EPICS: Input / Output Controller
Application Developer’s Guide

EPICS Base Release 3.14.9
7 November 2007

Martin R. Kraimer, Janet Anderson, Andrew Johnson, Eric Norum
(Argonne National Laboratory)

Jeff Hill (Los Alamos National Laboratory)

Ralph Lange, Benjamin Franksen (BESSY)




EPICS IOC Application Developer’'s Guide



Table of Contents

Table of Contents

Tableof Contents. . ... ...t 1
Chapter 1: Introduction. . ...... ... e 7
L VIO oottt e e e e e 7
1.2. Acknowledgments . . . ..ot 9
Chapter 2: Getting Started ......... ... 11
2.1 INtrodUCtioN . . ..o 11
2.2. Example IOC Application . . . . ... 11
2.3. Channel AccessHostExample . ... 13
22 T 13
2.5. Building IOC COMPONENES . . . . oottt e e e e e 14
2.6. MAKEBASEA DD -« o ettt 17
2.7. vXWorksboot parameters .. ... 20
2.8. RTEMS OOt procedure. . ... ..ot e 21
Chapter 3: EPICSOVEIVIEW . .. ..o e 23
B L What iSEPICS? . ... 23
3.2 BasiC ALIDULES . . . .o 23
3.3. Hardware - Software Platforms (Vendor Supplied). . ...................... 24
3.4. |OC Software COMPONENtS . . .. oottt ettt 25
35, Channel ACCESS . ...t 27
36, OPl TOO0IS. . oottt e 29
3.7. EPICS Core SOftWare. . . ..ottt et e 30
Chapter 4: EPICSBuild Facility. ............ ... ... 31
A0 OVEIVIEIW .« .ottt e e e e e e e e e e e e 31
4.2. BUIld REQUIFEMENES . . . . .ottt e e e e e 33
4.3. Configuration Definitions . ... ... 34
A MaKEfES . . o 37
A5 MaKE. . .o 39
4.6. Makefiledefinitions. .. ... ... 40
4.7. Table of Makefiledefinitions. . ... i 62
4.8. Configuration Files . ... ... 73
4.9. Build Documentation Files .. ... 75
410.Startup Files. . . .o 76
Chapter 5: Database L ocking, Scanning, And Processing .. .......... 79
L OVEIVIBIV « . et e e e e e 79
5.2, ReCOrd LinkS . .. oo e 79
5.3. Database Links. . . ..o 80
5.4, Database LOCKING. . .. oot e e 80
5.5, Database SCanniNg . . . ..ot 8l
5.6. RECOrd ProCESSING . . . oot e 82
5.7. Guidelinesfor Creating DatabaseLinks .. ............. ... ... ... ... ... 82
5.8. Guidelinesfor SynchronousRecords. . ............. ... i i, 84
5.9. Guidelinesfor AsynchronousRecords .............. ... ... ... ... ..., 85
B5.10.Cached PULS. . . . oot 87

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 1



Table of Contents

B L PUINOLITY. o 87
5.12.Channel AcCeSSLINKS . . ..o e 87
Chapter 6: Database Definition. . ................ ... ..., 91
8.1, OVEIVIBI . . oottt et e e e e e 91
6.2. Brief Summary of Database DefinitionSyntax. .. ........................ 91
6.3. General Rulesfor Database Definition. .. ..., 92
B4, MENU . .. 95
B.5. RECOIA TY P . ottt ittt e e e e 95
B.6. DEVICE . . .ttt 100
B.7. DIIVEr o 101
6.8. Registrar Declaration. ... ...t e 101
6.9. Variable DecClaration . .. ...t 102
6.10.Function DeClaration .. ...... ...ttt e 102
6.11.Breakpoint Table . ... ... 103
6.12.ReCord INStaNCE . . . ..ottt 104
6.13.Record Information Item . . ... e 107
6.14.Record Attribute. . . ... .. e 107
6.15.Breakpoint Tables- DiSCUSSION . ... ..o v it 107
6.16.Menu and Record Type Include File Generation. ....................... 109
B.17.0DEXPaNd . . . ..o 112
6.18.d0L0adDatahase. . . . .o it e 112
6.19.d0L0AdRECOITS. . . . o\ttt e 113
6.20.dbLoadTemplate. . .. ... .ot 113
6.2L.dbREadTES . . . .o e 115
Chapter 7: 10C Initialization .......... ..., 117
7.1. Overview - Environmentsrequiringamainprogram. . ................... 117
7.2.0verview - VXWOIKS. . ..o 117
7.3.0verview - RTEMS ... o e e 118
A TOCINIT L 118
7.5. Changing iocCorefixed limits . ............ i 120
7.6, TSCONFIQUIE. . . .t e e e e e 121
77 NItHOOKS. . . .o 121
7.8. Environment Variables . . ... 122
7.9. INitidlize Logging . . ..o ot e 123
Chapter 8: ACCESSSECUNitY . ..ottt e e 125
B L OV BV . o o ettt et e e e e 125
8.2 QUICK StaIt. . . .ottt 125
8.3 USEr SGUILE . ..ottt 126
8.4, DESION SUMIMANY . . o oot ettt et e et et et e 131
8.5. Access Security Application Programmer’sinterface .. .................. 133
8.6. Database ACCESS SECUNLY . . oo vttt e e e 138
8.7. Channel ACCESS SECUNTY . . . vt v vt ettt et e 140
8.8. Trapping Channel AccessWHIiteS . .. ... et 142
8.9. Access Control: Implementation Overview . ..., 142
A0 SIIUCIUNES . . . ettt et e e e e e e e e e e e 144
Chapter 9: IOC Test Facilities. ............... i, 145
0. L, OV VI BV . o ettt e e e e e e e 145
9.2. Database List, Get, PUt . ... ..ot 145
0.3, BreakpointS . . .ottt 147
0.4, ErrOr LOQgING .+« o v v vttt e e e e e e 149

2 EPICS I0C Application Developer’s Guide 2007-11-07



Table of Contents

9.5, Hardwar€ REPOIS . . . ..ottt e 149
0.6. SCAN REPOIS . . ..o 150
9.7. TiIMe Server REPOIt . . . ..o e 150
9.8. Access Security Commands. . . ....ov it 151
9.9. Channel ACCESS REPOIS. . . . oottt e e 152
0.10.INtErTUPL VECIONS . . . . ottt e e 153
O 1LMISCElANEOUS . . . . . oot 154
9.12.Database System Test RoUutinges . ... 154
9.13.Record Link REPOITS. . . ..o 155
9.14.0Id Database ACCESS TESHING .« . . oo oot e e 156
9.15.Routines to dump database information ... ......... ... .. o i 157
Chapter 10: IOCError LOgging . .. .. ovvviii i ei e 159
10,1 0VEIVIBIW . o o oot 159
10.2.Error Message ROULINES . . ..o oottt e e 159
10.3.emlog LiSteners . . ..o e 161
104.errlogThread ... ... e 162
10.5.console output and MESSAgE QUEUE SIZE . . ..o v v v it e e e e 162
10.6.StAUS COUES . . . .\ttt 162
10.700CL 00 .« vttt e 163
Chapter 11: Record SUPPOrt . .. oot 165
R = 4 T 165
11.2.0verview of ReCOrd ProCESSING . . .« oo vttt et et e s 165
11.3.Record Support and Device Support Entry Tables. . ..................... 166
11.4.Example Record Support Module. .. ... 167
11.5.Record SUPPOrt ROULINES . ... .ot 173
11.6.Global Record SUpPOrt ROULINES. . .. ... oo 177
Chapter 12: Device SUPPOIT. . .ottt 181
2.0 0VEIVIEIW . . oottt et e 181
12.2.Example Synchronous Device Support Module. . . ........... ... ... .. ... 181
12.3.Example Asynchronous Device Support Module. .. ..................... 183
12.4.Device SUPPOIt ROULINES. . . . . oottt 184
12.5.Extended Device SUPPOIt . . . . oot e 186
Chapter 13: Driver SUPPOIt. . ..ot e 189
13 L OVEIVIBI . o oot 189
13,2, DEVICE DIIVENS. . .\ttt 189
Chapter 14: Static Database ACCESS . . . ..ot v i 193
LA L OVEIVI B . oottt e e 193
142 DEfiNitioNS. . . ..o 193
14.3 Allocating and Freeing DBBASE . . . ... ... 194
144ADBENTRY ROULINES. . . . oottt et et e e e e i 195
145Read and WriteDatahase . ... . ..o e 196
14.6.Manipulating ReCOrd TYPES . . . oo vttt e 197
14.7. Manipulating Field Descriptions. . .. ...t e i 198
14.8.Manipulating Record Attributes . . .. ... 199
14.9.Manipulating Record INStances. . ... ... 200
14.10.ManipulatingMenu Fields . .. ... 202
1411 Manipulating Link Fields . ... ... 203
14.12. Manipulating MenuForm Fields . .. ... 203
14.13.Manipulating Information Items. .. . ...t 205

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide



Table of Contents

14.14.Find Breakpoint Table . . ... ..o o 206
14.15.DUMP ROULINES. . . ..ot e 206
14,06 EXAMPIES ottt e 207
Chapter 15: Runtime Database ACCESS. . .. ..o oo 209
15, L OVEIVIBIW ottt e 209
15.2.DatabaseInclude Files . . . ... 209
15.3.Runtime Database ACCESSOVEIVIEW . . ..o vt et 211
15.4.Database ACCESSROULINES . . .. oot 214
15.5.Runtime Link Modification . .......... .. i 222
15.6.Channel ACCESSMONITONS. . . ..ottt 223
15.7.L0CK SEL ROULINES. . . . .ottt e e 223
15.8.Channel Access Database Links. . ...t 225
Chapter 16: EPICSGeneral PurposeTasks ............coovvvn.n. 229
16. L. 0OVEIVIBW ..ottt e 229
16.2.General Purpose Callback Tasks . ... .. ..o 229
16.3.Task Watchdog. . . . .. oo v e 232
Chapter 17: DatabaseScanning . ...........oiiiiiiianannen.. 235
17 L OVEIVI BV oottt 235
17.2.Scan Related Database Fields. . . ..o 235
17.3. Scan Related Software Components. . .. ..o vt 236
17.41mplementation OVEIVIBW . .. ...t 239
Chapter 18: IOC Shell ........ ... 245
18.LINtrodUCHION . ..ot 245
18.2.10C Shell Operation. . ... ..ot e e 245
18.3.10C Shell Programming. . ..ot e 248
Chapter 19: libCom . ... .. e e 253
19.0.bucketlib . ..o e 253
10 2.CaAIC . it 253
10 3 PP, . e 257
19.4.8DICSEXIt . . o oot e 257
105 OIS, . o oo 258
10.6.0XXTEMPIAES . . . .o 258
10,70 L 259
10.8llib. . 260
19.9.6PICSRINGBYLES. . . . ottt 260
19.10.6PiCSRINGPOINTES. . . . .ottt e e e e e 261
10,00 EDiCSTIMEr e 263
10,02, fdMgr .o 269
10031 ELISt . . oot e 269
10.04.gpHESh . oo 269
10.05.00gCHHENE . . oot e 270
10.06.MaCLib . oo e 271
10,070 MISC. & ettt 272
Chapter 20: libCom OSl libraries. . ..., 277
20, L OVEIVI BNV ottt et 277
20, 2. 8P CSA SN . . ottt 278
20.3.6DICSEVENT. . . oot 278
20.4.epicsHiNdSymbol ... ... 280

4 EPICS I0C Application Developer’s Guide

2007-11-07



Table of Contents

20.5.6PICSINLEITUPL. . . . oo e 280
20.6.60iCSMath . ... 281
20.7.6piCSMESSATEQUELIE . . . . ot ettt et e e e 281
20.8.6DICSMULEX . . . .ottt e e e 283
20.9.6picSStAlibD. ... 285
20.10.6DICSSEAIO . . v vttt 285
20.11.epicSStAIOREAITECE. . . . o vttt e e 286
20.12.epicsThread . . . ... oo 286
20.03.60ICSTIME . o ettt e e e 292
20.14.0S PO0ISEAUS. . . o oottt e 299
20.105.08 PrOCESS . . . .ttt 300
20.16.0SISIGPIPEIgNOrE . . . o .ttt 300
20.17.081S0CK. N . .o 301
20.18. Device Support Library .. ... 301
20.19.vXWOorks SpeCific routings . . .. ... .ot 304
Chapter 21 RegiStry. . ..o e e e 307
21 RegIStrY. N L e 307
21.2registryRecordTypeh .. ..o 307
21.3.registryDeviceSupport.h . .. ..o 308
21.4.registryDriverSupport.h. ... ..o 308
215 registryFunction.h . . ... . 308
21.6.registerRecordDeviCeDrVEr.C. . . ..o 309
21.7.registerRecordDeviceDriver.pl . ... 309
Chapter 22: Database Structures ..., 311
22 0 OVEIVIBIV . v e e e e e e e e e 311
22.20nclude Files . . . o 311
22 3. STUCIUIES. . .\ ottt e e e e e e 313
Chapter 23: INDEX ... . e e e 315

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 5



Table of Contents

6 EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 1. Introduction

1.1 Overview

This document describes the core software that resides in an Input/Output Controller (IOC), one of the major components
of EPICS. It isintended for anyone developing EPICS I|OC databases and/or new record/device/driver support.

The plan of the book is:
Getting Started
A brief description of how to create EPICS support and ioc applications.
EPICS Overview
An overview of EPICS s presented, showing how the |OC software fitsinto EPICS.
EPICS Build Facility

This chapter, which was written by Janet Anderson, describes the EPICS build facility including directory
structure, environment and system reguirements, configuration files, Makefiles, and related build tools.

Database L ocking, Scanning, and Processing
Overview of three closely related | OC concepts. These concepts are at the heart of what constitutes an EPICS 10C.
Database Definition

This chapter gives a complete description of the format of the files that describe IOC databases. Thisis the format
used by Database Configuration Tools and is a so the format used to load databases into an |OC.

IOC Initialization
A great deal happens at 10C initialization. This chapter removes some of the mystery about initialization.
Access Security

Channel Access Security is implemented in IOCs. This chapter explains how it is configured and also how it is
implemented.

IOC Test Facilities

Epics supplied test routines that can be executed via the epics or vxWorks shell.
IOC Error Logging

IOC code can call routines that send messages to a system wide error logger.
Record Support

The concept of record support is discussed. This information is necessary for anyone who wishes to provide
customized record and device support.

Device Support

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 7



Chapter 1: Introduction
Overview

The concept of device support is discussed. Device support takes care of the hardware specific details of record
support, i.e. it is the interface between hardware and a record support module. Device support can directly access
hardware or may interface to driver support.

Driver Support

The concepts of driver support is discussed. Drivers, which are not always needed, have no knowledge of records
but just take care of interacting with hardware. Guidelines are given about when driver support, instead of just
device support, should be provided.

Static Database Access

Thisis alibrary that works on both Host and 10C. For 10Cs it works and on initialized or uninitialized EPICS
databases.

Runtime Database Access

The heart of the IOC software is the memory resident database. This chapter describes the interface to this
database.

Device Support Library
A set of routines are provided for device support modules that use shared resources such as VME address space.
EPICS General Purpose Tasks
General purpose callback tasksand task watchdog.
Database Scanning
Database scan tasks, i.e. the tasks that request records to process.
IOC Shell

The EPICS 10C shell is asimple command interpreter which provides a subset of the capabilities of the vxWorks
shell.

libCom

EPICS base includes a subdirectory src/libCom, which contains a number of ¢ and c++ libraries that are used by
the other components of base. This chapter describes most of these libraries.

libCom OS|

This chapter describes the libraries in libCom that provide Operating System Independent (OSl) interrfaces used
by the rest of EPICS base. LibCom also contains operating system dependent code that implements the OSI
interfaces.

Registry

Under vxWorks osi FindGloba Symbol can be used to dynamically bind to record, device, and driver support. Since
on some systems this always returns failure, aregistry facility is provided to implement the binding. The basic idea
isthat any storage meant to be "globally" accessable must be registered before it can be accessed

Database Structures
A description of the internal database structures.

Other than the overview chapter this document describes only core |OC software. Thus it does not describe other EPICS
tools which run in an 10C such as the sequencer. It also does not describe Channel Access.

The reader of this manual should also have the following documents:

» EPICSRecord Reference Manual, Philip Stanley, Janet Anderson and Marty Kraimer
See LANL Web site for latest version.

8 EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 1: Introduction
Acknowledgments

EPICS 10C Software Configuration Management, Marty Kraimer, Andrew Johnson, Janet Anderson, Ralph Lange
http://www.aps.anl .gov/asd/control s/epi cs/Epi csDocumentati on/A ppDevM anual s/iocScm-3.13.2/index.html

* VXWborks Programmer’s Guide, Wind River Systems
vWbr ks Reference Manual, Wind River Systems
RTEMS C User’s Guide, Online Applications Research

1.2 Acknowledgments

The basic model of what an |OC should do and how to do it was developed by Bob Dalesio at LANL/GTA. The principle
ideas for Channel Access were developed by Jeff Hill at LANL/GTA. Bob and Jeff also were the principle implementers
of the original 10C software. This software (called GTACS) was developed over a period of several years with feedback
from LANL/GTA users. Without their ideas EPICS would not exist.

During 1990 and 1991, ANL/APS undertook a major revision of the IOC software with the mgjor goal being to provide
easily extendible record and device support. Marty Kraimer (ANL/APS) was primarily responsible for designing the data
structures needed to support extendible record and device support and for making the changes needed to the 10C resident
software. Bob Zieman (ANL/APS) designed and implemented the UNIX build tools and 10C modules necessary to
support the new facilities. Frank Lenkszus (ANL/APS) made extensive changes to the Database Configuration Tool
(DCT) necessary to support the new facilities. Janet Anderson developed methods to systematically test various features
of the |OC software and is the principal implementer of changes to record support.

During 1993 and 1994, Matt Needes at LANL implemented and supplied the description of fast database links and the
database debugging tools.

During 1993 and 1994 Jim Kowalkowski at ANL/APS developed GDCT and also devel oped the ASCII database instance
format now used as the standard format. At that time he also created dbLoadRecor ds and dbLoadTenpl at e.

The bui | d utility method resulted in the generation of binary files of UNIX that were loaded into 10Cs. As new 10C
architectures started being supported this caused problems. During 1995, after learning from an abandoned effort now
referred to as Epi csRX, the build utilities and binary file (called def aul t .dct sdr) were replaced by all ASCII files.
The new method provides architecture independence and a more flexible environment for configuring the record/device/
driver support. This principle implementer was Marty Kraimer with many ideas contributed by John Winans and Jeff Hill.
Bob Dalesio made sure that we did not go to far, i.e. 1) make it difficult to upgrade existing applications and 2) lose
performance.

In early 1996 Bob Dalesio tackled the problem of allowing runtime link modification. This turned into a cooperative
development effort between Bob and Marty Kraimer. The effort included new code for database to Channel Accesslinks,
anew library for lock sets, and a cleaner interface for accessing database links.

In early 1999 the port of iocCore to non vxWorks operating systems was started. The principle devel opers were Marty
Kraimer, Jeff Hill, and Janet Anderson. William Lupton converted the sequencer as well as hel ping with the posix threads
implementation of osiSem and osi Thread. Eric Norum provided the port to RTEMS and also contributed the shell that is
used on non vxWorks environments. Ralph Lange provided the port to HPUX.

Many other people have been involved with EPICS development, including new record, device, and driver support
modules.

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 9



Chapter 1: Introduction
Acknowledgments

10 EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 2. Getting Started

2.1 Introduction

This chapter provides a brief introduction to creating EPICS 1OC applications. It contains:

* Instructions for creating, building, and running an example 10C application.

* Instructions for creating, building, and executing example Channel Access clients.

* Briefly describesiocsh, which is a base supplied command shell.

* Describesrulesfor building |OC components.

* Describes makeBaseApp.pl, which isa perl script that generates files for building applications.
* Briefly discusses vxWorks boot parameters

This chapter will be hard to understand unless you have some familarity with |OC concepts such as record/device/driver
support and have had some experience with creating ioc databases. Once you have this experience, this chapter provides
most of the information needed to build applications. The example that follows assumes that EPICS base has already been
built.

2.2 Example | OC Application

This section explains how to create an example 10C application in a directory <top>, naming the application
nmyexanpl eApp and theioc directory i ocnyexanpl e.

2.2.1 Check that EpI cs HOST ARCH s defined

Execute the command:

echo $EPI CS_HOST_ARCH (Uni x/ 1'i nux)
or

set EPI CS_HOST_ARCH (W ndows)

This should display your workstation architecture, for example | i nux- x86 or wi n32- x86. If you get an "Undefined
variable" error, you should set EPICS HOST_ARCH to your host operating system followed by adash and then your host
architecture, e.g. solaris-sparc. The perl script EpicsHostArch.pl in the base/startup directory has been provided to help
set EPICS HOST_ARCH.

2.2.2 Create the example application

The following commands create an example application.

nkdir <top>

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 11



Chapter 2: Getting Started
Example IOC Application

cd <top>
<base>/ bi n/ <ar ch>/ makeBaseApp. pl -t exanpl e nyexanpl e
<base>/ bi n/ <ar ch>/ makeBaseApp. pl -i -t exanple myexanmpl e

Here, <arch> indicates the operating system architecture of your computer. For example, solaris-sparc. The last command
will ask you to enter an architecture for the IOC. It provides alist of architectures for which base has been built.

The full path name to <base> (an aready built copy of EPICS base) must be given. Check with your EPICS system
administrator to see what the path to your <base> is. For example:

/ honme/ phoebus/ MRK/ epi cs/ base/ bi n/ | i nux- x86/ makeBaseApp. pl

Windows Users Note: Perl scripts are invoked with the command perl <scriptname> on win95/NT. Perl script names are
case sensitive. For example to create an application on WIN95/NT:

perl C:\epics\base\bi n\w n32-x86\ makeBaseApp. pl -t exanpl e nyexanpl e

2.2.3 Inspect files

Spend some time looking at the files that appear under <top>. Do this BEFORE building. This allows you to see typical
files which are needed to build an application without seeing the files generated by make.

2.2.4 Sequencer Example

The sequencer is now supported as an unbundled product. The example includes an example state notation program;
sncExample.stt. As created by makeBaseApp the example is not built or executed.

Before sncExample.st can be built, the sequencer must be built using the same version of base that the example uses.
To build sncExample edit the following files:

* configure/RELEASE - Set SNCSEQ to the location of the sequencer.

* iocBoot/iocmyexample/st.cmd - Remove the comment character # from
#seq sncExample,"user=<user"

The Makefile contains commands for building sncExample as a component of the ioc application and as a standalone
application, i.e. an application that does not use an epics database.

2.2.5Build

In directory <top> execute the command
make

NOTE: On systems where GNU make is not the default another command is required, e.g. gnumake, grmeke, etc. See
you EPICS system administrator.

2.2.6 Inspect files

Thistime you will see the files generated by make as well as the original files.

2.2.7 Run theioc example

The example can be run on vxWorks, RTEMS, or on a supported host.

12 EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 2: Getting Started
Channel Access Host Example

* Onahogt, e.g. linux or solarius
e cd <top>/iocBoot/iocnyexanmple
e ../../bin/linux-x86/nyexanple st.cnd
* vXWOorks/RTERMS - Set your boot parameters as described at the end of this chapter and then boot theioc.

After theioc is started try some of the shell commands (e.g. dbl or dbpr <r ecor dnane>) described in chapter "IOC
Test Facilities'. In particular run dbl to get alist of the records.

Theiocsh command interpreter used on non-vxWorks 10Cs provides a help facility. Just type:

hel p
or
hel p <cnd>
where <cnd> is one of the commands displayed by help. The help command accepts wildcards, so
hel p db*
will provide information on all commands beginning with the characters db.

On vxWorks the help facility is available by first typing:

i ocsh

2.3 Channel Access Host Example

An example host example can be generated by:

cd <mytop>
<base>/ bi n/ <ar ch>/ nakeBaseApp. pl -t cadient caCient
make

(or gnumake, as required by your operating system)
Two channel access examples are provided.

» caExample - This example accepts a pvname, connects and reads the current value for pvname, displays the result
and terminates. To run this examplejust type.
<nyt op>/ bi n/ <host ar ch>/ caExanpl e <pvnane>
where
<nyt op> isthe full path name to your application top directory.
<host ar ch> isyour host architecture.
<pvnane> isone of the record names displayed by the dbl ioc shell command.
» caMonitor - This example accepts afilename, which contains alist of pvnames, each appearing on a separate line.
It connects to each pv and issues monitor requests. It displays messages for all channel access events, connection
events, etc.

2.4 iocsh

Because the vxWorks shell is only available on vxWorks, EPICS base provides iocsh. In the main program it can be
invoked as follows:

i ocsh("fil enane")

or

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 13



Chapter 2: Getting Started
Building IOC components

i ocsh(0)

If the argument is a filename, the commands in the file are executed and iocsh returns. If the argument is O then iocsh goes
into interactive mode, i.e. it prompts for and executes commands until an exit command is issued.

This shell is described in more detail in Chapter 18, “1OC Shell” on page 245

On vxWorks iocsh is not automatically started. It can be started by just giving the following command to the vxWorks
shell.

i ocsh
To get back to the vxWorks shell just say

exit

2.5 Building | OC components

Detailed build rules are given in chapter "Epics Build Facility". This section describes methods for building most
components needed for 10OC applications. It uses excerpts from the myexampleApp/src/Makefile that is generated by
makeBaseA pp.

The following two types of applications can be built:

* Support applications
These are applications meant for use by ioc applications. The rules described here install things into one of the
following directories that are created just below <top>:
* include
C include files are installed here. Either header files supplied by the application or header files generated
from xxxRecord.dbd or xxxMenu.dbd files.
 dbd
Each file contains some combination of i ncl ude, recordtype, devi ce, driver, and
regi strar database definition commands. The following are installed:
» xxxRecord.dbd, xxxMenu.dbd files
» An arbitrary xxx.dbd file
 ioc applicationsinstall afile yyy.dbd generated from file yyylnclude.dbd.
o db
Files containing record instance definitions.
* lib/<arch>
All source modules are compiled and placed in shared or static library (win32 dil)
» |1OC applications
These are applications loaded into actual 10Cs.

2.5.1 Binding to |OC components

Because many |OC components are bound only during ioc initialization, some method of linking to the appropriate shared
and/or static libraries must be provided. The method used for I0Cs is to generate, from an xxxInclude.dbd file, a C++
program that forces a reference to the appropriate library modules. The following keywords for database definitions are
used for this purpose:

recordtype
devi ce
driver

14 EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 2: Getting Started
Building I0OC components

regi strar
vari abl e
function

The method aso requires that I0C components call an appropriate epicsExport function. Each such component must
contain the statement: (NOTE: This must be the last include file in the source module.

#i ncl ude <epi csExport. h>

Each record support module must contain a statement like:
epi csExport Addr ess(rset, xxxXRSET) ;

Each device support module must contain a statement like:
epi csExport Addr ess(dset, devXxxSoft);
Each driver support module must contain a statement like:
epi csExport Address(drvet, drvQi b);

The keyword var i abl e provides access to integer or double variables, e.g. debugging variables. The xxxInclude.dbd
file can contain definitions like:

vari abl e(asCabDebug, i nt)
vari abl e( myDef aul t Ti meout, doubl e)

The code that defines the variables must include code like:

i nt asCaDebug = O;
epi csExport Addr ess(i nt, asCaDebug) ;

Thekeyword r egi st r ar signifies that the epics component supplies a C function that has the prototype:
typedef void (*REG STRAR) (voi d);

This function normally registers things described in chapter "Registry”. The myexampleApp provides an example set of
functions for a subroutine record. It contains the statements:

static registryFuncti onRef nySubRef[] = {
{"mySubl nit", (REG STRYFUNCTI ON) mySubl ni t},
{" mySubProcess", (REA STRYFUNCTI ON) nmy SubPr ocess}

1
static void nySub(void)
{
regi stryFuncti onRef Add( mySubRef , NELEMENTS( my SubRef ) ) ;
}

epi csExport Regi strar (mySub) ;
epi csExport Regi st rar canaso be used to register iocsh commands, etc.

The registrar function in the preceding example does nothing but register functions. Functions can also be registered by
usingtheepi csRegi st er Funct i on macro in the C source file containing the function and thef unct i on statement
in the application database description file. The example could thus be simplified to:

epi csRegi st er Functi on(mySubl nit);
epi csRegi st er Functi on( nySubPr ocess) ;

NOTE: The epicsExport system requires that the epi csExport Address, epi csExportRegistrar or
epi csRegi st er Funct i on statement appear in the same source module as whatever it exports.

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 15



Chapter 2: Getting Started
Building IOC components

2.5.2 Makefilerules

2.5.2.1 Building a support application.

# xxxRecord.h will be created from xxxRecord. dbd
DBDI NC += xxxRecord
DBD += nyexanpl eSupport . dbd

LI BRARY_I OC += nyexanpl eSupport

nmyexanpl eSupport SRCS += xxxRecord. c

nmyexanpl eSupport _SRCS += devXxxSoft.c

nyexanpl eSupport _SRCS += dbSubExanpl e. c
myexanpl eSupport _LIBS += $(EPI CS_BASE | OC LI BS)

The DBDINC rule looks for a file xxxRecord.dbd. From this file a file xxxRecord.h is created and installed into <top>/
include

The DBD rule finds myexampleSupport.dbd in the source directory and installs it into <top>/dbd

The LIBRARY_IOC statement states that a shared/static library should be created and installed into <top>/lib/<arch>.
The myexampleSupport_SRCS statements name all the source files that are compiled and put into the library.

The above statements are all that is needed for building many support applications.

2.5.2.2 Building the 10C application
The following statements build the |OC application:
PROD | CC = myexanpl e

DBD += nyexanpl e. dbd

# nmyexanpl e.dbd will be nmade up fromthese files:
nmyexanpl e_DBD += base. dbd

nyexanpl e_DBD += xxxSupport. dbd

nyexanpl e_DBD += dbSubExanpl e. dbd

# <nane>_regi st er RecordDevi ceDriver.cpp will be created from <nanme>. dbd
nmyexanpl e_SRCS += nyexanpl e_r egi st er Recor dDevi ceDri ver. cpp

nyexanpl e_SRCS _DEFAULT += nyexanpl eMai n. cpp

nmyexanpl e_SRCS vxWorks += -nil -

# Add locally conpiled object code
nyexanpl e_SRCS += dbSubExanpl e. c

#The fol |l owi ng adds support from base/src/vxWrks
nyexanmpl e_OBJS_vxWirks += $(EPI CS_BASE BI N)/ vxConlLi brary

nyexanpl e_LI BS += nmyexanpl eSupport
nyexanpl e_LI BS += $( EPI CS_BASE_| OC_LI BS)

PROD_IOC gives that name of the ioc application, which is named myexanpl e.

16 EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 2: Getting Started
makeBaseApp

The DBD definition myexample.dbd will cause build rules to create the database definition include file
myexamplelnclude.dbd from files in the myexample DBD definition. For each filename in the myexample DBD
definition, the created myexamplelnclude.dbd will contain an include statement for that filename. The created
myexamplelnclude.dbd file will contain the following lines.

i ncl ude "base. dbd"
i ncl ude "xxxSupport. dbd"
i ncl ude "dbSubExanpl e. dbd"

When the DBD build rules find the created file nyexanpl el ncl ude. dbd, the rules then call dbExpand which reads
nmyexanpl el ncl ude. dbd to generatefile nyexanpl e. dbd, and install it into <t op>/ dbd.

An arbitrary number of myexanpl e_SRCS statements can be given. One,
nmyexanpl e_r egi st er Recor dDevi ceDri ver. cpp, isspecia. When thisis seen the following happens:

» A perl scriptregi st er Recor dDevi ceDri ver. pl isexecuted. Taking myexample.dbd as input it generates
myexanpl e_r egi st er Recor dDevi ceDri ver. cpp.

2.6 makeBaseApp

makeBaseApp isa perl script that creates application areas. It can create the following:

» <top>/Makefile

* <top>/configure - This directory contains the files needed by the EPICS build system.
o <top>/xxxApp - A set of directories and associated filesfor a major sub-module.

* <top>/iocBoot - A subdirectory and associated files.

» <top>/iocBoot/iocxxx - A subdirectory and filesfor asingleioc.

makeBaseApp creates directories and then copies template files into the newly created directories while expanding
macros in the template files. EPICS base provides two sets of template files. simple and example. These are meant for
simple applications. Each site, however, can create its own set of template files which may provide additional
functionality. This section describes the functionality of makeBaseApp itself, the next section provides details about the
simple and example templ ates.

2.6.1 Usage

makeBaseA pp has four possible forms of command line:
<base>/ bi n/ <ar ch>/ nakeBaseApp. pl -h

Provides help.
<base>/ bi n/ <ar ch>/ makeBaseApp. pl -1 [options]

List the application templates available. Thisinvocation does not alter the current directory.
<base>/ bi n/ <ar ch>/ nakeBaseApp. pl [-t type] [options] app ...
Create application directories.
<base>/ bi n/ <ar ch>/ nakeBaseApp.pl -i -t type [options] ioc ...
Create ioc boot directories.

Optionsfor al command forms:

-b base

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 17



Chapter 2: Getting Started
makeBaseApp

Provides the full path to EPICS base. If not specified, the value is taken from the EPICS _BASE entry in config/
RELEASE. If the config directory does not exist, the path is taken from the command-line that was used to invoke
makeBaseApp

-T tenmpl ate
Set the template top directory (where the application templates are). If not specified, the template path is taken
from the TEMPLATE_TOP entry in config/RELEASE. If the config directory does not exist the path is taken from
the environment variable EPICS_MBA_TEMPLATE_TORP, or if thisis not set the templates from EPICS base are
used.

-d
Verbose output (useful for debugging)

Arguments uniqueto makeBaseApp. pl [-t type] [options] app ...:

app
One or more application names (the created directories will have " App" appended to this name)

-t type
Set the template type (use the -1 invocation to get alist of valid types). If this option is not used, type is taken from
the environment variable EPICS MBA_DEF _APP_TYPE, or if that is not set the values "default” and then
"example" aretried.

Arguments uniqueto makeBaseApp. pl -i [options] ioc ...:
i oc
One or more |OC names (the created directories will have "ioc " prepended to this name).

-a arch
Set the I0C architecture (e.g. vxWorks-68040). If -a ar ch isnot specified, you will be prompted.

2.6.2 Environment Variables:

EPI CS_MBA DEF_APP_TYPE

Application type you want to use as default
EPI CS_MBA TEMPLATE_TOP

Template top directory

2.6.3 Description

To create a new <top> issue the commands:

nkdir <top>

cd <top>

<base>/ bi n/ <ar ch>/ makeBaseApp. pl -t <type> <app> ..
<base>/ bi n/ <ar ch>/ makeBaseApp. pl -i -t <type> <ioc> ..

makeBaseA pp does the following:

» EPICS BASE islocated by checking the following in order:
* If the-b option is specified it is used.
« If a<t op>/ conf i g/ RELEASE file exists and defines avalue for EPI CS_BASE it is used.

e It is obtained from the invocation of makeBaseApp. For this to work, the full path name to the
makeBaseA pp.pl script in the EPICS base release you are using must be given.

* TEMPLATE_TOP slocated in asimilar fashion:
« If the-T option is specified it is used.
« If a<t op>/ conf i g/ RELEASE file exists and defines avalue for TEMPLATE_TOP it is used.

18 EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 2: Getting Started
makeBaseApp

e If EPICS_ MBA_TEMPLATE_TOP isdefined it is used.
 Itisset equal to <epi cs_base>/t enpl at es/ nakeBaseApp/ t op
« If -l is specified the list of application typesis listed and makeBaseApp terminates.
* If -i is specified and -ais not then the user is prompted for the |OC architecture.
* The application type is determined by checking the following in order:
 If -tisspecifieditisused.
e If EPICS_MBA_DEF_APP_TYPE isdefined it is used.
 If atemplate def aul t App exists, the application typeis set equal to default.
« If atemplate exanpl eApp exists, the application typeis set equal to example.
* If the application typeis not found in TEMPLATE_TOPR, makeBaseApp issues an error and terminates.
* If Makefile does not exist, it is created.
« If directory conf i gur e doesnot exist, it is created and populated with all the conf i gur e files.
* If -i is specified:
« If directory i ocBoot does not exist, it is created and the files from the template boot directory are copied
into it.
 For each <i oc> specified on the command line a directory iocBoot/ioc<ioc> is created and populated with
the files from the template (with ReplaceLine() tag replacement, see below).
* If -i isNOT specified:
* For each <app> specified on the command line a directory <app>App is created and populated with the
directory tree from the template (with Replacel.ing() tag replacement, see below).

2.6.4 Tag Replacement within a Template

When copying certain files from the template to the new application structure, makeBaseA pp replaces some predefined
tags in the name or text of the files concerned with values that are known at the time. An application template can extend
this functionality as follows:

» Two perl subroutines are defined within makeBaseA pp:
* ReplaceFilename - This substitutes for the following in names of any file taken from the templ ates.

« APPNAME_
e APPTYPE_
» Replaceline - This substitutes for the following in each line of each file taken from the templates:
e USER_
+ _EPICS BASE
« _ARCH_
 _APPNAME_
 _APPTYPE_
e TEMPLATE_TOP_
 _10C_

* If the application type directory has afile named Repl ace. pl it can:
* Replace one or both of the above subroutines with its own versions.
» Addasubroutine Repl aceFi | enaneHook( $f i | €) whichiscalled at theend of Repl aceFi | enane.
» Add asubroutine Repl acelLi neHook( $! i ne) whichiscalled at the end of Repl aceli ne.
« Include other code which is run after the command line options are interpreted.

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 19



Chapter 2: Getting Started
vxXWorks boot parameters

2.6.5 makeBaseApp templetes provided with base

2.6.5.1 support
This creates files appropriate for building a support application.

2.6.5.2ioc

Without the -i option, this createsfiles appropriate for building an ioc application, With the -i option it creates an ioc boot
directory.

2.6.5.3 example

Without the -i option it creates files for running an example. Both a support and an ioc application are built. With the -i
option it creates an ioc boot directory that can be used to run the example.

2.6.5.4 caClient

This builds two Channel Access clients.

2.6.5.5 caServer

This builds an example Portable Access Server.

2.7 vxWorks boot parameters

The vxWorks boot parameters are set via the console serial port on your |OC. Life is much easier if you find out how to
connect the serial port to awindow on your workstation.

The vxWorks boot parameters |ook something like the following:

boot device DOXXX

processor numnber . 0

host nane DOXXX

file nane . <full path to board support>/vxWrks
i net on ethernet (e) ©OXXX. XXX. XXX. XXX: <net mask>

host inet (h) DOXXX. XXX, XXX, XXX

user (u) DOXXX

ftp password (pw) DOXXX

flags (f) N 0)'{0]

target nane (tn) . <hostnane for this inet address>
startup script (s) . <top>/iocBoot/iocnyexanpl e/ st.cnd

The actual values for each field are site and 10C dependent. Two fields that you can change at will are the vxWorks boot
image and the location of the startup script.

Note that the full path name for the correct board support boot image must be specified. If bootp is used the same
information will need to be placed in the bootp host’s configuration database instead.

When your boot parameters are set properly, just press the reset button on your 1OC, or use the @ command to commence
booting. You will find it VERY convenient to have the console port of the IOC attached to a scrolling window on your
workstation.

20 EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 2: Getting Started
RTEMS boot procedure

2.8 RTEMS boot procedure

RTEMS uses the vendor-supplied bootstrap mechanism so the method for booting an |OC depends upon the hardware in
use.

2.8.1 Booting from a BOOTP/DHCP/TFTP server

Many boards can use BOOTP/DHCP to read their network configuration and then use TFTP to read the applicaion
program. RTEMS can then use TFTP or NFSto read startup scripts and configuration files. If you are using TFTP to read
the startup scripts and configuration files you must install the EPICS application files on your TFTP server as follows:

» Copy al db/xxx files to <tftpbase>/epics/<target_hostname>/db/xxx.
» Copy al dbd/xxx files to <tftpbase>/epics/<target_hostname>/dbd/xxx.
» Copy the st.cmd script to <tftpbase>/epics/<target_hostname>/st.cmd.

Use DHCP site-specific option 129 to specify the path to the |OC startup script.

2.8.2 Motorola PPCBUG boot parameters

Motrola single-board computers which employ PPCBUG should have their ‘NIOT’ parameters set up like:
Control l er LUN =00

Devi ce LUN =00

Node Control Menory Address =FFE10000

Cient |IP Address ='Dotted-decimal’ |P address of IOC

Server | P Address ='Dotted-decimal’ |P address of TFTP/NFS server

Subnet | P Address Mask ='Dotted-decimal’ IP address of subnet mask (255.255.255.0 for class C subnet)
Broadcast | P Address ='Dotted-decimal’ |P address of subnet broadcast address

Gateway | P Address ='Dotted-decimal’ | P address of network gateway (0.0.0.0 if none)

Boot File Nane =Path to application bootable image (..../bin/fRTEM S-mvme2100/test.boot)
Argurent File Nane =Path to application startup script (..../iocBoot/ioctest/st.cmd)

Boot File Load Address =001F0000 (actual value depends on BSP)

Boot File Execution Address =001F0000 (actual value depends on BSP)

Boot File Execution Del ay =00000000

Boot File Length =00000000

Boot File Byte Of set =00000000

BOOTP/ RARP Request Retry =00

TFTP/ ARP Request Retry =00

Trace Character Buffer Address =00000000

2.8.3 MotorolaMOTL OAD boot parameters

Motrola single-board computers which employ MOTLOAD should have their network ‘Global Environment Variable’
parameters set up like:

not - / dev/ enet 0- ci pa="'Dotted-decimal’ IP address of IOC

not - / dev/ enet 0- si pa='Dotted-decimal’ |P address of TFTP/NFS server

not - / dev/ enet 0- snima="'Dotted-decimal’ IP address of subnet mask (255.255.255.0 for class C subnet)
not - / dev/ enet 0- gi pa="'Dotted-decimal’ IP address of network gateway (omit if none)

not - / dev/ enet 0- f i | e=Path to application bootable image (..../bin/fRTEM S-mvme5500/test.boot)
rtems-client-nane=10C name (ot - / dev/ enet 0- ci pa will be used if this parameter is missing)
rt ems- dns- ser ver ='Dotted-decimal’ |P address of domain name server (omit if none)

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 21



Chapter 2: Getting Started
RTEMS boot procedure

rt ems- dns- domai nnane=Domain name (if this parameter is omitted the compiled-in value will be used)
epi cs- scri pt =Path to application startup script (..../iocBoot/ioctest/st.cd)

Thenot - scri pt - boot parameter should be set up like:

tftpGet -a4000000 -cxxx -SXXX - MKxX - gxxx -d/ dev/enetO -f ../binfRTEMS-mvme5500/test.boot
net Shut
go -a4000000

where the -, -s, -m and -g values should match the cipa, sipa, snma and gipa values, respectively and the -f value should
match the file value.

2.8.4 RTEMS NFS access

For 10Cs which use NFS for remote file access the EPICS initialization code uses the startup script pathname to
determine the parameters for the initial NFS mount. |f the startup script pathname beginswith a‘/ ’ the first component
of the pathname is used as both the server path and the local mount point. If the startup script pathname does not begin
with a‘/’ the first component of the pathname is used as the local mount point and the server pathis*‘/ t f t pboot / ”
followed by the first component of the pathname. This allows the NFS client used for EPICS file access and the TFTP
client used for bootstrapping the application to have asimilar view of the remote filesystem.

285 RTEMS ‘Cexp’

The RTEMS ‘' Cexp’ add-on package provides the ability to load object modules at application run-time. If your RTEMS
build includes this package you can load RTEM S |OC applications in the same fashion as vxWorks |OC applications.

22 EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 3: EPICS Overview

3.1 What isEPICS?

EPICS consists of a set of software components and tools that Application Devel opers use to create a control system. The

basic components are:

» OPI: Operator Interface. Thisis aworkstation which can run various EPICS tools.

* |OC: Input/Output Controller. Any platform that can support EPICS run time databases together with the other
software components described in the manual. One example is a workstation. Another example is a VME/VXI

based system using vxWorks or RTEM S as the realtime operating system.

e LAN: Loca AreaNetwork. Thisisthe communication network which allows the |IOCs and OPIs to communicate.
EPICS provides a software component, Channel Access, which provides network transparent communication

between a Channel Access client and an arbitrary number of Channel Access servers.

A control system implemented via EPICS has the following physical structure.

OPI

OPI

OPI

I0C

Therest of this chapter gives a brief description of EPICS:

» Basic Attributes: A few basic attributes of EPICS.

I0C

LAN

 Platforms: The vendor supplied Hardware and Software platforms EPICS supports.

3.2 Basic Attributes

The basic attributes of EPICS are:

10C Software: EPICS supplied 10C software components.

» Channel Access. EPICS software that supports network independent access to |0C databases.
OPI Tools. EPICS supplied OPI based tools.
EPICS Core: A list of the EPICS core software, i.e. the software components without which EPICS will not work.

EPICS Release 3.14.9

EPICS I0C Application Developer’s Guide




Chapter 3: EPICS Overview
Hardware - Software Platforms (Vendor Supplied)

Tool Based: EPICS provides a number of tools for creating a control system. This minimizes the need for custom
coding and helps ensure uniform operator interfaces.

Distributed: An arbitrary number of IOCs and OPIs can be supported. Aslong as the network is not saturated, no
single bottle neck is present. A distributed system scales nicely. If asingle |OC becomes saturated, its functions can
be spread over several 10Cs. Rather than running all applications on a single host, the applications can be spread
over many OPIs.

Event Driven: The EPICS software components are all designed to be event driven to the maximum extent
possible. For example, rather than having to poll 10Cs for changes, a Channel Access client can request that it be
notified when a change occurs. This design leads to efficient use of resources, as well as, quick response times.
High Performance: A SPARC based workstation can handle several thousand screen updates a second with each
update resulting from a Channel Access event. A 68040 IOC can process more than 6,000 records per second,
including generation of Channel Access events.

3.3 Hardware - Software Platforms (Vendor Supplied)

EPICS core components (including IOC components) run on a wide range of systems. Currently this includes the
following platforms, but new operating system platforms can be easily supported if they have reasonable support for
sockets and threads. Currently most 32 bit processors are supported. Some limited testing has been performed on 64 bit
processors.

3.3.1 0PI

Platforms

Unix based Workstations: Well supported platformsinclude SOLARIS, and HP-UX
Linux

Darwin, i.e. Mac OS 10

Windows NT

Limited support for VMS

3.3.2LAN
Hardware

Ethernet (most flavors)

Software

TCP/IP protocols via sockets

3.3.310C
Hardware

VME/VXI bus and crates
e Various VME modules (ADCs, DAC, Binary |/O, etc.)
 Allen Bradley Scanner (Most AB 1/0 modules)
» GPIB devices

24

EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 3: EPICS Overview
I0C Software Components

« BITBUS devices
« CAMAC
« CANBUS
Motorola 68K
* Intel
AMD Athelon
* PowerPC
* Sun Sparc
« HP

Software

» vxWorks operating system
* Real time kernel
« Extensive “Unix like’ libraries
RTEMS
e Linux
* Unix
e Darwin
e win32

3.4 10C Software Components

An 1OC contains the following EPICS supplied software components.

Ethernet

Scanners

Driver or
Device
Interrupt
Routines

Channel Sequencer
Access
‘[_, Moni
onitors
Database
Access I0C Database

Record Support

Device Support

VME

Device
Drivers

» |OC Database: The memory resident database plus associated data structures.

EPICS Release 3.14.9

EPICS I0C Application Developer’s Guide

25



Chapter 3: EPICS Overview
I0C Software Components

» Database Access: Database access routines. With the exception of record and device support, all access to the
database is via the database access routines.

» Scanners. The mechanism for deciding when records should be processed.

» Record Support: Each record type has an associated set of record support routines.

* Device Support: Each record type can have one or more sets of device support routines.

» DeviceDrivers: Device drivers access external devices. A driver may have an associated driver interrupt routine.

» Channel Access. The interface between the external world and the IOC. It provides a network independent
interface to database access.

* Monitors. Database monitors are invoked when database field values change.

* Sequencer: A finite state machine.

Let’s briefly describe the major components of the |OC and how they interact.

3.4.110C Database

The heart of each 10C is a memory resident database together with various memory resident structures describing the
contents of the database. EPICS supports a large and extensible set of record types, e.g. ai (Anaog Input), ao (Analog
Output), etc.

Each record type has a fixed set of fields. Some fields are common to al record types and others are specific to particular
record types. Every record has a record name and every field has a field name. The first field of every database record
holds the record name, which must be unique across all |OCs that are attached to the same TCP/IP subnet.

Data structures are provided so that the database can be accessed efficiently. Most software components, because they
access the database via database access routines, do not need to be aware of these structures.

3.4.2 Database Access

With the exception of record and device support, al access to the database is via the channel or database access routines.
See Chapter 15, “Runtime Database Access’ on page 209 for details.

3.4.3 Database Scanning

Database scanning is the mechanism for deciding when to process a record. Five types of scanning are possible: Periodic,
Event, 1/0 Event, Passive and Scan Once.

» Periodic: A request can be made to process arecord periodically. A number of time intervals are supported.

» Event: Event scanning is based on the posting of an event by any |OC software component. The actual subroutine
cal is.

post _event (event _num

* 1/O Event: The I/O event scanning system processes records based on external interrupts. An 10C device driver
interrupt routine must be available to accept the external interrupts.

» Passive: Passive records are processed as a result of linked records being processed or as a result of external
changes such as Channel Access puts.

» Scan Once: In order to provide for caching puts, The scanning system provides a routine scanOnce which
arranges for arecord to be processed one time.

26 EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 3: EPICS Overview
Channel Access

3.4.4 Record Support, Device Support and Device Drivers

Database access needs no record-type specific knowledge, because each record-type has its associated record support
module. Therefore, database access can support any number and type of records. Similarly, record support contains no
device specific knowledge, giving each record type the ability to have any number of independent device support
modules. If the method of accessing the piece of hardware is more complicated than what can be handled by device
support, then adevice driver can be devel oped.

Record types not associated with hardware do not have device support or device drivers.

The 10C software is designed so that the database access layer knows nothing about the record support layer other than
how to call it. The record support layer in turn knows nothing about its device support layer other than how to call it.
Similarly the only thing a device support layer knows about its associated driver is how to call it. This design alows a
particular installation and even a particular IOC within an installation to choose a unique set of record types, device types,
and drivers. The remainder of the |OC system software is unaffected.

Because an Application Developer can develop record support, device support, and device drivers, these topics are
discussed in greater detail in later chapters.

Every record support module must provide a record processing routine to be called by the database scanners. Record
processing consists of some combination of the following functions (particular records types may not need all functions):

e Input: Read inputs. Inputs can be obtained, via device support routines, from hardware, from other database
records via database links, or from other IOCs via Channel Access links.

» Conversion: Conversion of raw input to engineering units or engineering units to raw output values.

» Output: Write outputs. Output can be directed, via device support routines, to hardware, to other database records
viadatabase links, or to other IOCs via Channel Access links.

» Raise Alarms; Check for and raise alarms.
» Monitor: Trigger monitors related to Channel Access callbacks.
» Link: Trigger processing of linked records.

3.4.5 Channel Access

Channél Accessis discussed in the next section.

3.4.6 Database Monitors

Database monitors provide a callback mechanism for database value changes. This allows the caller to be notified when
database values change without constantly polling the database. A mask can be set to specify value changes, alarm
changes, and/or archival changes.

At the present time only Channel Access uses database monitors. No other software should use the database monitors.
The monitor routines will not be described because they are of interest only to Channel Access.

3.5 Channdl Access

Channel Access provides network transparent access to 10C databases. It is based on a client/ server model. Each 10C
provides a Channel Access server which is willing to establish communication with an arbitrary number of clients.
Channel Access client services are available on both OPIsand 10Cs. A client can communicate with an arbitrary number
of servers.

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 27



Chapter 3: EPICS Overview
Channel Access

3.5.1 Client Services

The basic Channel Access client services are;

» Search: Locatethe IOCs containing selected process variables and establish communication with each one.
» Get: Get value plus additional optional information for a selected set of process variables.
» Put: Change the values of selected process variables.

» Add Event: Add a change of state callback. This is a request to have the server send information only when the
associated process variable changes state. Any combination of the following state changes can be requested:
change of value, change of alarm status and/or severity, and change of archival value. Many record types provide
hysteresis factors for value changes.

In addition to requesting process variable values, any combination of the following additional information may be
requested:

o Status: Alarm status and severity.

» Units: Engineering units for this process variable.

» Precision: Precision with which to display floating point numbers.

e Time: Time when the record was last processed.

* Enumerated: A set of ASCII strings defining the meaning of enumerated values.

» Graphics: High and low limits for producing graphs.

e Control: Highand low control limits.

e Alarm: TheadarmH H , H GH, LOWand LOLOvalues for the process variable.

It should be noted that Channel Access does not provide access to database records as records. Thisis a deliberate design
decision. This allows new record types to be added without impacting any software that accesses the database via Channel
Access, and it allows a Channel Access client to communicate with multiple 10Cs having differing sets of record types.

3.5.2 Search Server

Channel Access provides an 10C resident server which waits for Channel Access search messages. These are generated
when a Channel Access client (for example when an Operator Interface task starts) searches for the IOCs containing
process variables the client uses. This server accepts all search messages, checksto see if any of the process variables are
located in this1OC, and, if any are found, replies to the sender with and “I have it” message.

3.5.3 Connection Request Server

Once the process variables have been located, the Channel Access client issues connection requests for each 10C
containing process variables the client uses. The connection request server, in the |OC, accepts the request and establishes
a connection to the client. Each connection is managed by two separate tasks: ca_get and ca_put . Theca_get and
ca_put requests map to dbCet Fi el d and dbPut Fi el d database access requests. ca_add_event requestsresult in
database monitors being established. Database access and/or record support routines trigger the monitors via a call to
db_post _event.

3.5.4 Connection M anagement

Each 10C provides a connection management service. When a Channel Access server fails (e.g. its IOC crashes) the
client is notified and when a client fails (e.g. its task crashes) the server is notified. When a client fails, the server breaks
the connection. When a server crashes, the client automatically re-establishes communication when the server restarts.

28 EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 3: EPICS Overview
OPI Tools

3.6 OPI Tools

EPICS provides a number of OPI based tools. These can be divided into two groups based on whether or not they use
Channel Access. Channel Accesstoolsarereal timetools, i.e. they are used to monitor and control 10Cs.

3.6.1 Examples of channel Access Tools

A large number of Channel Access tools have been devel oped. The following are some representative examples.

EDM - Extensible Display Manager. The newest display manager/editor for EPICS.
MEDM: Motif version of combined display manager and display editor.

DM: Display Manager. Reads one or more display list files created by EDD, establishes communication with all
necessary 10Cs, establishes monitors on process variables, accepts operator control requests, and updates the
display to reflect all changes.

stripTool - General purpose stripchart tool.

ALH: Alarm Handler. General purpose alarm handler driven by an alarm configuration file.
AR: Archiver. General purpose tool to acquire and save data from 10Cs.

Sequencer: Runsinan I0C and emulates a finite state machine.

BURT: Backup and Restore Tool. General purpose tool to save and restore Channel Access channels. Thetool can
be run via Unix commands or viaa Graphical User Interface.

KM: Knob Manager - Channel Access interface for the sun dials (a set of 8 knobs)

PROBE: Allows the user to monitor and/or change a single process variable specified at run time.
CAMATH: Channel Accessinterface for Mathematica

CAWINGZ: Channel Accessinterface for Wingz.

IDL/PVWAVE Channel Access Interfaces exist for these products.

TCL/TK Channel Access Interface for these products.

CDEV - A library designed to provide a standard API to one or more underlying packages, typically control
system interfaces. CDEV provides a Channel Access service.

3.6.2 Examples of other OPI Tools

VDCT - A Java based database configuration tool which is quickly becoming the recommended database
configuration tool.

JDCT: Java Database Configuration Tool. A JAVA based tool for creating run time databases.

GDCT: Graphical Database Configuration Tool. Used to create a run time database for an IOC. Thisis no longer
being developed since it is based on an open source software system called unidraw, which is no longer being
supported.

EDD: Display Editor. This tool is used to create a display list file for the Display Manager. A display list file
contains alist of static, monitor, and control elements. Each monitor and control element has an associated process
variable.

SNC: State Notation Compiler. It generates a C program that represents the states for the |OC Sequencer tool.
Database Tools - Tools are provided which generate C include files from menu and record type database definition
files.

Source/Release; EPICS provides a Source/Rel ease mechanism for managing EPICS.

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 29



Chapter 3: EPICS Overview
EPICS Core Software

3.7 EPICS Core Software

EPICS consists of a set of core software and a set of optional components. The core software, i.e. the components of
EPICS without which EPICS would not function, are:

» Channel Access - Client and Server software
10C Database

e Scanners

» Monitors

« Database Definition Tools

» Source/Release

All other software components are optional. Of course, any application developer would be crazy to ignore tools such as
MEDM (or EDD/DM). Likewise an application developer would not start from scratch developing record and device
support. Most OPI tools do not, however, have to be used. Likewise any given record support module, device support
module, or driver could be deleted from a particular IOC and EPICS will still function.

30 EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 4. EPICS Build Facility

Janet Anderson is the author of this chapter.

4.1 Overview

This chapter describes the EPICS build facility including directory structure, environment and system requirements,
configuration files, Makefiles, and related build tools.

4.1.1 <top> Directory structure

EPICS software can be divided into multiple <top> areas. Examples of <top> areas are EPICS base itself, EPICS
extensions, and simple or complicated 10C applications. Each <top> may be maintained separately. Different <top> areas
can be on different releases of external software such as EPICS base rel eases.

A <top> directory has the following directory structure;

<t op>/
Makefil e
confi gure/
dirl/
dir2/

where configure is a directory containing build configuration files and a M akefile and where dirl, dir2, ... are user created
subdirectory trees with Makefiles and source files to be built.

4.1.2 Install Directories

Filesinstalled during the build are installed into subdirectories of an installation directory which defaults to $(TOP), the
<top> directory. For base the default value can be changed in the configure/CONFIG_SITE file. For extensions and
applications the default value can be overridden in the configure/ CONFIG file. The installation directories for the EPICS
components are:

e INSTALL_LOCATION - base.

* INSTALL_LOCATION_EXTENSIONS - extensions

* INSTALL_LOCATION_APP - applications
The following subdirectories may also exist in the installation directory. They are created by the build and contain the
installed build components.

« dbd - Directory into which Database Definition files are installed.

* include - The directory into which C header files are installed. These header files may be generated from menu and
record type definitions.

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 31



Chapter 4: EPICS Build Facility
Overview

* bin - Thisdirectory contains asubdirectory for each host architecture and for each target architecture. These are the
directories into which executables, binaries, etc. areinstalled.

* lib - Thisdirectory contains a subdirectory for each host architecture. These are the directories into which libraries
areinstalled.

 db - Thisisthe directory into which database record instance, template, and substitution files are installed.

* html - Thisisthe directory into which html documentation isinstalled.

 templates- Thisisthe directory into which template files are installed.

« javalib - Thisisthe directory into which java classfiles and jar files are installed.

« configure - The directory into which configure files are installed (if INSTALL_LOCATION not equal TOP).

4.1.3 Elements of build system

The main ingredients of the build system are;

A set of configuration files and tools provided in the EPICS base/configure directory

A corresponding set of configuration files in the <top>/configure directory of a non-base <top> directory structure
to be built. The makeBaseApp.pl and makeBaseExt.pl scripts create these configuration files. Many of these files
just include afile of the same name from the base/configure directory.

* Makefilesin each directory of the <top> directory structure to be built

4.1.4 Features

The principal features of the build system are:

» Requires asingle Makefile in each directory of a <top> directory structure

* Supports both host os vendor’s native compiler and GNU compiler

* Supports building multiple types of software (libraries, executables, databases, java class files, etc.) stored in a
single directory tree.

* Supports building EPICS base, extensions, and 10C applications.

* Supports multiple host and target operating system - architecture combinations.

 Allowsbuildsfor al hosts and targets within a single <top> source directory tree.

* Allows sharing of components such as special record/device/drivers across <top> areas.

» gnumake is the only command used to build a <top> area.

4.1.5 Multiple host and target systems

You can build on multiple host systems and for multiple cross target systems using a single EPICS directory structure.
The intermediate and binary files generated by the build will be created in separate O.* subdirectories and installed into
the appropriate separate host or target install directories. EPICS executables and scripts are installed into the
S(INSTALL_LOCATION)/bin/<arch> directories. Libraries areinstalled into $(INSTALL_LOCATION)/lib/<arch>. The
default definition for $(INSTALL_LOCATION) is $(TOP) which is the root directory in the directory structure.
Architecture dependant created files (e.g. object files) are stored in O.<arch> source subdirectories, and architecture
independent created files are stored in O.Common source subdirectories. This allows objects for multiple cross target
architectures to be maintained at the same time.

To build EPICS base for a specific host/target combination you must have the proper host/target c/c++ cross compiler and
target header files, CROSS_COMPILER_HOST_ARCHS must empty or include the host architecture in itslist value, the
CROSS _COMPILER_TARGET_ARCHS variable must include the target to be cross-compiled, and the base/configure/
os directory must have the appropriate configurefiles.

32 EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 4: EPICS Build Facility
Build Requirements

4.2 Build Requirements

4.2.1 Host Environment Variable

Only one environment variable, EPI CS_HOST_ARCH, is required to build EPICS <top> areas. This variable should be
set to be your workstation's operating system - architecture combination to use the os vendor’s c¢/c++ compiler for native
builds or set to the operating system - architecture - alternate compiler combination to use an alternate compiler for native
builds if an aternate compiler is supported on your system. The filenames of the CONFI G *. Comrmon  files in base/
configure/os show the currently supported EPICS HOST _ARCH vaues. Examples are sol ari s-sparc,
sol ari s-sparc-gnu, |inux-x86, w n32-x86, and wi n32-x86-borl and.

4.2.2 Software Prerequisites

Before you can build EPICS components your host system must have the following software installed:

* Perl version 5 or greater
* GNU make, version 3.78.1 or greater
» C++ compiler (host operating system vendor's compiler or GNU compiler)

If you will be building EPICS components for vxWorks targets you will also need:

 Tornado Il and one or more board support packages. Consult the vxWorks documentation for details.
If you will be building EPICS components for RTEM S targets you will also need:

» RTEMS development tools and libraries required to run EPICS 10C applications.

4.2.3 Path requirements

You must have the perl executable in your path and you may need C and C++ compilers in your search path. Check
definitions of CC and CCC in base/configure/oy CONFIG.<host>.<host> or the definitions for GCC and G++ if
ANSI=GCC and CPLUSPLUS=GCC are specified in CONFIG_SITE. For building base you also must have echo in your
search path.

4.2.3.1 Unix path

For Unix host builds you also need touch, cpp, cp, rm, mv, and mkdir in your search path and /bin/chmod must exist. On
some Unix systems you may also need ar and ranlib in your path, and the ¢ compiler may requireld in your path.

4.2.3.2Win32 PATH

On WIN32 systems, building shared libraries is the default setting and you will need to add fullpathname to
$(INSTALL_LOCATION)/bin/$(EPICS _HOST_ARCH) to your path. Building shared libraries is determined by the
value of the macro SHARED LIBRARIESin CONFIG_SITE or oCONFIG.Common.<host> (either YES or NO).

4.2.4 Startup files

The startup directory in EPICS base contains a perl script, Epi csHost Arch. pl, which can be used to define
EPICS HOST_ARCH. This script can be invoked with a command line parameter defining the alternate compiler (e.g. if
invoking "Epi csHost Ar ch. pl " yields solaris-sparc, then invoking "Epi csHost Arch. pl  gnu" will yield solaris-
sparc-gnu).

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 33



Chapter 4: EPICS Build Facility
Configuration Definitions

The startup directory also contains scripts to help users set the path and other environment variables

4.3 Configuration Definitions

4.3.1 Site-specific EPICS Base Configuration

4.3.1.1 Site configuration
To configure EPICS base for your site, you may want to modify the default definitions in the following files:

configure/ CONFIG_SITE Build choices. Specify target archs.
configure/CONFIG_SITE_ENV Environment variable defaults

4.3.1.2 Host configuration

To configure each host system for your site, you may override the default definitions in the configure/os directory by
adding a new file with override definitions. The new file should have the same name as the distribution file to be
overridden except CONFIG in the nameis changed to CONFIG_SITE.

configure/os/CONFIG_SITE.<host>.<host> - Host build settings
configure/oyCONFIG_SITE.<host>.Common - Host build settings for all target systems

4.3.1.3 Target configuration

To configure each target system, you may override the default definitions in the configure/os directory by adding a new
file with override definitions . The new file should have the same name as the distribution file to be overridden except
CONFIG inthe nameisreplaced by CONFIG_SITE.

configure/oCONFIG_SITE.Common.<target> - Target cross settings
configure/osyCONFIG_SITE.<host>.<target> - Host-target settings
configure/oCONFIG_SITE.Common.vxWorksCommon - vxWorks full paths

4.3.1.4 R3.13 compatibility configuration

To configure EPICS base for building with R3.13 extensions and ioc applications, you must modify the default definitions
in the base/config/ CONFIG_SITE* files to agree with site definitions you made in base/configure and base/configure/os
files.

4.3.2 Directory definitions

The configure files contain definitions for locations in which to install various components. These are al relative to
| NSTALL_LOCATI ON. The default value for | NSTALL_LOCATI ONis$(TOP), and $(T_A) is the current build’s target
architecture. The default value for INSTALL_LOCATION can be overridden at the bottom of an ioc application’s
configure/ CONFIG file. For base set INSTALL_LOCATION in the CONFIG_SITE file.

| NSTALL_LOCATI ON_LI B $(1 NSTALL_LOCATION)/1i b
| NSTALL_LOCATI ON_BI N $( 1 NSTALL_LOCATI ON) / bi n

| NSTALL_HOST_BI N
| NSTALL_HOST LI B

$(1 NSTALL_LOCATI ON_BI N) / $( EPI CS_HOST_ARCH)
$( 1 NSTALL_LOCATI ON_LI B) / $( EPI CS_HOST_ARCH)

34 EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 4: EPICS Build Facility
Configuration Definitions

| NSTALL_| NCLUDE $( 1 NSTALL_LOCATI ON) / i ncl ude

| NSTALL_DOC = $(1 NSTALL_LOCATI ON) / doc

| NSTALL_HTM. = $(| NSTALL_LOCATI ON) / ht n

| NSTALL_TEMPLATES = $(1 NSTALL_LOCATI ON) / t enpl at es
| NSTALL_DBD = $(1 NSTALL_LOCATI ON) / dbd

| NSTALL_DB = $(1 NSTALL_LOCATI ON) / db

| NSTALL_CONFI G = $(| NSTALL_LOCATI ON) / conf i gur e
| NSTALL_JAVA = $(| NSTALL_LOCATI ON) / j aval i b

| NSTALL_LI B $( | NSTALL_LOCATI ON_LI B)/ $( T_A)

I NSTALL_SHRLI B
| NSTALL_TCLLI B
| NSTALL_BI'N

$( | NSTALL_LOCATI ON_LI B)/ $( T_A)
$( | NSTALL_LOCATI ON_LI B)/ $( T_A)
$( 1 NSTALL_LOCATI ON_BI N) / $( T_A)

4.3.3 Extension and Application Specific Configuration

The base/configure directory contains files with the default build definitions and site specific build definitions. The
extensions/configure directory contains extension specific build definitions ( e.g. location of X11 and Matif libraries) and
"include <filename>" lines for the base/configure files. Likewise, the <application>/configure directory contains
application specific build definitions and includes for the base/configure files. Build definitions such a
CROSS COMPILER _TARGET_ARCHS can be overridden in an extension or application by placing an override
definition in the <top>/configure/ CONFIG_SITE file.

4.3.4 RELEASE file

Every <top>/configure directory contains a RELEASE file. RELEASE contains a user specified list of other <top>
directory structures containing files needed by the current <top>. When make is executed in configure, a perl script,
convert Rel ease. pl, generates CONFIG_APP_INCLUDE in the O.<arch> subdirectories which contains include,
bin, and library directory definitions for each external <top> definition in the RELEASE file. CONFIG_APP_INCLUDE
isincluded into the CONFIG file so its definitions are available for use by Makefiles. The convert Rel ease. pl script
also generates a RULES _INCLUDE file which contains an include statement for any existing RULES_BUILD filesfrom
each external <top> listed in the RELEASE file. RULES_INCLUDE isincluded by the RULES BUILD filein EPICS
base so al make rulesin the external <top> RULES BUILD files are available for use by Makefiles.

For example, if configure/REL EASE contains the following definition:
CAMAC = / home/ epi cs/ nodul es/ bus/ canmac
then the created CONFIG_APP_INCLUDE will contain the following lines

CAMAC _BI' N = /hone/ epi cs/ nodul es/ bus/ canmac/ bi n/ sol ari s-sparc
CAVAC_LI B = /hone/ epi cs/ nodul es/ bus/ camac/ | i b/ sol ari s-sparc
RELEASE | NCLUDES += -1/ hone/ epi cs/ nodul es/ bus/ camac/ i ncl ude
RELEASE DBDFLAGS += -1 /hone/ epi cs/ nodul es/ bus/ camac/ dbd

and the created RULES _INCLUDE will contain the following line
-include /hone/ epi cs/ nodul es/ bus/ camac/ confi gure/ RULES BUI LD

RELEASE _DBDFLAGS will appear on the command lines for the doToRecordTypeH, mkmf.pl, and dbExpand tools,
and RELEASE_INCLUDES will appear on compiler command lines. CAMAC_LIB and CAMAC_BIN can beused in a
Makefile to define the location of needed scripts, executables, object files, libraries or other files.

Definitions in configure/RELEASE can be overridden for a specific EPICS HOST_ARCH architecture by providing a
configure/REL EASE.<epics_host_arch> file containing overriding definitions.

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 35



Chapter 4: EPICS Build Facility
Configuration Definitions

4.3.5 Modifying configure/RELEASE* files

You should dwaysdo a"gnumake cl ean uni nst al | " inthe <top> level directory BEFORE adding, changing, or
removing any definitions in the configure/RELEASE* files and then a"gnunake" at the top level AFTER making the
changes.

The file <top>/config/REL EASE contains definitions for components obtained from outside <top>. If you want to link to
anew release of anything defined in the file do the following:

cd <top>
gnurmake cl ean uni nstal |
edit confi gure/ RELEASE
change the relevant ling(s) to point to the new release
ghumake

All definitions in <top>/config/RELEASE must result in complete path definitions, i.e. relative path names are not
permitted. If your site could have multiple releases of base and other <supporttop> components installed at once, these
path definitions should contain a release number as one of the components. However as the RELEASE file is read by
gnumake, it is permissible to use macro substitutions to define these pathnames, for example:

SUPPORT = /usr/local/iocapps/R3.13.1
EPICS _BASE = $(SUPPORT)/base/3-13-1-asd2

4.3.6 Specifying osclass specific definitions

Definitionsin a Makefile will apply to the host system (the platform on which make is executed) and each system defined
by CROSS COMPILER_TARGET_ARCHS.

Itispossible to limit the systems for which a particular definition applies. Most M akefile definitions can be specified with
an appended underscore " " followed by an osclass specification. If an _<osclass> is not specified, then the definition
applies to the host and al CROSS COMPILER_TARGET_ARCHS systems. If an _<osclass> is specified, then the
definition applies only to systems with the specified os class. A Makefile definition can also have an appended
_DEFAULT specification. If _DEFAULT is appended, then the Makefile definition will apply to al systems that do not
have an _<osclass> specification for that definition. If a_DEFAULT is appended on a definition but the definition should
not apply to a particular system <osclass>, the value "-nil-" should be specified in the relevant Makefile definition.

Each system has an OS_CLASS definition in its configure/os/ CONFIG.Common.<arch> file. A few examples are:

For vxWorks-* targets <osclass> is vxWorks.
For RTEMS-* targets <osclass> is RTEMS.
For solaris-* targets <osclass> is solaris.

For win32-* targets <osclass> is WIN32.

For linux-* targets <osclass> is Linux.

For hpux-* targets <osclass> is hpux.

For darwin-* targets <osclass> is Darwin.
For aix-* targets <osclass> isAlX.

For example the following Makefile lines specify that product aaa should be created for all systems. Product bbb should
be created for systemsthat do not have OS_CLASS defined as solaris.

PROD = aaa
PROD sol ari s
PROD_DEFAULT

-nil -
bbb

36 EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 4: EPICS Build Facility
Makefiles

4.3.7 Specifying T_A specific definitions
It is possible for the user to limit the systems for which a particular definition applies to specific target systems.

For example the following Makefile lines specify that product aaa should be created for all target architecture which allow
IOC type products and product bbb should be created only for the vxWorks-68040 and vxWorks-ppc603 targets.
Remember T_A is the build’s current target architecture. so PROD_|OC has the bbb value only when the current built
target architecture is vwWorks-68040 or vxWorks-ppc603

PROD | OC = aaa

VX _PROD vxWor ks- 68040 = bbb
VX_PROD_vxWor ks- ppc603 = bbb
PROD_| OC += VX_PROD_$(T_A)

4.3.8 Host and | oc targets

Build creates two type of makefile targets. Host and loc. Host targets are executables, object files, libraries, and scripts
which are not part of iocCore. loc targets are components of ioc libraries, executables, object files, or iocsh scripts which
will berunonanioc.

Each supported target system hasa VALID_BUIL DS definition which specifies the type of makefile targetsit can support.
This definition appears in configure/os/ CONFIG.Common.<arch> or configure/os’ CONFIG.<arch>.<arch> files.

For vxWorks systems VALID_BUILDSisset to "loc".

For Unix type systems, VALID_BUILDS s set to "Host loc".
For RTEMS systems, VALID_BUILDS issetto "loc".

For WIN32 systems, VALID_BUILDS is set to "Host loc".

In a Makefile it is possible to limit the systems for which a particular PROD, TESTPROD, LIBRARY, SCRIPTS, and
OBJS is huilt. For example the following Makefile lines specify that product aaa should be created for systems that
support Host type builds. Product bbb should be created for systems that support loc type builds. Product ccc should be
created for al target systems.

PROD_HOST = aaa
PROD | OC = bbb
PRCD = ccc

These definitions can be further limited by specifying an appended underscore " " followed by an osclass or DEFAULT
specification.

4.4 Makefiles

4.4.1 Name
The name of the makefile in each directory must be Makefile.

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 37



Chapter 4: EPICS Build Facility
Makefiles

4.4.2 Included Files

Makefiles normally include files from <top>/configure. Thus the makefile "inherits' rules and definitions from configure.
The files in <top>/configure may in turn include files from another <top>/configure. This technique makes it possible to
share make variables and even rules across <top> directories.

4.4.3 Contents of M akefiles

4.4.3.1 Makefilesin directories containing subdirectories

A Makefile in this type of directory must define where <top> is relative to this directory, include <top>/configure files,
and specify the subdirectoriesin the desired order of make execution. Running gnumake in adirectory with the following
Makefile lines will cause gnumake to be executed in <dirl> first and then <dir2>. The build rules do not allow a Makefile
to specify both subdirectories and components to be built.

TOP=../..

i ncl ude $(TOP)/ confi gure/ CONFI G
DIRS += <dirl> <dir2>

i ncl ude $(TOP)/ confi gure/ RULES DI RS

4.4.3.2 Makefilesin directories where components are to be built

A Makefilein thistype of directory must define where <top> isrelative to this directory, include <top> configure files, and
specify the target component definitions. Optionally it may contain user defined rules. Running gnumake in a directory
with this type of Makefile will cause gnumake to create an O.<arch> subdirectory and then execute gnumake to build the
defined components in this subdirectory. It contains the following lines:

TOP=../../..

i ncl ude $(TOP)/ confi gure/ CONFI G
<conponent definition |ines>

i ncl ude $(TOP)/ confi gure/ RULES
<optional rules definitions>

4.4.4 Simple M akefile examples

Create an 10C type library named asloc from the source file asDbLib.c and install it into the
$(1I NSTALL_LOCATI ON)/ | i b/ <ar ch> directory.

TOP=../../..

i ncl ude $(TOP)/ confi gure/ CONFI G
LI BRARY_I OC += asl oc

asloc_SRCS += asDbLib.c

i ncl ude $(TOP)/ confi gure/ RULES

For each Host type target architecture, create an executable named catest from the catestl.c and catest2.c source files
linking with the existing EPICS base ca and Com libraries, and then install the catest executable into the
$( 1 NSTALL_LQOCATI ON) / bi n/ <ar ch> directory.

TOP=../../..

i ncl ude $(TOP)/ confi gure/ CONFI G
PROD_HOST = cat est

catest SRCS += catestl.c catest2.c
catest _LIBS = ca Com

38 EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 4: EPICS Build Facility
Make

i ncl ude $(TOP)/ confi gure/ RULES

4.5 Make

4.5.1 Makevs. gnumake

EPICS provides an extensive set of make rules. These rules only work with the GNU version of make, gnumake, which is
supplied by the Free Software Foundation. Thus, on most Unix systems, the native make will not work. On some systems,
e.g. Linux, GNU make may be the default. This manual always uses gnumake in the examples.

4.5.2 Frequently used M ake commands

NOTE: It is possible to invoke the following commands for a single target architecture by appending .<arch> to the target
in the command.

The most frequently used make commands are:

gnunake
This rebuilds and installs everything that is not up to date.
NOTE: Executing gnumake without arguments is the same as "ghumake install"

gnunake <arch>
This rebuilds and installs everything that is not up to date for a single specified target arch.
NOTE: Thisisthe same as "gnumake install.<arch>"

gnunake cl ean
This can be used to save disk space by deleting the O.<arch> directories that gnumake will create, but does not
remove any installed files from the bin, db, dbd etc. directories. "gnumake clean.<arch>" can be invoked to clean a
single architecture.

gnhureke real cl ean
This command can be executed from the <top> directory only. It will remove ALL the O.<arch> subdirectories
(even those created by a gnumake from another EPICS_HOST_ARCH).

gnunake rebuild
This is the same as "gnhumake clean install". If you are unsure about the state of the generated files in an
application, just execute "gnumake rebuild".

gnurmeke uni nstal |
This command can be executed from the <top> directory only. It will remove everything installed by gnumake in
theinclude, lib, bin, db, dbd, etc. directories.

gnhurmake real uni nstall
This command can be executed from the <top> directory only. It will remove all the install directories, include, lib,
bin, db, dbd, etc..

gnunake di stcl ean
This command can be executed from the <top> directory only. It is the same as issuing both the realclean and
realuninstall commmands

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 39



Chapter 4: EPICS Build Facility
Makefile definitions

gnunake archcl ean
This command will remove O.<arch> dirs but not O.Common dir.

gnunake cvscl ean
This command can be executed from the <top> directory only. It removes cvs .#* filesin all dirs of directory tree.

4.5.3 Maketargets

The following is a summary of targets that can be specified for gnumake:

 <action>

e <arch>
 <action>.<arch>

o <dir>

o <dir>.<action>
<dir>.<arch>

» <dir>.<action>.<arch>

where:

<arch>isEPICS HOST_ARCH, solaris-sparc, vxWorks-68040, win32-x86, etc. - builds named architecture only.
<action> is help, clean, realclean, distclean, inc, install, build, rebuild, buildinstall, realuninstall, or uninstall
NOTE: help, uninstall, distclean, and realuninstall can only be specified at <top>.

NOTE: realclean cannot be specified in an * .<arch> subdirectory.

<dir> is subdirectory name

Note: You can build using your os vendors' native compiler and also build using a supported aternate compiler in the
same directory structure because the executables and libraries will be created and installed into separate directories (e.g
bin/solaris-sparc and bin/solaris-sparc-gnu). You can do this by changing your EPI CS_HOST _ARCH, environment
variable between builds or by setting EPI CS_HOST _ ARCH on the gnumake command line.

4.5.4 Header file dependencies

All product, test product, and library source files which appear in one of the source file definitions (e.g. SRCS,
PROD_SRCS, LIB_SRCS, <prodname>_SRCS) will have their header file dependencies automatically generated and
included as part of the Makefileif HDEPENDS is set to YES in the Makefile and/or in base/configure/ CONFIG_SITE.

4.6 Makefile definitions

The following components can be defined in a Makefile:

4.6.1 Sourcefiledirectories

Normally all product, test product, and library source files reside in the same directory as the Makefile. OS specific source
files are allowed and should reside in subdirectories os/<os_class> or os/posix or os/defaullt.

The build rules also allow sourcefilesto reside in subdirectories of the current Makefile directory (src directory). For each
subdirectory <dir> containing source files add the SRC_DIRS definition.

40 EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 4: EPICS Build Facility
Makefile definitions

SRC DIRS += <dir>
where <dir> is arelative path definition. An example of SRC_DIRSis
SRCDIRS += ../dirl ../dir2

The directory search order for the above definition is

..los/ $(OS_CLASS) ../os/posix ../os/default
../dirl/os/$(0S_CLASS) ../dirl/os/posix ../dirl/os/default
./dir2/os/$(0OS_CLASS) ../dir2/os/posix ../dir2/os/default
Adirl o./dir2

where the build directory O.<os class> is. and the src directory is....

4.6.2 Posix C source code

The epics base config files assume posix source code and define POSIX to be YES as the default. Individual Makefiles
can override this by setting POSIX to NO.

4.6.3 Breakpoint Tables

For each breakpoint table dbd file, bpt<table name>.dbd, to be created from an existing bpt<table name>.datafile, add the
definition
DBD += bpt <t abl e nane>. dbd

to the Makefile. The following Makefile will create a bptTypeJdegC.dbd file from an existing bptTypeJdegC.data file and
install the new dbd file into the $(INSTALL_L OCATION)/dbd directory.

TOP=../../..

i ncl ude $(TOP)/ confi gure/ CONFI G
DBD += bpt TypeJdegC. dbd

i ncl ude $(TOP)/ confi gure/ RULES

4.6.4 Record Type Definitions

For each new record type, the following definition should be added to the makefile:
DBDI NC += <rectype>Record

A <rectype>Record.h header file will be created from an existing <rectype>Record.dbd file. This header will be installed
into the $(INSTALL_L OCATION)/include directory and the dbd file will be installed into the $(INSTALL_L OCATION)/
dbd directory.

The following Makefile will create xxxRecord.h from an existing xxxRecord.dbd file, install xxxRecord.h into
$(INSTALL_LOCATION)/include, and install xxxRecord.dbd into $(INSTALL_L OCATION)/dbd.

TOP=../../..

i ncl ude $(TOP)/ confi gure/ CONFI G
DBDI NC += xxxRecord

i ncl ude $(TOP)/ confi gure/ RULES

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 41



Chapter 4: EPICS Build Facility
Makefile definitions

4.6.5 Menus

If amenu menu<name>.dbd file is present, then add the following definition:
DBDI NC += menu<name>. h

The header file, menu<name>.h will be created from the existing menu<name>.dbd file and installed into the
$(INSTALL_LOCATION)/include directory and the menu dbd file will beinstalled into $(INSTALL_LOCATION)/dbd.

The following Makefile will create a menuConvert.h file from an existing menuConvert.dbd file and install
menuConvert.h into $(INSTALL_LOCATION)/include and menuConvert.dbd into $(INSTALL_LOCATION)/dbd.

TOP=../../..

i ncl ude $(TOP)/ confi gure/ CONFI G
DBDI NC = menuConvert. h

i ncl ude $(TOP)/ confi gure/ RULES

4.6.6 Expanded Database Definition Files

Database definition include files named <name>Include.dbd containing includes for other database definition files can be
expanded by the utility program dbExpand into a created <name>.dbd file and the <name>.dbd file installed into
$(INSTALL_LOCATION)/dbd. The following variables control the process:

DBD += <nane>. dbd

USR_DBDFLAGS += -1 <incl ude path>

USR DBDFLAGS += -S <macro substitutions>
<nane>_DBD += <filel>. dbd <file2>. dbd ...

where
DBD += <name>. dbd

is the name of the output dbd file to contain the expanded definitions. It is created by expanding an existing or build
created <name>Include.dbd file and then copied into $(INSTALL_L OCATION)/dbd.

An example of afile to be expanded is examplelnclude.dbd containing the following lines

i ncl ude "base. dbd"
i ncl ude "xxxRecord. dbd"
devi ce( xxx, CONSTANT, devXxxSof t, " Sof t Channel ")

USR _DBDFLAGS defines optional flags for doExpand. Currently only an include path (-I <path>) and macro substitution
(-S <substitution>) are supported. The include paths for EPICS base/dbd, and other <top>/dbd directories will
automatically be added during the build if the <top> names are specified in the configure/REL EA SE file.

A database definition include file named <name>Include.dbd containing includes for other database definition files can
be created from a<name>_DBD definition. The lines

DBD += <nane>. dbd
<nane>_DBD += <filel>. dbd <file2>. dbd ...

will create an expanded dbd file <name>.dbd by first creating a <name>Include.dbd. For each filename in the
<name>_DBD definition, the created <name>Include.dbd will contain an include statement for that filename. Then the
expanded DBD file is generated from the created <name>Include.dbd file and installed into $(INSTALL_L OCATION)/
dbd.

The following Makefile will create an expanded dbd file named example.dbd from an existing examplelnclude.dbd file
and then install example.dbd into the $(INSTALL_L OCATION)/dbd directory.

TOP=../../..

42 EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 4: EPICS Build Facility
Makefile definitions

i ncl ude $(TOP)/ confi gure/ CONFI G
DBD += exanpl eApp. dbd
i ncl ude $(TOP)/ confi gure/ RULES

The following Makefile will create an examplelnclude.dbd file from the example_DBD definition then expand it to create
an expanded dbd file, example.dbd, and install example.dbd into the $(INSTALL_L OCATION)/dbd directory.

TOP=../../..

i ncl ude $(TOP)/ confi gure/ CONFI G

DBD += exanpl e. dbd

exanpl e_DBD += base. dbd xxxRecord. dbd xxxSupport. dbd
i ncl ude $(TOP)/ confi gure/ RULES

The created examplelnclude.dbd file will contain the following lines

i ncl ude "base. dbd"
i ncl ude "xxxRecord. dbd"
i ncl ude "xxxSupport. dbd"

4.6.7 Registering Support Routines for Expanded Database Definition Files

A source file which registers simple static variables and record/device/driver support routines with iocsh can be created.
Thelist of variables and routines to register is obtained from linesin an existing dbd file.

The following line in a Makefile will result in <nanme>_r egi st er Recor dDevi ceDri ver. cpp being created,
compiled, and linked into <pr odnane>. It requires that the file <nanme>. dbd exist.

<pr odnane>_SRCS += <nane>_regi st er RecordDevi ceDri ver. cpp

An example of registering the variable mySubDebug and the routines mySublnit and mySubProcess is <name>.dbd
containg the following lines

vari abl e( mySubDebug)
function(nySublnit)
function(nySubProcess)

4.6.8 Database Definition Files

Thefollowing line installs the existing named dbd filesinto $(INSTALL_L OCATION)/dbd without expansion.
DBD += <nane>. dbd

4.6.9 DBD install files
Definitions of the form:
DBD | NSTALLS += <nane>

result in filesbeing installed to the $(INSTALL _L OCATIONY/dbd directory. The file <name> can appear with or without a
directory prefix. If the file has a directory prefix e.g. (APPNAME)/dbd/, it is copied from the specified location. If a
directory prefix is not present, make will look in the current source directory for thefile.

4.6.10 Database Files

For most databases just the name of the database has to be specified. Make will figure out how to generate the file:

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 43



Chapter 4: EPICS Build Facility
Makefile definitions

DB += xxx.db
generates xxx.db depending on which source files exist and installsit into $(INSTALL_LOCATION)/db.

A <name>.db database file will be created from an optiona <name>.template file and/or an optional
<name>.substitutions file, If the substitution file exists but the template file is not named <name>.template, the template
file name can be specified as

<nanme>_TEMPLATE = <tenplate file nane>

A *<nn>.db database file will be created from a *.template and a * <nn>.substitutions file, (where nn is an optional index
number).

If a <name> substitutions file contains "file" references to other input files, these referenced files should be made
dependencies of the created <name>.db by adding a dependency definition line:

<name>_DEPENDS = <filenamel> <filename2> . ..

The Macro Substitutions and Include tool, msi, will be used to generate the database, and msi must either be in your path
or you must redefine MSI as the full path name to the msi binary in a RELEASE file or Makefile. An example MSI
definitionis

Msl = /usr/ |l ocal/ epics/ ext ensi ons/ bi n/ ${ EPI CS_HOST_ARCH} / nsi

Template files <name>.template, and db files, <name>.db, will be created from an edf file <name>.edf and an <name>.edf
file will be created from a <name>.sch file.

Template and substitution files can be installed.
DB += xxx.tenpl ate xxx.substitutions

generates and installs these files. If one or more xxx.substitutions files are to be created by script, the script name must be
placed in the CREATESUBSTITUTIONS variable (e.g. CREATESUBSTITUTIONS=mySubst.pl). This script will be
executed by gnumake with the prefix of the substitution file name to be generated asits argument. If (and only if) there are
script generated substitutions files, the prefix of any inflated database's name may not equal the prefix of the name of any
template used within the directory.

4.6.11 DB install files

Definitions of the form:
DB | NSTALLS += <nane>

result in files being installed to the $(INSTALL_L OCATION/db directory. The file <name> can appear with or without a
directory prefix. If the file has a directory prefix e.g. $(APPNAME)/db/, it is copied from the specified location. If a
directory prefix is not present, make will look in the current source directory for thefile.

4.6.12 Compile and link command options
Any of the following can be specified:

4.6.12.1 Options for all compile/link commands.
These definitions will apply to all compiler and linker targets.

USR | NCLUDES += - <nane>
header file directories each prefixed by a"-1".
USR_I NCLUDES_<oscl ass> += - | <nanme>
os specific header file directories each prefixed by a"-I".

44 EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 4: EPICS Build Facility
Makefile definitions

USR_I NCLUDES_DEFAULT += -1 <name>
header file directories each prefixed by a"-1" for any arch that does not have a USR_INCLUDE_<osclass>
definition
USR CFLAGS += <c fl ags>
c compiler options.
USR CFLAGS <oscl ass> += <c fl ags>
o0s specific c compiler options.
USR CFLAGS <T_A> += <c fl ags>
target architecture specific c compiler options.
USR_CFLAGS DEFAULT += <c fl ags>
¢ compiler options for any arch that does not have aUSR_CFLAGS_<osclass> definition
USR CXXFLAGS += <c++ fl ags>
c++ compiler options.
USR CXXFLAGS <oscl ass> += <c++ fl ags>
c++ compiler options for the specified osclass.
USR_CXXFLAGS_<T_A> += <c++ fl ags>
c++ compiler options for the specified target architecture.
USR_CXXFLAGS_DEFAULT += <c++ fl ags>
c++ compiler options for any arch that does not have a USR_CXXFLAGS_<osclass> definition
USR_CPPFLAGS += <preprocessor fl ags>
C preprocessor options.
USR_CPPFLAGS <oscl ass> += <preprocessor flags>
0s specific ¢ preprocessor options.
USR_CPPFLAGS <T_A> += <preprocessor flags>
target architecture specific ¢ preprocessor options.
USR_CPPFLAGS DEFAULT += <preprocessor fl ags>
C preprocessor options for any arch that does not have aUSR_CPPFLAGS_<osclass> definition
USR LDFLAGS += <linker flags>
linker options.
USR LDFLAGS <oscl ass> += <linker fl ags>
os specific linker options.
USR LDFLAGS DEFAULT += <linker flags>
linker options for any arch that does not have aUSR_LDFLAGS <osclass> definition

4.6.12.2 Options for atarget specific compile/link command.

<nane>_| NCLUDES += -| <nane>

header file directories each prefixed by a"-1".
<nane>_ | NCLUDES <oscl ass> += - | <nane>

os specific header file directories each prefixed by a"-1".
<name>_| NCLUDES <T_A> += -| <nane>

target architecture specific header file directories each prefixed by a"-1".
<name>_CFLAGS += <c fl ags>

¢ compiler options.
<name>_ CFLAGS <oscl ass> += <c fl ags>

o0s specific c compiler options.
<name>_ CFLAGS <T_A> += <c fl ags>

target architecture specific c compiler options.
<name>_ CXXFLAGS += <c++ fl ags>

c++ compiler options.
<name>_ CXXFLAGS_<oscl ass> += <c++ fl ags>

c++ compiler options for the specified osclass.
<name>_ CXXFLAGS <T_A> += <c++ fl ags>

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 45



Chapter 4: EPICS Build Facility
Makefile definitions

c++ compiler options for the specified target architecture.
<name>_CPPFLAGS += <preprocessor flags>
C preprocessor options.
<name>_CPPFLAGS_<oscl ass> += <preprocessor flags>
0s specific ¢ preprocessor options.
<name>_CPPFLAGS_<T_A> += <preprocessor flags>
target architecture specific ¢ preprocessor options.
<nane>_ LDFLAGS += <linker flags>
linker options.
<nane>_ LDFLAGS <oscl ass> += <linker flags>
os specific linker options.

46.13 Libraries

A library is created and installed into $(INSTALL_L OCATION)/lib/<arch> by specifying its name and the name of the
object and/or source files containing code for the library. An object or source file name can appear with or without a
directory prefix. If the file name has a directory prefix e.g. $(EPICS_BASE_BIN), it is taken from the specified location.
If adirectory prefix isnot present, make will first look in the source directories for afile with the specified name and next
try to create the file using existing configure rules. A library filename prefix may be prepended to the library name when
the file is created. For Unix type systems and vxWorks the library prefix is lib and there is no prefix for WIN32. Also a
library suffix appropriate for the library type and target arch (e.g. .a, .so, .lib, .dll) will be appended to the filename when
thefileis created.

vxWorksand RTEM S Note: Only archive libraries are created.

Shared libraries Note: Shared libraries can be built for any or al HOST type architectures. The definition of
SHARED_LIBRARIES (YES/NO) in base/configure/ CONFIG_SITE determines whether shared or archive libraries will
be built. When SHARED_ LIBRARIES is YES, both archive and shared libraries are built. This definition can be
overridden for a specific arch in an configure/oCONFIG_SITE.<arch>.Common file.,The default definition for
SHARED_LIBRARIESinthe EPICS base distribution fileis YES for all host systems.

win32 Note: An object library file is created when SHARED LIBRARIES=NO, <name>.lib which is installed into
S(INSTALL_LOCATION)/lib/<arch>. Two library files are created when SHARED_ LIBRARIES=YES, <name>.lib
which is instaled into $(INSTALL_LOCATION)/lib/<arch>, and <name>dll which is installed into
$(INSTALL_LOCATION)/bin/<arch>. (Warning: The file <name>.lib will only be created by the build if there are
exported symbols from the library.) If SHARED _LIBRARIES=YES, the directory $(INSTALL_LOCATION)/bin/<arch>
must be in the user’s path during builds to allow invoking executables which were linked with shared libraries.

4.6.13.1 Specifying the library name.
Any of the following can be specified:

LI BRARY += <name>

A library will be created for every target arch.
LI BRARY_<oscl ass> += <nane>

Library <name> will be created for all archs of the specified osclass.
LI BRARY_DEFAULT += <name>

Library <name> will be created for any arch that does not have a LIBRARY _<osclass> definition
LI BRARY_I OC += <nane>

Library <name> will be created for |OC type archs.
LI BRARY_ | OC <oscl ass> += <nane>

Library <name> will be created for all 10C type archs of the specified osclass.
LI BRARY_| OC_DEFAULT += <nane>

46 EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 4: EPICS Build Facility
Makefile definitions

Library <name> will be created for any 10C type arch that does not have a LIBRARY_IOC_<osclass>
definition

LI BRARY_HOST += <nane>
Library <name> will be created for HOST type archs.

LI BRARY_HOST <oscl ass> += <namne>
Library <name> will be created for all HOST type archs of the specified osclass.

LI BRARY_HOST_DEFAULT += <nane>
Library <name> will be created for any HOST type arch that does not have a LIBRARY _HOST_<osclass>
definition

4.6.13.2 Specifying library source file names

Source file names, which must have a suffix, are defined as follows:

SRCS += <nane>
Source fileswill be used for all defined libraries and products.
SRCS <oscl ass> += <nane>
Source fileswill be used for all defined libraries and products for all archs of the specified osclass.
SRCS DEFAULT += <nane>
Source files will be used for al defined libraries and products for any arch that does not have a
SRCS <osclass> definition

LIBSRCS and LIB_SRCS have the same meaning. LIBSRCS is deprecated, but retained for R3.13 compatibility.

LI BSRCS += <nanme>
Source fileswill be used for all defined libraries.
LI BSRCS <oscl ass> += <nane>
Source fileswill be used for all defined libraries for all archs of the specified osclass.
LI BSRCS_DEFAULT += <name>
Source files will be used for al defined libraries for any arch that does not have a LIBSRCS_<osclass>
definition

USR SRCS += <nane>
Source fileswill be used for all defined products and libraries.
USR SRCS <oscl ass> += <nane>
Source fileswill be used for all defined products and libraries for all archs of the specified osclass.
USR SRCS DEFAULT += <nane>
Source files will be used for al defined products and libraries for any arch that does not have a
USR_SRCS_<osclass> definition

LI B_SRCS += <nane>
Source fileswill be used for al libraries.
LI B_SRCS <oscl ass> += <nane>
Source fileswill be used for all defined libraries for all archs of the specified osclass.
LI B_SRCS_DEFAULT += <name>
Source files will be used for al defined libraries for any arch that does not have a LIB_SRCS <osclass>
definition

<l i bname>_SRCS += <nane>
Source fileswill be used for the named library.
<l i bname>_SRCS <oscl ass> += <nane>
Source fileswill be used for named library for all archs of the specified osclass.
<l i bname>_SRCS DEFAULT += <name>
Source files will be used for named library for any arch that does not have a <libname>_SRCS <osclass>
definition

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 47



Chapter 4: EPICS Build Facility
Makefile definitions

4.6.13.3 Specifying library object file names

Library object file names should only be specified for object files which will not be built in the current directory. For
object files built in the current directory, library source file names should be specified. See Specifying Library Source File
Names above.

Object files which have filename with a".0" or ".obj" suffix are defined as follows and can be specified without the suffix
but should have the directory prefix

USR OBJS += <nane>
Object fileswill be used in builds of all products and libraries
USR OBJS <oscl ass> += <nane>
Object fileswill be used in builds of all products and libraries for archs with the specified osclass.
USR OBJS DEFAULT += <name>
Object files will be used in builds of all products and libraries for archs without a USR_OBJS <osclass>
definition specified.
LI B_OBJS += <nane>
Object fileswill be used in builds of al libraries.
LI B_OBJS <oscl ass> += <nane>
Object fileswill be used in builds of all libraries for archs of the specified osclass.
LI B_OBJS DEFAULT +=<name>
Object files will be used in builds of al libraries for archs without a LIB_OBJS <osclass> definition
specified.
<l i bname>_0BJS += <nane>
Object fileswill be used for all builds of the named library)
<l i bname>_0OBJS <oscl ass> += <nane>
Object fileswill be used in builds of the library for archs with the specified osclass.
<l i bname>_0BJS DEFAULT += <nane>
Object files will be used in builds of the library for archs without a <libname>_OBJS_<osclass> definition
specified.

Combined object files, from R3.13 built modules and applications which have file names that do not include a ".0" or
".obj" suffix (e.g. xyzLib) are defined as follows:

USR OBJLI BS += <nane>
Combined object fileswill be used in builds of all libraries and products.
USR OBJLI BS <oscl ass> += <nane>
Combined object files will be used in builds of all libraries and products for archs of the specified osclass.
USR_OBJLI BS_DEFAULT += <name>
Combined object files will be used in builds of al libraries and products for archs without a
USR_OBJLIBS <osclass> definition specified.

LI B_OBJLI BS += <nane>
Combined object files will be used in builds of all libraries.
LI B_OBJLI BS <oscl ass> += <nane>
Combined object files will be used in builds of all libraries for archs of the specified osclass.
LI B_OBJLI BS DEFAULT += <name>
Combined object files will be used in builds of al libraries for archs without a LIB_OBJLIBS <osclass>
definition specified.

<l i bname>_OBJLI BS += <name>
Combined object files will be used for all builds of the named library.
<l i bname>_OBJLI BS <oscl ass> += <nane>
Combined object files will be used in builds of the library for archs with the specified osclass.

48

EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 4: EPICS Build Facility
Makefile definitions

<l i bname>_0OBJLI BS_DEFAULT += <nane>
Combined object files will be wused in builds of the Ilibrary for archs without a
<libname>_OBJLIBS_<osclass> definition specified.

<l i bname>_LDOBJS += <nane>
Combined object files will be used for all builds of the named library. (deprecated)
<l i bname>_LDOBJS <oscl ass> += <nane>
Combined object files will be used in builds of the library for archs with the specified osclass. (deprecated)
<l i bname>_LDOBJS DEFAULT += <nane>
Combined object files will be used in builds of the library for archs without a <libname>_0OBJS <osclass>
definition specified. (deprecated)

4.6.13.4 LIBOBJS definitions
Previous versions of epics (3.13 and before) accepted definitions like:
LI BOBJS += $(<support> BIN)/xxx.o0
These are gathered together in files such as basel IBOBJS. To use such definitions include the lines:

-include ../baselLl BOBJS
<l i bname>_OBJS += $(LI BOBJS)

Note: vxWorks applications created by makeBaseApp.pl from base release R3.14.0alpha3 and later no longer have afile
named basel IBOBJS. Base record and device support now existsin archive libraries.

4.6.13.5 Specifying dependant libraries to be linked when creating alibrary

For each library name specified which is not a system library nor a library from an EPICS top defined in the confiugre/
RELEASE file, a<name>_DIR definition must be present in the Makefile to specify the location of the library.

Library names, which must not have adirectory and "lib" prefix nor a suffix, are defined as follows:

LI B_LI BS += <nane>
Librariesto be used when linking all defined libraries.
LI B LI BS <oscl ass> += <nane>
Librariesto be used or all archs of the specified osclass when linking all defined libraries.
LI B_LI BS_DEFAULT += <nane>
Libraries to be used for any arch that does not have a LIB_LIBS <osclass> definition when linking all
defined libraries.

USR LI BS += <nane>
Librariesto be used when linking all defined products and libraries.
USR LI BS <oscl ass> += <nane>
Librariesto be used or all archs of the specified osclasswhen linking all defined products and libraries.
USR_LI BS_DEFAULT += <nane>
Libraries to be used for any arch that does not have a USR_LIBS <osclass> definition when linking all
defined products and libraries.

<l i bname>_LI BS += <nane>
Librariesto be used for linking the named library.
<l i bnane>_ LI BS <oscl ass> += <nane>
Librarieswill be used for all archs of the specified osclass for linking named library.
<l i bnane>_LIBS DEFAULT += <name>
Libraries to be used for any arch that does not have a <libname>_LIBS <osclass> definition when linking
named library.

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 49



Chapter 4: EPICS Build Facility
Makefile definitions

<l i bname>_SYS LI BS += <nane>
System libraries to be used for linking the named library.
<l i bname>_SYS LI BS <oscl ass> += <nane>
System libraries will be used for all archs of the specified osclass for linking named library.
<l i bname>_SYS LI BS DEFAULT += <nane>
System libraries to be used for any arch that does not have a <libname>_LIBS <osclass> definition when
linking named library.

4.6.13.6 The order of dependant libraries
Dependant library names appear in the following order on alibrary link line:

1. <libname>_LIBS

2. <libname>_LIBS <osclass> or <libname>_LIBS DEFAULT
3. LIB_LIBS

4. LIB_LIBS <osclass>or LIB_LIBS DEFAULT

5. USR _LIBS

6. USR_LIBS <osclass> or USR_LIBS DEFAULT

7. <libname>_SYS LIBS

8. <libname>_SYS LIBS <osclass> or <libname> SYS LIBS DEFAULT
9. LIB_SYS LIBS

10. LIB_SYS LIBS <osclass> or LIB_SYS LIBS DEFAULT
11. USR _SYS LIBS

12. USR_SYS LIBS <osclass> or USR_SYS LIBS DEFAULT

4.6.13.7 Specifying library DLL file names (deprecated)

WIN32 libraries require all external references to be resolved, so if alibrary contains references to items in other DLL
libraries, these DLL library names must be specified (without directory prefix and without ".dll" suffix) as follows:

DLL_LIBS += <name>
These DLLswill be used for all libraries.
<l i bname>_ DLL_LIBS += <namne>
These DLLswill be used for the named library.

Each <name> must have a corresponding <name>_DIR definition specifying its directory location.

4.6.13.8 Specifying shared library version number
A library version number can be specified when creating a shared library as follows:
SHRLI B_VERSI ON += <versi on>

OnWIN32 thisresultsin"/version:$(SHRLIB_VERSION)" link option. On Unix type hosts".$(SHRLIB_VERSION)" is
appended to the shared library name and a symbolic link is created for the unversioned library name.
$(EPICS_VERSION).$(EPICS REVISION) is the default value for SHRLIB_VERSION.

4.6.13.9 Library example:

LI BRARY_vxWorks += vxWorksOnly
LI BRARY_I OC += iocOnly

LI BRARY_HOST += hostOnly

LI BRARY += al |

50 EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 4: EPICS Build Facility
Makefile definitions

vxWorksOnly_OBJS += $(LI NAC BI N)/ vxOnl y1
vxWor ksOnly _SRCS += vxOnly2.c
iocOnly_0OBJS += $(LINAC BIN)/iocOnlyl
iocOnly_SRCS += iocOnly2. cpp

host Onl y_OBJS += $(LINAC BIN)/ host1

all _0BJS += $(LINAC BIN)/all1l

all _SRCS += all 2. cpp

If the architectures defined in <top>/configure are solaris-sparc and vxWorks-68040 and LINAC is defined in the <top>/
CONFIGURE/RELEA SE file, then the following libraries will be created:

o $(INSTALL_LOCATION)/bin/vxWork-68040/libvxWorksOnly.a: $(LINAC_BIN)/vxOnly1.0 vxOnly2.0
* $(INSTALL_L OCATION)/bin/vxWork-68040/libiocOnly.a: $(LINAC_BIN/iocOnlyl.0iocOnly2.0

o $(INSTALL_LOCATION)/lib/solaris-sparc/libiocOnly.a: $(LINAC_BIN)/iocOnlyl.0iocOnly2.0

* $(INSTALL_LOCATION)/lib/solaris-sparc/libhostOnly.a: $(LINAC_BIN)/host1.0

* $(INSTALL_LOCATION)/bin/vxWork-68040/liball.a: $(LINAC _BIN)/alll.0 al2.0

* $(INSTALL_LOCATION)/lib/solaris-sparc/libal.a: $(LINAC_BIN)/all.oal2.0

4.6.14 Loadablelibraries

Loadable libraries are regular libraries which are not required to have all symbols resolved during the build. The intent is
to create dynamic plugins so no archive library is created. Source file, object files, and dependant libraries are specified in
exactly the same way as for regular libraries.

Any of the following can be specified:

LOADABLE_LI BRARY += <name>
The <name> loadable library will be created for every target arch.
LOADABLE LI BRARY _<oscl ass> += <nane>
Loadable library <name> will be created for all archs of the specified osclass.
LOADABLE_LI BRARY_DEFAULT += <name>
Loadable library <name> will be created for any arch that does not have a
LOADABLE_LIBRARY_<osclass> definition

LOADABLE LI BRARY_HOST += <nane>
Loadable library <name> will be created for HOST type archs.
LOADABLE LI BRARY_HOST_<oscl ass> += <nanme>
Loadable library <name> will be created for all HOST type archs of the specified osclass.
LOADABLE_ LI BRARY_HOST _DEFAULT += <nane>
Loadable library <name> will be created for any HOST type arch that does not have a
LOADABLE_LIBRARY_HOST_<osclass> definition

4.6.15 Combined object libraries (VxWorksonly)

Combined object libraries are regular combined object files which have been created by linking together multiple object
files. OBJLIB specifications in the Makefile create a combined object file and a corresponding munch file for vxWorks
target architectures only. Combined object libraries have a Library.o suffix. It is possible to generate and install combined
object libraries by using definitions:

OBJLI B += <nanme>

OBJLI B_vxWor ks += <nane>

OBJLI B_SRCS += <srcnanel> <srcnane2> ...
OBJLI B_OBJS += <o0bj nanmel> <obj nane2> ...

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 51



Chapter 4: EPICS Build Facility
Makefile definitions

These definitions result in the combined object file <name>Library.o and its corresponding <name>Library.munch munch
file being built for each vxWorks architecture from source/object files in the OBJLIB_SRCS/OBJLIB_OBJS definitions.
The combined object file and the munch file are installed into the $(INSTALL_L OCATION)/bin/<arch> directory.

4.6.16 Object Files

It is possible to generate and install object files by using definitions:

OBJS += <nane>

OBJS <oscl ass> += <nane>
OBJS _DEFAULT += <nane>

OBJS | OC += <nane>

OBJS | OC <oscl ass> += <nane>
OBJS | OC_DEFAULT += <nane>
OBJS _HOST += <nane>

OBJS HOST_<oscl ass> += <nane>
OBJS _HOST_DEFAULT += <nane>

These will cause the specified file to be generated from an existing source file for the appropriate target arch and installed
into S(INSTALL_LOCATION)/bin/<target_arch>.

The following Makefile will create the abc object file for al target architectures, the def object file for all target archs
except vxWorks, and the xyz object file only for the vxWorks target architecture and install them into the appropriate
$(INSTALL_LOCATION)/bin/<arch> directory.

TOP=../../..
i ncl ude $(TOP)/ confi gure/ CONFI G
OBJS += abc

OBJS vxWorks += xyz
OBJS DEFAULT += def
i ncl ude $(TOP)/ confi gure/ RULES

4.6.17 State Notation Programs

A state notation program file can be specified as a source file in any SRC definition. For example:
<prodnane>_SRCS += <nane>. stt

The state notation compiler snc will generate the file <name>. ¢ from the state notation program file <name>. st t.
This C fileis compiled and the resulting object file is linked into the <pr odname> product.

A state notation source file must have the extension . st or . stt. The. st fileis passed through the C preprocessor
beforeit is processed by snc.

If you have state notation language sourcefiles (. stt and. st files), the module seq must be built and SNCSEQ defined
in the RELEASE file. If the state notation language source files require ¢ preprocessing before conversion to ¢ source
(- st files), gcc must bein your path.

4.6.18 Scripts, etc.

Any of the following can be specified:

SCRI PTS += <nane>
A script will beinstalled from the src directory to the $(INSTALL_L OCATION)/bin/<arch> directories.
SCRI PTS_<oscl ass> += <nane>

52 EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 4: EPICS Build Facility
Makefile definitions

Script <name> will beinstalled for all archs of the specified osclass.

SCRI PTS_DEFAULT += <nane>
Script <name> will beinstalled for any arch that does not have a SCRIPTS_<osclass> definition

SCRI PTS_| OC += <nane>
Script <name> will beinstalled for IOC type archs.

SCRI PTS_| OC <oscl ass> += <nane>
Script <name> will beinstalled for all 10C type archs of the specified osclass.

SCRI PTS_| OC_DEFAULT += <nane>
Script <name> will be installed for any 10C type arch that does not have a SCRIPTS 10C_<osclass>
definition

SCRI PTS_HOST += <nane>
Script <name> will beinstalled for HOST type archs.

SCRI PTS_HOST_<oscl ass> += <nane>
Script <name> will beinstalled for all HOST type archs of the specified osclass.

SCRI PTS_HOST_DEFAULT += <nane>
Script <name> will be installed for any HOST type arch that does not have a SCRIPTS HOST_<osclass>
definition

Definitions of the form:

SCRI PTS_<oscl ass> += <nanel>
SCRI PTS_DEFAULT += <nane2>

results in the <namel> script being installed from the src directory to the $(INSTALL_LOCATION)/bin/<arch>
directories for all target archs of the specified os class <osclass> and the <name2> script installed into the
S(INSTALL_LOCATION)/bin/<arch> directories of all other target archs.

4.6.19 Includefiles

A definition of the form:

I NC += <nane>. h
resultsin file <name>.h being installed or created and installed to the $(INSTALL_LOCATION)/include directory.
Definitions of the form:

| NC DEFAULT += <nane>. h
I NC <oscl ass> += <name>. h

results in file <name>.h being installed or created and installed into the appropriate $(INSTALL_LOCATION)/include/
os/<osclass> directory..

4.6.20 Html and Doc files

A definition of the form:

HTMLS DI R = <di r nanme>
HTMLS += <nane>

resultsin file <name> being installed from the src directory to the $(INSTALL_L OCATION)/html/<dirname> directory.
A definition of the form:
DOCS += <nane>

resultsin file <name> being installed from the src directory to the $(INSTALL_LOCATION)/doc directory.

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 53



Chapter 4: EPICS Build Facility
Makefile definitions

4.6.21 Templates

Adding definitions of the form

TEMPLATES DI R = <di r nane>
TEMPLATES += <nane>

results in the file <name> being installed from the src directory to the $(INSTALL_L OCATION)/templates/<dirname>
directory. If adirectory structure of template filesisto be installed, the template file names may include adirectory prefix.

4.6.22 Lex and yac

If a<name>.c source file specified in a Makefile definition is not found in the source directory, gnumake will try to build
it from <name>.y and <name>_lex.| filesin the source directory.

4.6.23 Products

A product executable is created for each <arch> and installed into $(INSTALL_L OCATION)/bin/<arch> by specifying its
name and the name of either the object or source files containing code for the product. An object or source file name can
appear with or without a directory prefix. Object files should contain a directory prefix. If the file has a directory prefix
e.g. 3(EPICS_BASE_BIN), thefile istaken from the specified location. If adirectory prefix is not present, make will 100k
in the source directories for afile with the specified name or try build it using existing rules. An executabl e filename suffix
appropriate for the target arch (e.g. .exe) may be appended to the filename when the file is created.

PROD specificationsin the Makefile for vxWorks target architectures create a combined object file with library references
resolved and a corresponding .munch file.

PROD_HOST += <name>
<name>_SRC += <srcnane>. c

results in the executable <name> being built for each HOST architecture, <arch>, from a<srcname>.c file. Then <name>
isinstalled into the $(INSTALL_L OCATION)/bin/<arch> directory.

4.6.23.1 Specifying the product name.
Any of the following can be specified:

PROD += <name>
Product <name> will be created for every target arch.
PROD <oscl ass> += <nane>
Product <name> will be created for al archs of the specified osclass.
PROD DEFAULT += <name>
Product <name> will be created for any arch that does not have a PROD_<osclass> definition

PROD_| OC += <nane>
Product <name> will be created for |OC type archs.
PROD | OC <oscl ass> += <nane>
Product <name> will be created for al 10C type archs of the specified osclass.
PROD | OC_DEFAULT += <nane>
Product <name> will be created for any |OC type arch that does not have a PROD_IOC_<osclass>
definition

PROD_HOST += <nane>
Product <name> will be created for HOST type archs.
PROD _HOST <oscl ass> += <nane>

54 EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 4: EPICS Build Facility
Makefile definitions

Product <name> will be created for all HOST type archs of the specified osclass.

PROD_HOST_DEFAULT += <nane>
Product <name> will be created for any HOST type arch that does not have a PROD_HOST _<osclass>
definition

4.6.23.2 Specifying product object file names

Object files which have filenameswith a".0" or ".obj" suffix are defined as follows and can be specified without the suffix
but should have the directory prefix

USR OBJS += <nane>
Object fileswill be used in builds of all products and libraries
USR OBJS <oscl ass> += <nane>
Object fileswill be used in builds of all products and libraries for archs with the specified osclass.
USR OBJS DEFAULT += <name>
Object files will be used in builds of all products and libraries for archs without a USR_OBJS <osclass>
definition specified.
PROD OBJS += <nane>
Object fileswill be used in builds of all products
PROD OBJS <oscl ass> += <nane>
Object fileswill be used in builds of al products for archs with the specified osclass.
PROD OBJS DEFAULT += <name>
Object files will be used in builds of all products for archs without a PROD_OBJS <osclass> definition
specified.
<prodnane>_0BJS += <nane>
Object fileswill be used for all builds of the named product
<prodnane>_0BJS <oscl ass> += <nanme>
Object fileswill be used in builds of the named product for archs with the specified osclass.
<prodnane>_0BJS DEFAULT += <nane>
Object files will be used in builds of the named product for archs without a <prodname>_OBJS <osclass>
definition specified.

Combined object files, from R3.13 built modules and applications which have file names that do not include a ".0" or
".obj" suffix (e.g. xyzLib) are defined as follows:

USR OBJLI BS += <nane>
Combined object fileswill be used in builds of all libraries and products.
USR OBJLI BS <oscl ass> += <nane>
Combined object files will be used in builds of all libraries and products for archs of the specified osclass.
USR_OBJLI BS_DEFAULT += <name>
Combined object files will be used in builds of al libraries and products for archs without a
USR_OBJLIBS <osclass> definition specified.

PROD_OBJLI BS += <nane>
Combined object files will be used in builds of all products.
PROD OBJLI BS <oscl ass> += <nane>
Combined object fileswill be used in builds of all products for archs of the specified osclass.
PROD_OBJLI BS_DEFAULT += <name>
Combined object files will be used in builds of all products for archs without a PROD_OBJLIBS <osclass>
definition specified.

<prodnane>_OBJLI BS += <nane>
Combined object files will be used for al builds of the named product.
<prodnane>_0OBJLI BS_<oscl ass> += <nane>
Combined object files will be used in builds of the named product for archs with the specified osclass.

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 55



Chapter 4: EPICS Build Facility
Makefile definitions

<prodnane>_C0BJLI BS_DEFAULT += <nane>
Combined object files will be used in builds of the named product for archs without a
<prodname>_OBJLIBS_<osclass> definition specified.

<prodnane>_LDOBJS += <name>
Object fileswill be used for al builds of the named product. (deprecated)
<prodnane>_LDOBJS_<oscl ass> += <name>
Object fileswill be used in builds of the name product for archs with the specified osclass. (deprecated)
<prodnane>_LDOBJS_DEFAULT += <nane>
Object files will be used in builds of the product for archs without a <prodname> L DOBJS <osclass>
definition specified. (deprecated)

4.6.23.3 Specifying product source file names
Source file names, which must have a suffix, are defined as follows:

SRCS += <nane>
Source fileswill be used for all defined libraries and products.
SRCS <oscl ass> += <nane>
Source fileswill be used for all defined libraries and products for all archs of the specified osclass.
SRCS DEFAULT += <nane>
Source files will be used for al defined libraries and products for any arch that does not have a
SRCS <osclass> definition

USR SRCS += <nane>
Source fileswill be used for all products and libraries.
USR SRCS <oscl ass> += <nane>
Source fileswill be used for all defined products and libraries for all archs of the specified osclass.
USR SRCS DEFAULT += <nane>
Source files will be used for all defined products and libraries for any arch that does not have a
USR_SRCS <osclass> definition

PROD SRCS += <nane>
Source fileswill be used for &l products.
PROD SRCS <oscl ass> += <nane>
Source fileswill be used for all defined products for all archs of the specified osclass.
PROD _SRCS DEFAULT += <nane>
Source files will be used for all defined products for any arch that does not have a PROD_SRCS <osclass>
definition

<pr odnane>_SRCS += <nane>
Source file will be used for the named product.
<pr odnane>_SRCS <oscl ass> += <nane>
Source fileswill be used for named product for all archs of the specified osclass.
<pr odnane>_SRCS DEFAULT += <name>
Source fileswill be used for named product for any arch that does not have a<prodname>_SRCS <osclass>
definition

4.6.23.4 Specifying libraries to be linked when creating the product

For each library name specified which is not a system library nor alibrary from EPICS _BASE, a<name>_DIR definition
must be present in the Makefile to specify the location of the library.

Library names, which must not have adirectory and "lib" prefix nor a suffix, are defined as follows:

56 EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 4: EPICS Build Facility
Makefile definitions

PROD LI BS += <nane>
Librariesto be used when linking all defined products.
PROD LI BS <oscl ass> += <nane>
Librariesto be used or all archs of the specified osclass when linking all defined products.
PRCD_LI BS_DEFAULT += <nane>
Libraries to be used for any arch that does not have a PROD_LIBS <osclass> definition when linking al
defined products.

USR LI BS += <nane>
Librariesto be used when linking all defined products.
USR LI BS <oscl ass> += <nane>
Librariesto be used or all archs of the specified osclasswhen linking all defined products.
USR_LI BS_DEFAULT += <nanme>
Libraries to be used for any arch that does not have a USR_LIBS <osclass> definition when linking al
defined products.

<prodnane>_LI BS += <nane>
Librariesto be used for linking the named product.
<prodnane>_LI BS <oscl ass> += <nane>
Librarieswill be used for all archs of the specified osclass for linking named product.
<pr odnane>_LIBS DEFAULT += <name>
Librariesto be used for any arch that does not have a<prodname>_LIBS <osclass> definition when linking
named product.

SYS_PROD LI BS += <name>
System libraries to be used when linking all defined products.
SYS PRCD LI BS <oscl ass> += <nane>
System libraries to be used for all archs of the specified osclass when linking all defined products.
SYS_PROD LI BS DEFAULT += <nanme>
System libraries to be used for any arch that does not have a PROD_LIBS <osclass> definition when
linking all defined products.

<pr odnane>_SYS LI BS += <name>
System libraries to be used for linking the named product.
<prodnane>_SYS LI BS <oscl ass> += <nane>
System libraries will be used for al archs of the specified osclass for linking named product.
<prodnane>_SYS LI BS DEFAULT += <name>
System libraries to be used for any arch that does not have a <prodname>_LIBS _<osclass> definition when
linking named product.

4.6.23.5 The order of dependant libraries

Dependant library names appear in the following order on a product link line:

1. <prodname>_LIBS

2. <prodname>_LIBS <osclass> or <prodname>_LIBS DEFAULT
3. PROD_LIBS

4
5
6
7
8

PROD_LIBS <osclass> or PROD_LIBS DEFAULT

. USR _LIBS

. USR_LIBS <osclass> or USR_LIBS DEFAULT

. <prodname>_SYS LIBS

. <prodname>_SYS LIBS <osclass> or <prodname>_SYS LIBS DEFAULT

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 57



Chapter 4: EPICS Build Facility
Makefile definitions

9. PROD_SYS LIBS
10. PROD_SYS LIBS <osclass> or PROD_SYS LIBS DEFAULT
11. USR SYS LIBS
12. USR_SYS LIBS <osclass> or USR_SYS LIBS DEFAULT

4.6.23.6 Specifying product version number

On WIN32 only a product version number can be specified as follows:
PROD_VERSI ON += <ver si on>

Thisresultsin "/version:$(PROD_VERSION)" link option.

4.6.23.7 Product static builds

Product executables can be linked with either archive versions or shared versions of EPICS libraries. Shared versions of
system libraries will always be used in product linking. The definition of STATIC_BUILD (YES/NO) in base/configure/
CONFIG_SITE determines which EPICS libraries to use. When STATIC _BUILD is NO, shared libraries will be used.
(SHARED_LIBRARIES must be set to YES.) The default definition for STATIC BUILD in the EPICS base
CONFIG_SITE distribution file is NO. A STATIC BUILD definition in a Makefile will override the definition in

CONFIG_SITE.

4.6.24 Test Products

Test products are product executables that are created but not installed into $(INSTALL_LOCATION)/bin/<arch>
directories. Test product libraries, source, and object files are specified in exactly the same way as regular products.

Any of the following can be specified:

TESTPROD += <nane>
Test product <name> will be created for every target arch.
TESTPROD_<oscl ass> += <nane>

Test product <name> will be created for all archs of the specified osclass.

TESTPROD_DEFAULT += <nane>

Test product <name> will be created for any arch that does not have a TESTPROD_<osclass> definition

TESTPROD_| OC += <nane>
Test product <name> will be created for 10C type archs.
TESTPROD | OC <oscl ass> += <nane>

Test product <name> will be created for al 10C type archs of the specified osclass.

TESTPROD_| OC_DEFAULT += <nanme>
Test product <name> will be created for any
TESTPROD_10C _<osclass> definition

TESTPROD_HOST += <name>
Test product <name> will be created for HOST type archs.
TESTPROD_HOST_<oscl ass> += <nane>

IOC type arch that does not have a

Test product <name> will be created for all HOST type archs of the specified osclass.

TESTPROD_HOST_DEFAULT += <nane>

Test product <name> will be created for any HOST type arch that does not have a

TESTPROD_HOST _<osclass> definition

58 EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 4: EPICS Build Facility
Makefile definitions

4.6.25 Test Scripts

Test scripts are perl scriptswhose namesendin. t that get executed to satisfy ther unt est s make target. They are run
by the perl Test::Harness library, and should send output to stdout following the Test Anything Protocol. Any of the
following can be specified, although only TESTSCRIPTS HOST is currently useful:

TESTSCRI PTS += <nane>
Test script <name> will be created for every target arch.
TESTSCRI PTS_<oscl ass> += <nane>
Test script <name> will be created for all archs of the specified osclass.

TESTSCRI PTS_DEFAULT += <name>
Test script <name> will be created for any arch that does not have a TESTSCRIPTS <osclass> definition

TESTSCRI PTS_| OC += <nane>
Test script <name> will be created for 10C type archs.
TESTSCRI PTS | OC <oscl ass> += <nane>
Test script <name> will be created for all 10C type archs of the specified osclass.
TESTSCRI PTS_| OC_DEFAULT += <name>
Test script <name> will be created for any 10C type arch that does not have a
TESTSCRIPTS |0C_<osclass> definition

TESTSCRI PTS_HOST += <nane>
Test script <name> will be created for HOST type archs.
TESTSCRI PTS_HOST_<oscl ass> += <nane>
Test script <name> will be created for all HOST type archs of the specified osclass.

TESTSCRI PTS_HOST_DEFAULT += <nanme>
Test script <name> will be created for any HOST type arch that does not have a

TESTSCRIPTS HOST _<osclass> definition.

If anamein one of the above variables matches aregular executable program name (normally generated as atest product)
with". t " appended, a suitable perl script will be generated that will execute that program directly; this makesit smpleto
run programs that use the epicsUnitTest routinesin libCom. A test script written in Perl with anameending . pl t will be
copied into the O.<arch> directory with the ending changed to . t ; such scripts will usually use the perl Test::Simple or
Test::Morelibraries.

4.6.26 Miscellaneous Tar gets

A definition of the form:
TARCGETS += <nane>

resultsin the file <name> being built in the O.<arch> directory from existing rules and files in the source directory. These
target files are not installed.

4.6.27 Installing Other Binaries

Definitions of the form:

Bl N | NSTALLS += <nane>

Bl N_I NSTALLS += <di r >/ <nanme>

Bl N_I NSTALLS DEFAULT += <nane>
BI N I NSTALLS <oscl ass> += <name>

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 59



Chapter 4: EPICS Build Facility
Makefile definitions

will result in the named files being installed to the appropriate $(INSTALL_L OCATION)/bin/<arch> directory. The file
<name> can appear with or without a directory prefix. If the file has a directory prefix e.g. $(EPICS_BASE _BIN), it is
copied from the specified location. If adirectory prefix is not present, make will look in the source directory for thefile.

4.6.28 Installing Other Libraries

Definitions of the form:

LI B_I NSTALLS += <nane>

LI B I NSTALLS += <di r>/ <nane>

LI B I NSTALLS DEFAULT += <nane>
LI B I NSTALLS <oscl ass> += <nane>

result in files being installed to the appropriate $(INSTALL_LOCATION)/lib/<arch> directory. The file <name> can
appear with or without a directory prefix. If the file has adirectory prefix e.g. $(EPICS BASE_LIB), itis copied from the
specified location. If a directory prefix is not present, make will ook in the source directory for the file.

4.6.29 Win32 resourcefiles

Definitions of the form:
RCS += <nane> Resource filesfor al products and libraries.
RCS <oscl ass> += <nane>

PRCD_RCS += <nane> Resource filesfor al products.
PROD RCS <oscl ass> += <nane>
PROD _RCS _DEFAULT += <nanme>

LI B_RCS += <name> Resourcefilesfor all libraries.
LI B_RCS <oscl ass> += <nane>
LI B_RCS DEFAULT += <nane>

<nane>_RCS += <nane> Resource filesfor specified product or library.
<name>_ RCS <oscl ass> += <nane>
<nanme>_ RCS DEFAULT += <name>

result in resource files (*.resfiles) being created from the specified *.rc files and linked into the prods and/or libraries.

46.30TCL libraries

Definitions of the form:

TCLLI BNAME += <name>
TCLI NDEX += <name>

result in the specified tcl files being installed to the $(INSTALL_L OCATION)/lib/<arch> directory.

4.6.31 Java classfiles

Java class files can be created by the javac tool into $(INSTALL_JAVA) or into the O.Common subdirectory, by
specifying the name of the java class file in the Makefile. Command line options for the javac tool can be specified. The
configuration files set the java c option "-sourcepath .:...../..".

60 EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 4: EPICS Build Facility
Makefile definitions

Any of the following can be specified:

JAVA += <name>.java

The <name>.javafile will be used to create the <name>.classfilein the S(INSTALL_JAVA) directory.
TESTJAVA += <name>.java

The <name>.javafiles will be used to create the <name>.class file in the O.Common subdirectory.
USR_JAVACFLAGS += <name>

The javac option <name> will be used on the javac command lines.

4.6.31.1 Example 1

In this example, three class files are created in $(INSTALL_LOCATION)/javalib/mytest. The javac depreciation flag is
used to list the description of each use or override of a deprecated member or class.

JAVA = mytest/one.java

JAVA = mytest/two.java

JAVA = mytest/threejava
USR_JAVACFLAGS = -deprecation

4.6.31.2 Example 2
In this example, the test.class file is created in the O.Common subdirectory.
TESTJAVA =test.java

4.6.32 Java jar file

A single java jar file can be created using the java jar tool and installed into $(INSTALL_JAVA) (i.e
$(INSTALL_LOCATION)/javalib) by specifying its name, and the names of itsinput filesto be included in the created jar
file. Thejar input file names must appear with adirectory prefix.

Any of the following can be specified:

JAR += <name>

The <name> jar file will be created and installed into the $(INSTALL_JAVA) directory.
JAR_INPUT += <name>

Names of images, audio files and classes files to be included in the jar file.
JAR_MANIFEST += <name>

The preexisting manifest file will be used for the created jar file.

4.6.32.1 Example 1

In this example, al the class files created by the current Makefile's "JAVA+=" definitions, are placed into a file named
mytestl.jar. A manifest file will be automatically generated for the jar.

Note: $(INSTALL_CLASSES) is set to $(addprefix $(INSTALL_JAVA)/,$(CLASSES)) in the EPICS base configure
files.

JAR = mytestl.jar
JAR_INPUT = $(INSTALL_CLASSES)
4.6.32.2 Example 2

In this example, three class files are created and placed into anew jar archive file named mytest2.jar. An existing manifest
file, mytest2.mf is put into the new jar file.

JAR = mytest2.jar

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 61



Chapter 4: EPICS Build Facility
Table of Makefile definitions

JAR_INPUT = $(INSTALL_JAVA)/mytest/one.class
JAR_INPUT = $(INSTALL_JAVA)/mytest/two.class
JAR_INPUT = $(INSTALL_JAVA)/mytest/three.class
JAR_MANIFEST = mytest2.mf

4.6.33 Java native method C header files

A C header files for use with java native methods will be created by the javah tool in the O.Common subdirectory by
specifying the name of the header file to be created. The name of the java class file used to generate the header is derived
from the name of the header file. Underscores () are used as a header file name delimiter. Command line options for the
javah tool can be specified.

Any of the following can be specified:

JAVAINC += <name>.h

The <name>.h header file will be created in the O.Common subdirectory.
USR_JAVAHFLAGS += <name>

The javah option <name> will be used on the javah tool command line.

4.6.33.1 Example

In this example, the C header xx_yy_zz.h will be created in the $(COMMON_DIR) subdirectory from the class xx.yy.zz
(i.e. the java class file (INSTALL_JAVA)/xxlyy/zz.class)). The option "-old" will tell javah to create old JDK 1.0 style
header files.

JAVAINC =xx_yy zz.h
USR_JAVAHFLAGS = -old

4.7 Table of Makefile definitions

Definitions given below containing <osclass> are used when building for target archs of a specific osclass, and the
<osclass> part of the name should be replaced by the desired osclass, e.g. solaris, vxWorks, etc. If a_ DEFAULT setting is
given but a particular <osclass> requires that the default not apply and there are no items in the definition that apply for
that <osclass>, the value "-nil-" should be specified in the relevant Makefile definition.

Build Option Description

Productsto be built (host type archs only)

PRCD products (names without execution suffix) to build and install. Specify
xyz to build executable xyz on Unix and xyz.exe on WIN32

PROD <oscl ass> os class specific products to build and install for <osclass> archs only

PROD DEFAULT products to build and install for archs with no PROD_<osclass>
specified

PRCD_| CC products to build and install for ioc type archs

PROD | OC <oscl ass> os specific products to build and install for ioc type archs

PROD_| OC_DEFAULT products to build and install for ioc type arch systems with no

PROD_IOC_<osclass> specified

62 EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 4: EPICS Build Facility
Table of Makefile definitions

Build Option

Description

PROD_HOST

products to build and install for host type archs.

PROD_HOST_<oscl ass>

os class specific products to build and install for <osclass> type archs

PROD_HOST_DEFAULT

products to build and install for arch with no PROD_HOST_<osclass>
specified

Test productsto be built

TESTPROD

test products (names without execution suffix) to build but not install

TESTPROD_<oscl ass>

0s class specific test products to build but not install

TESTPROD_DEFAULT

test products to build but not install for archs with no
TESTPROD_<osclass> specified

TESTPROD_| OC

test products to build and install for ioc type archs

TESTPROD_| OC <oscl ass>

os specific test products to build and install for ioc type archs

TESTPROD_| OC_DEFAULT

test productsto build and install for ioc type arch systems with no
TESTPROD_IOC_<osclass> specified

TESTPROD_HOST

testproducts to build and install for host type archs.

TESTPROD _HOST _<oscl ass>

os class specific testproducts to build and install for <osclass> type
archs

TESTPROD_HOST_DEFAULT

test products to build and install for arch with no
TESTPROD_HOST_<osclass> specified

TESTSCRI PTS

test scripts (names with .t suffix) to build but not install

TESTSCRI PTS_<oscl ass>

0s class specific test scripts to build but not install

TESTSCRI PTS_DEFAULT

test scripts to build but not install for archs with no
TESTSCRIPTS_<osclass> specified

TESTSCRI PTS_| OC

test scriptsto build and install for ioc type archs

TESTSCRI PTS_I OC_<oscl ass>

os specific test scriptsto build and install for ioc type archs

TESTSCRI PTS_| OC_DEFAULT

test scripts to build and install for ioc type arch systems with no
TESTSCRIPTS_IOC_<osclass> specified

TESTSCRI PTS_HOST

test scriptsto build and install for host type archs.

TESTSCRI PTS_HOST_<oscl ass>

os class specific testscripts to build and install for <osclass> type archs

TESTSCRI PTS_HOST_DEFAULT

test scripts to build and install for arch with no
TESTSCRIPTS HOST_<osclass> specified

Librariesto be built

LI BRARY

name of library to build and install. The name should NOT include a
prefix or extension e.g. specify Cato build libCa.aon Unix, Calib,
CaObj.lib, or Ca.dll on WIN32

LI BRARY_<oscl ass>

os specific libraries to build and install

EPICS Release 3.14.9

EPICS I0C Application Developer’s Guide 63



Chapter 4: EPICS Build Facility
Table of Makefile definitions

Build Option

Description

LI BRARY_DEFAULT

librariesto build and install for archs with no LIBRARY _<osclass>
specified

LI BRARY_I CC

name of library to build and install for ioc type archs. The name should
NOT include a prefix or extension e.g. specify Cato build libCaaon
Unix, Calib,CaObj.lib, or Ca.dll on WIN32

LI BRARY_| OC <oscl ass>

os specific libraries to build and install for ioc type archs

LI BRARY_| OC_DEFAULT

librariesto build and install for ioc type arch systems with no
LIBRARY_IOC_<osclass> specified

LI BRARY_HCST

name of library to build and install for host type archs. The name should
NOT include a prefix or extension, e.g. specify Cato build libCa.aon
Unix, Calib, CaObj.lib, or Ca.dll on WIN32

LI BRARY_HOST <oscl ass>

os class specific libraries to build and install for host type archs

LI BRARY_HOST_DEFAULT

librariesto build and install for host type arch systems with no
LIBRARY_HOST_<osclass> specified

SHARED LI BRARI ES

build shared libraries? Must be YES or NO

SHRLI B_VERSI ON

shared library version number

Loadablelibrariesto be built

LOADABLE_LI BRARY

name of loadable library to build and install. The name should NOT
include a prefix or extension e.g. specify Cato build libCa.so on Unix
and Ca.dll on WIN32

LOADABLE_LI BRARY_<oscl ass>

os specific loadable libraries to build and install

LOADABLE_LI BRARY_DEFAULT

loadable libraries to build and install for archs with no
LOADABLE_LIBRARY _<osclass> specified

LOADABLE_LI BRARY_HOST

name of loadable library to build and install for host type archs. The
name should NOT include a prefix or extension, e.g. specify test to build
libtest.so on Unix and test.dll on WIN32

LOADABLE_LI BRARY HOST_<oscl ass>

os class specific loadable libraries to build and install for host type archs

LOADABLE_LI BRARY_HOST_DEFAULT

loadable librariesto build and install for host type arch systems with no
LOADABLE_LIBRARY_HOST_<osclass> specified

Combined object files (vxWorks only)

OBJLI B

name of a combined object file library and corresponding munch file to
build and install. The name will have a Library suffix appended

OBJLI B_vxWor ks

same as OBJLIB

OBJLI B_SRCS

source files to build the OBJLIB

OBJLI B_OBJS

object filesto includein OBJLIB

Product and library sourcefiles

SRCS

source filesto build all PRODs and LIBRARY's

64

EPICS I0C Application Developer’s Guide

2007-11-07




Chapter 4: EPICS Build Facility
Table of Makefile definitions

Build Option

Description

SRCS <oscl ass>

osclass specific source filesto build all PRODsand LIBRARY's

SRCS_DEFAULT sourcefileto build all PRODs and LIBRARY s for archs with no
SRCS_<osclass> specified
USR_SRCS source filesto build all PRODs and LIBRARY's

USR_SRCS_<oscl ass>

osclass specific source files to build all PRODs and LIBRARY's

USR_SRCS DEFAULT

source file to build all PRODs and LIBRARY s for archs with no
SRCS_<osclass> specified

PROD_SRCS

source filesto build all PRODs

PROD_SRCS <oscl ass>

osclass specific source files to build all PRODs

PROD_SRCS_DEFAULT

source files needed to build PRODs for archs with no SRCS_<osclass>
specified

LI B_SRCS

source filesfor building LIBRARY (e.g. LIB_SRCS=la.clb.clc.c)

LI B_SRCS <oscl ass>

os-specific library source files

LI B_SRCS DEFAULT

library sourcefilesfor archs with no LIB_SRCS_<osclass> specified

LI BSRCS

source files for building LIBRARY (deprecated)

LI BSRCS_<oscl ass>

os-specific library source files (deprecated)

LI BSRCS_DEFAULT

library sourcefiles for archs with no LIBSRCS_<osclass> specified
(deprecated)

<nane>_SRCS

source files to build a specific PROD or LIBRARY

<nanme>_SRCS <oscl ass>

os specific source files to build a specific PROD or LIBRARY

<name>_SRCS_ DEFAULT

source files needed to build a specific PROD or LIBRARY for archs
with no <prod>_SRCS_<osclass> specified

Product and library object files

USR_OBJS

object files, specified without suffix, to build all PRODs and LIBRARY's

USR _OBJS <oscl ass>

osclass specific object files, specified without suffix, to build all PRODs
and LIBRARY's

USR_OBJS_DEFAULT

object files, specified without suffix, needed to build PRODs and
LIBRARY s for archswith no OBJS_<osclass> specified

PROD_OBJS

object files, specified without suffix, to build all PRODs

PROD OBJS <oscl ass>

osclass specific object files, specified without suffix, to build all PRODs

PROD_OBJS DEFAULT

object files, specified without suffix, needed to build PRODs for archs
with no OBJS _<osclass> specified

LI B_OBJS

object files, specified without suffix, for building all LIBRARY's (e.g.
LIB_OBJS+=$(AB_BIN)/la$(AB_BIN)/Ib)

LI B_OBJS_<oscl ass>

os-specific library object files, specify without suffix,

EPICS Release 3.14.9

EPICS I0C Application Developer’s Guide

65




Chapter 4: EPICS Build Facility
Table of Makefile definitions

Build Option

Description

LI B_OBJS_ DEFAULT

library object files, specified without suffix, for archs with no
LIB_OBJS <osclass> specified

<nane>_0BJS

object files, specified without suffix, to build a specific PROD or
LIBRARY

<nanme>_OBJS <oscl ass>

os specific object files, specified without suffix, to build a specific
PROD or LIIBRARY

<name>_0BJS DEFAULT

object files, without suffix, needed to build a specific PROD or
LIBRARY for archs with no <prod>_OBJS <osclass> specified

Product and library R3.13 combined object files

USR_OBJLI BS

combined object files with filenames that do not have a suffix, needed
for building all PRODs and LIBRARYs (e.g.
USR_OBJLIBS+=$(XYZ_BIN)/xyzLib)

USR_OBJLI BS_<oscl ass>

os-specific combined object fileswith filenames that do not have a suffix
for building all PRODs and LIBRARY's

USR_OBJLI BS_DEFAULT

combined object files with filenames that do not have a suffix, for archs
with no USR_OBJLIBS_<osclass> specified for building all PRODs
and LIBRARY's

PROD_OBJLI BS

combined object files with filenames that do not have a suffix, needed
for building all PRODs (e.g. PROD_OBJLIBS+=$(XYZ_BIN)/xyzLib)

PROD_OBJLI BS_<oscl ass>

os-specific combined object fileswith filenames that do not have a suffix
for building al PRODs

PROD_OBJLI BS_DEFAULT

combined object files with filenames that do not have a suffix, for archs
with no PROD_OBJLIBS_<osclass> specified for building all PRODs

LI B_OBJLI BS

combined object files with filenames that do not have a suffix, needed
for building all LIBRARYs (e.g. LIB_OBJLIBS+=$(XYZ_BIN)/
xyzLib)

LI B_OBJLI BS_<oscl ass>

os-specific combined object fileswith filenames that do not have a suffix
for building all LIBRARYs

LI B_OBJLI BS DEFAULT

combined object files with filenames that do not have a suffix, for archs
withno LIB_OBJLIBS <osclass> specified for building all
LIBRARYs

<name>_0BJLI BS

combined object fileswith filenames that do not have a suffix, needed to
build a specific PROD or LIBRARY

<nanme>_0BJLI BS_<oscl ass>

os specific combined object files with filenames that do not have a
suffix, to build a specific PROD or LIIBRARY

<name>_OBJLI BS_DEFAULT

combined object fileswith filenames that do not have a suffix, needed to
build a specific PROD or LIBRARY for archs with no
<name>_OBJLIBS <osclass> specified

<name>_LDOBJS

combined object fileswith filenames that do not have a suffix, needed to
build a specific PROD or LIBRARY (deprecated)

66 EPICS I0C Application Developer’s Guide

2007-11-07



Chapter 4: EPICS Build Facility
Table of Makefile definitions

Build Option

Description

<name>_LDOBJS_<oscl ass>

os specific combined object files with filenames that do not have a
suffix, to build a specific PROD or LI|[BRARY (deprecated)

<name>_LDOBJS_DEFAULT

combined object fileswith filenames that do not have a suffix, needed to
build a specific PROD or LIBRARY for archs with no
<name>_LDOBJS <osclass> specified (deprecated)

Product and library dependant libraries

<name>_DI R

directory to search for the specified lib. (For libslisted in all
PROD_LIBS, LIB_LIBS, <name>_LIBS and USR_LIBS listed below)

USR LI BS

load libraries (e.g. Xt X11) for al products and libraries

USR LI BS <oscl ass>

os specific load libraries for all makefile links

USR_LI BS_DEFAULT

load libraries for systemswith no USR_LIBS <osclass> specified libs

<name>_LI BS

named prod or library specific Id libraries (e.g. probe_LIBS=X11 Xt)

<name>_LI| BS_<oscl ass>

os-specific libs needed to link named prod or library

<name>_LI BS_DEFAULT

libs needed to link named prod or library for systemswith no
<name>_LIBS <osclass> specified

PROD_LI BS

libs needed to link every PROD

PROD LI BS_<oscl ass>

os-specific libs needed to link every PROD

PROD LI BS_DEFAULT

libs needed to link every PROD for archs with no
PROD_LIBS <osclass> specified

LI B_LI BS

libraries to be linked with every library being created

LI B LI BS <oscl ass>

os class specific libraries to be linked with every library being created

LI B_LI BS_DEFAULT

libraries to be linked with every library being created for archs with no
LIB_LIBS_<osclass> specified

USR SYS LI BS

system libraries (e.g. Xt X11) for all products and libraries

USR_SYS LI BS <oscl ass>

0s class specific system libraries for all makefile links

USR_SYS_LI BS_DEFAULT

system libraries for archswith no USR_SYS LI BS_<oscl ass>
specified

<name>_SYS_LI BS

named prod or library specific system Id libraries

<name>_SYS LI BS <oscl ass>

os class specific system libs needed to link named prod or library

<name>_SYS_LI BS_DEFAULT

system libs needed to link named prod or library for systems with no
<name>_SYS LI BS_<oscl ass> specified

PROD_SYS_LI BS

system libs needed to link every PROD

PROD SYS LI BS <oscl ass>

0s class specific system libs needed to link every PROD

PROD_SYS_LI BS_DEFAULT

system libs needed to link every PROD for archs with no
PROD_SYS LIBS <osclass> specified

LI B_SYS LI BS

system libraries to be linked with every library being created

EPICS Release 3.14.9

EPICS I0C Application Developer’s Guide 67



Chapter 4: EPICS Build Facility
Table of Makefile definitions

Build Option

Description

LI B_SYS LI BS <oscl ass>

0s class specific system libraries to be linked with every library being
created

LI B_SYS_ LI BS_DEFAULT

system libraries to be linked with every library being created for archs
withno LIB_SYS LIBS <osclass> specified

SYS_PROD LI BS

system libs needed to link every PROD for all systems (deprecated)

SYS _PROD LI BS_<oscl ass>

0s class specific system libs needed to link every PROD (deprecated)

SYS_PROD_LI BS_DEFAULT

system libs needed to link every PROD for systemswith no
SYS PROD_LIBS <osclass> specified (deprecated)

Compiler flags

USR CFLAGS

C compiler flags for al systems

USR CFLAGS <T_A>

target architecture specific C compiler flags

USR_CFLAGS_<oscl ass>

os class specific C compiler flags

USR_CFLAGS_DEFAULT

C compiler flags for archswith no USR_CFLAGS _<osclass> specified

<name>_CFLAGS

file specific C compiler flags (e.g. xxxRecord_CFLAGS=-g)

<name>_CFLAGS_<T_A>

file specific C compiler flags for a specific target architecture

<name>_CFLAGS_<oscl ass>

file specific C compiler flags for a specific os class

USR_CXXFLAGS

C++ compiler flags for all systems (e.g. xyxMain_CFLAGS=-DSDDY)

USR_CXXFLAGS_<T_A>

otarget architecture specific C++ compiler flags

USR_CXXFLAGS_<oscl ass>

os-specific C++ compiler flags

USR_CXXFLAGS_DEFAULT

C++ compiler flags for systemswith no USR_CXXFLAGS_<osclass>
specified

<nanme>_CXXFLAGS

file specific C++ compiler flags

<name>_CXXFLAGS_<T_A>

file specific C++ compiler flags for a specific target architecture

<name>_CXXFLAGS_<oscl ass>

file specific C++ compiler flags for a specific osclass

USR_CPPFLAGS

C pre-processor flags (for all makefile compiles)

USR_CPPFLAGS_<T_A>

target architecture specific cpp flags

USR_CPPFLAGS <oscl ass>

os specific cpp flags

USR_CPPFLAGS_DEFAULT

cpp flags for systems with no USR_CPPFLAGS <osclass> specified

<name>_CPPFLAGS

file specific C pre-processor flags
(e.g. xxxRecord CPPFLAGS=-DDEBUG)

<name>_CPPFLAGS_<T_A>

file specific cpp flags for a specific target architecture

<nanme>_CPPFLAGS <oscl ass>

file specific cpp flags for a specific os class

USR_| NCLUDES

directories, with -I prefix, to search for include files
(e.g. -I$(EPICS_EXTENSIONS INCLUDE))

68

EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 4: EPICS Build Facility
Table of Makefile definitions

Build Option Description
USR | NCLUDES <oscl ass> directories, with -1 prefix, to search for include files for a specific os
class
USR | NCLUDES DEFAULT directories, with -1 prefix, to search for include files for systems with no

<name>_INCLUDES_<osclass> specified

<nanme>_| NCLUDES directories, with -1 prefix, to search for include files when building a
specific object file (e.g. -I$(MOTIF_INC))

<nanme>_| NCLUDES <T_A> file specific directories, with - prefix, to search for include files for a
specific target architecture
<nanme>_| NCLUDES <oscl ass> file specific directories, with -1 prefix, to search for include files for a

specific os class

HOST_WARN Are compiler warning messages desired for host type builds? (YES or
NO) (default is YES)

CRCSS_WARN C cross-compiler warning messages desired (Y ES or NO) (default Y ES)

HOST_OPT Is host build compiler optimization desired (default is NO optimization)

CROSS_OPT Is cross-compiler optimization desired (YES or NO) (defaultisNO
optimization)

CVPLR C compiler selection, TRAD, ANSI or STRICT (default is STRICT)

CXXCWPLR C++ compiler selection, NORMAL or STRICT (default is STRICT)

Linker options

USR_LDFLAGS linker options (for all makefile links)

USR_LDFLAGS <oscl ass> os specific linker options (for all makefile links)

USR_LDFLAGS DEFAULT linker options for systemswith no USR_LDFLAGS <osclass>
specified

PROD_LDFLAGS prod linker options

PROD_LDFLAGS <oscl ass> os specific prod linker options

PROD LDFLAGS DEFAULT prod linker options for systems with no PROD_LDFLAGS <osclass>
specified

LI B_LDFLAGS library linker options

LI B_LDFLAGS <oscl ass> os specific library linker options

LI B_LDFLAGS _DEFAULT library linker options for systemswith no LIB_LDFLAGS <osclass>
specified

<name>_LDFLAGS prod or library specific linker options

<nanme>_LDFLAGS_<oscl ass> prod or library specific linker flags for a specific os class

<nane>_LDFLAGS DEFAULT linker options for systems with no <name>_LDFLAGS _<osclass>
specified

STATI C_BUI LD Is static build desired (YES or NO) (default is NO). Onwin32 if

STATIC_BUILD=YES then set SHARED_LIBRARIES=NO)

EPICS Release 3.14.9 EPICS I0C Application Developer’s Guide 69



Chapter 4: EPICS Build Facility
Table of Makefile definitions

Build Option

Description

Header filesto beinstalled

I NC

list of includefilesto install into $(INSTALL_DIR)/include

I NC_<oscl ass>

os specific includes to installed under $(INSTALL_DIR)/include/os/
<osclass>

I NC_DEFAULT

includefiles to install where no INC_<osclass> is specified

Perl, csh, tcl etc. script installation

SCRI PTS

scriptsto install for all systems

SCRI PTS_<oscl ass>

os-specific scriptsto install

SCRI PTS_DEFAULT

scriptsto install for systems with no SCRIPTS_<osclass> specified

SCRI PTS_| OC

scriptsto install for ioc type archs.

SCRI PTS_| OC <oscl ass>

os specific scriptsto install for ioc type archs

SCRI PTS_| OC_DEFAULT

scriptsto install for ioc type arch systems with no
SCRIPTS_IOC_<osclass> specified

SCRI PTS_HOST

scriptsto install for host type archs. T

SCRI PTS_HOST _<oscl ass>

os class specific scriptsto install for host type archs

SCRI PTS_HOST_DEFAULT

scriptsto install for host type arch systems with no
OBJS_HOST_<osclass> specified

TCLLI BNAME list of tcl scriptsto install into $(INSTALL_DIR)/lib/<osclass> (Unix
hosts only)
TCLI NDEX name of tcl index file to create from TCLLIBNAME scripts
. ' The namesin the following OBJS definitions should NOT include a
Object files . .
suffix (.o or.oby).
oBJS object filesto build and install for al system.

OBJS _<oscl ass>

os-specific object filesto build and install.

OBJS_DEFAULT object filesto build and install for systems with no OBJS <osclass>
specified.
oBJS | CC object filesto build and install for ioc type archs.

OBJS | OC <oscl ass>

os specific object filesto build and install for ioc type archs

OBJS_| OC_DEFAULT

object filesto build and install for ioc type arch systems with no
OBJS_I0C_<osclass> specified

OBJS_HOST

object filesto build and install for host type archs. T

OBJS HOST_<oscl ass>

os class specific object files to build and install for host type archs

OBJS_HOST_DEFAULT

object files to build and install for host type arch systems with no
OBJS_HOST_<osclass> specified

Documentation

70 EPICS I0C Application Developer’s Guide 2007-11-07



Chapter 4: EPICS Build Facility
Table of Makefile definitions

Build Option Description
DOCS text filesto be installed into the $(INSTALL_DIR)/doc directory
HTMLS DI R nameinstall Hypertext directory namei.e. $(INSTALL_DIR)/html/
$(HTMLS DIR)
HTML.S hypertext files to be installed into the $(INSTALL_DIR)/html/

$(HTMLS_DIR) directory

TEMPLATES_DI R

template directory to be created as $(INSTALL_DIR)/templates/
$(TEMPLATE_DIR)

TEMPLATES

template filesto be installed into TEMPLATE_DIR)

Database Definition files

DBD database definition files to be installed or created and installed into
$(INSTALL_DBD).

DBDI NC names, without suffix, of menus or record database definitions and
headersto beinstalled or created and installed.

USR_DBDFLAGS optional flags for dbExpand. Currently only include path (-I <path>)
and macro substitution (-S <substitution>) are supported.

DBD_| NSTALLS files from specified directory to install into $(INSTALL_