apply any RTEMS-specific patches
	Configure, build and install the `binutils':
	Configure, build and install the cross-compiler and libraries

	Get, build and install RTEMS
	Download the RTEMS source from the OAR web server.
	Unpack the RTEMS sources
	Make changes to the RTEMS source to reflect your local conditions.
	Build and install RTEMS

	Get, build and install some RTEMS add-on packages
	Download the add-on package sources
	Unpack the add-on package sources
	Set the RTEMS_MAKEFILE_PATH environment variable
	Build and install the add-on packages

	Try running some RTEMS sample applications (optional)
	Extended BSP routines

	EPICS Base
	Specify the location of RTEMS tools and libraries
	Specify the network domain
	Specify the network interface
	Specify the target architectures
	Build EPICS base

	EPICS Applications
	The EPICS example application
	Build the example application
	Install the EPICS IOC files on the TFTP/NFS server
	Run the example application on an RTEMS IOC
	Location of EPICS startup script

	Script to get and build the cross-development tools
	getAndBuildTools-4.9.2.sh
	getAndBuildTools-4.10.sh

