EPICS: Input / Output Controller
Application Developer’s Guide
Release 3.14.1

20DEC2002

Martin R. Kraimer, Janet Anderson, Andrew Johnson, Eric Norum
(Argonne National Laboratory)

Jeff Hill (Los Alamos National Laboratory)

Ralph Lange (BESSY)

EPICS Release: R3.14.1 EPICS IOC Application Developer’s Guide

EPICS IOC Application Developer’'s Guide

Table of Contents

Tableof Contents. ... 1
Chapter 1: Introduction. e 7
L1 OVEIVIBIN .« oottt e e e e e e e 7
1.2 Acknowledgments 9
Chapter 2: New Featuresfor 3.14.............. 11
2.1, IntrodUCtionot 11
2.2. Example Application 11
2.3. Shell for non vxWorksenvironment 14
2.4, SomeUnresolved Items.t 14
Chapter 3: EPICSOVENVIBWo v e et 17
3L What iSEPICS? . .. 17
3.2. BasiC At bULES o 17
3.3. Hardware - Software Platforms (Vendor Supplied). 18
3.4. 10C Software COMPONENESottt et e e e 19
35, Channel ACCESS ..ottt e 21
3.6, OPl TO0IS. . vttt et e e 22
3.7. EPICS COre SOftWare.o vttt e e e 23
Chapter 4: EPICSBuild Facility.o 25
AL OVEIVIEIW . .ottt e e et e e e e e e e e e e 25
42. Builld Requirementsot e 27
4.3. Configuration Definitions 28
A4 MaKEFIES . . oo 31
4D, MK, . vt e 32
4.6. Makefiledefinitions. 34
4.7. Table of Makefiledefinitions. 50
4.8. Configuration Files 57
4.9. Build Documentation Files 60
410.Startup FIleS. . .o 61
Chapter 5. Database L ocking, Scanning, And Processing 63
B L OVEIVIBIV oottt e e e e e e e e e 63
5.2, RECOrd LINKS . . oot 63
5.3. Database LinksS.o 64
54. Database LOCKING. . . oo oottt e 64
5.5, Databhase SCanNiNg . . .« oottt 65
5.6. RECOrd PrOCESSING . . .o oot e 66
5.7. Guidelinesfor Creating Database Links, 66
5.8. Guidelinesfor SynchronousRecords.covi i 68
5.9. Guidelinesfor AsynchronousRecordsccviiiiiiinennnnnn. 69

EPICS Release: R3.14.1
EPICS I0C Application Developer's Guide

Table of Contents

B5.10.CaChed PULS . .. oo 71
B L PUINOLITY. o 71
5.12.Channel AcCeSSLINKSo e 71
Chapter 6: Database Definition., 75
8.1, OVEIVIBI . . oottt et e e e e e 75
6.2. Brief Summary of Database DefinitionSyntax. 75
6.3. General Rulesfor Database Definition., 76
B4, MENU . .. 78
B.5. RECOIA TY P . ottt ittt e e e e 79
B.6. DEVICE . . .ttt 84
8.7, DIIVEr o 85
6.8. Function DeClaration.ottt 85
6.9. Breakpoint Table. 85
6.10.ReCOrd INStaNCEot 86
6.11.Record Attribute. 89
6.12.Breakpoint Tables- DiSCUSSIONot et 89
6.13.Menu and Record Type Include File Generation. 91
B.14.0bEXPaNdo 94
6.15.dbL0adDatahase.o vt 94
6.16.d0L0adRECOITS.ot t 95
6.17.dbLoadTemplate.t 95
6.18.d0REAdTESot 97
Chapter 7: 10C Initializationcc . 99
7.1. Overview - Environmentsrequiringamainprogram. 99
7.2.0verView - VXWOIKS. . ..ot 99
7.3.0verview - RTEMS ... e e 100
A TOCINIT L 100
7.5. Changing iocCorefixed limitso 102
7.6, TSCONFIQUIE. . . .t e e e e e 103
77 NItHOOKS. . . .o 103
7.8. Environment Variables 104
7.9. INitidlize Loggingo ot e 105
Chapter 8: ACCESSSECUNLY . ..ottt 107
B L OV BV . o o ettt e e e e e 107
8.2 QUICK StaIt. . . .ttt 107
8.3 USEr SGUILE . ..ottt 108
8.4, DESION SUMIMANY . . o oottt et et et 113
8.5. Access Security Application Programmer’sinterface 115
8.6. Database ACCESS SECUNLY . . oo vttt e e e 119
8.7. Channel ACCESS SECUNTY . . . oottt et et e et 121
8.8. Trapping Channel AccessWHIiteS et 122
8.9. Access Control: Implementation Overview, 123
A0 SIIUCIUNES . . . ettt et e e e e e e e e e e e 125
Chapter 9: IOC Test Facilities. i, 127
0. L, OV VI BV . o ettt e e e e e e e 127
9.2. Database List, Get, PUtot 127
0.3, BreakpointSottt 129
0.4, ErrOr LOQgING .+« v v v vttt e e e e e e 131
9.5, Hardware REPOMS ottt e 131
0.6. SCAN REPOMS . . . ot 132

2 EPICS I0OC Application Developer's Guide

Table of Contents

9.7. TiIMe Server REPOIto e 132
9.8. Access Security Commands.co it 133
9.9. Channel ACCESS REPOIS. . . . oottt e 134
0.10.INtErTUPL VECIONS ottt e e 135
O L EPICS . 135
9.12.Database System Test RoUtingesSt 136
9.13.Record Link REPOITS.o 137
9.14.0Id Database ACCESS TESHING .« . . oo oot e e 137
9.15.Routines to dump database information o i 138
Chapter 10: IOCError LOgging ovvviii i ei e 141
10,1 0VEIVIBIW . o o oot 141
10.2.Error Message ROULINESo oottt e e 141
103600 TasK. « v vttt e e 143
10.4.StAUS COUBS\ttt 144
105000 00 .« vttt e 145
Chapter 11: Record SUPPOrt . .. oo i e 147
R = 4 T 147
11.2.0verview of ReCOrd ProCESSING . . .« oo vttt et et e s 147
11.3.Record Support and Device Support Entry Tables. 148
11.4.Example Record Support Module. 149
11.5.Record SUPPOrt ROULINESo 155
11.6.Global Record SUpPOrt ROULINES. oo 159
Chapter 12: Device SUPPOIT. . .ottt 163
2.0, 0VEIVIEIW . . oottt et e 163
12.2.Example Synchronous Device Support Module. 163
12.3.Example Asynchronous Device Support Module. 165
12.4.Device SUPPOIt ROULINES.ottt 166
Chapter 13: Driver SUPPOIt. . ..o e e 169
13 L OVEIVI B . o oot 169
13,2 DEVICE DIIVENS. . .\ttt 169
Chapter 14: Static Database ACCESSot v i 173
LA L OV IV . ottt e e 173
142 DEfiNitioNS.o 173
14.3 Allocating and Freeing DBBASE o 174
14ADBENTRY ROULINES. . . . oottt et et e e e e 175
145Read and WriteDatahaseo i 176
14.6.Manipulating ReCOrd TYPES . . . oo vttt e 177
14.7 Manipulating Field Descriptions.t e i 178
14.8.Manipulating Record Attributes 179
14.9.Manipulating Record INStanCes.o 179
14.10.ManipulatingMenu Fields 181
1411 Manipulating Link Fields 182
14.12. Manipulating MenuForm Fieldso 183
14.13.Find Breakpoint Table.o 184
TATADUMP ROULINES . . o oottt e e e 185
1A 5 EXAMPIES. oottt 185
Chapter 15: RuntimeDatabase ACCESS.o i ii i 189
15,0 0VEIVIEIW . . oottt e e e e 189

EPICS Release: R3.14.1
EPICS I0C Application Developer's Guide

Table of Contents

15.2.DatabaseInclude Files. o 189
15.3.Runtime Database ACCESS OVEIVIBWottt 191
15.4.Database ACCESSROULINGS oot 194
155.Runtime Link Modification i 202
15.6.Channel ACCESSMONITONS. . .. ottt 203
15.7.L0CK St ROULINES. . . . oot 203
15.8.Channel AccessDatabase Links. 205
Chapter 16: DeviceSupport Library............................ 209
16. L 0VEIVIEIW ottt ettt e e 209
16.2.Registering VME AdAresseso 209
16.3.Interrupt Connect ROULINES.o oot e it i e 210
16.4.Macros and Routines for Normalized AnalogValues. 211
Chapter 17: EPICSGeneral PurposeTaskscoovven.n. 213
17 L 0VEIVIBW ot 213
17.2.General Purpose Callback Taskso 213
17.3.Task WalChadog.ot e 216
Chapter 18: DatabaseScanningt 219
18, L OVEIVIBI vttt e 219
18.2.Scan Related Database Fields. 219
18.3. Scan Related Software Components.o et 220
18.4.1mplementation OVEIVIBW ot e 223
Chapter 19: IOC Shell 229
10.1.INtrodUCHION . . oot 229
19.210C Shell Operation.t e e 229
19.3.10C Shell Programming.oi i e 231
Chapter 20: libCom e 235
20.1.bucketlib 235
20,2, CalIC . ot e 235
20,3 PP, o e 235
20.4.CVEFaSE. . . ot e 238
20,5, CXXTEMPIAIES . . . oottt e 239
20.6.d0Mf . .. e 239
20, 7. ElLib. . o 240
20.8.6DICSRINGBYLES. . . .ottt 241
20.9.6DICSRINGPOINTES.ttt e e e 241
20.10.8DICSTIMEr ottt et e 243
2000, FAdMOr ..ot e 248
O 2 == T 248
20.13.gpHash . ..o 248
20.14.00QCH BN . . ottt e 249
20.15.mMaclib ..o 249
20,18, MISC. . v vttt e 250
Chapter 21: libCom OSl libraries.t 253
2L L OVEIVIBIV ettt e e e 253
20 2 I CSA SN . . o et 254
20 3.8PICSEVENL. . . o 254
21 4.epicsHindSymbol 256
21.5.6PICSINtEITUPL . . . oot 256

4 EPICS I0OC Application Developer's Guide

Table of Contents

21.6.6piCSMath 257
20.7.6DICSMULEX . . oottt e 257
21.8.epicsSThread o 259
20.0.6PICSTIME . .ot e 264
21.10.0S PO0ISEAIUS. . . o v e ettt 272
200008 PIOCESS . . o vttt 272
21.12.0SISIgPIPEIgNOrE . . . o ottt 273
21.13.0SIS0CK. N . oo 273
Chapter 22: RegIStIY. ..o e e 275
22 . Registry. N L e 275
22.2registryRecordTypeho 275
22.3.registryDeviceSupport.h . ..o 276
22 4.registryDriverSupport.h. 276
225 registryFunction.h 276
22.6.registerRecordDeviCeDrVEr.C.ot 277
22.7.registerRecordDeviceDriver.pl 277
Chapter 23: Database Structures ..., 279
23 L OV VI BV . v ottt e e 279
23.20Nnclude Files . . . o 279
23 8. SUCIUIES. . . . ot e 281
Chapter 24: INDEX e e e e 283

EPICS Release: R3.14.1
EPICS I0C Application Developer's Guide 5

Table of Contents

6 EPICS I0OC Application Developer's Guide

Chapter 1. Introduction

1.1 Overview

This document describes the core software that resides in an Input/Output Controller (IOC), one of the major components
of EPICS. It isintended for anyone developing EPICS I|OC databases and/or new record/device/driver support.

The plan of the book is:
New Features for release 3.14

A brief description of new features. The most important new feature is that iocCore is now supported on systemsin
addition to vxWorks.

EPICS Overview

An overview of EPICS is presented, showing how the IOC software fits into EPICS. This is the only chapter that
discusses OPI software and Channel Access rather than just 10C related topics.

EPICS Build Facility

This chapter, which was written by Janet Anderson, describes the EPICS build facility including directory
structure, environment and system reguirements, configuration files, Makefiles, and related build tools.

Database L ocking, Scanning, and Processing
Overview of three closely related |OC concepts. These concepts are at the heart of what constitutes an EPICS 10C.
Database Definition

This chapter gives a complete description of the format of the files that describe |IOC databases. This is the format
used by Database Configuration Tools and is a so the format used to load databases into an |OC.

IOC Initialization
A great deal happens at 10C initialization. This chapter removes some of the mystery about initialization.
Access Security

Channel Access Security is implemented in IOCs. This chapter explains how it is configured and also how it is
implemented.

IOC Test Facilities

Epics supplied test routines that can be executed via the epics or vxWorks shell.
IOC Error Logging

IOC code can call routines that send messages to a system wide error logger.
Record Support

The concept of record support is discussed. This information is necessary for anyone who wishes to provide
customized record and device support.

Device Support

EPICS Release: R3.14.1
EPICS I0C Application Developer's Guide 7

Chapter 1: Introduction
Overview

The concept of device support is discussed. Device support takes care of the hardware specific details of record
support, i.e. it is the interface between hardware and a record support module. Device support can directly access
hardware or may interface to driver support.

Driver Support

The concepts of driver support is discussed. Drivers, which are not always needed, have no knowledge of records
but just take care of interacting with hardware. Guidelines are given about when driver support, instead of just
device support, should be provided.

Static Database Access
Thisisalibrary that works on Unix and vxWorks and on initialized or uninitialized EPICS databases.
Runtime Database Access

The heart of the IOC software is the memory resident database. This chapter describes the interface to this
database.

Device Support Library
A set of routines are provided for device support modules that use shared resources such as VME address space.
EPICS General Purpose Tasks
General purpose callback tasksand task watchdog.
Database Scanning
Database scan tasks, i.e. the tasks that request records to process.
IOC Shell

The EPICS 10C shell is asimple command interpreter which provides a subset of the capabilities of the vxWorks
shell.

libCom

EPICS base includes a subdirectory src/libCom, which contains a number of ¢ and c++ libraries that are used by
the other components of base. This chapter describes most of these libraries.

libCom OS|

This chapter describes the libraries in libCom that provide Operating System Independent (OSl) interrfaces used
by the rest of EPICS base. LibCom also contains operating system dependent code that implements the OSI
interfaces.

Registry

Under vxWorks osi FindGloba Symbol can be used to dynamically bind to record, device, and driver support. Since
on some systems this always returns failure, aregistry facility is provided to implement the binding. The basic idea
isthat any storage meant to be "globally" accessable must be registered before it can be accessed

Database Structures
A description of the internal database structures.

Other than the first chapter this document describes only core 10C software. Thus it does not describe other EPICS tools
which run in an 10C such as the sequencer. It also does not describe Channel Access.

The reader of this manual should also have the following documents:

» EPICSRecord Reference Manual, Philip Stanley, Janet Anderson and Marty Kraimer
See LANL Web site for latest version.

8 EPICS I0OC Application Developer's Guide

Chapter 1: Introduction
Acknowledgments

EPICS 10C Software Configuration Management, Marty Kraimer, Andrew Johnson, Janet Anderson, Ralph Lange
http://www.aps.anl .gov/asd/control s/epi cs/Epi csDocumentati on/A ppDevM anual s/iocScm-3.13.2/index.html

* VXWborks Programmer’s Guide, Wind River Systems
vWbr ks Reference Manual, Wind River Systems
RTEMS C User’s Guide, Online Applications Research

1.2 Acknowledgments

The basic model of what an |OC should do and how to do it was developed by Bob Dalesio at LANL/GTA. The principle
ideas for Channel Access were developed by Jeff Hill of LANL/GTA. Bob and Jeff also were the principle implementers
of the original 10C software. This software (called GTACS) was developed over a period of several years with feedback
from LANL/GTA users. Without their ideas EPICS would not exist.

During 1990 and 1991, ANL/APS undertook a major revision of the IOC software with the mgjor goal being to provide
easily extendible record and device support. Marty Kraimer (ANL/APS) was primarily responsible for designing the data
structures needed to support extendible record and device support and for making the changes needed to the 10C resident
software. Bob Zieman (ANL/APS) designed and implemented the UNIX build tools and 10C modules necessary to
support the new facilities. Frank Lenkszus (ANL/APS) made extensive changes to the Database Configuration Tool
(DCT) necessary to support the new facilities. Janet Anderson developed methods to systematically test various features
of the |OC software and is the principal implementer of changes to record support.

During 1993 and 1994, Matt Needes at LANL implemented and supplied the description of fast database links and the
database debugging tools.

During 1993 and 1994 Jim Kowalkowski at ANL/APS developed GDCT and also devel oped the ASCII database instance
format now used as the standard format. At that time he also created dbLoadRecor ds and dbLoadTenpl at e.

The bui | d utility method resulted in the generation of binary files of UNIX that were loaded into 10Cs. As new 10C
architectures started being supported this caused problems. During 1995, after learning from an abandoned effort now
referred to as Epi csRX, the build utilities and binary file (called def aul t .dct sdr) were replaced by all ASCII files.
The new method provides architecture independence and a more flexible environment for configuring the record/device/
driver support. This principle implementer was Marty Kraimer with many ideas contributed by John Winans and Jeff Hill.
Bob Dalesio made sure that we did not go to far, i.e. 1) make it difficult to upgrade existing applications and 2) lose
performance.

In early 1996 Bob Dalesio tackled the problem of allowing runtime link modification. This turned into a cooperative
development effort between Bob and Marty Kraimer. The effort included new code for database to Channel Accesslinks,
anew library for lock sets, and a cleaner interface for accessing database links.

In early 1999 the port of iocCore to non vxWorks operating systems was started. The principle devel opers were Marty
Kraimer, Jeff Hill, and Janet Anderson. William Lupton converted the sequencer as well as hel ping with the posix threads
implementation of osiSem and osi Thread. Eric Norum provided the port to RTEMS and also contributed the shell that is
used on non vxWorks environments. Ralph Lange provided the port to HPUX.

Many other people have been involved with EPICS development, including new record, device, and driver support
modules.

EPICS Release: R3.14.1
EPICS I0C Application Developer's Guide 9

Chapter 1: Introduction
Acknowledgments

10 EPICS I0OC Application Developer's Guide

Chapter 2. New Featuresfor 3.14

2.1 Introduction

The 3.14 releases of EPICS base are the first rel eases that support iocCore on non vxWorks operating systems.
The following components of iocCore are included with base:

* libCom - Libraries that work on all supported platforms.

» Database locking, scanning, and processing

» Channel access client and server support

» Standard record types and soft device support

» Access security

» Genera purpose soft device support.

* iocsh - A shell that works on all supported platforms.

* The port to non vxWorks operating systems is based on the following assumptions:
« All hardware support is unbundled from base.
* A multithreaded environment is necessary.

» Operating system independent (OSI) components are defined such that:
« vxWorks implementation has minimal overhead compared to vxWorks specific calls

» The components can be implemented via a combination of POSIX, POSIX.4 (posix real time), and POSIX
threads (pthreads).

» Each OS can use the posix implementation or provide it's own implementation.

In order to provide arelatively easy conversion path for existing 3.13 applications, the old config rules are still supported.
Separate documentation explains how what must be done to convert 3.13 applications.

2.2 Example Application

This section explains how to create an example 10C application in a directory <top>, naming the application
exanpl eApp andtheioc directory i ocexanpl e.

2.2.1 Check that EPI cs_HOST ARCHisdefined

Execute the command:
echo $EPI CS_HOST_ARCH (Uni x)
or
set EPI CS_HOST_ARCH (W ndows)

EPICS Release: R3.14.1
EPICS IOC Application Developer's Guide 11

Chapter 2: New Features for 3.14
Example Application

This should display your workstation architecture, for example sol ari s- sparc or wi n32-x86. If you get an
"Undefined variable" error, you should set EPICS HOST_ARCH to your host operating system followed by a dash and
then your host architecture, e.g. solaris-sparc. The perl script EpicsHostArch.pl in the base/startup directory has been
provided to help set EPICS HOST_ARCH.

2.2.2 Create the example application

The following commands create an example application.

nkdir <top>

cd <top>

<base>/ bi n/ <ar ch>/ makeBaseApp. pl -t exanpl e exanpl e
<base>/ bi n/ <ar ch>/ makeBaseApp. pl -i -t exanpl e exanple

The last command will ask you to enter an architecture for the IOC. It provides alist of architectures for which base has
been built. If you are using multiple target architectures the last command should be given for each different architecture.

Windows Users Note: Perl scripts are invoked with the command perl <scriptname> on win95/NT. Perl script names are
case sensitive. For example to create an application on WIN9S/NT:

perl C:.\epics\base\bi n\w n32-x86\ nakeBaseApp. pl -t exanpl e exanpl e

2.2.3 Inspect files

Spend some time looking at the files that appear under <top>. Do this BEFORE building. This allows you to see typical
files which are needed to build an application without seeing the files generated by make.

2.2.4 Sequencer Example

The sequencer is now supported as an unbundled product. The example includes an example state notation program;
sncExample.stt. As created by makeBaseApp the example is not built or executed.

Before sncExample.st can be built, the sequencer must be built using the same version of base that the example uses.
To build sncExample edit the following files:

* configure/RELEASE - Set SNCSEQ to the location of the sequencer.

» exampleApp/src/Makefile - Remove comment character from the following lines:
example_SRCS += sncExample.stt
example LIBS +=seq
example LIBS += pv
seq DIR = $(SNCSEQ_LIB)
pv_DIR =$(SNCSEQ_LIB)
+ iocBoot/iocexample - st.cmd has a command to start the sequence program. Just remove the comment character.

The Makefile also contains instructions for how to build sncExample as a standalone application, i.e. an application that
does not use an epics database.

2.2.5Build

In directory <top> execute the command

gnunake

12 EPICS I0OC Application Developer's Guide

Chapter 2: New Features for 3.14
Example Application

Linux Note: On linux gnumake is the native make so just execute:

make

2.2.6 Inspect files

Thistime you will see the files generated by make as well as the original files.

2.2.7 Run theioc example

The example can be run on vxWorks, RTEMS, or on a supported host.

» vXWorks - Set your boot parameters as described below and then boot the ioc.

» RTEMS- RTEMS uses TFTP to read startup scripts and configuration files. On your TFTP server:
» Copy al db/xxx files to <tftpbase>/epics/<target_hostname>/db/xxx.
» Copy al dbd/xxx files to <tftpbase>/epics/<target_hostname>/dbd/xxx.
« Copy iocBoot/iocexample/st.cmd to <tftpbase>/epics/<target_hostname>/st.cmd.

» Transfer the application executable image to the target machine and start it. The method of doing this
depends on your target hardware. Typical methods include BOOTP/TFTR, booting from a floppy disk,
burning the application into flash memory or using gdb to download and execute the application.

* Onahogt, e.g. solaris
e cd <top>/iocBoot/iocexanpl e
e ../../bin/solaris-sparc/exanple st.cnd

After theioc is started try some of the shell commands (e.g. dbl or dbpr <r ecor dnane>) described in chapter "IOC
Test Facilities". In particular run dbl to get alist of the records.

Except on vxWorks a help facility is available. Just type:

hel p
hel p <cnd>

Where cnd is one of the commands displayed by hel p.
On vxWorks the help facility is available by first typing:

i ocsh

2.2.8 Channel Access Host Examples

Two channel access examples are provided.

» cabExample - This example accepts a pvname, connects and reads the current value for pvname, displays the result
and terminates. To run this example just type.
<nyt op>/ bi n/ <host ar ch>/ caExanpl e <pvnane>
where
<nyt op> isthe full path name to your application top directory.
<host ar ch> isyour host architecture.
<pvnane> is one of the record names displayed by the dbl ioc shell command.
» caMonitor - This example accepts afilename, which contains alist of pvnames, each appearing on a separate line.

It connects to each pv and issues monitor requests. It displays messages for all channel access events, connection
events, etc.

EPICS Release: R3.14.1
EPICS I0C Application Developer's Guide 13

Chapter 2: New Features for 3.14
Shell for non vxWorks environment

2.2.9 vxWor ks boot parameters

The vxWorks boot parameters are set via the console serial port on your |OC. Life is much easier if you find out how to
connect the serial port to awindow on your workstation.

The vxWorks boot parameters |ook something like the following:

boot device DOXXX

processor numnber . 0

host nane DOXXX

file nane . <full path to board support>/vxWrks
i net on ethernet (e) ©OXXX. XXX. XXX. XXX: <net mask>

host inet (h) DOXXX. XXX, XXX, XXX

user (u) DOXXX

ftp password (pw) DOXXX

flags (f) N 0)'{0]

target nane (tn) . <hostnane for this inet address>
startup script (s) . <top>/iocBoot/iocexanple/st.cnd

The actual values for each field are site and 10C dependent. Two fields that you can change at will are the vxWorks boot
image and the location of the startup script.

Note that the full path name for the correct board support boot image must be specified. If bootp is used the same
information will need to be placed in the bootp host’s configuration database instead.

When your boot parameters are set properly, just press the reset button on your 1OC, or use the @ command to commence
booting. You will find it VERY convenient to have the console port of the IOC attached to a scrolling window on your
workstation.

2.3 Shdll for non vxWorks environment

Because the vxWorks shell is not available, EPICS base provides iocsh. In the main program it can be invoked as follows:
i ocsh("fil ename")

or
i ocsh(0)

If the argument is afilename, the commands in the file are executed and iocsh returns. If the argument is 0 then iocsh goes
into interactive mode, i.e. it prompts for and executes commands until an exit command is issued.

This shell is described in more detail in Chapter 19, “1OC Shell” on page 229

2.4 Some Unresolved |tems

* Currently beacons do not perform properly if two or more versions of iocCore and/or portable servers are runing on
the same workstation. Jeff is this till true?

* libcom reviewed

* 0si naming conventions. Current naming conventions are not uniform.
» Most components that are new to 3.14 now start with the prefix epics. A few still start with osi.

14 EPICS I0OC Application Developer's Guide

Chapter 2: New Features for 3.14
Some Unresolved Items

» For C++ namespaces and the standard C++ library are causing a problem because they are not
implemented on all supported platforms.

* epicsThread
* Should epicsThreadDestroy be allowed?
« shell for non vxWorks environments
» Additional extensionsto iocsh?
o Tcl/Tk wrapper ?
« facility initialization
» Use c++ static classes to initialize where possible. This is aready done in many places. Are we missing
some?
» What should applications use? exampleApp now includes example for subRecord routines.
e Lazy initidlization? Thisis aready donein many places. Are we missing some?
* Should logClient and logServer be moved to separate directory under src or even unbundled?
» devLib - Thusisactualy support for VME. What should we do with devLib?

» Decorated Names. Thisis for creating win32 DLLs. We should consider a way of creating the DLLs which does
not require the decorated names.

» Compiler optimization switches. What should we use? Turning on the -g flag for GNU causes a factor of 10
increasein size of libraries on Linux.

EPICS Release: R3.14.1
EPICS IOC Application Developer’'s Guide 15

Chapter 2: New Features for 3.14
Some Unresolved Items

16 EPICS I0OC Application Developer's Guide

Chapter 3: EPICS Overview

3.1 What isEPICS?

EPICS consists of a set of software components and tools that Application Devel opers use to create a control system. The

basic components are:

» OPI: Operator Interface. Thisis aworkstation which can run various EPICS tools.

* |OC: Input/Output Controller. Any platform that can support EPICS run time databases together with the other
software components described in the manual. One example is a workstation. Another example is a VME/VXI

based system using vxWorks or RTEM S as the realtime operating system.

e LAN: Loca AreaNetwork. Thisisthe communication network which allows the |IOCs and OPIs to communicate.
EPICS provides a software component, Channel Access, which provides network transparent communication

between a Channel Access client and an arbitrary number of Channel Access servers.

A control system implemented via EPICS has the following physical structure.

OPI

OPI

OPI

I0C

Therest of this chapter gives a brief description of EPICS:

» Basic Attributes: A few basic attributes of EPICS.

I0C

LAN

 Platforms: The vendor supplied Hardware and Software platforms EPICS supports.

3.2 Basic Attributes

The basic attributes of EPICS are:

10C Software: EPICS supplied 10C software components.

» Channel Access. EPICS software that supports network independent access to |0C databases.
OPI Tools. EPICS supplied OPI based tools.
EPICS Core: A list of the EPICS core software, i.e. the software components without which EPICS will not work.

EPICS Release: R3.14.1

EPICS I0C Application Developer's Guide

Chapter 3: EPICS Overview
Hardware - Software Platforms (Vendor Supplied)

» Tool Based: EPICS provides a number of tools for creating a control system. This minimizes the need for custom
coding and helps ensure uniform operator interfaces.

 Digtributed: An arbitrary number of IOCs and OPIs can be supported. Aslong as the network is not saturated, no
single bottle neck is present. A distributed system scales nicely. If asingle |OC becomes saturated, its functions can
be spread over several 10Cs. Rather than running all applications on a single host, the applications can be spread
over many OPIs.

» Event Driven: The EPICS software components are all designed to be event driven to the maximum extent
possible. For example, rather than having to poll 10Cs for changes, a Channel Access client can request that it be
notified when a change occurs. This design leads to efficient use of resources, as well as, quick response times.

* High Performance: A SPARC based workstation can handle several thousand screen updates a second with each
update resulting from a Channel Access event. A 68040 IOC can process more than 6,000 records per second,
including generation of Channel Access events.

3.3 Hardware - Software Platforms (Vendor Supplied)

3.3.1OPI

Hardware

* Unix based Workstations: Well supported platformsinclude SOLARIS, and HP-UX
e Linux

» Darwin,i.e. Mac OS 10

o WindowsNT

 Limited support for VMS

Software

e UNIX or Linux or winNT
* X Windows
» Motif Toolkit

3.32LAN

Hardware

* Ethernet (most flavors)
Software

» TCP/IP protocols via sockets

3.3.310C

Hardware

* VME/VXI bus and crates
 Various VME modules (ADCs, DAC, Binary 1/0, etc.)
« Allen Bradley Scanner (Most AB 1/0 modules)
* GPIB devices

18 EPICS I0OC Application Developer's Guide

Chapter 3: EPICS Overview
I0C Software Components

« BITBUS devices
« CAMAC
« CANBUS

M otorola 68xxx

* Intel

* PowerPC

* Sparc
Software

» vxWorks operating system

* Real timekernel

« Extensive “Unix like" libraries
 RTEMS
* Hogt, e.g. solaris

3.4 10C Software Components

An |OC contains the following EPICS supplied software components.

Ethernet
Channel Sequencer
Access
I .
Monitors

Database

Scanners Access IOC Database

Driver or Record Support

Device
Interrupt
Routines

Device Support

Device
Drivers

VME

IOC Database: The memory resident database plus associated data structures.

Database Access: Database access routines. With the exception of record and device support, all access to the
database is via the database access routines.

e Scanners. The mechanism for deciding when records should be processed.
» Record Support: Each record type has an associated set of record support routines.
» Device Support: Each record type can have one or more sets of device support routines.

EPICS Release: R3.14.1
EPICS I0C Application Developer's Guide 19

Chapter 3: EPICS Overview
I0C Software Components

» DeviceDrivers: Device drivers access external devices. A driver may have an associated driver interrupt routine.

* Channel Access. The interface between the external world and the 10C. It provides a network independent
interface to database access.

» Monitors. Database monitors are invoked when database field values change.
» Sequencer: A finite state machine.

Let’s briefly describe the major components of the |OC and how they interact.

3.4.110C Database

The heart of each 10C is a memory resident database together with various memory resident structures describing the
contents of the database. EPICS supports a large and extensible set of record types, e.g. ai (Anaog Input), ao (Analog
Output), etc.

Each record type has a fixed set of fields. Some fields are common to al record types and others are specific to particular
record types. Every record has a record name and every field has a field name. The first field of every database record
holds the record name, which must be unique across all |OCs that are attached to the same TCP/IP subnet.

Data structures are provided so that the database can be accessed efficiently. Most software components, because they
access the database via database access routines, do not need to be aware of these structures.

3.4.2 Database Access

With the exception of record and device support, all access to the database is via the channel or database access routines.
See Chapter 15, “Runtime Database Access’ on page 189 for details.

3.4.3 Database Scanning

Database scanning is the mechanism for deciding when to process a record. Five types of scanning are possible: Periodic,
Event, 1/0 Event, Passive and Scan Once.

» Periodic: A request can be made to process arecord periodically. A number of time intervals are supported.

» Event: Event scanning is based on the posting of an event by any 10C software component. The actual subroutine
cal is:

post _event (event _num

» 1/O Event: The I/O event scanning system processes records based on external interrupts. An 10C device driver
interrupt routine must be available to accept the external interrupts.

» Passive: Passive records are processed as a result of linked records being processed or as a result of external
changes such as Channel Access puts.

» Scan Once: In order to provide for caching puts, The scanning system provides a routine scanOnce which
arranges for arecord to be processed one time.

3.4.4 Record Support, Device Support and Device Drivers

Database access needs no record-type specific knowledge, because each record-type has its associated record support
module. Therefore, database access can support any number and type of records. Similarly, record support contains no
device specific knowledge, giving each record type the ability to have any number of independent device support
modules. If the method of accessing the piece of hardware is more complicated than what can be handled by device
support, then adevice driver can be devel oped.

Record types not associated with hardware do not have device support or device drivers.

20 EPICS I0OC Application Developer's Guide

Chapter 3: EPICS Overview
Channel Access

The 10C software is designed so that the database access layer knows nothing about the record support layer other than
how to call it. The record support layer in turn knows nothing about its device support layer other than how to call it.
Similarly the only thing a device support layer knows about its associated driver is how to call it. This design alows a
particular installation and even a particular IOC within an installation to choose a unique set of record types, device types,
and drivers. The remainder of the IOC system software is unaffected.

Because an Application Developer can develop record support, device support, and device drivers, these topics are
discussed in greater detail in later chapters.

Every record support module must provide a record processing routine to be called by the database scanners. Record
processing consists of some combination of the following functions (particular records types may not need all functions):

* Input: Read inputs. Inputs can be obtained, via device support routines, from hardware, from other database
records via database links, or from other IOCs via Channel Access links.
» Conversion: Conversion of raw input to engineering units or engineering units to raw output values.

» Output: Write outputs. Output can be directed, via device support routines, to hardware, to other database records
via database links, or to other IOCs via Channel Accesslinks.

» Raise Alarms; Check for and raise alarms.
* Monitor: Trigger monitors related to Channel Access callbacks.
e Link: Trigger processing of linked records.

3.4.5 Channel Access

Channél Accessis discussed in the next section.

3.4.6 Database Monitors

Database monitors provide a callback mechanism for database value changes. This allows the caller to be notified when
database values change without constantly polling the database. A mask can be set to specify value changes, alarm
changes, and/or archival changes.

At the present time only Channel Access uses database monitors. No other software should use the database monitors.
The monitor routines will not be described because they are of interest only to Channel Access.

3.5 Channel Access

Channel Access provides network transparent access to |0C databases. It is based on a client/ server model. Each 10C
provides a Channel Access server which is willing to establish communication with an arbitrary number of clients.
Channel Access client services are available on both OPIsand IOCs. A client can communicate with an arbitrary number
of servers.

3.5.1 Client Services

The basic Channel Access client services are:

» Search: Locatethe IOCs containing selected process variables and establish communication with each one.
» Get: Get value plus additional optional information for a selected set of process variables.
e Put: Change the values of selected process variables.

EPICS Release: R3.14.1
EPICS I0C Application Developer's Guide 21

Chapter 3: EPICS Overview
OPI Tools

» Add Event: Add a change of state callback. This is a request to have the server send information only when the
associated process variable changes state. Any combination of the following state changes can be requested:
change of value, change of alarm status and/or severity, and change of archival value. Many record types provide
hysteresis factors for value changes.

In addition to requesting process variable values, any combination of the following additional information may be
requested:

o Status. Alarm status and severity.

» Units: Engineering units for this process variable.

» Precision: Precision with which to display floating point numbers.

» Time: Time when the record was last processed.

» Enumerated: A set of ASCII strings defining the meaning of enumerated values.

» Graphics: High and low limitsfor producing graphs.

e Control: Highand low control limits.

e Alarm: TheadarmH H , H GH, LOWVand LOLOvalues for the process variable.

It should be noted that Channel Access does not provide access to database records as records. Thisis a deliberate design
decision. This allows new record types to be added without impacting any software that accesses the database via Channel
Access, and it allows a Channel Access client to communicate with multiple |OCs having differing sets of record types.

3.5.2 Search Server

Channel Access provides an 10C resident server which waits for Channel Access search messages. These are generated
when a Channel Access client (for example when an Operator Interface task starts) searches for the IOCs containing
process variables the client uses. This server accepts all search messages, checksto see if any of the process variables are
located in this1OC, and, if any are found, replies to the sender with and “I have it” message.

3.5.3 Connection Request Server

Once the process variables have been located, the Channel Access client issues connection requests for each 10C
containing process variables the client uses. The connection request server, in the |OC, accepts the request and establishes
a connection to the client. Each connection is managed by two separate tasks: ca_get and ca_put. Theca_get and
ca_put requests map to dbCet Fi el d and dbPut Fi el d database access requests. ca_add_event requestsresult in
database monitors being established. Database access and/or record support routines trigger the monitors via a call to
db_post _event.

3.5.4 Connection M anagement

Each 10C provides a connection management service. When a Channel Access server fails (e.g. its IOC crashes) the
client is notified and when a client fails (e.g. its task crashes) the server is notified. When a client fails, the server breaks
the connection. When a server crashes, the client automatically re-establishes communication when the server restarts.

3.6 OPI Tools

EPICS provides a number of OPI based tools. These can be divided into two groups based on whether or not they use
Channel Access. Channel Accesstoolsarereal timetools, i.e. they are used to monitor and control 10Cs.

22 EPICS I0OC Application Developer's Guide

Chapter 3: EPICS Overview
EPICS Core Software

3.6.1 Examples of channel Access Tools

A large number of Channel Access tools have been developed. The following are some representative examples.

EDM - Extensible Display Manager. The newest display manager/editor for EPICS.
MEDM: Motif version of combined display manager and display editor.

DM: Display Manager. Reads one or more display list files created by EDD, establishes communication with all
necessary 10Cs, establishes monitors on process variables, accepts operator control requests, and updates the
display to reflect all changes.

stripTool - General purpose stripchart tool.

ALH: Alarm Handler. General purpose alarm handler driven by an alarm configuration file.
AR: Archiver. General purpose tool to acquire and save data from 10Cs.

Sequencer: Runsinan IOC and emulates afinite state machine.

BURT: Backup and Restore Tool. General purpose tool to save and restore Channel Access channels. Thetool can
be run via Unix commands or viaa Graphical User Interface.

KM: Knob Manager - Channel Access interface for the sun dials (a set of 8 knobs)

PROBE: Allows the user to monitor and/or change a single process variable specified at run time.
CAMATH: Channel Accessinterface for Mathematica.

CAWINGZ: Channel Accessinterface for Wingz.

IDL/PVWAVE Channel Access Interfaces exist for these products.

TCL/TK Channel Access Interface for these products.

CDEV - A library designed to provide a standard API to one or more underlying packages, typically control
system interfaces. CDEV provides a Channel Access service.

3.6.2 Examples of other OPI Tools

VDCT - A Java based database configuration tool which is quickly becoming the recommended database
configuration tool.

JDCT: Java Database Configuration Tool. A JAVA based tool for creating run time databases.

GDCT: Graphical Database Configuration Tool. Used to create a run time database for an IOC. Thisis no longer
being developed since it is based on an open source software system called unidraw, which is no longer being
supported.

EDD: Display Editor. This tool is used to create a display list file for the Display Manager. A display list file
contains alist of static, monitor, and control el ements. Each monitor and control element has an associated process
variable.

SNC: State Notation Compiler. It generates a C program that represents the states for the |OC Sequencer tool.

Database Tools - Tools are provided which generate C include files from menu and record type database definition
files.

Source/Release: EPICS provides a Source/Rel ease mechanism for managing EPICS.

3.7 EPICS Core Software

EPICS consists of a set of core software and a set of optional components. The core software, i.e. the components of
EPICS without which EPICS would not function, are:

Channel Access - Client and Server software
10C Database

EPICS Release: R3.14.1

EPICS I0C Application Developer’s Guide 23

Chapter 3: EPICS Overview
EPICS Core Software

e Scanners

» Monitors

* Database Definition Tools
» Source/Release

All other software components are optional. Of course, any application developer would be crazy to ignore tools such as
MEDM (or EDD/DM). Likewise an application developer would not start from scratch developing record and device
support. Most OPI tools do not, however, have to be used. Likewise any given record support module, device support
module, or driver could be deleted from a particular IOC and EPICS will still function.

24 EPICS I0OC Application Developer's Guide

Chapter 4. EPICS Build Facility

Janet Anderson is the author of this chapter.

4.1 Overview

This chapter describes the EPICS build facility including directory structure, environment and system requirements,
configuration files, Makefiles, and related build tools.

4.1.1 <top> Directory structure

EPICS software can be divided into multiple <top> areas. Examples of <top> areas are EPICS base itself, EPICS
extensions, and simple or complicated 10C applications. Each <top> may be maintained separately. Different <top> areas
can be on different releases of external software such as EPICS base rel eases.

A <top> directory has the following directory structure;

<t op>/
Makefil e
confi gure/
dirl/
dir2/

where configure is a directory containing build configuration files and a M akefile and where dirl, dir2, ... are user created
subdirectory trees with Makefiles and source files to be built.

4.1.2 Install Directories

Files installed during the build are installed into an installation directory which defaults to $(TOP), the <top> directory.
For extensions and application the default value can be overridden in the configure/CONFIG file. The installations
directories for the EPICS components are:

e INSTALL_LOCATION - base.

* INSTALL_LOCATION_EXTENSIONS - extensions

* INSTALL_LOCATION_APP - applications
The following directories may also exist in the installation directory. They are created by the build and contain the
installed build components.

« dbd - Directory into which Database Definition files are installed.
* include - The directory into which C header files are installed. These header files may be generated from menu and
record type definitions.

* bin - Thisdirectory contains asubdirectory for each host architecture and for each target architecture. These are the
directoriesin which executables, binaries, etc. are installed.

EPICS Release: R3.14.1
EPICS I0C Application Developer's Guide 25

Chapter 4: EPICS Build Facility
Overview

lib - This directory contains a subdirectory for each host architecture. These are the directories in which libraries
areinstalled.

» db - Thisisthedirectory into which database record instance, template, and substitution files are installed.
html - Thisisthe directory into which html documentation isinstalled.

 templates - Thisisthe directory into which template files are installed.

javalib - Thisisthe directory into which java classfiles and jar files are installed.

« configure- The directory into which configure filesare installed (if INSTALL_LOCATION not equal TOP).

4.1.3 Elements of build system

The main ingredients of the build system are:

* A set of configuration files and tools provided in the EPICS base/configure directory

A corresponding set of configuration files in the <top>/configure directory of a non-base <top> directory structure
to be built. The makeBaseApp.pl and makeBaseEXxt.pl scripts create these configuration files. Many of these files
just include afile of the same name from the base/configure directory.

» Makefilesin each directory of the <top> directory structure to be built

4.1.4 Features

The principal features of the build system are:

» Requires asingle Makefile in each directory of a <top> directory structure

* Supports both host os vendor’s native compiler and GNU compiler

 Supports building multiple types of software (libraries, executables, databases, java class files, etc.) stored in a
single directory tree.

* Supports building EPICS base, extensions, and |OC applications.

* Supports multiple host and target operating system - architecture combinations.

» Allows builds for al hosts and targets within a single <top> source directory tree.

 Allows sharing of components such as special record/device/drivers across <top> areas.

» gnumake is the only command used to build a <top> area.

4.1.5 Multiple host and target systems

You can build on multiple host systems and for multiple cross target systems using a single EPICS directory structure.
The intermediate and binary files generated by the build will be created in separate O.* subdirectories and installed into
the appropriate separate host or target install directories. EPICS executables and perl scripts are installed into the
S(INSTALL_LOCATION)/bin/<arch> directories. Libraries areinstalled into $(INSTALL_LOCATION)/lib/<arch>. The
default definition for $(INSTALL_LOCATION) is $(TOP) which is the root directory in the distribution directory
structure, base. Architecture dependant created files (e.g. object files) are stored in O.<arch> source subdirectories, and
architecture independent created files are stored in O.Common source subdirectories. This allows objects for multiple
cross target architectures to be maintained at the same time.

To build EPICS base for a specific host/target combination you must have the proper host/target c/c++ cross compiler and
target header files, the CROSS COMPILER_TARGET ARCHES must contain the target specification, and the base/
configure/os directory must have the appropriate configure files.

26 EPICS I0OC Application Developer's Guide

Chapter 4: EPICS Build Facility
Build Requirements

4.2 Build Requirements

4.2.1 Host Environment Variable

Only one environment variable, EPI CS_HOST_ARCH, is required to build EPICS <top> areas. This variable should be
set to be your workstation's operating system - architecture combination to use the os vendor’s c¢/c++ compiler for native
builds or set to the operating system - architecture - alternate compiler combination to use an alternate compiler for native
builds if an aternate compiler is supported on your system. The filenames of the CONFI G *. Comrmon files in base/
configure/os show the currently supported EPICS HOST _ARCH vaues. Examples are sol ari s-sparc,
sol ari s-sparc-gnu, |inux-x86, w n32-x86, and wi n32-x86-borl and.

4.2.2 System Prerequisites

Before you can build EPICS components your host system must have the following software installed:

* Perl version 5 or greater
* GNU make, version 3.78.1 or greater
» C++ compiler (host operating system vendor's compiler or GNU compiler)

If you will be building EPICS components for vxWorks targets you will also need:

 Tornado Il and one or more board support packages. Consult the vxWorks documentation for details.

4.2.3 Path and LD_LIBRARY_PATH requirements

You must have the perl executable in your path and you may need C and C++ compilersin your search path. For building
base you also must have echo in your search path.

4.2.3.1 Unix path
For Unix host builds you also need touch, cpp, cp, rm, mv, and mkdir in your search path and /bin/chmod must exist. On
some Unix systems you may also need ar and ranlib in your path, and the ¢ compiler may requireld in your path.

4.2.3.2Unix LD_LIBRARY_PATH

If you plan to build EPICS base shared libraries instead of archive libraries, on Unix systems you will need to add
fullpathname to $(INSTALL_LOCATION)/lib/$(EPICS HOST_ARCH) to your LD_LIBRARY_PATH environment
variable.

4.2.3.3Win32 PATH

On WIN32 systems, building shared libraries is the default setting and you will need to add fullpathname to
$(INSTALL_LOCATION)/bin/$(EPICS HOST_ARCH) to your path. Building shared libraries is determined by the
value of the macro SHARED_LIBRARIES in CONFIG_SITE (either YES or NO).

4.2.4 Startup files

The startup directory in EPICS base contains a perl script, Epi csHost Arch. pl, which can be used to
defineEPICS HOST_ARCH. This script can be invoked with a command line parameter defining the alternate compiler
(e.g. if invoking "Epi csHost Ar ch. pl " yields solaris-sparc, then invoking "Epi csHost Ar ch. pl gnu" will yield
solaris-sparc-gnu).

EPICS Release: R3.14.1
EPICS I0C Application Developer's Guide 27

Chapter 4: EPICS Build Facility
Configuration Definitions

The startup directory also contains scripts to help users set the path and othr environment variables

4.3 Configuration Definitions

4.3.1 Site-specific EPICS Base Configuration

4.3.1.1 Site configuration
To configure EPICS base for your site, you may want to modify the default definitions in the following files:

configure/ CONFIG_SITE Build choices. Specify target archs.
configure/CONFIG_SITE_ENV Environment variable defaults
configure/RELEASE TORNADO 2 full path location

4.3.1.2 Host configuration

To configure each host system for your site, you may override the default definitions in the configure/os directory by
adding a new file with override definitions. The new file should have the same name as the distribution file to be
overridden except CONFIG in the nameis changed to CONFIG_SITE.

configure/os/CONFIG_SITE.<host>.<host> - Host build settings
configure/oyCONFIG_SITE.<host>.Common - Host build settings for all target systems

4.3.1.3 Target configuration

To configure each target system, you may override the default definitions in the configure/os directory by adding a new
file with override definitions . The new file should have the same name as the distribution file to be overridden except
CONFIG inthe nameisreplaced by CONFIG_SITE.

configure/osyCONFIG_SITE.Common.<target> - Target cross settings
configure/osyCONFIG_SITE.<host>.<target> - Host-target settings

4.3.1.4 R3.13 compatibility configuration

To configure EPICS base for building with R3.13 extensions and ioc applications, you must modify the default definitions
in the base/config/ CONFIG_SITE* files to agree with site definitions you made in base/configure and base/configure/os
files.

4.3.2 Directory definitions

The configure files contain definitions for where to install various components. These are al relative to
| NSTALL_LOCATI ON. The default value for | NSTALL_LOCATI ONis$(TOP), and $(T_A) is the current build’s target
architecture. The default value for INSTALL_LOCATION can be overridden at the bottom of an ioc application’s
configure/ CONFIG file.

| NSTALL_LOCATI ON_LI B
| NSTALL_LOCATI ON_BI N

$(1 NSTALL_LOCATION)/1i b
$(1 NSTALL_LOCATI ON) / bi n

| NSTALL_HOST_BI N
| NSTALL_HOST LI B

$(1 NSTALL_LOCATI ON_BI N) / $(EPI CS_HOST_ARCH)
$(1 NSTALL_LOCATI ON_LI B) / $(EPI CS_HOST_ARCH)

28 EPICS I0OC Application Developer's Guide

Chapter 4: EPICS Build Facility
Configuration Definitions

| NSTALL_| NCLUDE $(1 NSTALL_LOCATI ON) / i ncl ude

| NSTALL_DCC = $(| NSTALL_LOCATI ON) / doc

| NSTALL_HTM = $(I NSTALL_LOCATI ON) / ht m

| NSTALL_TEMPLATES = $(I NSTALL_LOCATI ON) / t enpl at es
| NSTALL_DBD = $(| NSTALL_LOCATI ON) / dbd

| NSTALL_DB = $(I NSTALL_LCOCATI ON) / db

| NSTALL_CONFI G = $(I NSTALL_LOCATI ON) / confi gure
| NSTALL_JAVA = $(I NSTALL_LCCATION)/javalib
#Directory for OS independent build created files

COWON DI R = ../ QO Conmmon

| NSTALL_LI B $(I NSTALL_LOCATI ON_LIB)/ $(T_A)

I NSTALL_SHRLI B
| NSTALL_TCLLI B
| NSTALL_BI'N

$(| NSTALL_LOCATI ON_LI B)/ $(T_A)
$(| NSTALL_LOCATI ON_LI B)/ $(T_A)
$(1 NSTALL_LOCATI ON_BI N) / $(T_A)

4.3.3 Extension and Application Specific Configuration

The base/configure directory contains files with the default build definitions and site specific build definitions. The
extensions/configure directory contains extension only build definitions (e.g. location of X11 and Matif libraries) and
"include <filename>" lines for the base/configure files. Likewise, the <application>/configure directory contains
application specific build definitions and includes for the base/configure files. Build definitions such a
CROSS COMPILER _TARGET_ARCHS can be overridden in an extension or application by placing an override
definition in the <top>/configure/CONFIG file. The

4.3.4 RELEASE file

Every <top>/configure directory contains a RELEASE file. RELEASE contains a user specified list of other <top>
directory structures containing files needed by the current <top>. When make is executed in configure, a perl script,
convert Rel ease. pl, generates CONFIG_APP_INCLUDE which contains include, bin, and library directory
definitions for each external <top> definition in the RELEASE file. CONFIG_APP_INCLUDE is included into the
CONFIG file so its definitions are available for use by Makefiles. Also when make is executed in configure,
convert Rel ease. pl, generates a RULES INCLUDE file which contains an include statement for any existing
RULES BUILD files from each external <top> in the RELEASE filee RULES INCLUDE is included by the
RULES BUILD filein EPICS base so all make rulesin the external <top> RULES BUILD files are available for use by
Makefiles.

For example, if configure/REL EASE contains the following definition:
CAMAC = / home/ epi cs/ nodul es/ bus/ canmac
then the created CONFIG_APP_INCLUDE will contain the following lines

CAMAC _BI' N = /hone/ epi cs/ nodul es/ bus/ canmac/ bi n/ sol ari s-sparc
CAVAC_LI B = /hone/ epi cs/ nodul es/ bus/ canmac/ | i b/ sol ari s-sparc
RELEASE | NCLUDES += -1/ hone/ epi cs/ nodul es/ bus/ camac/ i ncl ude
RELEASE DBDFLAGS += -1 /hone/ epi cs/ nodul es/ bus/ camac/ dbd

and the created RULES _INCLUDE will contain the following line
-include /hone/ epi cs/ nodul es/ bus/ camac/ confi gure/ RULES BUI LD

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 29

Chapter 4: EPICS Build Facility
Configuration Definitions

RELEASE_DBDFLAGS will appear on the command lines for the dbToRecordTypeH, mkmf.pl, and dbExpand tools, and
RELEASE_INCLUDES will appear on compiler command lines. CAMAC_LIB and CAMAC_BIN can be used in a
Makefile to define the location of needed scripts, executables, object files, libraries or other files.

Definitions in configure/RELEASE can be overridden for a specific EPICS_HOST_ARCH architecture by providing a
configure/RELEASE.<epics_host_arch> file containing overriding definitions.

4.3.5 Modifying configure/RELEASE* files

You should dwaysdo a"gnunake cl ean uni nstal | " inthe <top> level directory BEFORE adding, changing, or
removing any definitions in the configure/RELEASE* files and then a"gnunake" at the top level AFTER making the
changes.

The file <top>/config/REL EASE contains definitions for components obtained from outside <top>. If you want to link to
anew release of anything defined in the file do the following:

cd <top>
gnhurmake cl ean uni nstall
edit confi gure/ RELEASE
change the relevant ling(s) to point to the new release
ghumake

All definitions in <top>/config/RELEASE must result in complete path definitions, i.e. relative path names are not
permitted. If your site could have multiple releases of base and other <supporttop> components installed at once, these
path definitions should contain a release number as one of the components. However as the RELEASE file is read by
gnumake, it is permissible to use macro substitutions to define these pathnames, for example:

SUPPORT = /usr/local/iocapps/R3.13.1
EPICS _BASE = $(SUPPORT)/base/3 13 1 asd2

4.3.6 Specifying osclass

Definitionsin a Makefile will apply to the host system (the platform on which make is executed) and each system defined
by CROSS_COMPILER_TARGET_ARCHS.

It ispossible to limit the systems for which a particular definition applies. Most M akefile definitions can be specified with
an appended underscore " " followed by an osclass specification. If an _<osclass> is not specified, then the definition
applies to the host and al CROSS COMPILER_TARGET_ARCHS systems. If an _<osclass> is specified, then the
definition applies only to systems with the specified os class. A Makefile definition can also have an appended
_DEFAULT specification. If _DEFAULT is appended, then the Makefile definition will apply to all systems that do not
have an _<osclass> specification for that definition. If a_DEFAULT is appended on a definition but the definition should
not apply to a particular system <osclass>, the value "-nil-" should be specified in the relevant Makefile definition.

Each system has an OS_CLASS definition in its configure/os/ CONFIG.Common.<arch> file. A few examples are:

For vxWorks-68040 and vxWorks-pentium the <osclass> is vxWorks.
For solaris-sparc, solaris-x86 and solaris-sparc-gnu, the <osclass> is solaris.
For win32-x86 the <osclass> is WIN32.

For example the following Makefile lines specify that product aaa should be created for all systems. Product bbb should
be created for systems that do not have OS_CLASS defined as solaris.

PRCD = aaa
PROD solaris = -nil-
PROD DEFAULT = bbb

30 EPICS I0OC Application Developer's Guide

Chapter 4: EPICS Build Facility
Makefiles

4.3.7 Host and | oc targets

Build creates two type of makefile targets. Host and loc. Host targets are executables, object files, libraries, and scripts
which are not part of iocCore. loc targets are components of ioc libraries, executables, object files, or iocsh scripts which
will berun onanioc.

Each supported target system hasa VALID_BUILDS definition which specifies the type of makefile targetsit can support.
This definition appearsin configure/so/ CONFIG.Common.<arch> or configure/os/ CONFIG.<arch>.<arch> files.

For vxWorks systems VALID BUILDS isset to"loc".

For Unix type systems, VALID_BUILDS s set to "Host loc".
For RTEMS systems, VALID_BUILDS isset to "loc".

For WIN32 systems, VALID_BUILDS is set to "Host loc".

InaMakefileitis possible to limit the systems for which a particular PROD, TESTPROD, LIBRARY, SCRIPT, and OBJS
isbuilt. For example the following Makefile lines specify that product aaa should be created for systems that support Host
type builds. Product bbb should be created for systems that support loc type builds. Product ccc should be created for all
target systems.

PROD _HOST = aaa

PROD_| OC = bbb

PROD = ccc
These definitions can be further limited by specifying an appended underscore " " followed by an osclass or DEFAULT
specification.

4.4 M akefiles

4.4.1 Name
The name of the makefile in each directory must be Makefile.

4.4.2 Included Files

Makefiles normally include files from <top>/configure. Thus the makefile "inherits" rules and definitions from configure.
The files in <top>/configure may in turn include files from another <top>/configure. This technique makes it possible to
share make variables and even rules across <top> directories.

4.4.3 Contents of M akefiles

Makefilesin directories containing subdirectories

A Makefile in this type of directory must define where <top> is relative to this directory, include <top>/configure files,
and specify the subdirectoriesin the desired order of make execution. Running gnumake in a directory with the following
Makefile lines will cause gnumake to be executed in <dir1> first and then <dir2>. The build rules do not allow a Makefile
to specify both subdirectories and components to be built.

TOP=. . /..
i ncl ude $(TOP)/ confi gure/ CONFI G

EPICS Release: R3.14.1
EPICS I0C Application Developer's Guide 31

Chapter 4: EPICS Build Facility
Make

DIRS += <dirl1> <dir2>
i ncl ude $(TOP)/ confi gure/ RULES DI RS

Makefilesin directories where components areto be built

A Makefilein thistype of directory must define where <top> isrelative to this directory, include <top> configure files, and
specify the target component definitions. Optionally it may contain user defined rules. Running gnumake in a directory
with this type of Makefile will cause gnumake to create an O.<arch> subdirectory and then execute gnumake to build the
defined components in this subdirectory. It contains the following lines:

TOP=../../..

i ncl ude $(TOPR)/ confi gure/ CONFI G
<conponent definition |ines>

i ncl ude $(TOP)/ confi gure/ RULES
<optional rules definitions>

4.4.4 Simple M akefile examples

Create an 10C type library named asloc from the source file asDbLib.c and install it into the
$(| NSTALL_LOCATI ON) / I i b/ <ar ch> directory.

TOP=../../..

i ncl ude $(TOP)/ confi gure/ CONFI G
LI BRARY_| OC += asl oc

asl oc_SRCS += asDbLib.c

i ncl ude $(TOP)/ confi gure/ RULES

For each Host type target architecture, create an executable named catest from the catestl.c and catest2.c source files
linking with the existing EPICS base ca and Com libraries, and then install the catest executable into the
$(| NSTALL_LOCATI ON) / bi n/ <ar ch> directory.

TOP=../../..

i ncl ude $(TOP)/ confi gure/ CONFI G
PROD_HOST = cat est

catest SRCS += catestl.c catest2.c
catest LIBS = ca Com

i ncl ude $(TOP)/ confi gure/ RULES

4.5 Make

4.5.1 Makevs. gnumake

EPICS provides an extensive set of make rules. These rules only work with the GNU version of make, gnumake, which is
supplied by the Free Software Foundation. Thus, on most Unix systems, the native make will not work. On some systems,
e.g. Linux, GNU make may be the default. This manual always uses gnumake in the examples.

32 EPICS I0OC Application Developer's Guide

Chapter 4: EPICS Build Facility
Make

4.5.2 Frequently used Make commands

NOTE: It is possible to invoke the following commands for asingle target architecture by appending .<arch> to the target
in the command.

The most frequently used make commands are:

ghumake
This rebuilds and installs everything that is not up to date.
NOTE: Executing gnumake without arguments is the same as gnumake install

gnunmake <arch>
This rebuilds and installs everything that is not up to date for a single specified target arch.
NOTE: Thisisthe same as gnumake install.<arch>

gnunmeke cl ean
This can be used to save disk space by deleting the O.<arch> directories that gnumake will create, but does not
remove any installed files from the bin, db, dbd etc. directories. .<arch> can be appended to invoke clean for a
single architecture.

gnurmake real cl ean
This command can be executed from the <top> directory only. It will remove ALL the O.<arch> subdirectories
(even those created by a gnumake from another EPICS HOST_ARCH).

gnurmake rebuil d
This is the same as gnumake clean install. If you are unsure about the state of the generated files in an application,
just execute gnumake rebuild.

gnunmake uni nstal |
This command can be executed from the <top> directory only. It will remove everything installed by gnumake in
theinclude, lib, bin, db, dbd, etc. directories.

gnurmake real uni nstal |
This command can be executed from the <top> directory only. It will remove all the install directories, include, lib,
bin, db, dbd, etc..

gnhurmake di stcl ean
This command can be executed from the <top> directory only. It is the same as issuing both the realclean and
realuninstall commmands.

4.5.3 Maketargets

The following is asummary of targets that can be specified for gnumake:

e <action>

e <arch>
 <action>.<arch>

o <dir>

o <dir>.<action>

o <dir>.<arch>
 <dir>.<action>.<arch>

where:

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 33

Chapter 4: EPICS Build Facility
Makefile definitions

<arch>isEPICS_HOST_ARCH, solaris-sparc, vxWorks-68040, win32-x86, etc. - builds named architecture only.
<action> is help, clean, realclean, distclean, inc, install, build, rebuild, buildinstall, realuninstall, or uninstall
NOTE: help, uninstall, distclean, and realuninstall can only be specified at <top>.

NOTE: realclean cannot be specified in an * .<arch> subdirectory.

<dir> is subdirectory name

Note: You can build using your os vendors' native compiler and also build using a supported aternate compiler in the
same directory structure because the executables and libraries will be created and installed into separate directories (e.g
bin/solaris-sparc and bin/solaris-sparc-gnu). You can do this by changing your EPI CS_HOST_ARCH, environment
variable between builds or by setting EPI CS_HOST _ ARCH on the gnumake command line.

4.5.4 Header file dependencies

All product, test product, and library source files which appear in one of the source file definitions (e.g. SRCS,
PROD_SRCS, LIB_SRCS, <praodname>_SRCS) will have their header file dependencies automatically generated and
included as part of the Makefileif HDEPENDS is set to Y ES in the Makefile and/or in base/configure/ CONFIG_SITE.

4.6 Makefile definitions

The following components can be defined in a Makefile to be built when gnumake isinvoked:

4.6.1 Sourcefiledirectories

Normally all product, test product, and library source files reside in the same directory as the Makefile. OS specific source
files are allowed and should reside in subdirectories os/<os_class> or os/posix or og/defaullt.

The build rules also allow sourcefilesto reside in subdirectories of the current Makefile directory (src directory). For each
subdirectory <dir> containing source files add the SRC_DIRS definition.

SRC DIRS += <dir>
where <dir> is arelative path definition. An example of SRC _DIRSis
SRCDIRS += ../<dirl> ../<dir2>

The directory search order for the above definition is

../l 0s/$(OS_CLASS) ../os/posix ../os/default
../dirl/os/$(OS_CLASS) ../dirl/os/posix ../dirl/os/default
./dir2/os/$(0OS_CLASS) ../dir2/os/posix ../dir2/os/default

idirl .. /dir2

where the build directory O.<os class> is. and the src directory is...

4.6.2 Posix C source code

The epics base config files assume posix source code and define POSIX to be YES as the default. Individual Makefiles
can override this by setting POSIX to NO.

34 EPICS I0OC Application Developer's Guide

Chapter 4: EPICS Build Facility
Makefile definitions

4.6.3 Breakpoint Tables

For each breakpoint table dbd file, bpt<table name>.dbd, to be created from an existing bpt<table name>.datafile, add the
definition
DBD += bpt <t abl e nane>. dbd

to the Makefile. The following Makefile will create a bptTypeldegC.dbd file from an existing bptTypeJdegC.data file and
install the new dbd file into the $(INSTALL_L OCATION)/dbd directory.

TOP=../../..

i ncl ude $(TOP)/ confi gure/ CONFI G
DBD += bpt TypeJdegC. dbd

i ncl ude $(TOP)/ confi gure/ RULES

4.6.4 Record Type Definitions

For each new record type, the following definition should be added to the makefile:
DBDI NC += <rectype>Record

A <rectype>Record.h header file will be created from an existing <rectype>Record.dbd file. This header will be installed
into the $(INSTALL_L OCATION)/include directory and the dbd file will beinstalled into the $(INSTALL_L OCATION)/
dbd directory.

The following Makefile will create xxxRecord.h from an existing xxxRecord.dbd file, install xxxRecord.h into
$(INSTALL_LOCATION)/include, and install xxxRecord.dbd into $(INSTALL_L OCATION)/dbd.

TOP=../../..

i ncl ude $(TOP)/ confi gure/ CONFI G
DBDI NC += xxxRecord

i ncl ude $(TOP)/ confi gure/ RULES

4.6.5Menus

If amenu menu<name>.dbd file is present, then add the following definition:
DBDI NC += nmenu<name>. h

The header file, menu<name>.h will be created from the existing menu<name>.dbd file and installed into the
$(INSTALL_LOCATION)/include directory and the menu dbd file will be installed into $(INSTALL_L OCATION)/dbd.

The following Makefile will create a menuConvert.h file from an existing menuConvert.dbd file and install
menuConvert.h to $(INSTALL_L OCATION)/include and menuConvert.dbd to $(INSTALL_L OCATION)/dbd.

TOP=../../..

i ncl ude $(TOP)/ confi gure/ CONFI G
DBDI NC = menuConvert.h

i ncl ude $(TOP)/ confi gure/ RULES

4.6.6 Expanded Database Definition File

Database definition files named <name>Include.dbd containing includes for other database definition files can be
expanded by utility dbExpand into a created <name>.dbd file and the <name>.dbd file will be instaled into
$(INSTALL_LOCATION)/dbd. The following variables control the process:

DBD += <nane>. dbd

EPICS Release: R3.14.1
EPICS I0C Application Developer's Guide 35

Chapter 4: EPICS Build Facility
Makefile definitions

USR DBDFLAGS += -1 <incl ude path>
USR _DBDFLAGS += -S <macro substitutions>

where the entries are:
DBD += <name>. dbd

The name of the output dbd file to contain the expanded definitions. It will be created from an existing
<name>Include.dbd file and installed into $(INSTALL_LOCATION)/dbd. An example of a file to be expanded is
examplelnclude.dbd containing the following lines

i ncl ude "base. dbd"
i ncl ude "xxxRecord. dbd"
devi ce(xxx, CONSTANT, devXxxSof t, " Sof t Channel ")

USR_DBDFLAGS defines optional flags for dbExpand. Currently only an include path (-1 <path>) and macro substitution
(-S <substitution>) are supported. The include paths for EPICS base/dbd, and other <top>/dbd directories will
automatically be added during the build if the <top> names are specified in the configure/REL EASE file.

The following Makefile will create an expanded dbd file named example.dbd from an existing examplelnclude.dbd file
and install example.dbd into the $(INSTALL_L OCATION)/dbd directory.

TOP=../../..

i ncl ude $(TOP)/ confi gure/ CONFI G
DBD += exanpl eApp. dbd

i ncl ude $(TOP)/ confi gure/ RULES

4.6.7 Registering Support Routines for Expanded Database Definition Files

A source file which registers record/device/driver support routines can be created. The list of routines to register is
obtained from an existing dbd file.

The following line in a Makefile will result in <nanme>_r egi st er Recor dDevi ceDri ver. cpp being created,
compiled, and linked into <pr odnane>. It requires that the file <nanme>. dbd exist.

<pr odnane>_SRCS += <nane>_regi st er RecordDevi ceDri ver. cpp

4.6.8 Database Definition Files

The following lineinstalls the existing named dbd filesinto $(INSTALL_L OCATION)/dbd without expansion.
DBD += <nanme>. dbd

4.6.9 Database Files

For most databases just the name of the database has to be specified. Make will figure out how to generate the file:
DB += xxx.db
Generates xxx.db depending on which source files exist and installs it into $(INSTALL_L OCATION)/db.

A *<nn>.db database file will be created from a * .template and * <nn>.substitutions file, (where nn is an optional index
number). The Macro Substitutions and Include tool, msi, will be used to generate the database, and msi must either bein
your path or you must redefine MSI as the full path name to the msi binary in a RELEASE file or Makefile.

DB += xxx.tenpl ate xxx.substitutions

36 EPICS I0OC Application Developer's Guide

Chapter 4: EPICS Build Facility
Makefile definitions

Generates and installs these files. If one or more xxx.substitutions files are to be created by script, the script name must be
placed in the CREATESUBSTITUTIONS variable (e.g. CREATESUBSTITUTIONS=mySubst.pl). This script will be
executed by gnumake with the prefix of the substitution file name to be generated asits argument. If (and only if) there are
script generated substitutions files, the prefix of any inflated database's name may not equal the prefix of the name of any
template used within the directory.

In order to record dependency information correctly all template files that are needed but not installed (i.e. those not listed
in DB), must be added to the USES TEMPLATE variable:

USES_TEMPLATE += yyy.tenpl ate
USES_TEMPLATE += $(SHARE)/instal | Db/ zzz.tenpl ate

If specified with a path (full or relative), the templates will be soft linked (UNIX) or copied (WIN) into the O.<arch>
directory. After the first make run, template dependencies will be generated automatically.

4.6.10 Compile and link command options
Any of the following can be specified:

4.6.10.1 Options for all compile/link commands.

USR | NCLUDES += - <nane>
header file directories each prefixed by a"-1".
USR | NCLUDES <oscl ass> += <nane>
os specific header file directories each prefixed by a"-I".
USR_I NCLUDES_DEFAULT += <nane>
header file directories each prefixed by a"-1" for any arch that does not have aUSR_INCLUDE_<osclass>
definition
USR _CFLAGS += <nane>
¢ compiler options.
USR CFLAGS <oscl ass> += <nane>
0s specific ¢ compiler options.
USR_CFLAGS _DEFAULT += <name>
¢ compiler options for any arch that does not have aUSR_CFLAGS <osclass> definition
USR_CXXFLAGS += <nane>
c++ compiler options.
USR _CXXFLAGS <oscl ass> += <nane>
c++ compiler options for the specified osclass.
USR_CXXFLAGS_DEFAULT += <nane>
c++ compiler options for any arch that does not have aUSR_CXXFLAGS <osclass> definition
USR _CPPFLAGS += <nhane>
C preprocessor options.
USR _CPPFLAGS <oscl ass> += <nane>
0s specific ¢ preprocessor options.
USR_CPPFLAGS_DEFAULT += <nane>
C preprocessor options for any arch that does not have aUSR_CPPFLAGS <osclass> definition
USR LDFLAGS += <name>
linker options.
USR LDFLAGS <oscl ass> += <nane>
os specific linker options.
USR_LDFLAGS DEFAULT += <name>
linker options for any arch that does not have aUSR_LDFLAGS <osclass> definition

EPICS Release: R3.14.1
EPICS I0C Application Developer's Guide 37

Chapter 4: EPICS Build Facility
Makefile definitions

4.6.10.2 Options for atarget specific compile/link command.

<nane>_| NCLUDES += -I| <nane>
header file directories each prefixed by a"-1".
<nane>_ | NCLUDES <oscl ass> += <nane>
os specific header file directories each prefixed by a"-1".
<nanme>_CFLAGS += <nane>
¢ compiler options.
<nane> CFLAGS <oscl ass> += <nane>
0s specific c compiler options.
<nanme>_CXXFLAGS += <nane>
c++ compiler options.
<nane> CXXFLAGS <oscl ass> += <nane>
c++ compiler options for the specified osclass.
<nanme>_CPPFLAGS += <nane>
C preprocessor options.
<nane> CPPFLAGS <oscl ass> += <nane>
0s specific ¢ preprocessor options.
<nanme>_LDFLAGS += <nane>
linker options.
<nane> LDFLAGS <oscl ass> += <nane>
os specific linker options.

46.11 Libraries

A library is created and installed into $(INSTALL_LOCATION)/lib/<arch> by specifying its name and the name of the
object and/or source files containing code for the library. An object or source file name can appear with or without a
directory prefix. If the file name has a directory prefix e.g. $(EPICS_BASE_BIN), it is taken from the specified location.
If adirectory prefix is not present, make will first look in the source directory for afile with the specified name and next
try to create the file using existing configure rules. A library filename prefix may be prepended to the library name when
thefile is created. For Unix type systems and vxWorks the library prefix is lib and there is no prefix for WIN32. Also a
library suffix appropriate for the library type and target arch (e.g. .a, .so, .lib, .dll) will be appended to the filename when
thefileis created.

vxWorks Note: For R3.14alpha3 and later releases, archive libraries will be created.

Shared libraries Note: Shared libraries can be built for any or al HOST type architectures. The definition of
SHARED_LIBRARIES (YES/NO) in base/configure/ CONFIG_SITE determines whether shared or archive libraries will
be built. When SHARED_ LIBRARIES is YES, both archive and shared libraries are built. This definition can be
overridden for a specific arch in an configure/oCONFIG_SITE.<arch>.Common file.,The default definition for
SHARED_LIBRARIESinthe EPICS base distribution file is YES for win32 and NO for all other hosts.

win32 Note: An object library file is created when SHARED _LIBRARIES=NO, <name>Obj.lib which isinstalled into
S(INSTALL_LOCATION)/lib/<arch>. Three library files are created when SHARED_LIBRARIES=YES, <name>.lib
and <name>0bj.lib which areinstalled into $(INSTALL_L OCATION)/lib/<arch>, and <name>.dll whichisinstalled into
$(INSTALL_LOCATION)/bin/<arch>. (Warning: The file <name>.lib will only be created by the build if there are
exported symbols from the library.) If SHARED_LIBRARIES=YES, the directory $(INSTALL_LOCATION)/bin/<arch>
must be in the user’s path during builds to allow invoking executables which were linked with shared libraries.

Unix Host Note: If SHARED_LIBRARIES=YES, the directory $(INSTALL_LOCATION)/lib/<arch> must be in the
user'sLD_LIBRARY_PATH when invoking executables which were linked with shared libraries.

4.6.11.1 Specifying the library name.

Any of the following can be specified:

38 EPICS I0OC Application Developer's Guide

Chapter 4: EPICS Build Facility
Makefile definitions

LI BRARY += <name>
A library will be created for every target arch.
LI BRARY_<oscl ass> += <nane>
Library <name> will be created for all archs of the specified osclass.
LI BRARY_DEFAULT += <name>
Library <name> will be created for any arch that does not have a LIBRARY _<osclass> definition
LI BRARY_I OC += <nane>
Library <name> will be created for |OC type archs.
LI BRARY_ | OC <oscl ass> += <nane>
Library <name> will be created for all 10C type archs of the specified osclass.
LI BRARY_|I OC_DEFAULT += <nane>
Library <name> will be created for any 10C type arch that does not have a LIBRARY_IOC_<osclass>
definition
LI BRARY_HOST += <name>
Library <name> will be created for HOST type archs.
LI BRARY_HOST <oscl ass> += <namne>
Library <name> will be created for all HOST type archs of the specified osclass.
LI BRARY_HOST_DEFAULT += <name>
Library <name> will be created for any HOST type arch that does not have a LIBRARY _HOST_<osclass>
definition

4.6.11.2 Specifying library source file names

Source file names, which must have a suffix, are defined as follows:

SRCS += <nane>
Source fileswill be used for all defined libraries and products.
SRCS <oscl ass> += <nane>
Source fileswill be used for all defined libraries and products for all archs of the specified osclass.
SRCS DEFAULT += <nane>
Source files will be used for al defined libraries and products for any arch that does not have a
SRCS <osclass> definition

LIBSRCS and LIB_SRCS have the same meaning. LIBSRCS is retained for R3.13 compatibility.

LI BSRCS += <name>
Source fileswill be used for all defined libraries.
LI BSRCS <oscl ass> += <nane>
Source fileswill be used for all defined libraries for all archs of the specified osclass.
LI BSRCS_DEFAULT += <name>
Source files will be used for al defined libraries for any arch that does not have a LIBSRCS_<osclass>
definition

LI B_SRCS += <nane>
Source fileswill be used for al libraries.
LI B_SRCS <oscl ass> += <nane>
Source fileswill be used for all defined libraries for all archs of the specified osclass.
LI B_SRCS_DEFAULT += <name>
Source files will be used for al defined libraries for any arch that does not have a LIB_SRCS <osclass>
definition

<l i bname>_SRCS += <nane>
Source fileswill be used for the named library.
<l i bname>_SRCS <oscl ass> += <nanme>
Source fileswill be used for named library for all archs of the specified osclass.

EPICS Release: R3.14.1
EPICS I0C Application Developer’s Guide 39

Chapter 4: EPICS Build Facility
Makefile definitions

<l i bname>_SRCS DEFAULT += <name>
Source files will be used for named library for any arch that does not have a <libname>_SRCS <osclass>
definition

4.6.11.3 Specifying library object file names

Library object file names should only be specified for object files which will not be built in the current directory. For
object files built in the current directory, library source file names should be specified. See Specifying Library Source File
Names above.

Object files which have filename with a".0" or ".obj" suffix are defined as follows and can be specified without the suffix
but should have the directory prefix

LI B_OBJS += <nane>
Object fileswill be used in builds of al libraries.
LI B_OBJS <oscl ass> += <nane>
Object fileswill be used in builds of all libraries for archs of the specified osclass.
LIB_OBJS DEFAULT += <name>
Object files will be used in builds of al libraries for archs without a LIB_OBJS <osclass> definition
specified.
<l i bname>_0BJS += <nane>
Object fileswill be used for all builds of the named library)
<l i bnamre>_0OBJS <oscl ass> += <nane>
Object fileswill be used in builds of the library for archs with the specified osclass.
<l i bname>_0BJS DEFAULT += <name>
Object files will be used in builds of the library for archs without a <libname>_OBJS_<osclass> definition
specified.

Combined object files, from R3.13 built modules and applications which have file names that do not include a ".0" or
".obj" suffix (e.g. xyzLib) are defined as follows:

LDOBJS += <nane>
Object fileswill be used in builds of all libraries and products.
LDOBJS <oscl ass> += <nane>
Object fileswill be used in builds of al libraries and products for archs of the specified osclass.
LDOBJS DEFAULT += <name>
Object files will be used in builds of al libraries and products for archs without a LIB_OBJS <osclass>
definition specified.
<l i bname>_LDOBJS += <nane>
Object fileswill be used for all builds of the named library.
<l i bname>_LDOBJS <oscl ass> += <nane>
Object fileswill be used in builds of the library for archs with the specified osclass.
<l i bname>_ LDOBJS DEFAULT += <nane>
Object files will be used in builds of the library for archs without a <libname>_OBJS_<osclass> definition
specified.

4.6.11.4 LIBOBJS definitions

Previous versions of epics (3.13 and before) accepted definitions like:

LI BOBJS += $(<support>_BI N)/xxx. o0

These are gathered together in files such as basel. IBOBJS. To use such definitions include the lines:

-include ../baselLl BOBJS

40

EPICS IOC Application Developer’'s Guide

Chapter 4: EPICS Build Facility
Makefile definitions

<li bnane>_0BJS += $(LI BOBIS)

Note: vxWorks applications created by makeBaseApp.pl from base release R3.14.0alpha3 and later no longer have afile
named basel IBOBJS, base record and device support now existsin archive libraries.

4.6.11.5 Specifying dependant library names

To resolve any references a shared library contains to items in other libraries, the other library names can be specified
(without directory prefix and without ".a" or ".so0" suffix) as follows:

<l i bname>_LI BS += <name>
External references in <name> library will be resolved when linking <libname>.

This is usually used in a shared library build to resolve all the externa references to archive libraries. Each <name>
library must have a corresponding <name>_DIR definition specifying its directory location.

4.6.11.6 Specifying library DLL file names

The library builds on WIN32 require al external references to be resolved, so if alibrary contains references to items in
other DLL libraries, these DLL library names must be specified (without directory prefix and without ".dIl" suffix) as
follows:

DLL_LI BS += <nane>
These DLLswill be used for al libraries.
<li bnanme> DLL LI BS += <nane>
These DLLswill be used for the named library.

Each <name> must have a corresponding <name>_DIR definition specifying its directory location.

4.6.11.7 Specifying shared library version number
A library version number can be specified when creating a shared library as follows:
SHRLI B_VERSI ON += <versi on>

OnWIN32 thisresultsin"/version:$(SHRLIB_VERSION)" link option. On Unix type hosts".$(SHRLIB_VERSION)" is
appended to the shared library name and a symbolic link is created for the unversioned library name.
$(EPICS_VERSION).$(EPICS_REVISION) is the default value for SHRLIB_VERSION.

4.6.11.8 Library example:

LI BRARY_vxWorks += vxWorksOnly
LI BRARY_I OC += i ocOnly

LI BRARY_HOST += hostOnly

LI BRARY += al |

vxWor ksOnly_0BJS += $(LINAC BIN)/vxOnlyl
vXWor ksOnly_SRCS += vxOnly2.c
iocOnly_OBJS += $(LINAC BIN)/iocOnlyl
iocOnly_SRCS += iocOnly2. cpp

host Onl y_0OBJS += $(LINAC BIN)/host1

all _OBJS += $(LINAC BIN)/all1l

all _SRCS += all 2. cpp

If the architectures defined in <top>/configure are solaris-sparc and vxWorks-68040 and LINAC is defined in the <top>/
CONFIGURE/RELEASE file, then the following libraries will be created:

« $(INSTALL_LOCATION)/bin/vxWork-68040/libvxWorksOnly.a: $(LINAC_BIN)/vxOnly1.0 vxOnly2.0
* $(INSTALL_L OCATION)/bin/vxWork-68040/libiocOnly.a: $(LINAC_BIN/iocOnlyl.0iocOnly2.0

EPICS Release: R3.14.1
EPICS I0OC Application Developer's Guide 41

Chapter 4: EPICS Build Facility
Makefile definitions

* $(INSTALL_LOCATION)/lib/solaris-sparc/libiocOnly.a: $(LINAC_BIN)/iocOnlyl.0iocOnly2.0
* $(INSTALL_LOCATION)/lib/solaris-sparc/libhostOnly.a: $(LINAC_BIN)/host1.0

o $(INSTALL_LOCATION)/bin/vxWork-68040/liball.a: $(LINAC BIN)/alll.0 all2.0

« $(INSTALL_LOCATION)/lib/solaris-sparc/liball.a: $(LINAC_BIN)/al1.0al2.0

4.6.12 Generate and install object Files

It is possible to generate and install object files by using definitions:

OBJS += <nane>

OBJS <oscl ass> += <nane>
OBJS _DEFAULT += <nane>

OBJS | OC += <nane>

OBJS | OC <oscl ass> += <nane>
OBJS | OC_DEFAULT += <nane>
OBJS _HOST += <nane>

OBJS HOST_<oscl ass> += <nane>
OBJS _HOST_DEFAULT += <nane>

These will cause the specified file to be generated from an existing source file for the appropriate target arch and installed
into S(INSTALL_LOCATION)/bin/<target_arch>.

The following Makefile will create the abc object file for al target architectures, the def object file for all target archs
except vxWorks, and the xyz object file only for the vxWorks target architecture and install them into the appropriate
$(INSTALL_LOCATION)/bin/<arch> directory.

TOP=../../..
i ncl ude $(TOP)/ confi gure/ CONFI G
OBJS += abc

OBJS vxWorks += xyz
OBJS DEFAULT += def
i ncl ude $(TOP)/ confi gure/ RULES

4.6.13 State Notation Programs

A state notation program file can be specified as a source file in any SRC definition. For example:
<prodnane>_SRCS += <nane>. stt

The state notation compiler, snc, will create two files. <nane>. ¢, which contains source code generated from
<nane>.stt, and <nane>_sncreg. cpp, which contains C++ source code to register the snc programs so that
they can be invoked from the shell. These two files are compiled and the resulting object files are linked into the
<pr odnane> product.

A state notation source file must have the extension .st or. stt. The. stt fileis passed through the C preprocessor
beforeit is processed by snc.

If you have state notation language source files (*.stt and * .t files), the module seq must be built and SNCSEQ defined in
the RELEASE file.If the state notation language source files require ¢ preprocessing before conversion to ¢ source (*.st
files), gcc must bein your path.

4.6.14 Scripts, etc.
Any of the following can be specified:

42 EPICS I0OC Application Developer's Guide

Chapter 4: EPICS Build Facility
Makefile definitions

SCRI PT += <nanme>
A script will beinstalled from the src directory to the $(INSTALL_L OCATION)/bin/<arch> directories.
SCRI PT_<oscl ass> += <nane>
Script <name> will beinstalled for all archs of the specified osclass.
SCRI PT_DEFAULT += <name>
Script <name> will beinstalled for any arch that does not have a SCRIPT_<osclass> definition
SCRI PT_I OC += <nane>
Script <name> will beinstalled for IOC type archs.
SCRI PT_I OC _<oscl ass> += <nane>
Script <name> will beinstalled for all 10C type archs of the specified osclass.
SCRI PT_I OC_DEFAULT += <nane>
Script <name> will be installed for any 10C type arch that does not have a SCRIPT_IOC_<osclass>
definition
SCRI PT_HOST += <nane>
Script <name> will beinstalled for HOST type archs.
SCRI PT_HOST_<oscl ass> += <nane>
Script <name> will beinstalled for all HOST type archs of the specified osclass.
SCRI PT_HOST_DEFAULT += <name>
Script <name> will be installed for any HOST type arch that does not have a SCRIPT_HOST_<osclass>
definition
Definitions of the form:

SCRI PTS_DEFAULT += <nanel>
SCRI PTS_<oscl ass> += <nane2>

results in the <name2> script being installed from the src directory to the $(INSTALL_LOCATION)/bin/<arch>
directories for all target archs of the specified os class <osclass> and the <namel> script installed into the
S(INSTALL_LOCATION)/bin/<arch> directories of all other target archs.

4.6.15 Includefiles

A definition of the form:

I NC += <nane>. h
resultsin file <name>.h being installed from a source directory to the $(INSTALL_L OCATION)/include directory.
Definitions of the form:

| NC DEFAULT += <nane>. h
I NC <oscl ass> += <name>. h

results in file <name>.h being installed from a source directory into the appropriate $(INSTALL_LOCATION)/include/
os/<osclass> directory..

4.6.16 Html and Doc files

A definition of the form:

HTMLS DI R = <di r nanme>
HTMLS += <nane>

resultsin file <name> being installed from the src directory to the $(INSTALL_L OCATION)/html/<dirname> directory.
A definition of the form:

EPICS Release: R3.14.1
EPICS I0C Application Developer's Guide 43

Chapter 4: EPICS Build Facility
Makefile definitions

DOCS += <nane>

resultsin file <name> being installed from the src directory to the $(INSTALL_LOCATION)/doc directory.

4.6.17 Templates

Adding definitions of the form

TEMPLATES DI R = <di r nane>
TEMPLATES += <nane>

results in the file <name> being installed from the src directory to the $(INSTALL_L OCATION)/templates/<dirname>
directory. If adirectory structure of template filesisto be installed, the template file names may include adirectory prefix.

4.6.18 Lex and yac

If a<name>.c source file specified in a Makefile definition is not found in the source directory, gnumake will try to build
it from <name>.y and <name>_|ex.| filesin the source directory.

4.6.19 Products

A product executable is created for each <arch> and installed into $(INSTALL_L OCATION)/bin/<arch> by specifying its
name and the name of either the object or source files containing code for the product. An object or source file name can
appear with or without a directory prefix. Object files should contain a directory prefix. If the file has a directory prefix
e.g. $(EPICS_BASE_BIN), thefileistaken from the specified location. If adirectory prefix isnot present, make will look
in the source directory for afile with the specified name or try build it using existing rules. An executable filename suffix
appropriate for the target arch (e.g. .exe) may be appended to the filename when the file is created.

PROD specificationsin the Makefile for vxWorks target architectures create a combined object file with library references
resolved and a corresponding .munch file.

<PROD += <name>
<nanme>_SRC += <srcnane>. c

results in the executable <name> being built for each HOST type <arch> from a <srcname>.c file. Then <name> is
installed into the $(INSTALL_L OCATION)/bin/<arch> directory.

4.6.19.1 Specifying the product name.
Any of the following can be specified:

PROD += <name>
Product <name> will be created for every HOST type target arch.
PROD <oscl ass> += <nane>
Product <name> will be created for all archs of the specified osclass.
PROD DEFAULT += <nane>
Product <name> will be created for any HOST type arch that does not have a PROD_<osclass> definition

PROD | OC += <nane>

Product <name> will be created for |OC type archs.
PROD | OC <oscl ass> += <nane>

Product <name> will be created for all 10C type archs of the specified osclass.
PROD | OC_DEFAULT += <nane>

44 EPICS I0OC Application Developer's Guide

Chapter 4: EPICS Build Facility
Makefile definitions

Product <name> will be created for any 10C type arch that does not have a PROD_IOC_<osclass>
definition

PROD_HOST += <nane>
Product <name> will be created for HOST type archs.
PROD _HOST _<oscl ass> += <nane>
Product <name> will be created for all HOST type archs of the specified osclass.
PROD_HOST_DEFAULT += <name>
Product <name> will be created for any HOST type arch that does not have a PROD_HOST_<osclass>
definition

4.6.19.2 Specifying product object file names

Object files which have filenameswith a".0" or ".obj" suffix are defined as follows and can be specified without the suffix
but should have the directory prefix

PROD OBJS += <nane>
Object fileswill be used in builds of all products
PROD OBJS <oscl ass> += <nane>
Object fileswill be used in builds of al products for archs with the specified osclass.
PROD_OBJS DEFAULT += <name>
Object files will be used in builds of all products for archs without a PROD_OBJS <osclass> definition
specified.
<prodnane>_0BJS += <nane>
Object fileswill be used for all builds of the named product
<prodnane>_0BJS <oscl ass> += <nanme>
Object fileswill be used in builds of the named product for archs with the specified osclass.
<prodnane>_0BJS DEFAULT += <nane>
Object files will be used in builds of the named product for archs without a <prodname>_OBJS <osclass>
definition specified.

Combined object files, from R3.13 built modules and applications which have file names that do not include a ".0" or
".obj" suffix (e.g. xyzLib) are defined as follows:

LDOBJS += <nane>
Object fileswill be used in builds of all libraries and products.
LDOBJS <oscl ass> += <nane>
Object fileswill be used in builds of al libraries and products for archs of the specified osclass.
LDOBJS DEFAULT += <name>
Object files will be used in builds of all libraries and products for archs without a LDOBJS <osclass>
definition specified.
<prodnane>_LDOBJS += <name>
Object fileswill be used for all builds of the named product.
<prodnane>_LDOBJS <oscl ass> += <name>
Object fileswill be used in builds of the name product for archs with the specified osclass.
<prodnane>_LDOBJS DEFAULT += <nane>
Object files will be used in builds of the product for archs without a <prodname> | DOBJS <osclass>
definition specified.

4.6.19.3 Specifying product source file names

Source file names, which must have a suffix, are defined as follows:

SRCS += <nane>
Source fileswill be used for all defined libraries and products.
SRCS _<oscl ass> += <nanme>

EPICS Release: R3.14.1
EPICS I0OC Application Developer's Guide 45

Chapter 4: EPICS Build Facility
Makefile definitions

Source fileswill be used for all defined libraries and products for all archs of the specified osclass.

SRCS_DEFAULT += <nane>

Source files will be used for all defined libraries and products for any arch that does not have a
SRCS_<osclass> definition

PROD_SRCS += <nane>
Source fileswill be used for al products.
PROD_SRCS <oscl ass> += <nane>
Source fileswill be used for all defined products for all archs of the specified osclass.
PROD_SRCS DEFAULT += <name>
Source files will be used for all defined products for any arch that does not have a PROD_SRCS <osclass>
definition

<pr odnane>_SRCS += <nane>
Source file will be used for the named product.
<pr odnane>_SRCS <oscl ass> += <nane>
Source fileswill be used for named product for all archs of the specified osclass.
<pr odnane>_SRCS DEFAULT += <name>
Source fileswill be used for named product for any arch that does not have a<prodname>_SRCS <osclass>
definition

4.6.19.4 Specifying libraries to be linked when creating the product

For each library name specified which is not a system library nor alibrary from EPICS BASE, a<lname>_DIR definition
must be present in the Makefile to specify the location of the library.

Library names, which must not have a directory prefix nor a suffix, are defined as follows:

PROD LI BS += <name>
Librariesto be used when linking all defined products.
PROD LI BS <oscl ass> += <nane>
Librariesto be used or all archs of the specified osclass when linking all defined products.
PRCD LI BS DEFAULT += <nane>
Libraries to be used for any arch that does not have a PROD_LIBS <osclass> definition when linking all
defined products.

USR LI BS += <nane>
Librariesto be used when linking all defined products.
USR LI BS <oscl ass> += <nane>
Librariesto be used or al archs of the specified osclasswhen linking all defined products.
USR LI BS DEFAULT += <name>
Libraries to be used for any arch that does not have a USR_LIBS <osclass> definition when linking all
defined products.

<prodnane>_LI BS += <nanme>
Librariesto be used for linking the named product.
<prodnane>_LI BS <oscl ass> += <nanme>
Librarieswill be used for all archs of the specified osclass for linking named product.
<pr odnane>_LIBS DEFAULT +=<name>
Librariesto be used for any arch that does not have a <prodname>_LIBS_<osclass> definition when linking
named product.

SYS PRCD LI BS += <nane>
System libraries to be used when linking all defined products.

46

EPICS IOC Application Developer’'s Guide

Chapter 4: EPICS Build Facility
Makefile definitions

SYS PRCD LI BS <oscl ass> += <nane>
System libraries to be used for all archs of the specified osclass when linking all defined products.

SYS _PROD_LI BS_DEFAULT += <name>
System libraries to be used for any arch that does not have a PROD_LIBS <osclass> definition when
linking all defined products.

<pr odnane>_SYS LI BS += <name>
System libraries to be used for linking the named product.
<prodnane>_SYS LI BS <oscl ass> += <nane>
System libraries will be used for al archs of the specified osclass for linking named product.
<prodnane>_SYS LI BS DEFAULT += <name>
System libraries to be used for any arch that does not have a <prodname>_LIBS _<osclass> definition when
linking named product.

4.6.19.5 Specifying product version number

On WIN32 only a product version number can be specified as follows:
PROD_VERSI ON += <ver si on>

Thisresultsin "/version:$(PROD_VERSION)" link option.

4.6.20 Test Products

Test products are product executables that are created but not installed into $(INSTALL_LOCATION)/bin/<arch>
directories. Test product libraries, source, and object files are specified in exactly the same way as regular products.

Any of the following can be specified:

TESTPROD += <nanme>
Test product <name> will be created for every target arch.
TESTPROD_<oscl ass> += <nane>
Test product <name> will be created for all archs of the specified osclass.
TESTPROD_DEFAULT += <namne>
Test product <name> will be created for any arch that does not have a TESTPROD_<osclass> definition
TESTPROD_| OC += <name>
Test product <name> will be created for 10C type archs.
TESTPROD | OC <oscl ass> += <nane>
Test product <name> will be created for al 10C type archs of the specified osclass.
TESTPROD_| OC_DEFAULT += <nane>
Test product <name> will be created for any 10C type arch that does not have a
TESTPROD_|OC_<osclass> definition
TESTPROD_HOST += <name>
Test product <name> will be created for HOST type archs.
TESTPROD_HOST_<oscl ass> += <nane>
Test product <name> will be created for all HOST type archs of the specified osclass.
TESTPROD_HOST_DEFAULT += <nanme>
Test product <name> will be created for any HOST type arch that does not have a
TESTPROD_HOST _<osclass> definition

4.6.21 Target files

A definition of the form:

EPICS Release: R3.14.1
EPICS I0OC Application Developer's Guide 47

Chapter 4: EPICS Build Facility
Makefile definitions

TARGETS += <nanme>

resultsin the file <name> being built in the O.<arch> directory from existing rules and files in the source directory. These
target files are not installed.

4.6.22 Bin install files

Definitions of the form:

Bl N_I NSTALLS += <nane>
Bl N_I NSTALLS DEFAULT += <nane>
Bl N_| NSTALLS <oscl ass> += <nane>

result in files being installed to the appropriate $(INSTALL_L OCATION)/bin/<arch> directory. The file <name> can
appear with or without a directory prefix. If the file has adirectory prefix e.g. $(EPICS BASE BIN), itis copied from the
specified location. If a directory prefix is not present, make will ook in the source directory for the file.

4.6.23Win32 resourcefiles

Definitions of the form:

RCS += <nane>
RCS_DEFAULT += <nane>
<library or product nanme>_RCS wi n32 += <nane>

result in resource files (*.res files) being created from the specified *.rc files and linked into all prods and libraries or, in
thelast line, only the specified product or library executable.

46.24TCL libraries

Definitions of the form:

TCLLI BNAME += <nanme>
TCLI NDEX += <nane>

result in the specified tcl files being installed to the $(INSTALL_L OCATION)/lib/<arch> directory.

4.6.25 Java classfiles

Java class files can be created by the javac tool into $(INSTALL_JAVA) or into the O.Common subdirectory, by
specifying the name of the java class file in the Makefile. Command line options for the javac tool can be specified. The
configuration files set the java c option "-sourcepath .:...../..".

Any of the following can be specified:

JAVA += <name>.java

The <name>.javafile will be used to create the <name>.classfilein the S(INSTALL_JAVA) directory.
TESTJAVA += <name>.java

The <name>.javafiles will be used to create the <name>.class file in the O.Common subdirectory.
USR_JAVACFLAGS += <name>

The javac option <name> will be used on the javac command lines.

48 EPICS I0OC Application Developer's Guide

Chapter 4: EPICS Build Facility
Makefile definitions

4.6.25.1 Example 1

In this example, three class files are created in $(INSTALL_LOCATION)/javalib/mytest. The javac depreciation flag is
used to list the description of each use or override of a deprecated member or class.

JAVA = mytest/one.java

JAVA = mytest/two.java

JAVA = mytest/threejava
USR_JAVACFLAGS = -deprecation

4.6.25.2 Example 2
In this example, the test.class file is created in the O.Common subdirectory.
TESTJAVA =test.java

4.6.26 Java jar file

A single java jar file can be created using the java jar tool and installed into $(INSTALL_JAVA) (i.e
$(INSTALL_LOCATION)/javalib) by specifying its name, and the names of itsinput files to be included in the created jar
file. Thejar input file names must appear with adirectory prefix.

Any of the following can be specified:

JAR += <name>

The <name> jar file will be created and installed into the $(INSTALL_JAVA) directory.
JAR_INPUT += <name>

Names of images, audio files and classes files to be included in the jar file.
JAR_MANIFEST += <name>

The preexisting manifest file will be used for the created jar file.

4.6.26.1 Example 1

In this example, al the class files created by the current Makefile's "CLASSES+=" definitions, are placed into a file
named mytestl.jar. A manifest file will be automatically generated for the jar.

Note: $(INSTALL_CLASSES) is set to $(addprefix $(INSTALL_JAVA)/,$(CLASSES)) in the EPICS base configure
files.

JAR = mytestl.jar
JAR_INPUT = $(INSTALL_CLASSES)

4.6.26.2 Example 2

In this example, three class files are created and placed into anew jar archive file named mytest2.jar. An existing manifest
file, mytest2.mf is put into the new jar file.

JAR = mytest2.jar

JAR_INPUT = $(INSTALL_JAVA)/mytest/one.class
JAR_INPUT = $(INSTALL_JAVA)/mytest/two.class
JAR_INPUT = $(INSTALL_JAVA)/mytest/three.class
JAR_MANIFEST = mytest2.mf

EPICS Release: R3.14.1
EPICS I0C Application Developer's Guide 49

Chapter 4: EPICS Build Facility
Table of Makefile definitions

4.6.27 Java native method C header files

A C header files for use with java native methods will be created by the javah tool in the O.Common subdirectory by
specifying the name of the header file to be created. The name of the java class file used to generate the header is derived
from the name of the header file. Underscores () are used as a header file name delimiter. Command line options for the
javah tool can be specified.

Any of the following can be specified:

JAVAINC += <name>.h

The <name>.h header file will be created in the O.Common subdirectory.
USR_JAVAHFLAGS += <name>

The javah option <name> will be used on the javah tool command line.

4.6.27.1 Example

In this example, the C header xx_yy_zz.h will be created in the $(COMMON_DIR) subdirectory from the class xx.yy.zz
(i.e. the java class file S(INSTALL_JAVA)/xx/yy/zz.class)). The option "-old" will tell javah to create old JDK1.0 style
header files.

JAVAINC =xx_yy zz.h
USR_JAVAHFLAGS = -old

4.7 Table of Makefile definitions

Definitions given below containing <osclass> are used when building for target archs of a specific osclass, and the
<osclass> part of the name should be replaced by the desired osclass, e.g. solaris, vxWorks, etc. If a_ DEFAULT setting is
given but a particular <osclass> requires that the default not apply and there are no items in the definition that apply for
that <osclass>, the value "-nil-" should be specified in the relevant Makefile definition.

Build Option Description

Productsto be built (host type archs only)

PRCD products (names without execution suffix) to build and install. Specify
xyz to build executable xyz on Unix and xyz.exe on WIN32

PROD <oscl ass> os class specific products to build and install for <osclass> archs only

PROD_DEFAULT products to build and install for archs with no PROD_<osclass>
specified

PRCOD_| CC name of product to build and install for ioc type archs

PROD_| OC <oscl ass> os specific product to build and install for ioc type archs

PROD_| OC_DEFAULT products to build and install for ioc type arch systems with no
PROD_IOC_<osclass> specified

PRCD_HOST name of product to build and install for host type archs.

PROD_HOST_<oscl ass> os class specific products to build and install for <osclass> type archs

PROD_HOST DEFAULT products to build and install for arch with no PROD_HOST_<osclass>
specified

50 EPICS I0OC Application Developer's Guide

Chapter 4: EPICS Build Facility
Table of Makefile definitions

Build Option

Description

Test productsto be built (host type archs only)

TESTPROD

test products (names without execution suffix) to build but not install

TESTPROD <oscl ass>

0s class specific test product names to build but not install

TESTPROD_DEFAULT

test products to build but not install for archs with no
TESTPROD_<osclass> specified

TESTPROD_I OC

name of test product to build and install for ioc type archs

TESTPROD_I OC_<oscl ass>

os specific test product to build and install for ioc type archs

TESTPROD_I OC_DEFAULT

test products to build and install for ioc type arch systems with no
TESTPROD_IOC_<osclass> specified

TESTPROD_HOST

name of testproduct to build and install for host type archs.

TESTPROD_HOST_<oscl ass>

os class specific testproducts to build and install for <osclass> type
archs

TESTPROD_HOST _DEFAULT

test products to build and install for arch with no
TESTPROD_HOST_<osclass> specified

Librariesto be built

LI BRARY

name of library to build and install. The name should NOT include a
prefix or extension e.g. specify Cato build libCa.aon Unix, Calib,
CaObj.lib, or Ca.dll on WIN32

LI BRARY_<oscl ass>

os specific libraries to build and install

LI BRARY_DEFAULT

librariesto build and install for archs with no LIBRARY _<osclass>
specified

LI BRARY_I| OC

name of library to build and install for ioc type archs. The name should
NOT include a prefix or extension e.g. specify Cato build libCa.aon
Unix, Callib,CaObj.lib, or Ca.dll on WIN32

LI BRARY_| OC_<oscl ass>

os specific libraries to build and install for ioc type archs

LI BRARY_I| OC_DEFAULT

librariesto build and install for ioc type arch systems with no
LIBRARY_IOC_<osclass> specified

LI BRARY_HOST

name of library to build and install for host type archs. The name should
NQOT include a prefix or extension, e.g. specify Cato build libCa.aon
Unix, Callib, CaObj.lib, or Ca.dll on WIN32

LI BRARY_HOST_<oscl ass>

os class specific libraries to build and install for host type archs

LI BRARY_HOST_DEFAULT

librariesto build and install for host type arch systems with no
LIBRARY_HOST_<osclass> specified

SHARED LI BRARI ES

build shared libraries? Must be YES or NO

SHRLI B_VERSI ON

shared library version number

SHRLI B_LI BS

libraries to be linked with shared library being created

SHRLI B LI BS <oscl ass>

os class specific libraries to be linked with shared library being created

EPICS Release: R3.14.1

EPICS I0OC Application Developer’'s Guide 51

Chapter 4: EPICS Build Facility

Table of Makefile definitions

Build Option

Description

SHRLI B_LI BS_DEFAULT

librariesto be linked with shared library being created for host type arch
systemswith no SHRLIB_LIBS <osclass> specified

Product and library sourcefiles

SRCS

source filesto build all PRODs and LIBRARY s

SRCS <oscl ass>

osclass specific source filesto build all PRODs and LIBRARY's

SRCS_DEFAULT source fileto build all PRODs and LIBRARY s for archs with no
SRCS_<osclass> specified
PROD_SRCS source filesto build all PRODs

PROD_SRCS_<oscl ass>

osclass specific source files to build all PRODs

PROD_SRCS_DEFAULT

source files needed to build PRODs for archs with no SRCS_<osclass>
specified

LI B_SRCS

source files for building LIBRARY (e.g. LIB_SRCS=lacIb.clc.c)

LI B_SRCS <oscl ass>

os-specific library source files

LI B_SRCS_DEFAULT

library source files for archs with no LIB_SRCS <osclass> specified

<nanme>_SRCS

source files to build a specific PROD or LIBRARY

<name>_SRCS_<oscl ass>

os specific source files to build a specific PROD or LI|[BRARY

<name>_SRCS_DEFAULT

source files needed to build a specific PROD or LIBRARY for archs
with no <prod>_SRCS_<osclass> specified

Product and library object files

PROD_OBJS

object files, specified without suffix, to build all PRODs

PROD_OBJS <oscl ass>

osclass specific object files, specified without suffix, to build all PRODs

PROD_OBJS DEFAULT

object files, specified without suffix, needed to build PRODs for archs
with no OBJS_<osclass> specified

LI B_OBJS

object files, specified without suffix, for building all LIBRARYs (e.g.
LIB_OBJS+=$(AB_BIN)/la$(AB_BIN)/Ib)

LI B_OBJS_<oscl ass>

os-specific library object files, specify without suffix,

LI B_OBJS_ DEFAULT

library object files, specified without suffix, for archs with no
LIB_OBJS <osclass> specified

<nane>_0BJS

object files, specified without suffix, to build a specific PROD or
LIBRARY

<name>_0BJS <oscl ass>

os specific object files, specified without suffix, to build a specific
PROD or LI|IBRARY

<nanme>_0BJS_DEFAULT

object files, without suffix, needed to build a specific PROD or
LIBRARY for archs with no <prod>_OBJS_<osclass> specified

LDOBJS object fileswith filenames that do not have a suffix, needed for building
all PROD and LIBRARY (e.g. LDOBJIS+=$(XYZ_BIN)/xyzLib)
52 EPICS I0OC Application Developer's Guide

Chapter 4: EPICS Build Facility
Table of Makefile definitions

Build Option

Description

LDOBJS <oscl ass>

os-specific object files with filenames that do not have a suffix

LDOBJS_DEFAULT

object files with filenames that do not have a suffix, for archs with no
LDOBJS <osclass> specified

<nanme>_LDOBJS

object files with filenames that do not have a suffix, needed to build a
specific PROD or LIBRARY

<name>_LDOBJS_<oscl ass>

os specific object fileswith filenames that do not have a suffix, to build a
specific PROD or LI|IBRARY

<name>_LDOBJS_DEFAULT

object files with filenames that do not have a suffix, needed to build a
specific PROD or LIBRARY for archs with no
<name>_LDOBJS_<osclass> specified

Compiler flags

USR_CFLAGS

C compiler flags for al systems

USR_CFLAGS <oscl ass>

os-specific C compiler flags

USR CFLAGS_DEFAULT

C compiler flags for archswith no USR_CFLAGS _<osclass> specified

<name>_CFLAGS

file specific C compiler flags (e.g. xxxRecord_CFLAGS=-g)

<name>_CFLAGS_<oscl ass>

file specific C compiler flags for a specific os class

USR_CXXFLAGS

C++ compiler flags for all systems (e.g. xyxMain_CFLAGS=-DSDDS)

USR_CXXFLAGS <oscl ass>

os-specific C++ compiler flags

USR_CXXFLAGS_DEFAULT

C++ compiler flags for systems with no USR_CXXFLAGS_<osclass>
specified

<name>_CXXFLAGS

file specific C++ compiler flags

<name>_CXXFLAGS_<oscl ass>

file specific C++ compiler flags for a specific osclass

USR_CPPFLAGS

C pre-processor flags (for all makefile compiles)

USR_CPPFLAGS <oscl ass>

os specific cpp flags

USR_CPPFLAGS_DEFAULT

cpp flags for systems with no USR_CPPFLAGS _<osclass> specified

<nanme>_CPPFLAGS

file specific C pre-processor flags
(e.g. xxxRecord CPPFLAGS=-DDEBUG)

<name>_CPPFLAGS_<oscl ass>

file specific cpp flags for a specific os class

USR_| NCLUDES

directories, with -l prefix, to search for include files
(e.g. -IS(EPICS_EXTENSIONS INCLUDE))

USR | NCLUDES <oscl ass>

directories, with -1 prefix, to search for include files for a specific os
class

USR_| NCLUDES DEFAULT

directories, with -1 prefix, to search for include files for systems with no
<name>_INCLUDES <osclass> specified

<name>_| NCLUDES

directories, with -l prefix, to search for include files when building a
specific object file (e.g. -I$(MOTIF_INC))

EPICS Release: R3.14.1

EPICS I0C Application Developer's Guide 53

Chapter 4: EPICS Build Facility
Table of Makefile definitions

Build Option

Description

<name>_| NCLUDES_ <oscl ass>

file specific directories, with - prefix, to search for include files for a
specific os class

HOST_WARN Are compiler warning messages desired for host type builds? (YES or
NO) (defaultis YES)

CRCSS_WARN C cross-compiler warning messages desired (Y ES or NO) (default Y ES)

HOST_OPT Is host build compiler optimization desired (default is NO optimization)

CROSS_OPT I's cross-compiler optimization desired (Y ES or NO) (default is NO
optimization)

CVPLR C compiler selection, TRAD, ANSI or STRICT (default is STRICT)

CXXCWPLR C++ compiler selection, NORMAL or STRICT (default is STRICT)

Linker options
USR_LDFLAGS linker options (for all makefile links)

USR _LDFLAGS <oscl ass>

os specific linker options (for all makefile links)

USR_LDFLAGS_DEFAULT

linker options for systems with no USR_LDFLAGS <osclass>
specified

<nanme>_LDFLAGS

prod or library specific linker options

<nanme>_LDFLAGS <oscl ass>

prod or library specific linker flags for a specific os class

USR LI BS

load libraries (e.g. -1Xt -IX11) (for all makefile links)

USR_LI BS_<oscl ass>

os specific load libraries (for all makefile links)

USR LI BS DEFAULT

load libraries for systems with no USR_LIBS_<osclass> specified

<nane>_LI BS

prod or library specific Id libraries (e.g. probe_LIBS=X11 Xt)

<nanme>_LI BS <oscl ass>

os-specific libs needed to link a specific prod or library

<name>_LI BS_DEFAULT

libs needed to link a specific prod or library for systems with no
<name>_LIBS <osclass> specified

PRCD_LI BS

libs needed to link every PROD for all systems

PROD LI BS <oscl ass>

os-specific libs needed to link every PROD

PROD_LI BS_DEFAULT

libs needed to link every PROD for systems with no
PROD_LIBS <osclass> specified

<lib> DIR

directory to search for the specified lib. (For libslisted in PROD_LIBS,
<prod>_LIBSand USR_LIBS)

SYS_PROD LI BS

system libs needed to link every PROD for all systems

SYS _PROD LI BS_<oscl ass>

os-specific system libs needed to link every PROD

SYS_PROD LI BS_DEFAULT

system libs needed to link every PROD for systems with no
SYS PROD_LIBS <osclass> specified

<prod>_SYS LI BS

prod specific system Id libraries (e.g. m)

54

EPICS IOC Application Developer’'s Guide

Chapter 4: EPICS Build Facility
Table of Makefile definitions

Build Option

Description

<prod>_SYS LI BS <oscl ass>

os class specific system libs needed to link a specific prod

<prod>_SYS LI BS DEFAULT

system libs needed to link a specific prod for systems with no
SYS PROD_LIBS <osclass> specified

STATI C_BUI LD

Is static build desired (YES or NO) (default isNO). On win32 if
STATIC_BUILD=YES then set SHARED_LIBRARIES=NO)

Header filesto beinstalled

I NC

list of includefilesto install into $(INSTALL_DIR)/include

I NC_<oscl ass>

os specific includes to installed under $(INSTALL_DIR)/include/os/
<osclass>

I NC_DEFAULT

includefilesto install where no INC_<osclass> is specified

Perl, csh, tcl etc. script installation

SCRI PTS

scriptsto install for all systems

SCRI PTS_<oscl ass>

0s-specific scriptsto install

SCRI PTS_DEFAULT

scriptsto install for systems with no SCRIPTS_<osclass> specified

SCRI PTS_I OC

scriptsto install for ioc type archs.

SCRI PTS_| OC <oscl ass>

os specific scriptsto install for ioc type archs

SCRI PTS_| OC_DEFAULT

scripts to install for ioc type arch systems with no
SCRIPTS _IOC_<osclass> specified

SCRI PTS_HOST

scriptsto install for host type archs. T

SCRI PTS_HOST_<oscl ass>

os class specific scriptsto install for host type archs

SCRI PTS_HOST_DEFAULT

scriptsto install for host type arch systems with no
OBJS_HOST_<osclass> specified

TCLLI BNAME list of tcl scriptsto install into $(INSTALL_DIR)/lib/<osclass> (Unix
hosts only)
TCLI NDEX name of tcl index file to create from TCLLIBNAME scripts
Object files The_ namesin thefollom ng OBJS definitions should NOT include a
suffix (.o or.obyj).
oBJS object filesto build and install for al system.

OBJS <oscl ass>

os-specific object filesto build and install.

OBJS DEFAULT object filesto build and install for systems with no OBJS <osclass>
specified.
oBJS I CC object filesto build and install for ioc type archs.

OBJS | OC <oscl ass>

os specific object filesto build and install for ioc type archs

OBJS_| OC_DEFAULT

object filesto build and install for ioc type arch systems with no
OBJS_IOC_<osclass> specified

EPICS Release: R3.14.1

EPICS I0C Application Developer's Guide

55

Chapter 4: EPICS Build Facility
Table of Makefile definitions

Build Option

Description

OBJS_HOST

object filesto build and install for host type archs. T

OBJS_HOST_<oscl ass>

os class specific object files to build and install for host type archs

OBJS_HOST_DEFAULT

object files to build and install for host type arch systems with no
OBJS HOST_<osclass> specified

Documentation

DOCS text filesto be installed into the $(INSTALL_DIR)/doc directory

HTMLS DI R name install Hypertext directory namei.e. $(INSTALL_DIR)/html/
$HTMLS_DIR)

HTMLS hypertext files to be installed into the $(INSTALL_DIR)/html/

$(HTMLS_DIR) directory

TEMPLATES_DI R

template directory to be created as $(INSTALL_DIR)/templates/
$(TEMPLATE_DIR)

TEMPLATES template filesto be installed into TEMPLATE_DIR)
Database Definition files

DBD Name of database definition file to be installed or created from bpt data
or dbd include and installed into $(INSTALL_DBD).

DBDI NC Name, without suffix, of a menu or record database definition and
header to beinstalled or created and installed.

USR_DBDFLAGS Optional flags for dbExpand. Currently only include path (-I <path>)
and macro substitution (-S <substitution>) are supported.

Database Files
DB Name of adatabase file to be installed or created and installed into

$(INSTALL_DB).

Optionsfor other programs

YACCOPT yacc options
LEXOPT lex options
SNCFLAGS state notation language, snc, options

<pr od>_SNCFLAGS

product specific state notation language options

E2DB_FLAGS e2db options
SCH2EDI F_FLAGS sch2edif options
RANLI BFLAGS ranlib options

Facilitiesfor building Java programs

JAVA

names of Javafilesto be built and installed

TESTJAVA

names of Javafilesto be built

56 EPICS I0OC Application Developer's Guide

Chapter 4: EPICS Build Facility
Configuration Files

Build Option Description
JAVAI NC names of C header file to be created in O.Common subdirectory
JAR name of Jar file to be built
JAR_| NPUT names of filesto be included in JAR
JAR_MANI FEST name of manifest file for JAR

USR_JAVACFLAGS

javac tool options

USR_JAVAHFLAGS

javah tool options

Facilitiesfor Windows 95/NT resource (.rc) files

RCS

resource files (<name>.rc) needed to build every PROD and LIBRARY

RCS <oscl ass>

resource files (<name>.rc) needed to build every PROD and LIBRARY
for ioc type archs

RCS_DEFAULT

resource files needed to build every PROD and LIBRARY for ioc type
arch systems with no RCS_<osclass> specified

<nane>_RCS

resource files needed to build a specific PROD or LIBRARY

<name>_RCS_<oscl ass>

os specific resource files to build a specific PROD or LIBRARY

<name>_ RCS_DEFAULT

resource files needed to build a specific PROD or LIBRARY for ioc
type arch systems with no RCS_<osclass> specified

Other definitions:

USR VPATH

list of directories

BI N_I NSTALLS

files from specified directory to install into $(INSTALL_BIN) (e.g.
BIN_INSTALLS = $(EPICS BASE_BIN)/aiRecord$(OBJ))

Bl N_I NSTALLS <oscl ass>

os specific files from specified directory to install only for ioc type archs

BI N_I| NSTALLS_DEFAULT

filesfrom specified directory to install for ioc type arch systems with no
OBJS_IOC_<osclass> specified

TARGETS

files to create but not install

I NSTALL_LOCATI ON

installation directory (defaults to $(TOP))

4.8 Configuration Files

4.8.1 Base Configure Directory

The base/configure directory has the following directory structure:

base/
confi gure/
os/
t ool s/

EPICS Release: R3.14.1

EPICS IOC Application Developer's Guide

57

Chapter 4: EPICS Build Facility
Configuration Files

4.8.2 Base Configure File Descriptions

The configure files contain definitions and make rules to be included in the various makefil es.

CONFI G Cr ossCommon
Definitions for al hosts and all targets for a cross build (host different than target).
CONFI G. gnuConmon
Definitions for al hosts and all targets for builds using the gnu compiler.
CONFI G_ADDONS
Definitions which setup the variabl es that have <osclass> and DEFAULT options.
CONFI G_BASE
EPICS base specific definitions.
CONFI G_BASE_VERSI ON
Definitions for the version number of EPICS base. This file is used for creating epicsVersion.h which is installed
into base/include.
CONFI G_COVIVON
Definitions common to al builds.
CONFI G_ENV
Default definitions of the EPICS environment variables. Thisfile is used for creating envData.c which isincluded
in the Com library.
CONFI G_SI TE
File in which you add to or modify make variablesin EPICS base. A definition normally overriddenis:
CROSS_COWPI LER_TARGET_ARCHS =
CONFI G_SI TE_ENV
Defaults for site specific definitions of EPICS environment variables. Thisfileis used for creating envData.c which
isincluded in the Com library.
CONFI G
Include statements for al the other configure files. You can override any definitions in other CONFIG* files by
placing override definitions at the end of thisfile.
RELEASE
Specifies the location of external products such as Tornado Il and external <tops> such as EPICS base.
RULES
Thisfile just includes the appropriate rules configuration file.
RULES. Db
Rules for building and installing database and database definition files. Databases generated from templates and/or
CapFast schematics are supported.
RULES_ARCHS
Definitions and rules which alow building the make target for each target architecture.
RULES_BUI LD
Build rules for the Makefiles
RULES_DI RS
Definitions and rules which alow building the make targets in each subdirectory. Thisfileisincluded by Makefiles
in directories with subdirectories to be built.
RULES_JAVA
Definitions and rules which alow building java class files and java jar files.
RULES_TOP
Rules specific to a<top> level directory e.g. uninstall and tar. It also includesthe RULES DIRSfile.

58 EPICS I0OC Application Developer's Guide

Chapter 4: EPICS Build Facility
Configuration Files

4.8.3 Base configure/os File Descriptions

The configure/os directory contains os specific make definitions. The naming convention for the files in this directory is
CONFIG.<host>.<target> where <host> is either the arch for a specific host system or Common for all supported host
systems and <target> is either the arch for a specific target system or Common for all supported target systems.

For example, the file CONFIG.Common.vxWorks-pentium will contain make definitions to be used for builds on all host
systems when building for a vxWorks-pentium target system.

Also, if agroup of host or target files have the same make definitions these common definitions can be moved to anew file
which isthen included in each host or target file. An example of thisisall Unix hosts which have common definitionsin a
CONFIG.UnixCommon.Common file and all vxWorks targets with definitions in CONFIG.Common.vxWorksCommon.

The base/configure/os directory contains the following os-arch specific definitions

CONFI G. <host >. <t ar get >

Specific host-target build definitions
CONFI G. Conmon. <t ar get >

Specific target definitions for al hosts
CONFI G <host >. Conmon

Specific host definitions for all targets
CONFI G Uni xCommon. Conmon

Definitions for Unix hosts and all target
CONFI G <host >. vxWor ksConmon

Specific host definitionsfor all vx targets
CONFI G_COWPAT

R3.13 arch compatibility definitions
CONFI G_SI TE. <host >. <t ar get >

Site specific host-target definitions
CONFI G_SI TE. Conmon. <t ar get >

Site specific target defs for all hosts
CONFI G_SI TE. <host >. Conmon

Site specific host defs for all targets

4.8.4 Base configure/tool File Descriptions

The configure/tools directory contains Perl script tools used for the build. Thetools currently in this directory are:

convert Rel ease. pl
This Perl script does consistency checks for the external <top> definitions in the RELEASE file and generates
include directory, bin directory, and library directory definitions for these external <top>s. These definitions are
included into the CONFIG file for use by the application Makefiles.This script also creates -include statements for
RULES BUILD filesfrom the external <top> definitionsin the RELEASE file.

cp. pl
This Perl script filters compiler warning output.

filterWarnings. pl
Thisisaperl script that creates atarget definition for each header file dependency definition.

i nstall Epi cs. pl
ThisisaPerl script that installs build created filesinto the install directories.

makeMakefil e. pl
Thisisaperl script that creates a Makefile in the created O.<arch> directories.

makeMakefi | el ncl ude. pl
This perl script creates afile to be included by Makefiles. This file contains a build target's specific definitions and
dependencies.

nmkdi r. pl

EPICS Release: R3.14.1
EPICS IOC Application Developer's Guide 59

Chapter 4: EPICS Build Facility
Build Documentation Files

This perl script creates adirectory like the Unix mkdir command.
nmknf . pl
This perl script generates include file dependencies for targets from source file include statements.
munch. pl
Thisis a perl script that creates a ctdt.c file for vxWorks target arch builds which lists the c++ static constructors
and destructors. See munching in the vxWorks documentation for more information.
nv. pl
This perl script renames an existing file.
repl aceVAR. pl
Thisis aperl script that changes VAR(xxx) style macros in CapFast generated databases into the $(xxx) notation
used in EPICS databases.
rm pl
This perl script quietly removes an existing file.

4.9 Build Documentation Files

4.9.1 Base Documentation Directory

The base/documentation directory contains README files to help users setup and build epics/base.

4.9.2 Base Documentation File Descriptions

Thefiles currently in the base/startup directory are:

README. 1st
Instructions for setup and building epics base
README. ht ni
html version of README.1st
README. W N32
Microsoft WIN32 specific instructions
READMVE. ni Cpu030
NI cpu030 specific instructions
README. darwi n
Installation notes for Mac OS X (Darwin)
Bui | di ngR3. 13AppsW t hR3. 14. ht m
Describes how to modify a R3.13 vxWorks application so that it builds with release R3.14.1.
ConvertingR3. 13AppsToR3. 14. ht m
Describes how to convert a R3.13 vxWorks application so that it contains a R3.14 configure directory and R3.14
Makefiles and builds with R3.14.1.
Converti ngR3. 14. Oal pha2AppsTobet al. ht m
Describes how to modify a R3.14.0alphal application so that it builds with release R3.14.0betal.
ConvertingR3. 14. Obet alAppsTobet a2. ht m
Describes how to modify a R3.14.0betal application so that it builds with release R3.14.0beta2.
ConvertingR3. 14. Obet a2AppsToR3. 14. 1. ht m
Describes how to modify a R3.14.0beta2 application so that it builds with release R3.14.1.
Bui | di ngR3. 13Ext ensi onsW t hR3. 14. ht nl
Describes how to modify a R3.13 extension so that it builds with release R3.14.1.
RELEASE_NOTES. ht ni
Describes changesin the R3.14.1 release

60 EPICS I0OC Application Developer's Guide

Chapter 4: EPICS Build Facility
Startup Files

KnownPr obl ens. ht m
List of known problemsin EPICS base R3.14.1.

4.10 Startup Files

4.10.1 Base Startup Directory

The base/startup directory contains scripts to help users set the required environment variables and path. The appropriate
startup files should be executed before any EPICS builds.

4.10.2 Base Startup File Descriptions

The scripts currently in the base/startup directory are:

Epi csHost Arch

¢ shell script to set EPICS HOST_ARCH environment variable
Epi csHost Ar ch. pl

perl script to set EPICS_HOST_ARCH environment variable
Site.profile

Unix bourne shell script to set path and environment variables
Site.cshrc

Unix c shell script to set path and environment variables
bor | and. bat

WIN32 bat file to set path and environment variables
wi n32. bat

WIN32 bat file to set path and environment variables

EPICS Release: R3.14.1
EPICS I0C Application Developer's Guide 61

Chapter 4: EPICS Build Facility
Startup Files

62 EPICS I0OC Application Developer's Guide

Chapter 5. Database Locking, Scanning, And
Processing

5.1 Overview

Before describing particular components of the |OC software, it is helpful to give an overview of three closely related
topics. Database locking, scanning, and processing. Locking is done to prevent two different tasks from simultaneously
modifying related database records. Database scanning is the mechanism for deciding when records should be processed.
The basics of record processing involves obtaining the current value of input fields and outputting the current value of

output fields. As records become more complex so does the record processing.

One powerful feature of the DATABASE is that records can contain links to other records. This feature also causes

considerable complication. Thus, before discussing locking, scanning, and processing, record links are described.

5.2 Record Links

A database record may contain links to other records. Each link is one of the following types:

e INLINK
OUTLINK
INLINKs and OUTLINKSs can be one of the following:
« constant link
Not discussed in this chapter
» database link
A link to another record in the same |OC.
 channdl access link

A link to arecord in another 1OC. It is accessed via a specia |OC client task. It is also possible to force a

link to be a channel access link even it references arecord in the same 1OC.

* hardware link
Not discussed in this chapter

* FWDLINK

A forward link refers to a record that should be processed whenever the record containing the forward link is

processed. The following types are supported:
« constant link
Ignored.
« database link
A link to another record in the same 10C.

» channel access link

A link to arecord in another |IOC or alink forced to be a channel accesslink. Unless the link references the
PROC field it isignored. If it does reference the PROC field a channel access put with avalue of 1 isissued.

EPICS Release: R3.14.1
EPICS I0C Application Developer's Guide

63

Chapter 5: Database Locking, Scanning, And Processing
Database Links

Linksare defined infilel i nk. h.
NOTE: This chapter discusses mainly database links.

5.3 Database Links

Database links are referenced by calling one of the following routines:

» dbGetLink: The value of thefield referenced by the input link retrieved.
» dbPutLink: The value of the field referenced by the output link is changed.
» dbScanPassive: Therecord referred to by the forward link is processed if it is passive.

A forward link only makes sense when it refers to a passive record that the should be processed when the record
containing the link is processed. For input and output links, however, two other attributes can be specified by the
application devel oper, process passive and maximize severity.

5.3.1 Process Passive

Process passive (PP or NPP), is either TRUE or FALSE. It determines if the linked record should be processed before
getting avalue from an input link or after writing a value to an output link. The linked record will be processed, viaacall
to dbPr ocess, only if the record is a passive record and process passive is TRUE.

NOTE: Three other options may also be specified: CA, CP, and CPP. These options force the link to be handled like a
Channel Access Link. Seelast section of this chapter for details.

5.3.2 Maximize Severity

Maximize severity (M5 or NVB), is TRUE or FALSE. It determinesif alarm severity is propagated across links. For input
links the alarm severity of the record referred to by the link is propagated to the record containing the link. For output
links the alarm severity of the record containing the link is propagated to the record referred to by the link. In either case,
if the severity is changed, the alarm statusis set to LI NK_ALARM

The method of determining if the alarm status and severity should be changed is called " maximize severity”. In addition
to its actual status and severity, each record also has a new status and severity. The new status and severity areinitially O,
which means NO_ALARM Every time a software component wants to modify the status and severity, it first checks the
new severity and only makes a change if the severity it wantsto set is greater than the current new severity. If it does make
a change, it changes the new status and new severity, not the current status and severity. When database monitors are
checked, which is normally done by a record processing routine, the current status and severity are set equal to the new
values and the new values reset to zero. The end result is that the current alarm status and severity reflect the highest
severity outstanding alarm. If multiple alarms of the same severity are present the status reflects the first one detected.

5.4 Database L ocking

The purpose of database locking is to prevent a record from being processed simultaneously by two different tasks. In
addition, it prevents "outside” tasks from changing any field while the record is being processed.

The following routines are provided for database locking.

dbScanLock(precord);

64 EPICS I0OC Application Developer's Guide

Chapter 5: Database Locking, Scanning, And Processing
Database Scanning

dbScanUnl ock(precord);

The basic idea is to call dbScanLock before accessing database records and calling dbScanUnl ock afterwords.
Because of database links (Input, Output, and Forward) a modification to one record can cause modification to other
records. Records linked together are placed in the same lock set. dbScanLock locksthe entire lock set not just the record
requested. dbScanUnl ock unlocks the entire set.

The following rules determine when the lock routines must be called:

1. The periodic, I/O event, and event tasks lock before and unlock after processing:

2. dbPut Fi el d locks before modifying arecord and unlocks afterwards.

3. dbCet Fi el d locks before reading and unlocks afterwards.

4. Any asynchronous record support completion routine must lock before modifying a record and unlock afterwards.

All records linked via QUTLI NKs and FWDLI NKs are placed in the same lock set. Records linked via | NLI NKs with
process_passi ve or maxi m ze_severity TRUE are also forced to be in the same lock set.

5.5 Database Scanning

Database scanning refers to requests that database records be processed. Four types of scanning are possible:

1. Periodic - Records are scanned at regular intervals.
2. 1/O event - A record is scanned as the result of an 1/0 interrupt.
3. Event - A record is scanned as the result of any task issuing apost _event request.

4. Passive - A record is scanned as a result of a call to dbScanPassi ve. dbScanPassi ve will issue a record
processing request if and only if the record is passive and is not already being processed.

A dbScanPassi ve request results from atask calling one of the following routines:

» dbScanPassive: Only record processing routines, dbGet Li nk, dbPut Li nk, and dbPutField cal
dbScanPassi ve. Record processing routines call it for each forward link in the record.

» dbPutField: Thisroutine changesthe specified field and then, if the field has been declared pr ocess_passi ve,
calls dbScanPassi ve. Each field of each record type has the attribute pr ocess_passi ve declared TRUE or
FALSE in the definition file. This attribute is a global property, i.e. the application developer has no control of it.
This use of process_passi ve isused only by dbPut Fi el d. If dbPut Fi el d finds the record aready active
(this can happen to asynchronous records) and it is supposed to cause it to process, it arranges for it to be processed
again, when the current processing compl etes.

» dbGetLink: If the link specifies process passive, this routine calls dbScanPassi ve. Whether or not
dbScanPassi ve iscalled, it then obtains the specified value.

» dbPutLink: This routine changes the specified field. Then, if the link specifies process passive, it cals
dbScanPassi ve. dbPut Li nk is only caled from record processing routines. Note that this usage of
process_passi ve is under the control of the application developer. If dbPut Li nk finds the record aready
active because of a dbPut Fi el d directed to this record then it arranges for the record to be processed again,
when the current processing compl etes.

All non-record processing tasks (Channel Access, Sequence Programs, etc.) call dbGet Fi el d to obtain database val ues.
dbCet Fi el d just reads values without asking that a record be processed.

EPICS Release: R3.14.1
EPICS I0C Application Developer's Guide 65

Chapter 5: Database Locking, Scanning, And Processing
Record Processing

5.6 Record Processing

A record is processed as aresult of acall to dbPr ocess. Each record support module must supply aroutine pr ocess.
This routine does most of the work related to record processing. Since the details of record processing are record type
specific thistopic is discussed in greater detail in Chapter "Record Support" for details.

5.7 Guidelines for Creating Database Links

The ability to link records together is an extremely powerful feature of the IOC software. In order to use links properly it
isimportant that the Application Developer understand how they are processed. As an introduction consider the following
example:

InLink PP

A FwdLink B FwdLink C

Assume that A, B, and C are all passive records. The notation states that A has aforward link to B and B to C. C has an
input link obtaining a value from A. Assume, for some reason, A gets processed. The following sequence of events
OCCUrs:

1. A begins processing. While processing a request is made to process B.

2. B starts processing. While processing a request is made to process C.

3. C dtarts processing. One of the first stepsisto get avalue from A viathe input link.

4

. At this point a question occurs. Note that the input link specifies process passive (signified by the PP after
I nLi nk). But process passive states that A should be processed before the value is retrieved. Are we in an infinite
loop? The answer is no. Every record contains a field pact (processing active), which is set TRUE when record
processing beginsand is not set FALSE until all processing completes. When C is processed A till haspact TRUE
and will not be processed again.

5. C obtains the value from A and completes its processing. Control returnsto B.
6. B completes returning control to A
7. A completes processing.

This brief example demonstrates that database links needs more discussion.

5.7.1 Rules Relating to Database L inks

5.7.1.1 Processing Order
The processing order is guaranteed to follow the following rules:

1. Forward links are processed in order from left to right and top to bottom. For example the following records are
processed in the order FLNK1, FLNK2, FLNK3, FLNK4 .

2. If arecord has multiple input links (calculation and select records) the input is obtained in the natural order. For
example if the fields are named | NPA, | NPB, ..., | NPL, then the links are read in the order A then B then C, etc.
Thusif obtaining an input results in arecord being processed, the processing order is guaranteed.

66 EPICS I0OC Application Developer's Guide

Chapter 5: Database Locking, Scanning, And Processing
Guidelines for Creating Database Links

FLNK1 FLNK2

fanout

FLNK3 FLNK4

3. All input and output links are processed before the forward link.

5.7.1.2 Lock Sets

All records, except for the conditions listed in the next paragraph, linked together directly or indirectly are placed in the
same lock set. When dbScanLock is called the entire set, not just the specified record, is locked. This prevents two
different tasks from simultaneously modifying recordsin the same lock set.

5.7.1.3 PACT - processing active

Each record containsafield pact . Thisfield is set TRUE at the beginning of record processing and is not set FALSE until
the record is completely processed. In particular no links are processed with pact FALSE. This prevents infinite
processing loops. The example given at the beginning of this section gives an example. It will be seen in the next two
sections that pact has other uses.

5.7.1.4 Process Passive: Link option

Input and output links have an option called process passive. For each such link the application developer can specify
process passive TRUE (PP) or process passive FALSE (NPP). Consider the following example

InLink PP }
FwdLink
A fanout
FwdLink C
InLink PP 4

Assume that al records except fanout are passive. When the fanout record is processed the following sequence of events
occur:

=

. Fanout starts processing and asks that B be processed.

. B begins processing. It callsdbCet Li nk to obtain datafrom A.

. Because the input link has process passive true, arequest is made to process A.

. A is processed, the data value fetched, and control is returned to B

. B completes processing and control is returned to fanout. Fanout asks that C be processed.
. C begins processing. It callsdbCet Li nk to obtain data from A.

. Because the input link has process passive TRUE, arequest is made to process A.

. A is processed, the data value fetched, and control is returned to C.

. C completes processing and returns to fanout

© 0O N O O &~ WDN

EPICS Release: R3.14.1
EPICS I0C Application Developer's Guide 67

Chapter 5: Database Locking, Scanning, And Processing
Guidelines for Synchronous Records

10. The fanout completes

Note that A got processed twice. Thisisunnecessary. If theinput link to C is declared no process passive then A will only
be processed once. Thus we should have .

InLink PP v
FwdLink
A fanout
FwdLink C
InLink NPP 4

5.7.1.5 Process Passive: Field attribute

Each field of each database record type has an attribute called pr ocess_passi ve. This attribute is specified in the
record definition file. It is not under the control of the application developer. This attribute is used only by dbPut Fi el d.
It determines if a passive record will be processed after dbPut Fi el d changes a field in the record. Consult the record
specific information in the record reference manual for the setting of individual fields.

5.7.1.6 Maximize Severity: Link option

Input and output links have an option called maximize severity. For each such link the application developer can specify
maximize severity TRUE (MS) or maximize severity FALSE (NVS).

When database input or output links are defined, the application developer can specify if alarm severities should be
propagated across links. For input links the severity is propagated from the record referred to by the link to the record
containing the link. For output links the severity of the record containing the link is propagated to the record referenced by
the link. The alarm severity istransferred only if the new severity will be greater than the current severity. If the severity is
propagated the alarm status is set equal to LI NK_ALARM

5.8 Guiddlines for Synchronous Records

A synchronous record is arecord that can be completely processed without waiting. Thus the application developer never
needs to consider the possibility of delays when he defines a set of related records. The only consideration is deciding
when records should be processed and in what order a set of records should be processed.

The following reviews the methods available to the application programmer for deciding when to process arecord and for
enforcing the order of record processing.

1. A record can be scanned periodically (at one of several rates), vial/O event, or via Event.

2. For each periodic group and for each Event group the phase field can be used to specify processing order.

3. The application programmer has no control over the record processing order of records in different groups.

4

. The disable fields (SDI S, DI SA, and DI SV) can be used to disable records from being processed. By letting the
SDI S field of an entire set of records refer to the same input record, the entire set can be enabled or disabled
simultaneously. See the Record Reference Manual for details.

68 EPICS I0OC Application Developer's Guide

Chapter 5: Database Locking, Scanning, And Processing
Guidelines for Asynchronous Records

5. A record (periodic or other) can be the root of a set of passive records that will all be processed whenever the root
record is processed. The set isformed by input, output, and forward links.

6. Thepr ocess_passi ve option specified for each field of each record determinesif a passive record is processed
when adbPut Fi el d isdirected to the field. The application devel oper must be aware of the possibility of record
processing being triggered by external sources if dbPut Fi el ds are directed to fields that have
process_passi ve TRUE.

7. The pr ocess_passi ve option for input and output links provides the application developer control over how a
set of records are scanned.

8. General link structures can be defined. The application programmer should be wary, however, of defining arbitrary
structures without carefully analyzing the processing order.

5.9 Guiddines for Asynchronous Records

The previous discussion does not allow for asynchronous records. An example is a GPIB input record. When therecord is
processed the GPIB request is started and the processing routine returns. Processing, however, is not really complete until
the GPIB request completes. This is handled via an asynchronous completion routine. Lets state a few attributes of
asynchronous record processing.

During the initial processing for all asynchronous records the following is done:

1. pact isset TRUE

2. Dataisobtained for all input links

3. Record processing is started

4. The record processing routine returns

The asynchronous completion routine performs the following algorithm:

5. Record processing continues

6. Record specific alarm conditions are checked
7. Monitors are raised

8. Forward links are processed

9. pact isset FALSE.

A few attributes of the above rules are:

10. Asynchronous record processing does not delay the scanners.

11. Between the time record processing begins and the asynchronous completion routine compl etes, no attempt will be
made to again process the record. Thisis because pact is TRUE. Theroutine dbPr ocess checks pact and does
not call the record processing routine if it is TRUE. Note, however, that if dbPr ocess finds the record active 10
timesin succession, it raises a SCAN_ALARM

12. Forward and output links are triggered only when the asynchronous completion routine completes record
processing.

With these rules the following works just fine:

ASYN dbScanPasive B

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 69

Chapter 5: Database Locking, Scanning, And Processing
Guidelines for Asynchronous Records

When dbPr ocess iscaled for record ASYN, processing will be started but dbScanPassi ve will not be called. Until
the asynchronous completion routine executes any additional attempts to process ASYN are ignored. When the
asynchronous callback is invoked the dbScanPassi ve is performed.

Problems till remain. A few examples are:

5.9.1 Infinite Loop

Infinite processing loops are possible.

dbScanPasive

dbScanPasive

Assume both A and B are asynchronous passive records and a request is made to process A. The following sequence of
events occur.

1. A startsrecord processing and returns leaving pact TRUE.

2. Sometime later the record completion for A occurs. During record completion a request is made to process B. B
starts processing and control returnsto A which completes leaving itspact field FALSE.

3. Sometime later the record completion for B occurs. During record completion a request is made to process A. A
starts processing and control returnsto B which completesleaving its pact field FALSE.

Thus an infinite loop of record processing has been set up. It is up to the application devel oper to prevent such loops.

5.9.2 Obtain Old Data

A dbCet Li nk to a passive asynchronous record can get old data.

A dbGetLink B

If A isa passive asynchronous record then the dbGet Li nk request forces dbPr ocess to be called for A. dbPr ocess
starts the processing and returns. dbGet Li nk then reads the desired value which is still old because processing will only
be completed at alater time.

5.9.3 Delays

Consider the following:

ASYN dbScanPasive ASYN dbScanPasive —

The second ASY N record will not begin processing until the first completes, etc. Thisis not really a problem except that
the application developer must be aware of delays caused by asynchronous records. Again, note that scanners are not
delayed, only records downstream of asynchronous records.

70 EPICS I0OC Application Developer's Guide

Chapter 5: Database Locking, Scanning, And Processing
Cached Puts

5.9.4 Task Abort

If the processing task aborts and the watch dog task cleans up before the asynchronous processing routine completes what
happens? If the asynchronous routine completes before the watch dog task runs everything is okay. If it doesn't? Thisisa
more general question of the consequences of having the watchdog timer restart a scan task. EPICS currently does not
allow scanners to be automatically restarted.

5.10 Cached Puts

The rules followed by dbPut Li nk and dbPut Fi el d provide for "cached” puts. This is necessary because of
asynchronous records. Two cases arise.

The first results from adbPut Fi el d, which isa put coming from outside the database, i.e. Channel Access puts. If this
is directed to arecord that already has pact TRUE because the record started processing but asynchronous completion
has not yet occurred, then avalue is written to the record but nothing will be done with the value until the record is again
processed. In order to make this happen dbPut Fi el d arranges to have the record reprocessed when the record finally
completes processing.

The second case results from dbPut Li nk finding a record already active because of a dbPut Fi el d directed to the
record. In this case dbPut Li nk arranges to have the record reprocessed when the record finally completes processing. If
therecord is already active because it appears twice in achain of record processing, it is not reprocessed because the chain
of record processing would constitute an infinite loop.

Note that the term caching not queuing is used. If multiple requests are directed to a record while it is active, each new
valueisplaced in the record but it will till only be processed once, i.e. last value wins.

5.11 putNotify

dbPutNotify, which is called when a Channel Accessclient callsca put_callback, isarequest to notify the caller when all
records processed as aresult of the put complete. Because of asynchronous records this can be complicated and the set of
records that are processed because of a put may not be deterministic. The result of a dbPutNotify is the same as a
dbPutField except for the following:

» dbPutNotifys are queued rather than cached. Thus when additional dbPutNotifys are directed to a record that
aready has an active dbPutNotify, they are queued. As each one finishesiit releases the next one in the queue.

« If adbPutNotify linksto arecord that is not active but has a dbPutNotify attached to it, then no attempt is made to
process the record.

5.12 Channel AccessLinks

A channdl accesslink is:

1. A record link that references arecord in adifferent 10C.
2. A link that the application devel oper forcesto be a channel accesslink.

A channel access client task (dbCa) handlesall 1/0O for channel access links. It does the following:

» At 1OC initialization dbCaissues channel access search requests for each channel access link.

EPICS Release: R3.14.1
EPICS IOC Application Developer’'s Guide 71

Chapter 5: Database Locking, Scanning, And Processing
Channel Access Links

* For each input link it establishes a channel access monitor. It usesca_fi el d_t ype andca_el emrent _count
when it establishes the monitor. It also monitors the alarm status. Whenever the monitor is invoked the new datais
stored in a buffer belonging to dbCa. When iocCore or the record support module asks for data the data is taken
from the buffer and converted to the requested type.

 For each output link, a buffer is alocated the first time iocCore/record support issues a put and a channel access
connection has been made. This buffer is allocated accordingto ca_fiel d_type andca_el ement _count .
Each time iocCore/record support issues a put, the datais converted and placed in the buffer and a request is made
to dbCato issue anew ca_put.

Evenif alink references arecord in the same IOC it can be useful to forceit to act like a channel accesslink. In particular
the records will not be forced to be in the same lock set. As an example consider a scan record that links to a set of
unrelated records, each of which can cause alot of records to be processed. It is often NOT desirable to force al these
records into the same lock set. Forcing the links to be handled as channel access links solves the problem.

CA links which connect between IOCs incur the extra overhead associated with message passing protocols, operating
system calls, and network activity. In contrast, CA links which connect records in the same IOC are executed more
efficiently by directly calling database access functions such as dbPutField() and dbGetField(), or by receiving callbacks
directly from a database monitor subscription event queue.

Because channel access links interact with the database only via dbPutField, dbGetField, and a database monitor
subscription event queue, their interaction with the database is fundamentally different from database links which are
tightly integrated within the code that executes database records. For this reason and because channel access does not
understand process passive or maximize severity, the semantics of channel access links are not the same as database links.
Let’s discuss the channel access semantics of INLINK, OUTLINK, and FWDLINK separately.

5.12.1 INLINK

The options for process passive are:

* PP or NPP - Thislink is made achannel access link because the referenced record is not found in the local 10C. It
is not possible to honor PP, thus the link always acts like NPP.
* CA - Forcethelink to be achannel access link.

» CP - Force the link to be a channel access link and also request that the record containing the link be processed
whenever a monitor occurs.

» CPP - Forcethelink to be a channel accesslink and also request that the record containing the link, if it is passive,
be processed whenever a monitor occurs.

Maximize Severity is honored.

5.12.2 OUTLINK

The options for process passive are:

* PP or NPP - Thislink is made a channel access link because the referenced record is not found in the local 10C. It
is not possible to honor PP thus the link always acts like NPP.

* CA - Forcethelink to be achannel accesslink.

Maximize Severity is not honored.

5.12.3 FWDLINK

A channel access forward link is honored only if it references the PROC field of a record. In that case a ca put with a
value of 1iswritten each time aforward link request is issued.

72 EPICS I0OC Application Developer's Guide

Chapter 5: Database Locking, Scanning, And Processing
Channel Access Links

The options for process passive are:

* PP or NPP - Thislink is made achannel access link because the referenced record is not found in the local 10C. It
is not possible to honor PP thus it always acts like NPP.

* CA - Forcethelink to be achannel access link.

Maximize Severity is not honored.

EPICS Release: R3.14.1
EPICS I0C Application Developer's Guide 73

Chapter 5: Database Locking, Scanning, And Processing
Channel Access Links

74 EPICS I0OC Application Developer's Guide

Chapter 6. Database Definition

6.1 Overview

This chapter describes database definitions. The following definitions are described:

* Menu

* Record Type
 Device

 Driver

» Function Declaration
 Breakpoint Table

» Record Instance

Record Instances are fundamentally different from the other definitions. A file containing record instances should never
contain any of the other definitions and vice-versa. Thus the following convention is followed:

» Database Definition File - A file that contains any type of definition except record instances.
* Record Instance File - A file that contains only record instance definitions.

This chapter also describes utility programs which operate on these definitions

Any combination of definitions can appear in asinglefile or in a set of files related to each other viainclude files.

6.2 Brief Summary of Database Definition Syntax

path "path"
addpath "path"
i ncl ude "fil enane"
#comrent
nmenu(nanme) {
i ncl ude "fil enanme"
choi ce(choi ce_nane, "choi ce_val ue")

}

recordtype(record_type) {

i ncl ude "fil enanme"

field(field nane,field type) {
asl (asl _Il evel)
initial ("init_val ue")
pr onpt gr oup(gui _gr oup)
pronpt (" pronpt _val ue")
speci al (speci al _val ue)

EPICS Release: R3.14.1
EPICS IOC Application Developer's Guide 75

Chapter 6: Database Definition
General Rules for Database Definition

pp(pp_val ue)
interest(interest_|evel)

base(base_type)

si ze(si ze_val ue)
extra("extra_info")
menu(hane)

}
device(record_type, link_type, dset_nane, "choi ce_string”)
driver(drvet _name)

function(function_nane)

br eakt abl e(nane) {
raw val ue eng_val ue

}

#The Fol |l owi ng defines a Record Instance

record(record_type, record_nane) {
i nclude "fil enane”
field(field_nane, "val ue")

}
#NOTE: GDCT uses the keyword grecord instead of record

6.3 General Rulesfor Database Definition

6.3.1 Keywords

The following are keywords, i.e. they may not be used as values unless they are enclosed in quotes:

pat h
addpat h

i ncl ude
menu

choi ce
recordtype
field

devi ce
driver
function
br eakt abl e
record
grecord

76 EPICS I0OC Application Developer's Guide

Chapter 6: Database Definition
General Rules for Database Definition

6.3.2 Unquoted Strings

In the summary section, some values are shown as quoted strings and some unquoted. The actual rule is that any string
consisting of only the following characters does not have to be quoted:

a-z AZ0-9 _-: .1 <>;

These are also the legal characters for process variable names. Thus in many cases quotes are not needed.

6.3.3 Quoted Strings

A quoted string can contain any ascii character except the quote character "'. The quote character itself can given by using
\ as an escape. For example "\"" is a quoted string containing the single character .

6.3.4 Macro Substitution

Macro substitutions are permitted inside quoted strings. The macro has the form:

$(nane)
or
${ nane}

6.3.5 Escape Sequences

Except for \" the database routines never translate standard C escape sequences, however, dbTr ansl at eEscape can
be used to translate the standard C escape sequences:

\a\b \f \n\r \t \Wv WA?V \" \000 \xhh

(\000 represenst an octal number of 1, 2, or 3 digits. \xhh represents a hexadecimal number of 1 or 2 digits) A typical use
is device support which expects escape sequences in the parm field:

Theroutineis:

i nt dbTransl at eEscape(char *s, const char *ct);

/*
* copies ct to s while substituting escape sequences
* returns the length of the resultant string
* The result may contain O characters

*/

6.3.6 Define before referencing

No item can be referenced until it is defined. For example ar ecor dt ype menu field can not reference a menu unless
that menu definition has aready been defined. Another example is that a record instance can not appear until the
associated record type has been defined.

6.3.7 Multiple Definitions

If a particular menu, recordtype, device, driver, or breakpoint table is defined more than once, then only the first instance
is used. Record instance definitions are cumulative, i.e. each time anew field value is encountered it replaces the previous
value.

EPICS Release: R3.14.1
EPICS IOC Application Developer’'s Guide 77

Chapter 6: Database Definition
Menu

6.3.8 filename extension

By convention:;

» Record instances files have the extension ".db"
» Database definition files have the extension ".dbd".

6.3.9 path addpath

The path follows the standard Unix convention, i.e. it isalist of directory names separated by colons (Unix) or semicolons
(winXX).

Format:

path "dir:dir...:dir"
addpath "dir:dir...:dir

NOTE: In winXX the separator is; instead of :

The pat h command specifies the current path. The addpat h appends directory names to the current path. The path is
used to locate the initial database file and included files. An empty di r at the beginning, middle, or end of a non-empty
path string means the current directory. For example:

nnn: : nm # Current directory is between nnn and nmm
:nnn # Current directory is first
nnn: # Current directory is |ast

Utilities which load database files (dbExpand, dbLoadDat abase, etc.) allow the user to specify an initial path. The
pat h and addpat h commands can be used to change or extend the initial path.

Theinitia path is determined asfollows:

If aninitial pathis specified, it is used. Else:
If the environment variable EPI CS_DB | NCLUDE_PATHisdefined, it is used. Else:
the default pathis".", i.e. the current directory.

The path is used unless the filename contains a/ or \. Thefirst directory containing the specified file is used.

6.3.10 include

Format:
i nclude "fil enane"

An include statement can appear at any place shown in the summary. It uses the path as specified above.

6.3.11 comment

The comment symbol is "#". Whenever the comment symbol appears, it and all characters through the end of the line are
ignored.

6.4 Menu

Format:

78 EPICS I0OC Application Developer's Guide

Chapter 6: Database Definition
Record Type

menu(nanme) {
choi ce(choi ce_nane, "choi ce_val ue")

}
Where:

name - Name for menu. This is the unique name identifying the menu. If duplicate definitions are specified, only
thefirst is used.

choice_name - The name placed in the enumgenerated by dbToMenuH or dbToRecor dt ypeH

choice value - The value associated with the choice.

Example:

menu(nenuYesNo) {
choi ce(nenuYesNoNO, "NO'")
choi ce(nenuYesNoYES, " YES")

6.5 Record Type

6.5.1 For mat:

recordtype(record_type) {
field(field nane,field type) {

asl (asl _level)
initial ("init_val ue")
pronpt gr oup(gui _gr oup)
pronpt (" pronpt _val ue")
speci al (speci al _val ue)
pp(pp_val ue)
interest(interest I|evel)
base(base_type)
si ze(size_val ue)
extra("extra_info")
menu(" name")

6.5.2rules

 asl - Access Security Level. The default is ASL1. Access Security is discussed in alater chapter. Only two values
are permitted for this field (ASLO and ASL1). Fields which operators normally change are assigned ASLO. Other
fields are assigned ASL1. For example, the VAL field of an analog output record is assigned ASLO and all other
fields ASL1. Thisis because only the VAL field should be modified during normal operations.

* initial - Initial Value.

e promptgroup - Prompt group to which field belongs. This is for use by Database Configuration Tools. This is
defined only for fields that can be given values by database configuration tools. File gui gr oup.h contains all

EPICS Release: R3.14.1
EPICS I0C Application Developer’s Guide 79

Chapter 6: Database Definition
Record Type

possible definitions. The different groups allow database configuration tools to present the user with groups of
fields rather than all prompt fields. | don’t know of any tool that currently uses groups.

prompt - A prompt string for database configuration tools. Optional if pr onpt gr oup is not defined.
special - If specified, then special processing is required for thisfield at run time.

pp - Should a passive record be processed when Channel Access writesto thisfield? The default is NO.
interest - Only used by the dbpr shell command.

base - For integer fields, abase of DECI MAL or HEX can be specified. The default is DECI MVAL.

size - Must be specified for DBF_STRI NGfields.

extra - Must be specified for DBF_NQACCESS fields.

menu - Must be specified for DBF_MENU fields. It is the name of the associated menu.

6.5.3 definitions

record_type - The unique name of the record type. If duplicates are specified, only the first definition is used.

field_name - The field name. Only aphanumeric characters are allowed. When include files are generated, the field
name is converted to lower case. Previous versions of EPICS required that field name be a maximum of four
characters. Although this restriction no longer exists, problems may arrise with some Channel Access clients if
longer field names are chosen.

field_type - This must be one of the following values:
« DBF_STRI NG
« DBF_CHAR
» DBF_UCHAR
» DBF_SHORT
« DBF_USHORT
» DBF_LONG
« DBF_ULONG
« DBF_FLOAT
» DBF_DOUBLE
« DBF_ENUM
« DBF_MENU
» DBF_DEVI CE
e DBF_I NLI NK
« DBF_QUTLI NK
o DBF_FWDLI NK
» DBF_NQACCESS
asl_level - This must be one of the following values:
* ASLO
e ASL1 (default value)
init_value - A lega value for datatype.
prompt_value - A prompt value for database configuration tools.
gui_group - This must be one of the following:
« QU _COVWON
o QU _ALARVB
« QU _BITSL
QU _BI TS2
e QU _CALC

80

EPICS IOC Application Developer’'s Guide

Chapter 6: Database Definition
Record Type

QJ _CLOCK
QU _COMPRESS
QU _ CONVERT
QJ _Dl SPLAY
QU _H ST

QU _I NPUTS
QU _LI NKS
QU _MBB

QJ _MOTOR
QU _QUTPUT
QJ _PID

QJ _PULSE
QJ _SELECT
QU _SEQL

QJ _SEQ

QJ _SEB

QJ _SsuB

aJ _TIMER
QU _WAVE

QU _SCAN
NOTE: GJ types were invented with the intention of allowing database configuration tools to prompt for

groups of fields and when a user selects a group the fields within the group. Since this feature has seldom
been used, many record types have not assigned the correct GUI groups to some fields.

 gpecial_value must be one of the following:

An integer value greater than 103. In this case, the record support special routine is called whenever thefield
is modified by database access. This feature is present only for compatibility. New support modules should
use SPC_MCD.

The following value disallows access to field.

SPC_NOMCD - This means that field can not be modified at runtime except by the record/device support
modules for the record type.

The following values are used for database common. They must NOT be used for record specific fields.
SPC_SCAN - Scan related field.

SPC_ALARNACK - Alarm acknowledgment field.

SPC_AS - Access security field.

The following value is used if record support wants to trap dbNameToAddr calls.

SPC DBADDR - This is set if the record support cvt dbaddr routine should be called whenever
dbNaneToAddr iscalled, i.e. when code outside record/device support want to access the field.

The following values all result in the record support special routine being called whenever database access
modifies the field. The only reason for multiple values is that originally it seemed like a good idea. New
support modules should only use SPC_MOD.

SPC_MD - Natify when modified, i.e. call the record support special routine whenever the field is modified
by database access.

SPC_RESET - areset field is being modified.
SPC LI NCONV - A linear conversion field is being modified.

EPICS Release: R3.14.1

EPICS I0C Application Developer’s Guide 81

Chapter 6: Database Definition
Record Type

e SPC CALC- A calcfieldis being modified.
* pp_value - Should a passive record be processed when Channel Access writes to this field? The allowed values
are:

* NO(default)
* YES
* interest_level - Aninterest level for the dbpr command.
* base - For integer type fields, the default base. The legal values are:
« DECI MAL (Defaullt)
* HEX
* size value - The number of characters for a DBF_STRI NGfield.

» extra_info - For DBF_NQACCESS fields, this is the C language definition for the field. The definition must end
with the fieldname in lower case.

6.5.4 Example

The following is the definition of the binary input record.

recordtype(bi) {

i ncl ude "dbConmon. dbd"

field(1 NP, DBF_I NLI NK) {
pronpt ("1 nput Specification")
pronpt gr oup(GUI _| NPUTS)
i nterest (1)

}

fiel d(VAL, DBF_ENUM {
pronpt ("Current Val ue")
pronpt gr oup(GUI _| NPUTS)
asl (ASLO)
pp(TRUE)

}

field(zZsv, DBF_MENU) {
pronpt ("Zero Error Severity")
pronpt gr oup(GUl _ALARNMS)
pp(TRUE)
i nterest (1)
menu(nenuAl ar nSevr)

}

fiel d(OsvV, DBF_MENU) {
pronpt ("One Error Severity")
pronpt gr oup(GUI _BI TS1)
pp(TRUE)
i nterest (1)
menu(nenuAl ar nSevr)

}

fiel d(COSV, DBF_MENU) {
pronpt (" Change of State Svr")
pr onpt gr oup(GUI _BI TS2)
pp(TRUE)
i nterest (1)
menu(nenuAl ar nSevr)

82 EPICS I0OC Application Developer's Guide

Chapter 6: Database Definition
Record Type

f

el d(ZNAM DBF_STRI NG {
prompt ("Zero Nane")
pr onmpt gr oup(GUI _CALQC)
pp(TRUE)
interest(1)
si ze(20)

—h

i el d(ONAM DBF_STRI NG {
pronpt (" One Nane")

pr onpt gr oup(GUI _CLQOCK)
pp(TRUE)

interest(1)

si ze(20)

fiel d(RVAL, DBF_ULONG ({
prompt (" Raw Val ue")
pp(TRUE)

fiel d(ORAW DBF_ULONG ({
pronmpt ("prev Raw Val ue")
speci al (SPC_NOMOD)
i nterest(3)

fiel d(MASK, DBF_ULONG ({
pronpt (" Har dwar e Mask")
speci al (SPC_NOVOD)
interest(1)

fiel d(LALM DBF_USHORT) {
pronmpt ("Last Val ue Al arned")
speci al (SPC_NOVOD)
i nterest(3)

fiel d(M.ST, DBF_USHORT) {
prompt ("Last Val ue Monitored")
speci al (SPC_NOMVOD)
i nterest(3)

fiel d(SI O, DBF_I NLI NK) {
prompt ("Si m I nput Specifctn")
pronpt gr oup(GUI _I NPUTS)
interest(1)

fiel d(SVAL, DBF_USHORT) {
pronmpt ("Si nul ati on Val ue")

fiel d(SI M, DBF_I NLI NK) {
prompt ("Si m Mode Location")
pronpt gr oup(GUI _I NPUTS)
interest(1)

field(SIH MM DBF_MENU) {
pronpt (" Si nul ati on Mode")

EPICS Release: R3.14.1
EPICS I0C Application Developer’s Guide 83

Chapter 6: Database Definition
Device

interest(1)
menu(menuYesNo)

}
field(SlI M, DBF_MENU) {
prompt ("Si m node Al arm Svrty")
pronpt gr oup(GUI _I NPUTS)
i nterest(2)
menu(menuAl ar nSevr)

6.6 Device

6.6.1 For mat:

devi ce(record _type, link_type,dset _nane, ”choice_string”)

6.6.2 definitions

 record_type - Record type. The combination of record_t ype and choi ce_st ri ng must be unique. If the

same combination appears multiple times, the first definition is used.
¢ link_type- Link type. This must be one of the following:
» CONSTANT
* PV_LINK
* VME_IO
« CAMAC | O
*«AB 10O
*« GPIB_IO
* BITBUS_I O
« INST_IO
« BBGPIB_IO
*RF_IO
* WX _I10

» dset_name - The exact name of the device support entry table without the trailing "DSET". Duplicates are not

allowed.

« choice string Choice string for database configuration tools. Note that it must be enclosed in "". Note that for a

given record type, each choi ce_st ri ng must be unique.

6.6.3 Examples

devi ce(ai , CONSTANT, devAi Soft, " Soft Channel ")
devi ce(ai, VME_I O devAi Xy566Se, " XYCOM 566 SE Scanned")

84 EPICS I0OC Application Developer's Guide

Chapter 6: Database Definition
Driver

6.7 Driver

6.7.1 For mat:

driver (drvet nane)

6.7.2 Definitions
* drvet_name - If duplicates are defined, only the first is used.

6.7.3 Examples

driver (drvVxi)
driver (drvXy210)

6.8 Function Declaration

6.8.1 For mat:

function(function_nane)

6.8.2 Definitions

« function_name - If duplicates are defined, only thefirst is used.

6.8.3 Examples

function(asSublnit)
function(asSubProcess)

6.9 Breakpoint Table

6.9.1 Format:

br eakt abl e(nane) {
raw _val ue eng_val ue

EPICS Release: R3.14.1
EPICS I0C Application Developer's Guide

85

Chapter 6: Database Definition
Record Instance

6.9.2 Definitions

» name - Name, which must be a pha-numeric, of the breakpoint table. If duplicates are specified the first is used.
» raw_value- Theraw value, i.e. the actual ADC value associated with the beginning of the interval.
» eng_value - The engineering value associated with the beginning of the interval.

6.9.3 Example

br eakt abl e(typeJdegC) {

0. 000000 0. 000000

365. 023224 67. 000000
1000. 046448 178. 000000
3007. 255859 524. 000000
3543. 383789 613. 000000
4042. 988281 692. 000000
4101. 488281 701. 000000

6.10 Record I nstance

6.10.1 For mat:

record(record_type, record_nane) {
field(field_nane,"val ue")

6.10.2 definitions

* record_type - Therecord type.
* record_name - The record name. This must be composed of the following characters:
&zZA-Z09_-:[]<>;
NOTE: If macro substitutions are used the name must be quoted.
If duplicate definitions are given for the same record, then the last value given for each field isthe value assigned to
thefield.
« field_name- Thefield name
* value - Depends on field type.
« DBF_STRI NG
Any ASCII string. If it exceeds the field length, it will be truncated.
» DBF_CHAR DBF_UCHAR, DBF_SHORT, DBF_USHORT, DBF_LONG DBF_ULONG
A string that represents a valid integer. The standard C conventions are applied, i.e. aleading O means the
valueisgivenin octa and aleading Ox meansthat valueis given in hex.
- DBF_FLQAT, DBF_DOUBLE
The string must represent a valid floating point number.
- DBF_MENU
The string must be one of the valid choices for the associated menu.

86 EPICS I0OC Application Developer's Guide

Chapter 6: Database Definition
Record Instance

- DBF_DEVI CE
The string must be one of the valid device choice strings.
» DBF | NLI NK, DBF_QUTLI NK
NOTES:
* In the field is INP or OUT then it is associated with field DTYP. Other DBF INLINK and
DBF_OUTLINK fields can be either CONSTANT or PV_LINKs
» DTYP must be defined before the associated INP or OUT fidd.
» Choosing the DTY Pimplicitly chooses abustype.
» A DTYP of CONSTANT can be either aconstant or aPV_LINK.

The allowed value depends on the bus type as follows:
o CONSTANT
A constant valid for the field associated
« PV_LINK
A value of the form:

record.field process maximize

field, process,andnaxim ze areoptional.
The default valuefor f i el d isVAL.
pr ocess can have one of the following values:
* NPP - No Process Passive (Default)
* PP - Process Passive
* CA- Forcelink to be a channel accesslink
e CP - CA and process on monitor
» CPP - CA and process on monitor if record is passive
NOTES:
CP and CPP arevalid only for INLINKS.
FWD_LINKscanbePPor CA. If aFWD_LINK isachannel access link it must reference the
PROC field.
maxi m ze can have one of the following values
* NVB - No Maximize Severity (Default)
* M5 - Maximize severity
* WE IO
#Ccard Ssignal @parm
where:
car d - the card number of associated hardware module.
si gnal - signal on card
par m- An arbitrary character string of up to 31 characters.
Thisfield is optional and is device specific.
« CAMMC IO
#Bbranch Ccrate Nstation Asubaddress Ffunction @parm
branch, crate, station, subaddr ess, and f uncti on should be obvious to canac users.
Subaddr ess and f uncti on are optional (0 if not given). Par mis also optional and is device
dependent (25 characters max).
*«ABIO
#Llink Aadapter Ccard Ssignal @parm
I'i nk - Scanner., i.e. vme scanner number
adapt er - Adapter. Allen Bradley aso callsthisrack
car d - Card within Allen Bradley Chassis
si gnal -signal on card
par m- An optional character string that is device dependent(27 char max)
*« GPIB 10O

EPICS Release: R3.14.1
EPICS I0C Application Developer's Guide 87

Chapter 6: Database Definition
Record Instance

#L1link Aaddr @parm
I'i nk - gpiblink, i.e. interface
addr - GPIB address
par m- device dependent character string (31 char max)
« BITBUS_ IO
#Llink Nnode Pport Ssignal @parm
I'i nk -link, i.e. vme bitbus interface.
node - bitbus node
port - port onthe node
si gnal - signal on port
par m- device specific character string(31 char max)
* INST_IO
@parm
par m- Device dependent character string(35 char max)
* BBGPIB IO
#Llink Bbbaddr Ggpibaddr @parm
I'i nk - link, i.e. vme bitbus interface.
bbadddr - bitbus address
gpi baddr - gpib address
par m- optional device dependent character string(31 char max)
*RF_IO
#Rcryo Mnricro Ddat aset Eel enent
* WXI_IO
#Vframe Cdlot Ssignal @parm (Dynamic addressing)
or
#Vla Signal @arm (Static Addressing)
f r ame - VXI frame number
sl ot - Slot within VXI frame
| a - Logical Address
si gnal - Signal Number
par m- device specific character string(25 char max)
« DBF_PVDLI NK
Thisis either not defined or elseisaPV_LI NK. See above for definitions.

6.10.3 Examples

record(ai, STS_AbA MaS0) {
fiel d(SCAN,".1 second")
fiel d(DTYP, "AB- 1771l FE- 4t 020MVA")
field(INP,"#L0O A2 CO SO FO @)
fiel d(PREC, "4")
field(LINR, "LI NEAR")
fiel d(EGUF, "20")
fiel d(EGUL, "4")
field(EGJ, "M I1i Amps")
fiel d(HOPR, "20")
fiel d(LOPR, "4")

}

record(ao, STS AbAoOMaClS0)
fiel d(DTYP, "AB-17710FE")
field(QUT,"#L0 A2 C1 SO FO @)
field(LINR, "LI NEAR")

88 EPICS I0OC Application Developer's Guide

Chapter 6: Database Definition
Record Attribute

fiel d(EGUF, "20")
fiel d(EGUL, "4")
field(EGQU, "M IIi Anp")
fiel d(DRVH, "20")
fiel d(DRVL, "4")
fiel d(HOPR, "20")
fiel d(LOPR, "4")
}
record(bi, STS _AbDi AOCOS0) ({
field(SCAN,"1/O Intr")
fiel d(DTYP,"AB-Bi nary | nput")
field(INP,"#LO AO CO SO FO @)
fiel d(ZNAM "OF ")
fiel d(ONAM "On")

6.11 Record Attribute

Each record type can have a set of record attributes. Each attribute is a * psuedo” field that can be accessed via database
and channel access. An attribute is given a name the acts like a field name which has the same value for every instance of
the record type. Two attributes are generated automatically for each record type: RTYP and VERS. Thevaluefor RTYPis
the record type name. The default value for VERS is "none specified”, which can be changed by record support. Record
support can call the following routine to create new attributes or change existing attributes:

| ong dbPut Attribute(char *recordTypenane,
char *name, char *val ue)

The arguments are:

r ecor dTypenane - The name of recordtype.
nane - The attribute name, i.e. the psuedo field name.
val ue - The value assigned to the attribute.

6.12 Breakpoint Tables - Discussion

The menu menuConvert isused for field LI NR of theai and ao records. These records allow raw data to be converted
to/from engineering units via one of the following:

1. No Conversion.

2. Linear Conversion.

3. Breakpoint table.
Other record types can also use this feature. The first two choices specify no conversion and linear conversion. The
remaining choices are assumed to be the names of breakpoint tables. If a breakpoint table is chosen, the record support

modules calls cvt RawToEngBpt or cvt EngToRawBpt . You can look at the ai and ao record support modules for
details.

If auser wants to add additional breakpoint tables, then the following should be done:
» Copy themenuConvert .dbd file from EPICS base/sr c/ bpt

EPICS Release: R3.14.1
EPICS I0C Application Developer’s Guide 89

Chapter 6: Database Definition
Breakpoint Tables - Discussion

» Add definitions for new breakpoint tables to the end
» Make sure modified nenuConvert .dbd isloaded into the IOC instead of EPICS version.

It is only necessary to load a breakpoint file if a record instance actually chooses it. It should also be mentioned that the
Allen Bradley IXE device support misuses the LI NR field. If you use this module, it is very important that you do not
change any of the EPICS supplied definitionsin menuConver t .dbd. Just add your definitions at the end.

If a breakpoint table is chosen, then the corresponding breskpoint file must be loaded into the IOC beforei ocl ni t is
called.

Normally, it is desirable to directly create the breakpoint tables. However, sometimesit is desirable to create a breakpoint
table from a table of raw values representing equally spaced engineering units. A good example is the Thermocouple
tables in the OMEGA Engineering, INC Temperature Measurement Handbook. A tool makeBpt is provided to convert
such data to a breakpoint table.

The format for generating a breakpoint table from a data table of raw values corresponding to equally spaced engineering
valuesis:

lcoment |ine
<header |ine>
<data tabl e>

The header line contains the following information:

* Name: An alphanumeric ascii string specifying the breakpoint table name
» Low Value Eng: Engineering Units Value for first breakpoint table entry

* Low Value Raw: Raw valuefor first breakpoint table entry

» High Value Eng: Engineering Units: Highest Value desired

» High Value Raw: Raw Value for High Value Eng

» Error: Allowed error (Engineering Units)

* First Table: Engineering units corresponding to first data table entry
 Last Table: Engineering units corresponding to last data table entry

» Delta Table: Change in engineering units per data table entry

An example definition is:

"TypeKdegF” 32 0 1832 4095 1.0 -454 2500 1
<dat a tabl e>

The breakpoint table can be generated by executing
makeBpt bpt XXX. dat a

Theinput file must have the extension of data. The output filename is the same as the input filename with the extension of
dbd.

Another way to create the breakpoint tableis to include the following definition in a Makefile.Vx:
BPTS += bpt XXX. dbd

NOTE: This requires the naming convention that all data tables are of the form bpt<name>.data and a breakpoint table
bpt<name>.dbd.

90 EPICS I0OC Application Developer's Guide

Chapter 6: Database Definition
Menu and Record Type Include File Generation.

6.13 Menu and Record Type Include File Generation.

6.13.1 Introduction

Given a file containing menus, dbToMenuH generates an include file that can be used by any code which uses the
associated menus. Given a file containing any combination of menu definitions and record type definitions,
dbToRecor dt ypeH generates an include file that can be used by any code which uses the menus and record type.

EPICS base uses the following conventions for managing menu and recordtype definitions. Users generating local record
types are encouraged to do likewise.

» Each menu that is either for fields in database common (for example menuScan) or is of globa use (for example
menuYesNo) is defined in a separate file. The name of the file is the same as the menu name with an extension of
dbd. The name of the generated include file is the menu name with an extension of h. Thus menuScan is defined
in afile mrenuScan.dbd and the generated include file is named nenuScan.h

* Each record type definition is defined in a separate file. In addition, this file contains any menu definitions that are
used only by that record type. The name of the file is the same as the recordtype name followed by Recor d.dbd.
The name of the generated include file is the same name with an extension of h. Thus aoRecor d is defined in a
file aoRecor d.dbd and the generated include file is named aoRecor d.h. Since aoRecor d has a private menu
called aoA F, the dbd file and the generated include file have definitions for this menu. Thus for each record type,
there are two source files (xxxRecor d.dbd and xxxRecor d.c) and one generated file (xxxRecor d.h).

Before continuing, it should be mentioned that Application Developers don’'t have to execute dbToMenuH or
dbToRecor dt ypeH. If a developer uses the proper naming conventions, it is only necessary to add definitions to their
Makef i | e. Consult the chapter on the EPICS Build Facility for details..

6.13.2 dbToMenuH

Thistool is executed as follows:
dbToMenuH -1dir -Smacsub nenuXXX. dbd

It generates a file which has the same name as the input file but with an extension of h. Multiple - 1 options can be
specified for an include path and multiple - S options for macro substitution.

For example nmenuPr i or i t y.dbd, which contains the definitions for processing priority contains:

menu(menuPriority) {
choi ce(nmenuPriorityLOW"LOW)
choi ce(nmenuPri orityMeEDI UM " MEDI UM'")
choi ce(nmenuPriorityH GH, "H GH")

}
Theincludefile, menuPri ori t y.h, generated by dbToMenuH contains:

#i f ndef | NCrenuPriorityH
#define I NCrenuPriorityH
typedef enum {
menuPriorityLOW
menuPri orityMeEDI UM
menuPri orityH CGH,
}menuPriority;
#endi f /*I NCrenuPriorityH*/

EPICS Release: R3.14.1
EPICS I0C Application Developer’s Guide 91

Chapter 6: Database Definition
Menu and Record Type Include File Generation.

Any code that needs to use the priority menu values should use these definitions.

6.13.3 dbToRecor dtypeH

Thistool is executed as follows:
dbTorecordtypeH -1dir -Smacsub xxxRecord. dbd

It generates a file which has the same name as the input file but with an extension of h. Multiple - 1 options can be
specified for an include path and multiple - S options for macro substitution.

For example aoRecor d.dbd, which contains the definitions for the analog output record contains:

menu(aoO F) {
choice(aoO F_Full,"Full")
choi ce(aod F_I ncrenental , "I ncrenental ")
}
recordtype(ao) {
i ncl ude "dbCommon. dbd"
fiel d(VAL, DBF_DOUBLE) ({
pronpt ("Desired Qutput")
asl (ASLO)
pp(TRUE)
}
fiel d(OVAL, DBF_DOUBLE) ({
pronpt (" Qut put Val ue")
}

(Many nore field definitions

}
Theincludefile, aoRecor d.h, generated by dbToRecor dt ypeH contains:

#i ncl ude "ellLib.h"

#i ncl ude "epi csMut ex. h"
#i ncl ude "1ink.h"

#i ncl ude "epi csTi ne. h"
#i ncl ude "epi csTypes. h"

#i f ndef | NCaoO FH
#defi ne | NCaoO FH
t ypedef enum {
aod F_Ful |,
aod F_Increnental,
}aod F;
#endi f /*1 NCaoO FH*/
#i f ndef | NCaoH
#defi ne | NCaoH
t ypedef struct aoRecord {

char nane[29]; /*Record Name*/
Remai ning fields in database conmon

doubl e val ; /*Desired CQutput*/

doubl e oval ; /*CQut put Val ue*/

remai ni ng record specific fields
} aoRecord;

92 EPICS I0OC Application Developer's Guide

Chapter 6: Database Definition
Menu and Record Type Include File Generation.

#def i ne aoRecor dNAVE 0
defines for remaining fields in database conmon
#def i ne aoRecor dVAL 42
#def i ne aoRecor dOVAL 43
defines for remaining record specific fields
#i f def CGEN_SI ZE_OFFSET
i nt aoRecordSi zeO f set (dbRecor dType *pdbRecor dType)
{
aoRecord *prec = O;
pdbRecor dType- >papFl dDes|[0] - >si ze=si zeof (pr ec- >nan®e) ;
pdbRecor dType- >papFl dDes|[0] - >of f set =
(short)((char *)&prec->name - (char *)prec);
code to compute size&offset for other fields in dbComon
pdbRecor dType- >papFl dDes[42] - >si ze=si zeof (prec->val);
pdbRecor dType- >papFl dDes[42] - >of f set =
(short)((char *)&prec->val - (char *)prec);
pdbRecor dType- >papFl dDes[43] - >si ze=si zeof (prec- >oval) ;
pdbRecor dType- >papFl dDes[43] - >of f set =
(short)((char *)&prec->oval - (char *)prec);
code to conmpute size&offset for remmining fields
pdbRecor dType->rec_si ze = sizeof (*prec);
return(0);

}
#endi f /*GEN_SI ZE_OFFSET*/

The analog output record support module and all associated device support modules should use this include file. No other
code should useit. Let’s discuss the various parts of thefile.:

» The enumgenerated from the menu definition should be used to reference the value of the field associated with the
menul.

» Thet ypedef and st r uct ur e defining the record are used by record support and device support to access fields
in an analog output record.

» A #defi ne ispresent for each field within the record. Thisis useful for the record support routines that are passed
a pointer to a DBADDR structure. They can have code like the following:

switch (dbGetFi el dl ndex(pdbAddr)) {
case aoRecordVAL :

br eak;
case aoRecor dXXX:
br eak;
defaul t:

}

The C source routine aoRecor dSi zeOr f set is automatically called when a record type file is loaded into an 10C.
Thus user code does not have to be aware of this routine except for the following convention: The associate record support
module MUST include the statements:

#defi ne GEN_SI ZE _OFFSET
#i ncl ude "xxxRecord. h"
#undef CEN_SI ZE OFFSET

EPICS Release: R3.14.1
EPICS I0C Application Developer’s Guide 93

Chapter 6: Database Definition
dbExpand

This convention ensures that the routine is defined exactly once.

6.14 dbExpand

dbExpand -1dir -Smacsub filel file2 ...

Multiple - | options can be specified for an include path and multiple - S options for macro substitution. Note that the
environment variable EPI CS_DB | NCLUDE_PATH can also be used in place of the- | options.

NOTE: Thisis supported only on the host.

This command reads the input files and then writes, to st dout , afile containing ASCII definitions for all information
described by the input files. The difference is that comment lines do not appear and al include files are expanded.

This routine is extremely useful if an 10C is not using NFS for the dbLoadDat abase commands. It takes more than 2
minutes to load the base/r ec/base.dbd file into an 10C if NFSis not used. If dbExpand creates alocal base.dbd
file, it takes about 7 seconds to load (25 MHZ 68040 10C).

6.15 dbL oadDatabase

dbLoadDat abase(char *db_file, char *path, char *substitutions)
NOTES:

* |OC Only
 Using a path on avxWorksioc does not work very well.
* Both path and substitutions can be null.

This command loads a database file containing any of the definitions given in the summary at the beginning of this
chapter.

dbf i | e must be afile containing only record instances in standard ASCII format. Such files should have an extension of
“.db”.

As each line of dbfil eisread, thesubstitutionsspecifiedinsubstit uti ons isperformed. The substitutions
are specified as follows:

“var 1=subl, var 2=sub3,..."”
Variables are specified in the dbfile as $(variable_name). If the substitution string
"a=1,b=2,c=\"this is a test\""

were used, any variables $(a), $(b), $(c) would be substituted with the appropriate data.

6.15.1 EXAMPLE

For example, let t est .db be:

record(ai,"$(pre)testrecl")

record(ai,"$(pre)testrec2")

record(stringout,"$(pre)testrec3d") {
field(VAL, "$(STR")

94 EPICS I0OC Application Developer's Guide

Chapter 6: Database Definition
dbLoadRecords

fiel d(SCAN, "$(SCAN) ")
}

Then issuing the command:
dbLoadDat abase("test. db", 0, "pr e=TEST, STR=t est, SCAN=Passi ve")
gives the same results as loading:

record(ai, " TESTtestrecl")
record(ai, " TESTt estrec2")
record(stringout, "TESTtestrec3") {
field(VAL, "test")
fiel d(SCAN, " Passi ve")

6.16 dbLoadRecords

dbLoadRecords(char* dbfile, char* substitutions)
NOTES:

* |OC Only.
« dbfile must contain only record instances.

» dbLoadRecor ds is no longer needed.It will probably go away in the future. At the present time
dbL oadRecords |oads faster than dbL oadDatabase.

6.17 dbL oadTemplate

dbLoadTenpl at e(char* tenpl ate_def)
NOTES:

» |OC Only.
» MSI can be used to expand templates on the host.

dbLoadTenpl at e reads a template definition file. This file contains rules about loading database instance files, which
contain $(xxx) macros, and performing substitutions.

t enpl at e_def contains the rules for performing substitutions on the instance files. For convenience two formats are
provided. Theformat is:

file name.db {
put Version-1 or Version-2 here

}

Version-1
{ setlvarl=subl, setlvar2=sub2,...... }
{ set2varl=subl, set2var2=sub2,...... }
{ set3varl=subl, set3var2=sub2,...... }

EPICS Release: R3.14.1
EPICS I0C Application Developer’'s Guide 95

Chapter 6: Database Definition
dbLoadTemplate

_Or-

Version-2

pattern{ varl,var2,var3,......
{ subl_for_setl, sub2 for_set1,
{ subl_for_set2, sub2_ for_set?2,
{ subl_for_set3, sub2 for_set3,

}

sub3 _for_setl,
sub3_for_set2,
sub3_for_set 3,

Thefirst line (file nane.db) specifies the record instance input file.

(SR

Each set of definitions enclosed in {} is variable substitution for the input file. The input file has each set applied to it to
produce one composite file with all the completed substitutions in it. Version 1 should be obvious. In version 2, the
variables are listed in the “pat t er n{}” line, which must precede the braced substitution lines. The braced substitution
lines contains sets which match up with the pat t er n{} line.

6.17.1 EXAMPLE

Two simple template file examples are shown below. The examples specify the same substitutions to perform:
t hi s=subl andt hat =sub2 for afirst set, and t hi s=sub3 and t hat =sub4 for a second set.

file test.db {
{ this=subil,that=sub2 }
{ this=sub3,that=sub4 }
}

file test.db {
pattern{this,that}
{subl, sub2}
{sub3, sub4 }

Assumethat t est .dbis:

Using dbLoadTenpl at e with either input is the same as defining the records:

record(ai,"$(this)record") {

}
record(ai,"$(that)record") {

}

fiel d(DESC "this = $(this)")

fiel d(DESC "this = $(that)")

record(ai, "sublrecord") {
fiel d(DESC, "this = subl")
}

record(ai, "sub2record") {
fiel d(DESC, "this = sub2")

}

record(ai, "sub3record") {
fiel d(DESC, "this = sub3")

}

record(ai, "sub4record") {
fiel d(DESC, "this = sub4")
}

96

EPICS IOC Application Developer’'s Guide

Chapter 6: Database Definition
dbReadTest

6.18 dbReadTest

dbReadTest -ldir -Smacsub file.dbd ... file.db ...

This utility can be used to check for correct syntax in database definition and database instance files. It just reads al the
specified files

Multiple- 1, and- S options can be specified. An arbitrary number of database definition and database instance files can
be specified.

EPICS Release: R3.14.1
EPICS I0C Application Developer's Guide 97

Chapter 6: Database Definition
dbReadTest

98 EPICS I0OC Application Developer's Guide

Chapter 7: 10C Initialization

7.1 Overview - Environments requiring a main program

If a main program is required (most likely on all environments except vxWorks and RTEMS), then initialization is
performed by statements residing in startup scripts passed to iocsh. An example main program is:

int main(int argc,char *argv[])

{
i f(argc>=2) {
i ocsh(argv[1]);
epi csThreadSl eep(. 2);
}
i ocsh(NULL) ;
return(0);
}

Thefirst call toi ocsh executes the commands from the filename passed as an argument to the program containing main.
The second call to i ocsh putsi ocsh into interactive mode. This allows the user to issue the commands described in
chapter "IOC Test Facilities” aswell as some commands like show and help.

Thefile passed as the argument to the command contains statements like:

dbLoadDat abase("../../dbd/ <appnanme>. dbd", 0, 0)
regi st er Recor dDevi ceDri ver (pdbbase)
dbLoadRecords("../../db/<fil e>.db")

ioclnit()

7.2 Overview - vxWorks

After vxWorks is loaded at 10C boot time, commands like the following, normally in the vxWorks startup command file,
areissued to load and initialize the control system software:

For many board support packages the follow ng nust be added
#cd <full path to target bin directory>

< cdConmands

cd topbin

Id < <appname>. nmunch

#The foll owi ng uses drvTS for vxWrks.
#May be needed for hardware event systens
#TSini t

cd top
dbLoadDat abase(” dbd/ <appnane>. dbd”)

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 99

Chapter 7: 10C Initialization
Overview - RTEMS

regi st er Recor dDevi ceDri ver (pdbbase)
dbLoadRecords("db/<fil e>. db")

cd startup

ioclnit()

cdConmands defines vxWorks global variables that allow vxWorks cd commands for convient locations. For example
in one of my test areas the following cdConmmands file appears:

startup = "/ hone/ phoebus6/ MRK/ epi cs/ exanpl e/ R3-14/i ocBoot /i ocexanpl e"
appbin = "/ home/ phoebus6/ MRK/ epi cs/ exanpl e/ R3- 14/ / bi n/ vxWbr ks- 68040"
top = "/home/ phoebus6/ MRK/ epi cs/ exanpl e/ R3- 14"

topbi n = "/ home/ phoebus6/ MRK/ epi cs/ exanpl e/ R3- 14/ bi n/ vxWr ks- 68040"

NOTE: Thisfileisautomatically generated via make rules.

The | d command loads EPICS core, record/device,/driver support, and application specific modules.

dbLoadDat abase loads database definition files describing the record/device/driver support used by the application..
dbLoadRecor ds loads record instance definitions.

i ocl ni t initializes the various epics components.

7.3 Overview - RTEMS

RTEMS applications use the 10C shell to read commands from a startup script in <t ft pbase>/ epi cs/
<t ar get _host nane>/ st. cnd. Inmany cases this script can be the same as the one used with vxWorks. The |OC
shell provides neither the Id command nor assignment to variables (e.g. startup, appbin, etc.) and the cd command is
limited to directories within the TFTP server, but this does not present a major problem since the db and dbd files have
been copied to standard locations and the entire application has been statically linked before execution begins.

7.4 10clnit

i ocl ni t performsthe following functions:

7.4.1 coreRelease

Prints a messages showing which version of iocCoreis being loaded.

7.4.2 taskwdl nit

start the task watchdog task. This task accepts requests to watch other tasks. It runs periodically and checksto seeif any of
the tasks is suspended. If so it issues an error message. It can also optionally invoke a callback routine

7.4.3 callbackl nit
Start the general purpose callback tasks. Three tasks are started with the only difference being scheduling priority.

100 EPICS I0OC Application Developer's Guide

Chapter 7: 10C Initialization
ioclnit

7.4.4 dbCaL inklnit

CdlsdbCaLi nkl ni t . Theinitializes the task that handles database channel access links.

7.4.5initDrvSup

I ni t Dr vSup locates each device driver entry table and calls the init routine of each driver.

7.4.6 initRecSup

I ni t RecSup locates each record support entry table and calls the init routine.

7.4.7 initDevSup

I ni t DevSup locates each device support entry table and calls the init routine with an argument specifying that thisisthe
initial call.

7.4.8 initDatabase

I ni t Dat abase makes three passes over the database performing the following functions:

» Pass1: Initidlizesfollowing fields. r set ,dset, m i s. Callsrecord supporti nit_record (First pass)
e Pass2: ConverteachPV_LINKtoDB LI NK or CA LI NK
e Pass3: Callsrecord supporti nit _recor d (second pass)

7.4.9 dbL ocklnitRecords

dbLockl ni t Recor ds createsthe lock sets.

7.4.10 finishDevSup

I ni t DevSup locates each device support entry table and calls theinit routine with an argument specifying that thisisthe
finish call.

7.4.11 scanlnit

The periodic, event, and io event scanners areinitialized and started.

7.4.12 aslnit

asl ni t initailizes access security.

7.4.13 dbPutNotifyl nit
dbPut Not i fyl ni t initializes support for put notifys.

EPICS Release: R3.14.1
EPICS I0OC Application Developer's Guide 101

Chapter 7: 10C Initialization
Changing iocCore fixed limits

7.4.14 initial Process

i nitial Process processesall recordsthat have PINI set true.

7.4.15 interruptAccept

A global variable”i nt er r upt Accept ” is set TRUE. Until thistime all interrupts should be ignored.

7.4.16 rsrv_init

The Channel Access servers are started

7.5 Changing iocCore fixed limits

The following commands can be issued after iocCore is loaded to change iocCore fixed limits. The commands should be
given before any dbLoad commands.

cal | backSet QueueSi ze(si ze)
dbPvdTabl eSi ze(si ze)
scanOnceSet QueueSi ze(si ze)
errloglnit(buffersize)

7.5.1 callback SetQueueSize

Requests for the general putpose callback tasks are placed in aring buffer. This command can be used to set the size for
the ring buffers. The default is 2000. A message is issued when aring buffer overflows. It should rarely be necessary to
override this default. Normally the ring buffer overflow messages appear when a callback task fails.

7.5.2 dbPvdTableSize

Record instance names are stored in a process variabl e directory, which is a hash table. The default number of hash entries
is512. dbPvdTabl eSi ze can be called to change the size. It must be called before any dbLoad commands and must
be a power of 2 between 256 and 65536. If an IOC contains very large databases (several thousand) then a larger hash
table size speeds up searches for records.

7.5.3 scanOnceSetQueueSize

scanOnce requests are placed in aring buffer. This command can be used to set the size for the ring buffer. The default is
1000. t should rarely be necessary to override this default. Normally the ring buffer overflow messages appear when the
scanOnce task fails.

7.5.4 errloglnit
Thus overrides the default buffer size for the errlog message queue. The default is1280 bytes.

102 EPICS I0OC Application Developer's Guide

Chapter 7: 10C Initialization
TSconfigure

7.6 TSconfigure

NOTE: Thisis only supported on vxWorks.

EPICS supports several methods for an 1OC to obtain time so that accurate time stamps can be generated. The default isto
obtain NTP time stamps from another computer. The following can be used to change the defaults. If ant argument is
given the value 0 then the default is applied.

TSConfi gure(master,sync_rate, cl ock_rate, master_port, sl ave_port)

master: 1=master timing |OC, O=slave timing, default is slave.
sync _rate: Theclock sync rate in seconds. Thisrate tells how often the synchronous time stamp support software
will confirm that an 10C clock is synchronized. The default is 10 seconds.

clock_rate: The frequency in hertz of the clock, the default is 1000Hz for the event system. The value will be set
to the IOC’sinternal clock rate when soft timing is used.

master_port: UDP port for master. The default is 18233
slave port: UDP port for dave.

time_out: UDP information request time out in milliseconds, if zero is entered here, the default will be used
which is 250ms.

type: O=normal operation, 1=force soft timing type

See "Synchronous Time Stamp Support”, by Jim Kowalkowski for details. Note that the default is to be a slave. If no
master is found the slave will obtain a starting time from Unix.

7.7 initHooks

NOTE: starting with release 3.13.0betal2 initHooks was changed drastically (thanks to Benjamin Franksen at BESY).
Old initHooks.c functions will still work but users are encouraged to switch to the new method.

The inithooks facility allows application specific functions to be called at various states during ioc initiaization. The
states are defined in initHooks.h, which contains the following definitions:

t ypedef enum {

ni t Hook At Begi nni ng,

ni t HookAft er Cal | backlni t,

ni t HookAft er CaLi nkl ni t,

ni t HookAf t er I ni t Dr vSup,

ni t HookAf t er I ni t RecSup,

ni t HookAf t er I ni t DevSup,

ni t HookAft er | ni t Dat abase,

ni t Hook Af t er Fi ni shDevSup,

ni t HookAft er Scanl ni t

ni t HookAfterlnitial Process,
ni t HookAf t er I nt er r upt Accept,
ni t Hook At End

}init HookSt at e;

typedef void (*initHookFunction)(initHookState state);

i nt

ni t HookRegi st er (i ni t HookFuncti on func);

Any new functions that are registered before ioclnit reaches the desired state will be called when ioclnit reaches that state.
The following is skeleton code to use the facility:

EPICS Release: R3.14.1

EPICS I0OC Application Developer’s Guide 103

Chapter 7: 10C Initialization
Environment Variables

static initHookFunction myHookFuncti on;

i nt myHookl nit (voi d)

{
return(initHookRegi ster(nmyHookFunction));

}

static void nyHookFunction(initHookState state)
{

switch(state) {
case i nitHookAfterlnitRecSup:
br eak;
case i nitHookAfterlnterruptAccept:
br eak;
defaul t:
br eak;

}
}

An arbitrary number of functions can be registered.

7.8 Environment Variables

The following environment variables are used by iocCore:
EPI CS_CA ADDR LI ST

EPI CS_CA CONN_TMO

EPI CS_CA BEACON PERI OD

EPI CS_CA AUTO ADDR LI ST

EPI CS_CA REPEATER PORT

EPI CS_CA SERVER PORT

EPI CS_TS NTP_I NET

EPI CS_| OC LOG PORT

EPI CS | OC LOG | NET

These variables can be overridden via the epicsEnvSet function. For example:
epi csEnvSet (" EPI CS_CA CONN_TMO=10")
All epi csEnvSet commands should be issued after iocCore isloaded and before any dbL oad commands.
The following commands can be issued to iocsh:
epi csPrt EnvPar ans - Thisshows all environment variables used by iocCore.

epi csEnvShow- Thisshows all environment variables on your system.

104 EPICS I0OC Application Developer's Guide

Chapter 7: 10C Initialization
Initialize Logging

7.9 Initialize Logging

Initialize the logging system. See chapter "IOC Error Logging” for details. For now just realise that the following can be
used if you want to use a private host log file.

epi csEnvSet ("EPI CS_| OC_LOG _PORT=<port >")
epi csEnvSet ("EPI CS_| OC_LOG | NET=<i net addr>")

These command must be given immediately after iocCore isloaded.
To start logging you must issue the command:

i ocLogl ni t

EPICS Release: R3.14.1
EPICS IOC Application Developer’'s Guide 105

Chapter 7: 10C Initialization
Initialize Logging

106 EPICS I0OC Application Developer's Guide

Chapter 8. Access Security

8.1 Overview

This chapter describes access security. i.e. the system that limits access to |0OC databases. It consists of the following
sections:

1
. Quick start - A summary of the steps necessary to start access security.
. User's Guide - This explains what access security is and how to useit.
. Design Summary - Functional Requirements and Design Overview.

. Application Programmer’s Interface

0NN WN

Overview - This section

Database Access Security - Access Security features for EPICS |OC databases.

. Channel Access Security - Access Security featuresin Channel Access
. Trapping Channel Access Writes - Thisallows trapping of all writes from external channel access clients.
9.

Implementation Overview

The requirements for access security were generated at ANL/APSin 1992. The requirements document is:
EPICS: Channel Access Security - Functional Requirements, Ned D. Arnold, 03/-9/92.
This document is available viathe EPICS WWW documentation

8.2 Quick Start

In order to “turn on” access security for a particular 10C the following must be done:

Create the access security file.
1OC databases may have to be modified
* Record instances may have to have values assigned to field ASG. If ASG is null the record is in group
DEFAULT.
» Access security files can be reloaded after ioclnit via a subroutine record with asSubl nit and
asSubPr ocess asthe associated subroutines. Writing the value 1 to this record will cause a reload.
The vxWorks startup file must contain the following command before iocl nit.
asSet Fi | enanme(“accessSecurityFile”)
Thefollowing is an optional command.
asSet Substitutions(“varl=subl, var2=sub2,..."))

The following rules decide if access security isturned on for an 10C:

If asSetFilename is not executed before ioclnit, access security will NEVER be started..

If asSetFile is given and any error occurs while first initializing access security, then ALL access to that ioc is
denied.

EPICS Release: R3.14.1

EPICS IOC Application Developer's Guide 107

Chapter 8: Access Security
User’s Guide

* If after successfully starting access security, an attempt is made to restart and an error occurs then the previous
access security configuration is maintained.

8.3 Usar’'s Guide

8.3.1 Features

Access security protects |OC databases from unauthorized Channel Access Clients. Access security is based on the
following:
» Who: Userid of the channel access client.

» Where: Hostid where the user is logged on. This is the host on which the channel access client exists. Thus no
attempt is made to seeif auser islocal or isremotely logged on to the host.

» What: Individual fields of records are protected. Each record has a field containing the Access Security Group
(ASG) to which the record belongs. Each field has an access security level, which must be 0 or 1.The security level
is defined in the ascii record definition file. Thus the access security level for a field is the same for all record
instances of arecord type.

» When: Accessrules can contain input links and calculations similar to the calculation record.

8.3.2 Limitations

An 10C database can be accessed only via Channel Access or viathe vxWorks shell. It is assumed that accessto the local
IOC console is protected via physical security and t el net /rl ogi n access protected via norma Unix and physical
Ssecurity.

No attempt has been made to protect against the sophisticated saboteur. Unix security must be used to limit access to the
subnet on which the iocs reside.

8.3.3 Definitions

This document uses the following terms:

* ASL: Access Security Level (Called access level in Req Doc)
» ASG: Access Security Group (Called PV Group in Reg Doc)
* UAG: User Access Group
* HAG: Host Access Group

8.3.4 Access Security Configuration File

This section describes the format of afile containing definitions of the user access groups, host access groups, and access
security groups. An |OC creates an access configuration database by reading an access configuration file (the extension
.acf isrecommended). Letsfirst give asimple example and then a complete description of the syntax.

8.3.4.1 Simple Example

UAGuag) {user1l, user?2}
HAG hag) {host 1, host 2}

108 EPICS I0OC Application Developer's Guide

Chapter 8: Access Security
User’s Guide

ASG DEFAULT) {
RULE(1, READ)
RULE(1, WRI TE) {

UAG uag)
HAG hag)

}

These rules provide read access to anyone located anywhere and write accessto user 1 and user 2 if they are located at
host 1 or host 2.

8.3.4.2 Syntax Definition
In the following description:

[JLists optional elements

|Separator for alternatives

...Meansthat an arbitrary number of definitions may be given.
Any line beginning with # is a comment

UAG <nane>) [{ <user> [, <user> ...] }]
HAG(<name>) [{ <host> [, <host> ...] }]

ASE <name>) [{
[I NP<i ndex>(<pvnhame>)
col]
RULE(<l evel >, NONE | READ | WRITE [, NOTRAPWRI TE | TRAPWRI TE]) {
[UAGQ(<nane> [, <name> ...])]
[HAG <nane> [, <nanme> ...])]
CALC(" <cal cul ation>")

1

8.3.4.3 Discussion

* UAG: User Access Group. Thisisalist of userids. Thelist may be empty. The same userid can appear in multiple
UAGs. For iocs the userid is taken from the user field of the boot parameters.

* HAG: Host Access Group. This is a list of host names. It may be empty. The same host name can appear in
multiple HAGs. For iocs the host name is taken from the target name of the boot parameters.

» ASG: An access security group. The group "DEFAULT” is a special case. If a member specifies a null group or a
group which has no ASG definition then the member is assigned to the group " DEFAULT”.

e INP<index> Index must have one of the values “A’ to “L”. These are just like the | NP fields of a
calculation record. It is necessary to define | NP fieldsif a CALCfield is defined in any RULE for the ASG.

e RULE This defines access permissions. <l evel > must be 0 or 1. Permission for alevel 1 field implies
permission for level 0 fields. The permissions are NONE, READ, and WRI TE. WRI TE permission implies
READ permission. The standard EPICS record types have all fields set to level 1 except for VAL, CVD
(command), and RES (reset). An optional argument specifies if writes should be trapped. See the section
below on trapping Channel Access writes for how thisis used. If not given the default is NOTRAPWRITE.

EPICS Release: R3.14.1
EPICS I0C Application Developer’s Guide 109

Chapter 8: Access Security
User’s Guide

» UAG specifies a list of user access groups that can have the access privilege. If UAG is not defined
then all users are allowed.

» HAG specifies alist of host access groups that have the access privilege. If HAG is not defined then
all hosts are allowed.

» CALC isjust likethe CALCfield of a calculation record except that the result must evaluate to TRUE
or FALSE. If the calculation results in (0,1) meaning (FALSE, TRUE) then the rule (doesn’t apply,
does apply) . The actual testis. 99 <resul t <1.01.

Each 10C record contains a field ASG, which specifies the name of the ASG to which the record belongs. If thisfield is
null or specifies agroup which is not defined in the access security file then the record is placed in group " DEFAULT”.

The access privilege for a channel access client is determined as follows:

1. The ASG associated with the record is searched.

2. Each RULE is checked for the following:

a. Thefield'slevel must be less than or equal to the level for this RULE.

b. If UAG is defined, the user must belong to one of the specified UAGs. If UAG is not defined all users are
accepted.

c. If HAG is defined, the user’s host must belong to one one of the HAGs. If HAG is not defined al hosts are
accepted.

d. If CALC is specified, the calculation must yield the value 1, i.e. TRUE. If any of the INP fields associated
with this calculation are in INVALID alarm severity the calculation is considered false. The actual test for
TRUE is.99 < result < 1.01.

3. The maximum access allowed by step 2 is the access chosen.

Multiple RULEs can be defined for a given ASG, even RULES with identical levels and access permission.

8.3.5 ascheck - Check Syntax of Access Configuration File

After creating or modifying an access configuration file it can be checked for syntax errors by issuing the command:
ascheck -S “xxx=yyy,..."” < "fil enane"

ThisisaUnix command. It displays errors on st dout . If no errors are detected it prints nothing. Only syntax errors not
logic errors are detected. Thusitisstill possibleto get your self introuble. Theflag- S means a set of macro substitutions
may appear. Thisisjust like the macro substitutions for dbL cadDatabase.

8.3.6 |OC Access Security Initialization

In order to have access security turned on during |OC initialization the following command must appear in the startup file
beforei ocl ni t iscalled:

asSet Fi | ename("<access security file>")

If this command does not appear then access security will not be started by i ocl ni t . If an error occurswhenioclnit calls
asl ni t than all accessto theioc isdisabled, i.e. no channel access client will be able to access theioc.

Access security also supports macro substitution just like dbLoadDat abase. The following command specifies the
desired substitutions:

asSet Substi tutions(“var 1=subl, var2=sub2,...")
This command must be issued beforei ocl ni t .

After an 10C is initialized the access security database can be changed. The preferred way is via the subroutine record
described in the next section. It can aso be changed by issuing the following command to the vxWorks shell:

110 EPICS I0OC Application Developer's Guide

Chapter 8: Access Security
User’s Guide

aslnit

It is also possible to reissue asSet Fi | enane and/or asSet Substi t uti ons beforeasl nit. If any error occurs
during asl ni t the old access security configuration is maintained. It is NOT permissable to call asl nit before
i oclnit iscalled.

Restarting access security after ioc initialization is an expensive operation and should not be used as a regular procedure.

8.3.7 Database Configuration

8.3.7.1 Access Security Group

Each database record has a field ASGwhich holds a character string. Any database configuration tool can be used to give
avalueto thisfield. If the ASG of arecord is not defined or is not equal to a ASG in the configuration file then the record
isplaced in DEFAULT.

8.3.7.2 Subroutine Record Support
Two subroutines, which can be attached to a subroutine record, are available (provided withi ocCor e):

asSubl ni t
asSubPr ocess

NOTE: These subroutines are automatically registered thus do NOT put a f uncti on definition in your database
definition file.

If arecord is created that attaches to these routines, it can be used to force the IOC to load a new access configuration
database. To change the access configuration:

1. Modify the file specified by the last call to asSet Fi | enane so that it contains the new configuration desired.

2. Write a 1 to the subroutine record VAL field. Note that this can be done via channel access.

The following action is taken:

3. When thevalueisfound tobe 1, asl ni t iscaled and the value set back to 0.

4. The record is treated as an asynchronous record. Completion occurs when the new access configuration has been
initialized or atime-out occurs. If initialization fails the record is placed into alarm with a severity determined by
BRSV.

8.3.7.3 Record Type Description

Each field of each record type has an associated access security level of ASLO or ASL1. See the chapter “Database
Definition” for details.

8.3.8 Example:

Lets design a set of rulesfor aLinac. Assume the following:

1. Anyone can have read accessto all fields at anytime.

2. Linac engineers, located in the injection control or control room, can have write accessto most level O fieldsonly if
the Linac is not in operational mode.

3. Operators, located in the injection control or control room, can have write access to most level O fields anytime.

4, The operations supervisor, linac supervisor, and the application developers can have write access to al fields but
must have some way of not changing something inadvertently.

EPICS Release: R3.14.1
EPICS I0OC Application Developer's Guide 111

Chapter 8: Access Security
User’s Guide

5. Most records use the above rules but a few (high voltage power supplies, etc.) are placed under tighter control.
These will follow rules 1 and 4 but not 2 or 3.

6. 10C channel access clients always have level 1 write privilege.

Most Linac 10C records will not have the ASGfield defined and will thus be placed in ASG “DEFAULT". The following
records will have an ASG defined:

* LI : OPSTATE and any other records that need tighter control have ASG="cri ti cal ". One such record could be
a subroutine record used to cause a new access configuration file to be loaded. LI _OPSTATE has the value (0,1)
if the Linac is (not operational, operational).

e Ll:levlpermt has ASG="permit". In order for the opSup, | i nacSup, or an appDev to have write
privilege to everything this record must be set to the value 1.

The following access configuration satisfies the above rules.

UAG op) {opl, op2, superguy}
UAG opSup) {superguy}
UAG |l i nac) {waw, nassiri,grelick,berg, fuja, gsn}
UAG | i nacSup) {gsm
UAG appDev) {nda, kko}
HAG(icr) {silver, phebos, gaea}
HAG(cr) {mars, hera, gol d}
HAG(ioc) {ioclicl,ioclic2,ioclidl,ioclid2,ioclid3,ioclid4,ioclid5}
ASG(DEFAULT) {
| NPA(LI : OPSTATE)
I NPB(LI:levlipermt)
RULE(0, WRI TE) {
UAG(op)
HAG(i cr, cr)
CALC(" A=1")
}
RULE(0, WRI TE) {
UAE op, | i nac, appdev)
HAGi cr, cr)
CALC(" A=0")
}
RULE(1, WRI TE) {
UAG opSup, | i nacSup, appdev)
CALC("B=1")
}
RULE(1, READ)
RULE(1, WRI TE) {
HAG(i oc)
}

}
ASQ permt) {
RULE(0, WRI TE) {
UAG opSup, | i nacSup, appDev)
}

RULE(1, READ)
RULE(1, WRI TE) {
HAG(i oc)
}
}

ASGcritical) {

112 EPICS I0OC Application Developer's Guide

Chapter 8: Access Security
Design Summary

I NPB(LI:levlipermt)

RULE(1, WRI TE) {
UAG opSup, | i nacSup, appdev)
CALC("B=1")

}

RULE(1, READ)

RULE(1, WRI TE) {
HAG(i oc)

}

8.4 Design Summary

8.4.1 Summary of Functional Requirements

A brief summary of the Functional Requirementsis:

1. Each field of each record type is assigned an access security level.

2. Each record instance is assighed to a unique access security group.

3. Each user isassigned to one or more user access groups.

4. Each node is assigned to a host access group.

5. For each access security group a set of access rules can be defined. Each rule specifies:
a. Access security level
b. READ or READ/WRITE access.
c. Anoptional list of User Access Groups or * meaning anyone.

d. An optional list of Host Access Groups or * meaning anywhere.
e. Conditions based on values of process variables

8.4.2 Additional Requirements

8.4.2.1 Performance

Although the functional requirements doesn’t mention it, a fundamental goal is performance. The design provides almost
no overhead during normal database access and moderate overhead for the following: channel access client/server
connection, ioc initialization, a change in value of a process variable referenced by an access calculation, and dynamically
changing a records access control group. Dynamically changing the user access groups, host access groups, or the rules,
however, can be atime consuming operation. Thisis done, however, by alow priority IOC task and thus does not impact
normal ioc operation.

8.4.2.2 Generic Implementation

Access security should be implemented as a stand alone system, i.e. it should not be imbedded tightly in database or
channel access.

8.4.2.3 No Access Security within an 10C

Within an 10C no access security isinvoked. This means that database links and local channel access clients calls are not
subject to access control. Also test routines such as dbgf should not be subject to access contral.

EPICS Release: R3.14.1
EPICS I0OC Application Developer's Guide 113

Chapter 8: Access Security
Design Summary

8.4.2.4 Defaults

It must be possible to easily define default access rules.

8.4.2.5 Access Security is Optional

When an |OC isinitialized, access security is optional.

8.4.3 Design Overview

The implementation provides a library of routines for accessing the security system. This library has no knowledge of
channel access or I0C databases, i.e. it is generic. Database access, which is responsible for protecting an 10C database,
callslibrary routines to add each 10C record to one of the access control groups.

L ets briefly discuss the access security system and how database access and channel access interact with it.

8.4.3.1 Configuration File

User access groups, host access groups, and access security groups are configured viaan ASCI| file.

8.4.3.2 Access Security Library

The access security library consists of the following groups of routines: initialization, group manipulation, client
manipulation, access computation, and diagnostic. The initialization routine reads a configuration file and creates a
memory resident access control database. The group manipulation routines allow members to be added and removed from
access groups. The client routines provide services for clients attached to members.

8.4.3.3 10C Database Access Security

Theinterface between an |0C database and the access security system.

8.4.3.4 Channel Access Security

Whenever the Channel Access broadcast server receives a ca_sear ch request and finds the process variable, it calls
asAddd i ent . Whenever it disconnectsit callsasRenoved i ent . Whenever it issues a get or put to the database it
must call asCheckGet or asCheckPut .

Channel accessis responsible for implementing the requirement of allowing the user to be changed dynamically.

8.4.4 Comments

Itislikely that the access rules will be defined such that many 10OCs will attach to a common process variable. As aresult
the |OC containing the PV will have many CA clients.

What about password protection and encryption? | maintain that this is a problem to be solved in alevel above the access
security described in this document. This isthe issue of protecting against the sophisticated saboteur.

8.4.5 Performance and Memory Requirements

Performance has not yet been measured but during the tests to measure memory usage no noticeable change in
performance during ioc initialization or during Channel Access clients connection was noticed. Unless access privilege is
violated the overhead during channel access gets and putsis only an extra comparison.

In order to measure memory usage, the following test was performed:

114 EPICS I0OC Application Developer's Guide

Chapter 8: Access Security
Access Security Application Programmer’s Interface

1. A database consisting of 5000 soft analog records was created.

2. A channel access client (caput) was created that performs ca_put s on each of the 5000 channels. Each time it
begins a new set of puts the value increments by 1.

3. A channel access client (caget) was created that has monitors on each of the 5000 channels.
The memory consumption was measured before i ocl ni t, after i ocl ni t, after caput connected to all channels, and

after caget connected to al 5000 channels. This was done for APS release 3.11.5 (before access security) and the first
version which included access security. The results were:

R3.11.5 After
Beforeioclnit 4,244,520 4,860,840
After ioclnit 4,995,416 5,964,904
After caput 5,449,780 6,658,868
After caget 8,372,444 9,751,796

Before the database was loaded the memory used was 1,249,692 bytes. Thus most of the memory usage before ioclnit
resulted from storage for records. The increase since R3.11.5 results from added fields to dbConmon. Fields were added
for access security, synchronous time support and for the new caching put support. The other increases in memory usage
result from the control blocks needed to support access control. The entire design was based on maximum performance.
Thisresulted in increased memory usage.

8.5 Access Security Application Programmer’s I nterface

8.5.1 Definitions

t ypedef struct asgMenber * ASMEMBERPVT;
t ypedef struct asgCdient *ASCLI ENTPVT;
typedef int (*ASINPUTFUNCPTR) (char *buf,int nmax_size);
t ypedef enuni
asCl i ent COAR/ * Change of access rights*/
/*For now this is all*/
} asCient Status;
typedef void (*ASCLI ENTCALLBACK) (ASCLI ENTPVT, asd i ent St at us) ;

8.5.2 Initialization

[ong aslnitialize(ASI NPUTFUNPTR i nput Functi on)
long aslnitFile(const char *filename, const char *substitutions)
I ong aslnitFP(FILE *fp, const char *substitutions)

These routines read an access definition file and perform all initialization necessary. The caller must provide aroutine to
provideinput linesfor asl niti alize. aslnitFile andasl nitFP dother owninput and also perform macro
substitutions.

The initilization routines can be called multiple times. If an access system aready exists the old definitions are removed
and the new one initialized. Existing members are placed in the new ASGs.

EPICS Release: R3.14.1
EPICS I0OC Application Developer's Guide 115

Chapter 8: Access Security
Access Security Application Programmer’s Interface

8.5.3 Group manipulation

8.5.3.1 add Member
| ong asAddMenmber (ASMEMBERPVT *ppvt, char *asgNane);

This routine adds a new member to ASG asgNane. The calling routine must provide storage for ASMEMBERPVT. Upon
successful return *ppvt will be equal to the address of storage used by the access control system. The access system
keeps an orphan list for all asgNanes not defined in the access configuration.

The caller must provide permanent storage for asgNane.

ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control is not active.

8.5.3.2 remove Member
| ong asRermoveMenber (ASMEMBERPVT *ppvt) ;

This routine removes a member from an access control group. If any clients are still present it returns an error status of
S aslib_clientExists without removing the member.

Thisroutinereturns S_asLib_asNotActive without doing anything if access control is not active.

8.5.3.3 get Member Pvt
voi d *asCet Menber Pvt (ASMEVMBERPVT pvt);

For each member, the access system keeps a pointer that can be used by the caller. This routine returns the value of the
pointer.

Thisroutine returns NULL if access security is not active

8.5.3.4 put Member Pvt
| ong asPut Menmber Pvt (ASMEMBERPVT pvt, void *userPvt);
Thisroutineis used to set the pointer returned by asGetM emberPvt.

ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control is not active.

8.5.3.5 change Group

| ong asChangeGr oup(ASMEMBERPVT *ppvt, char *newAsgNane);
This routine changes the group for an existing member. The access rights of al clients of the member are recomputed.
The caller must provide permanent storage for newAsgNane.

ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control is not active.

8.5.4 Client Manipulation

8.5.4.1 add Client

| ong asAddd i ent (ASCLI ENTPVT *ppvt, ASMEMBERPVT pvt,int asl,
char *user, char*host);

This routine adds a client to an ASG member. The calling routine must provide storage for ASCLI ENTPVT.
ASMEMBERPVT isthe value that was set by calling asAddMenber . asl isthe access security level.

The caller must provide permanent storage for user and host .

116 EPICS I0OC Application Developer's Guide

Chapter 8: Access Security
Access Security Application Programmer’s Interface

ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control is not active.

8.5.4.2 change Client

| ong asChanged i ent (ASCLI ENTPVT ppvt,int asl,
char *user, char*host);

This routine changes one or more of thevaluesasl , user, and host for an existing client. Again the caller must provide
permanent storage for user and host. It is permissible to use the same user and host used in the call to

asAddd i ent with different values.

ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control is not active.

8.5.4.3 remove Client
| ong asRemoved i ent (ASCLI ENTPVT *pvt);
This call removes aclient.

ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control is not active.

8.5.4.4 get Client Pvt
voi d *asGet O i ent Pvt (ASCLI ENTPVT pvt);

For each client, the access system keeps a pointer that can be used by the caller. This routine returns the value of the

pointer.

This routine returns NULL if access security is not active.

8.5.4.5 put Client Pvt
voi d asPut dient Pvt (ASCLI ENTPVT pvt, void *userPvt);
Thisroutineis used to set the pointer returned by asCGet d i ent Pvt .

8.5.4.6 register Callback

| ong asRegi sterdientCal |l back(ASCLI ENTPVT pvt,
ASCLI ENTCALLBACK pcal | back) ;

This routine registers a callback that will be called whenever the access privilege of the client changes.

ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control is not active.

8.5.4.7 check Get
| ong asCheckGet (ASCLI ENTPVT pvt);

Thisroutine, actually a macro, returns (TRUE,FALSE) if the client (has, doesn’t have) get access rights.

8.5.4.8 check Put
| ong asCheckPut (ASCLI ENTPVT pvt);
Thisroutine, actually a macro, returns (TRUE,FALSE) if the client (has, doesn’'t have) put access rights

EPICS Release: R3.14.1
EPICS I0C Application Developer's Guide

117

Chapter 8: Access Security
Access Security Application Programmer’s Interface

8.5.5 Access Computation

8.5.5.1 compute al Asg
| ong asComput eAl | Asg(void);
Thisroutine calls asConput eAsg for each access security group.

ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control is not active.

8.5.5.2 compute Asg
| ong asComput eAsg(ASG *pasq) ;

Thisroutine calculates all CALCentriesfor the ASGand callsasComnput e for each client of each member of the specified
access security group.

ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control is not active.

8.5.5.3 compute access
rights

| ong asComput e(ASCLI ENTPVT pvt);

This routine computes the access rights of a client. This routine is normally called by the access library itself rather than
use code.

ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control is not active.

8.5.6 Diagnostic

8.5.6.1 dump

i nt asbunp(void (*nenber) (ASVNEMBERPVT) ,
void (*client)(ASCLI ENTPVT),int verbose);

This routine prints the current access security database. If verbose is 0 (FALSE), then only the information obtained from
the access security fileis printed.

If verbose is TRUE then additional information is printed. The value of each | NP is displayed. The list of members
belonging to each ASG and the clients belonging to each member are displayed. If member callback is specified as an
argument, then it is called for each member. If client callback is specified, it is called for each access security client.

8.5.6.2 dump UAG
i nt asDunpUag(char *uagnane)
This routine displays the specified UAGor if uagnane is NULL each UAG defined in the access security database.

8.5.6.3 dump HAG
i nt asDunpHag(char *hagnane)
This routine displays the specified UAGor if uagnane is NULL each UAG defined in the access security database.

8.5.6.4 dump Rules

i nt asDunmpRul es(char *asgnane)

118 EPICS I0OC Application Developer's Guide

Chapter 8: Access Security
Database Access Security

This routine displays the rules for the specified ASGor if asgnane isNULL the rules for each ASG defined in the access
security database.
8.5.6.5 dump member

i nt asDunpMem(char *asgnane,
voi d (*mencal | back) (ASMEMBERPVT) ,int clients)

This routine displays the member and, if clientsis TRUE, client information for the specified ASGor if asgnarne is NULL
the member and client information for each ASG defined in the access security database. It also calls mental | back for
each member if thisargument is not NULL.
8.5.6.6 dump hash table

i nt asDunpHash(voi d)
This shows the contents of the hash table used to locate UAGs and HAGs,

8.6 Database Access Security

8.6.1 Access L evel definition

The definition of access level means that alevel is defined for each field of each record type.

1. Structure f | dDes (dbBase.h), which describes the attributes of each field, contains a field access security
_l evel . Inaddition definitions exist for the symbols: ASLO and ASL1.

2. Each field description in arecord description contains a field with the value ASLX.
The meanings of the Access Security Level definitions are as follows:

» ASLOASsigned to fields used during normal operation

» ASL1Assigned to fields that may be sensitive to change. Permission to access this level implies permission for
ASLO.

Most record types assign ASL asfollows: The fields VAL, RES (Reset), and CVD use the value ASLO. All other fields use
ASL1.

8.6.2 Access Security Group definition

dbConmon contains the fields ASG and ASP. ASG (Access Security Group) is a character string. The value can be
assigned via a database configuration tool or else a utility could be provided to assign values during ioc initialization. ASP
is an access security private field. It contains the address of an ASGVEMBER.

8.6.3 Access Client Definition

Struct dbAddr contains a field asPvt , which contains the address of an ASGCLI ENT. This definition is aso added to
struct db_addr so that old database access al so supports access security.

EPICS Release: R3.14.1
EPICS IOC Application Developer's Guide 119

Chapter 8: Access Security
Database Access Security

8.6.4 Database Access Library

Two files asDbLi b.c and asCa.c implement the interface between |OC databases and access control. It contains the
following routines:
8.6.4.1 Initialization

int asSetFi | enane(char *acf)

Calling this routine sets the filename of an access configuration file. The next call to asl ni t usesthisfile. This routine
must be called beforei ocl ni t otherwise access configuration is disabled. Is access security is disabled during ioclnit it
will never be turned on.

i nt asSet Substitutions(char *substitutions)

This routine specifies macro substitutions.

int aslnit()
i nt aslnitAsyn(ASDBCALLBACK *pcal | back)

Thisroutines call asl ni ti al i ze. If the current access configuration file, as specified by asSet Fi | enane, is NULL
then the routine just returns, otherwise the configuration file is used to create the access configuration database.

This routine is called by i oclnit. aslnit can aso be caled at any time to change the access configuration
information.

asl ni t Asyn spawns atask asl ni t Task to perform the initialization. This allows asl ni t Asyn to be called from a
subroutine called by the process entry of a subroutine record. asl ni t Task callst askwdl nsert so that if it suspends
for some reason t askwd can detect the failure. After initialization all records in the database are made members of the
appropriate access control group.

If the caller provides an ASDBCALLBACK then when either initialization completes or t askwd detects a failure the users
callback routineis called via one of the standard callback tasks.

asl ni t Asyn will return a value of -1 if access initialization is already active. It returns O if asl nit Task is
successfully spawned.

8.6.4.2 Routines used by Channel Access Server
i nt asDbGet Asl (void *paddr)

Get Access Security level for the field referenced by a database access structure. The argument is defined asavoi d* so
that both old and new database access can be used.

void * asDbGet Menber Pvt (voi d *paddr)

Get ASMEMBERPVT for the field referenced by a database access structure. The argument is defined as a voi d* so that
both old and new database access can be used.

8.6.4.3 Routine to test asAddClient
i nt astac(char *pnane, char *user, char *host)

Thisisaroutineto test asAddd i ent . It simulates the calls that are made by Channel Access.

8.6.4.4 Subroutines attached to a subroutine record

These routines are provided so that a channel access client can force an ioc to load a new access configuration database.

120 EPICS I0OC Application Developer's Guide

Chapter 8: Access Security
Channel Access Security

| ong asSublnit(struct subRecord *prec,int pass)
| ong asSubProcess(struct subRecord *prec)

These are routines that can be attached to a subroutine record. Whenever a 1 is written to the record, asSubPr ocess
cals asl ni t. If asl nit returns success, it returns with asynchronously. When asl ni t Task calls the completion
routine supplied by asSubPr ocess, the return statusis used to place the record in alarm.

8.6.4.5 Diagnostic Routines

These routines provide interfaces to the asDunp routines described in the previous chapter. They do NOT lock before
calling the associated routine. Thus they may fail if the access security configuration is changing while they are running.
However the danger of the user accidently aborting a command and leaving the access security system locked is
considered arisk that should be avoided.

asdbdunp(voi d)
Thisroutine calls asDunp with amember callback and with verbose TRUE.

aspuag(char *uagnane)

Thisroutine callsasDunpUag.

asphag(char *hagnane)

Thisroutine callsasDunpHag.

asprul es(char *asgnane)

Thisroutine callsasDunpRul es.

asprmem(char *asgname,int clients)

Thisroutine callsasDunpMem

8.7 Channel Access Security

EPICS Access Security is designed to protect Input Output Controllers (IOCs) from unauthorized access via the Channel
Access (CA) network transparent communication software system. This chapter describes the interaction between the CA
server and the Access Security system. It also briefly describes how the current access rights state is communicated to
clients of the EPICS control system viathe CA communication system and the CA client interface.

8.7.1 CA Server Interfacesto the Access Security System

The CA server callsasAddCl i ent () andasRegi ster d i ent Cal | back() for each of the channels that a client
connects to the server. The routine asRenmoved i ent () is caled whenever the client clears (removes) a channel or
when the client disconnects.

The server maintains storage for the clients host and user names. The initial value of these strings are supplied to the
server when the client connects and can be updated at any time by the client. When these strings change then
asChanged i ent () iscaled for each of the channels maintained by the server for the client.

EPICS Release: R3.14.1
EPICS I0OC Application Developer's Guide 121

Chapter 8: Access Security
Trapping Channel Access Writes

The server checks for read access when processing gets and for write access when processing puts. If access is denied
then an exception message is sent to the client.

The server checks for read access when processing requests to register an event callback (monitor) for the client. If there
is read access the server always sends an initial update indicating the current value. If there isn't read access the server
sends one update indicating no read access and disables subsequent updates.

The server receives asynchronous notification of access rights change via the calback registered with
asRegi sterd i ent Cal | back() . When a channel’s access rights change the server communicates the current state
to the client library. If read access to a channel islost and there are events (monitors) registered on the channel then the
server sends an update to the client for each of them indicating no access and disables future updates for each event. If
read access is reestablished to a channel and there are events (monitors) registered on the channel then the server re-
enables updates and sends an initial update message to the client for each of them.

8.7.2 Client Interfaces

Additional details on the channel access client side callable interfaces to access security can be obtained from the
“Channel Access Reference Manual”.

The client library stores and maintains the current state of the access rights for each channel that it has established. The
client library receives asynchronous updates of the current access rights state from the server. It uses this state to check for
read access when processing gets and for write access when processing puts. If a program issues a channel access request
that isinconsistent with the client library’s current knowledge of the access rights state then access is denied and an error
code is returned to the application. The current access rights state as known by the client library can be tested by an
applications program with the C macrosca_read_access() andca_wite_access().

An application program can also receive asynchronous notification of changes to the access rights state by registering a
function to be called back when the client library updates its storage of the access rights state. The application’s call back
functionisinstalled for this purpose by callingca_r epl ace_access_ri ghts_event ().

If the access rights state changes in the server after a request is queued in the client library but before the request is
processed by the server then it is possible that the request will fail in the server. Under these circumstances then an
exception will be raised in the client.

The server always sends one update to the client when the event (monitor) isinitially registered. If thereisn't read access
then the status in the arguments to the application program’s event call back function indicates no read access and the
value in the arguments to the clients event call back is set to zero. If the read access right changes after the event isinitially
registered then another update is supplied to the application programs call back function.

8.8 Trapping Channel Access Writes

Access security provides a facility asTrapWrite that can trap write requests and pass them to any facility that registers a
listener. In order to use this facility three things are necessary:

1. The facility, e.g. the channel access server, using access security must make two calls: asTr apW i t eBef or e
and asTrapW it eAf t er. These are described in asLib.h. The Channel access server on the ioc makes these
calls.

2. asTrapWrite gets called by asTrapWiteBefore and asTrapWiteAfter. asTrapWrite uses the
TRAPWRI TE option specified with the RULES given in the access configuration file to decide if listeners should be
called. asTrapWrite also includesaroutineasTr apW i t eRegi st er Li st ener.

3. Some facility not included with access security must call asTrapWriteRegisterListener. If nothing calls
asTrapW it eRegi st er Li st ener, asTrapWrite does nothing.

122 EPICS I0OC Application Developer's Guide

Chapter 8: Access Security
Access Control: Implementation Overview

The purpose of this section is to describe how afacility can useasTr apW i t e. h, which has the description:

typedef struct asTrapWiteMessage {
char *userid;
char *hosti d;
voi d *server Specific;
voi d *userPvt;
} asTrapWiteMessage;

typedef void *asTrapWiteld;
typedef void(*asTrapWitelListener)(asTrapWiteMessage *pnessage,int after);

asTrapWiteld asTrapWiteRegi sterListener(asTrapWiteListener func);
void asTrapWiteUnregisterListener(asTrapWiteld id);

After afacility callsasTrapW i t eRegi st er Li st ener itsasTrapW it eLi st ener will get called before and
after each write with an associated RULE that has the option LOGWRITE set.

asTrapW it eRegi st erListener is passed the address of a asTr apW i t eMessage. This message contains
thye following fields:

» useri d - Userid of whoever originated the request.

* hosti d - Hostid of whoever originated the request.

e server Speci fi ¢ - Themeaning of thisfield is server specific. The listener MUST know what type of server is
supplying the messages.

» user Pvt - Thisfield isfor use by theasTrapW i t eLi st ener. When the listener is called before the write,

user Pvt hasthevaueO. Thelistener can giveit any valueit desiresand user Pvt will have have the same value
when the listener gets called after the write.

asTrapWriteListener delays the associated server thread so it must not do anything that causes to to block.

The I0C Channel Acess Server makes the calls to asTrapWiteBefore and asTrapWiteAfter.
Server Speci fi ¢ isthe dbAddr describing the database location.

8.9 Access Control: | mplementation Overview

This chapter provides a few aids for reading the access security code. Include file asLi b.h describes the control blocks
used by the access security library.

8.9.1 Implementation Overview

The following files form the access security system:

» asLib.h Definitionsfor the portion of access security that isindependent of 10C databases.
» asDbLib.h Definitionsfor access routines that interface to an |OC database.

» asLib_lex.| Lex and Yacc (actually EPICSf | ex and ant el ope) are used to parse the access configuration file.
Thisisthel ex input file.

» asLib.y Thisistheyacc input file. Notethat it includesasLi bRout i nes.c, which do most of the work.

» asLibRoutines.c These are the routines that implement access security. This code has no knowledge of the
database or channel access. It isageneral purpose access security implementation.

» asDbLib.c This containsthe code for interfacing access security to the |OC database.

EPICS Release: R3.14.1
EPICS I0C Application Developer’s Guide 123

Chapter 8: Access Security
Access Control: Implementation Overview

» asCa.c This code contains the channel access client code that implements the | NP and CALC definitions in an
access security database.

 ascheck.c The Unix program which performs a syntax check on a configuration file.

8.9.2 Locking

Because it is possible for multiple tasks to simultaneously modify the access security database it is necessary to provide
locking. Rather than try to provide low level locking, the entire access security database is locked during critical
operations. The only things this should hold up are access initialization, CA searches, CA clears, and diagnostic routines.
It should NEVER cause record processing to wait. In addition CA gets and puts should never be delayed. One exception
exists. If the ASG field of arecord is changed then asChangeG oup is called which locks.

All operations invoked from outside the access security library that cause changes to the internal structures of the access
security database.routines lock.

124 EPICS I0OC Application Developer's Guide

Chapter 8: Access Security

Structures
8.10 Structures
UAG
node UAGNAME
name node
list LiSer
HAG
node HAGNAME
ASBASE name node
uagList list host
hagList > ASGINP
asglList ASG node
phash node Inp
inpList pasg
rulelist inplndex
memberList[-
paval ue ASGRULE ASGUAG
inpBad node node
inpChanged access puag
level
npUsed ASGHAG
result node
calc h
rpcl Phag
uaglist
hagList
> ASGCLIENT
ASGMEMBER node
node pasgM ember
pasg user
clientList host
asgName userPvt
userPvt pcallback
level
access
EPICS Release: R3.14.1
EPICS IOC Application Developer's Guide 125

Chapter 8: Access Security
Structures

126 EPICS I0OC Application Developer's Guide

Chapter 9: 10OC Test Facilities

9.1 Overview

This chapter describes a number of 1OC test routines that are of interest to both application developers and system
developers. The routines are available viaiocsh or the vxWorks shell. For both shells, the parentheses are optional, but the
arguments must be separated by commas. On vxWorks al character string arguments must be enclosed in “”. For iocsh
the"" are optional. For example:

dbpf (" ai Test", " 2")
dbpf "ai Test","2"

are both valid with both iocsh and with the vxWorks shell.
dbpf ai Test 2
Isvaid for iocsh but not for the vxWorks shell.

The user should also be aware of the field TPRO, which is present in every database record. If it is set TRUE then a
message is printed each time its record is processed and a message is printed for each record processed as a result of it
being processed.

9.2 Database List, Get, Put

9.2.1dbl

Database List:
dbl (“<record type>",”<fil ename>","<field Iist>")
Examples

dbl
dbl (“ai”, 0, 0)

This command prints the names of records in the run time database. If <r ecor d t ype> is not specified, all records are
listed. If <r ecor d t ype> is specified, then only the names of the records of that type are listed.

If <fi | ename> is specified the output is written to the specified file (if the file already exists it is overwritten). If this
argument is O then the output is sent to st dout .

If <field |ist> isgiventhen the values of the fields specified are also printed.

9.2.2dbgrep
List Record Names That Match a Pattern:

EPICS Release: R3.14.1
EPICS IOC Application Developer's Guide 127

Chapter 9: 10C Test Facilities
Database List, Get, Put

dbgrep(“<pattern>")
Examples

dbgrep(“ S0*")
dbgrep(“*gpi bA *")

Listsall record names that match a pattern. The pattern can contain any charactersthat arelegal in record names aswell as
“** which matches O or more characters.

9.2.3dba
Database Address:

dba(“ <record_nane. fiel d_nanme>")
Example

dba(“aitest”)
dba(“aitest.VAL")

This command calls dbNaneToAddr and then prints the value of each field in the dbAddr structure describing the field.
If the field name is not specified then VAL is assumed (the two examples above are equivalent).

9.2.4 dbgf
Get Field:

dbgf (“<record_nane. fi el d_nane>")
Example:

dbgf (“aitest”)
dbgf)“aitest. VAL")

This performs a dbNameToAddr and then a dbGet Fi el d. It prints the field type and value. If the field name is not
specified then VAL is assumed (the two examples above are equivalent).

9.2.5 dbpf
Put Field:

dbpf (“<record_nane. fi el d_name>", "<val ue>")
Example:
dbpf (“aitest”,”5.0")

This command performs a dbNameToAddr followed by adbPut Fi el d and dbgf . If <fi el d_namne> is not specified
VAL is assumed.

9.2.6 dbpr
Print Record:

dbpr (“<record_name>", <i nterest |evel >)

Example

128 EPICS I0OC Application Developer's Guide

Chapter 9: 10C Test Facilities
Breakpoints

dbpr(“aitest”, 2)

This command prints all fields of the specified record up to and including those with the indicated interest level. Interest
level has one of the following values:

» 0: Fieldsof interest to an Application developer and that can be changed as a result of record processing.
1: Fields of interest to an Application developer and that do not change during record processing.

2: Fields of major interest to a System devel oper.

* 3: Fields of minor interest to a System developer.

4: Fields of no interest.

9.2.7 dbtr

Test Record:
dbtr (“<record_nane>")

ThiscallsdbNaneToAddr , then dbPr ocess and finally dbpr (interest level 3). Its purpose isto test record processing.

9.2.8 dbnr

Print number of records:;
dbnr (<al | _recordtypes>)

This command displays the number of records of each type and the total number of records. If al | _record_t ypes is
0 then only record types with record instances are displayed otherwise al record types are displayed.

9.3 Breakpoints

A breakpoint facility that allows the user to step through database processing on a per lockset basis. This facility has been
constructed in such away that the execution of al locksets other than ones with breakpoints will not be interrupted. This
was done by executing the records in the context of a separate task.

The breakpoint facility records al attempts to process records in a lockset containing breakpoints. A record that is
processed through external means, e.g.: a scan task, is called an entrypoint into that lockset. The dbst at command
described below will list all detected entrypointsto alockset, and at what rate they have been detected.

9.3.1dbb
Set Breakpoint:

dbb(“<record_nane>")

Sets a breakpoint in a record. Automatically spawns the bkpt Cont , or breakpoint continuation task (one per lockset).
Further record execution in thislockset is run within thistask’s context. Thistask will automatically quit if two conditions
are met, all breakpoints have been removed from records within the lockset, and all breakpoints within the lockset have
been continued.

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 129

Chapter 9: 10C Test Facilities
Breakpoints

9.3.2dbd

Remove Breakpoint:
dbd(” <record_nanme>")

Removes a breakpoint from a record.

9.3.3dbs
Single Step:
dbs(“<record_nane>")

Steps through execution of records within alockset. If this command is called without an argument, it will automatically
step starting with the last detected breakpoint.

9.3.4dbc

Continue:
dbc(" <record_nanme>")

Continues execution until another breakpoint is found. This command may also be called without an argument.

9.3.5dbp
Print Fields Of Suspended Record:

dbp("<record_nane>, <i nterest | evel >)

Prints out the fields of the last record whose execution was suspended.

9.3.6 dbap

Auto Print:
dbap(“<record_nane>")

Toggles the automatic record printing feature. If this feature is enabled for a given record, it will automatically be printed
after the record is processed.

9.3.7 dbstat

Status:
dbst at

Prints out the status of all locksets that are suspended or contain breakpoints. This lists al the records with breakpoints
set, what records have the autoprint feature set (by dbap), and what entrypoints have been detected. It also displays the
vxWorks task ID of the breakpoint continuation task for the lockset. Here is an example output from this call:

LSet: 00009 Stopped at: so#B: 00001 T: Ox23caf ac
Entrypoi nt: so#C:. 00001 as: 0.1
Br eakpoi nt: so(ap)

130 EPICS I0OC Application Developer's Guide

Chapter 9: 10C Test Facilities
Error Logging

LSet: 00008#B: 00001 T: Ox22fee4dc
Br eakpoi nt: out put

The above indicates that two locksets contain breakpoints. One lockset is stopped at record “so.” The other is not
currently stopped, but contains a breakpoint at record “out put ” “LSet :” isthe lockset number that is being considered.
“#B: " is the number of breakpoints set in records within that lockset. “T: " is the vxWorks task ID of the continuation
task. “C. ” isthe total number of calls to the entrypoint that have been detected. “C/ S: ” is the number of those calls that
have been detected per second. (ap) indicates that the autoprint feature has been turned on for record “so.”

9.4 Error Logging

9.4.1 eltc

Display error log messages on console:
eltc(int noYes)

This determines if error messages are displayed on the |OC console. 0 means no and any other value means yes.

9.5 Hardware Reports

9.5.1 dbior
1/0O Report:

dbi or (“<driver_name>",<interest |evel>)

This command calls the report entry of the indicated driver. If <dri ver _nane> is not specified then the report for all
driversis generated. It also calls the report entry of all device support modules. Interest level is one of the following:

* 0: Print a short report for each module.
» 1. Print additional information.
e 2. Print even moreinfo. The user may be prompted for options.

9.5.2 dbhcr

Hardware Configuration Report:
dbhcr (" fil enane™)
This command produces areport of all hardware links. To useit on the I0C, issue the command:

dbhcr > report
or
dbhcr ("report™)

The report will probably not be in the sort order desired. The Unix command:

sort report > report.sort

EPICS Release: R3.14.1
EPICS I0OC Application Developer's Guide 131

Chapter 9: 10C Test Facilities
Scan Reports

should produce the sort order you desire.

9.6 Scan Reports

9.6.1 scanppl
Print Periodic Lists:
scanppl (doubl e rate)

Thisroutine printsalist of all recordsin the periodic scan list of the specified rate. If rate is 0.0 all period lists are shown.

9.6.2 scanpel

Print Event Lists:
scanpel (i nt event _numnber)

This routine prints alist of all records in the event scan list for the specified event nunber. If event_number is 0 al event
scan lists are shown.

9.6.3 scanpiol
Print 1/O Event Lists:
scanpi ol

Thisroutine printsalist of al recordsin the 1/O event scan lists.

9.7 Time Server Report

NOTE: TSreport isimplemented by drvTS.c. It is only available on vxWorks

9.7.1 TSreport

Format:
TSr eport
This routine prints out information about the Time server. Thisincludes:

» Slave or Master

* Soft or Hardware synchronized
 Clock and Sync rates

* etc.

132 EPICS I0OC Application Developer's Guide

Chapter 9: 10C Test Facilities
Access Security Commands

9.8 Access Security Commands

9.8.1 asSetSubstitutions

Format:
asSet Substituti ons("substitutions")

Specifies macro substitutions used when access security isinitialized.

9.8.2 asSetFilename

Format:
asSet Fi | ename(“<fil enane>")

This command defines a new access security file.

9.8.3 aslnit

Format:
aslnit

This command reinitializes the access security system. |t rereads the access security file in order to create the new access
security database. This command is useful either because the asSet Fi | enane command was used to change the file or
because thefileitself was modified. Notethat it isaso possible to reinitialize the access security via a subroutine record.
See the access security document for details.

9.8.4 asdbdump

Format:
asdbdunp

This provides a complete dump of the access security database.

9.8.5 aspuag

Format:
aspuag(“<user access group>")

Print the members of the user access group. If no user access group is specified then the members of all user access
groups are displayed.

9.8.6 asphag

Format:

asphag(“<host access group>")

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 133

Chapter 9: 10C Test Facilities
Channel Access Reports

Print the members of the host access group. If no host access group is specified then the members of all host access
groups are displayed.

9.8.7 asprules

Format:
asprul es(“<access security group>")

Print the rules for the specified access security group or if no group is specified for all groups.

9.8.8 aspmem

Format:
aspnen(“<access security group>", <print clients>)

Print the members (records) that belong to the specified access security group, for all groups if no group is specified. If
<print clients>is(0, 1) then Channel Access clients attached to each member (are not, are) shown.

9.9 Channel Access Reports

9.9.1 ca_channel_status

Format:
ca_channel _st at us(t aski d)

Prints status for each channel in use by specialized vx\Works task.

9.9.2 casr
Channel Access Server Report

casr (<l evel >)
Level can have one of the following values:

0
Prints server’s protocol version level and a one line summary for each client attached. The summary lines
contain the client’s login name, client’s host name, client’s protocol version number, and the number of
channel created within the server by the client.

Level one provides al information in level 0 and adds the task id used by the server for each client, the
client’s IP protocol type, the file number used by the server for the client, the number of seconds elapsed
since the last request was received from the client, the number of seconds elapsed since the last response was
sent to the client, the number of unprocessed request bytes from the client, the number of response bytes
which have not been flushed to the client, the client’s IP address, the client’s port number, and the client’s
state.

134 EPICS I0OC Application Developer's Guide

Chapter 9: 10C Test Facilities
Interrupt Vectors

Level two provides al information in levels 0 and 1 and adds the number of bytes allocated by each client

and alist of channel names used by each client. Level 2 also provides information about the number of bytes

in the server’s free memory pool, the distribution of entriesin the server’s resource hash table, and the list of

I P addresses to which the server is sending beacons. The channel names are shown in the form:
<name>(nrw)

where

nis number of ca_add_events the client has on this channel

ris(-,R) if client (does not, does) have read access to the channel.
w is(-, W) if client (does not, does) have write access to the channel.

9.9.3 dbel

Format:
dbel (“<record_nane>")

This routine prints the Channel Access event list for the specified record.

9.9.4 dbcar
Database to Channel Access Report - See “Record Link Reports’

9.10 Interrupt Vectors

9.10.1 veclist
Format:
vecl i st

NOTE: Only available on vxWorks
Print Interrupt Vector List

9.11 EPICS

9.11.1 epicsParamShow

Format:

epi csPar anShow
or
epi csPrt EnvPar ans

Print the environment variables that are created with epicsEnvSet. These are defined in <base>/config/ CONFIG_ENV and
<base>/config/ CONFIG_SITE_ENV or else by user applications calling epicsEnvSet.

EPICS Release: R3.14.1
EPICS IOC Application Developer's Guide 135

Chapter 9: 10C Test Facilities
Database System Test Routines

9.11.2 epicsEnvShow

Format:
epi csEnvShow(" <nane>")

Show Environment variables. On vxWorks it shows the variables created via calls to putenv.

9.11.3 epicsRelease

Format:
cor eRel ease

Print release of iocCore.

9.12 Database System Test Routines

These routines are normally only of interest to EPICS system developers NOT to Application Developers.

9.12.1 dbtgf
Test Get Field:

dbt gf (“<record_nane. fi el d_name>")
Example:

dbt gf (“aitest”)
dbt gf) “ai test. VAL")

This performs a dbNaneToAddr and then calls dbGet Fi el d with all possible request types and options. It prints the
results of each call. This routine is of most interest to system devel opers for testing database access.

9.12.2 dbtpf
Test Put Field:

dbt pf (“<record_nane. fi el d_name>", " <val ue>")
Example:
dbt pf (“aitest”,”5.0")

This command performs adbNanmeToAddr , then callsdbPut Fi el d, followed by dbgf for each possible request type.
Thisroutineis of interest to system developers for testing database access.

9.12.3 dbtpn
Test Put Notify:

dbt pn(“<record_nane. fi el d_nane>", " <val ue>")

Example:

136 EPICS I0OC Application Developer's Guide

Chapter 9: 10C Test Facilities
Record Link Reports

dbt pn(“aitest”,”5.0")

This command performs a dbNanmeToAddr, then calls dbPut Not i f y and has a callback routine that prints a message
whenitiscalled. Thisroutineis of interest to system developers for testing database access.

9.13 Record Link Reports

9.13.1 dblsr
Lock Set Report:

dbl sr (<recordnane>, <l evel >)

This command generates a report showing the lock set to which each record belongs. If r ecor dnane is0 all records are
shown, otherwise only records in the same lock set asr ecor dnamne are shown.

| evel can havethefollowing values:

0 - Show lock set information only.
1 - Show each record in the lock set.
2 - Show each record and all database links in the lock set.

9.13.2 dbcar

Database to channel access report
dbcar (<recordnane>, <l evel >)

This command generates a report showing database channel accesslinks. If r ecor dnane is0 then information about all
records is shown otherwise only information about the specified record.

| evel can have thefollowing values:

0 - Show summary information only.
1 - Show summary and each CA link that is not connected.
2 - Show summary and status of each CA link.

9.13.3 dbhcr
Report hardware links. See “Hardware Reports’.

9.14 Old Database Access Testing

These routines are of interest to EPICS system developers. They are used to test the old database access interface, which
isstill used by Channel Access.

EPICS Release: R3.14.1
EPICS IOC Application Developer's Guide 137

Chapter 9: 10C Test Facilities
Routines to dump database information

9.14.1 gft
Get Field Test:

gf t (“<record_nane. fi el d_nane>")
Example:

gft(“aitest”)
gft(“aitest.VAL")

Thisperformsadb_nane_t o_addr andthencalsdb_get fi el d with all possible request types. It prints the results
of each call. Thisroutineis of interest to system developers for testing database access.

9.14.2 pft
Put Field Test:

pft(“<record_nane.field_nanme>", " <val ue>")
Example:
pft(“aitest”,”5.0")

This command performs a db_nane_t o_addr, db_put _field, db_get field and prints the result for each
possible request type. Thisroutineis of interest to system devel opers for testing database access.

9.14.3tpn
Test Put Notify:

tpn(“<record_nane. fiel d_name>", " <val ue>")
Example:

tpn(“aitest”,”5.0")
Thisroutine tests dbPut Not i f y viathe old database access interface.

9.15 Routines to dump database information

9.15.1 dbDumpPath

Dump Path:
dbDunpPat h(pdbbase)

dbDunpPat h(pdbbase)
The current path for database includes is displayed.

138 EPICS I0OC Application Developer's Guide

Chapter 9: 10C Test Facilities
Routines to dump database information

9.15.2 dbDumpMenu

Dump Menu:

dbDunpMenu(pdbbase, " <nmenu>")

dbDunpMenu(pdbbase, " nenuScan”)

If the second argument is O then all menus are displayed.

9.15.3 dbDumpRecordType

Dump Record Description:

dbDunpRecor dType(pdbbase, "<record type>")

dbDunpRecor dType(pdbbase, "ai ")

If the second argument is O then all descriptions of al records are displayed.

9.15.4 dbDumpField

Dump Field Description:
dbDunpFi el d(pdbbase, "<record type>",”<field nane>")

dbDunpFi el d(pdbbase, "ai ", " VAL")

If the second argument is O then the field descriptions of all records are displayed. If the third argument is O then the
description of all fields are displayed.

9.15.5 dbDumpDevice

Dump Device Support:
dbDunpDevi ce(pdbbase, "<record type>")

dbDunpDevi ce(pdbbase, "ai ")
If the second argument is O then the device support for all record typesis displayed.

9.15.6 dbDumpDriver

Dump Driver Support:
dbDunpDri ver (pdbbase)

dbDunpDri ver (pdbbase)

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 139

Chapter 9: 10C Test Facilities
Routines to dump database information

9.15.7 dbDumpRecord

Dump Record Instances:

dbDunpRecor d(pdbbase, "<record type>", | evel)

dbDunpRecor ds(pdbbase, "ai ")

If the second argument is O then the record instances for all record types is displayed. The third argument determines
which fields are displayed just like for the command dbpr .

9.15.8 dbDumpBreaktable

Dump breakpoint table
dbDunpBr eakt abl e(pdbbase, nane)

dbDunpBr eakt abl e(pdbbase, "t ypeKdegF")
This command dumps a breakpoint table. If the second argument is 0 all breakpoint tables are dumped.

9.15.9 dbPvdDump

Dump the Process variable Directory:
dbPvdDunp(pdbbase, ver bose)

dbPvdDunp(pdbbase, 0)

This command shows how many records are mapped to each hash table entry of the process variable directory. If verbose
isnot 0 then the command also displays the names which hash to each hash table entry.

140 EPICS I0OC Application Developer's Guide

Chapter 10: 10OC Error Logging

10.1 Overview

Errors detected by an 1OC can be divided into classes. Errors related to a particular client and errors not attributable to a
particular client. An example of the first type of error is an illegal Channel Access request. For this type of error, a status
value should be passed back to the client. An example of the second type of error is a device driver detecting a hardware
error. Thistype of error should be reported to a system wide error handler.

Dividing errorsinto these two classes is complicated by a number of factors.

» In many casesit is not possible for the routine detecting an error to decide which type of error occurred.

» Normally, only the routine detecting the error knows how to generate a fully descriptive error message. Thus, if a
routine decides that the error belongs to a particular client and merely returns an error status value, the ability to
generate afully descriptive error message islost.

« If aroutine always generates fully descriptive error messages then a particular client could cause error message
storms.

» While developing a new application the programmer normally prefers fully descriptive error messages. For a
production system, however, the system wide error handler should not normally receive error messages cause by a
particular client.

If used properly, the error handling facilities described in this chapter can process both types of errors.
This chapter describes the following:

» Error Message Generation Routines - Routines which pass messages to the errlog Task.

» erlog Task - A task that displays error messages on the target console and also passes the messages to all
registered system wide error logger.

* status codes - EPICS status codes.

* iocLog- A system wide error logger supplied with base. It writes all messages to a system widefile.
NOTE: Many sites use CMLOG instead of iocLog.

NOTE: r ecGbl error routines are also provided. They in turn call one of the error message routines.

10.2 Error Message Routines

10.2.1 Basic Routines

int errlogPrintf(const char *pformat, ...);

int errlogVprintf(const char *pformat,va |ist pvar);
int errlogMessage(const char *nessage);

void errlogFl ush(void);

EPICS Release: R3.14.1
EPICS IOC Application Developer's Guide 141

Chapter 10: IOC Error Logging
Error Message Routines

errlogPrintf and errlogVprintf arelikeprintf andvprintf provided by the standard C library, except
that the output is sent to the errlog task. Consult any book that describes the standard C library such as "The C
Programming Language ANSI C Edition" by Kernighan and Ritchie.

err |l ogMessage sends message to the errlog task.
err | ogFl ush wakes up the errlog task and then waits until all messages are flushed from the queue.

10.2.2 Log with Severity

t ypedef enum {
errloglnfo,errl ogMnor, errl ogMaj or, errl ogFat al
}errl ogSevEnum

int errlogSevPrintf(const errlogSevEnum severity,
const char *pformat, ...);
int errlogSevVprintf(const errlogSevEnum severity,
const char *pformat,va_list pvar);

char *errl ogGet SevEnunst ri ng(const errl ogSevEnum severity);
void errlogSet SevToLog(const errl ogSevEnum severity);

errl ogSevEnum err| ogGet SevToLog(voi d);

errlogSevPrintf anderrl ogSevVprintf arelikeerrl ogPrintf and errl ogVprintf except that they
add the severity to the beginning of the message in the form "sevr=<value>" where value is on of "info, minor, mgor,
fatal". Also the message is suppressed if severity isless than the current severity to suppress.

errl ogGet SevEnuntt ri ng gets the string value of severity.
errl ogSet SevTolLog setsthe severity tolog. er r| ogGet SevToLog gets the current severity to log.

10.2.3 Status Routines

voi d errMessage(l ong status, char *mnessage);
void errPrintf(long status, const char *pFileNane,
int lineno, const char *pformat, ...);
Routine er r Message (actually amacro that callser r Pri nt f) hasthe following format:
voi d errMessage(l ong status, char *nessage);
Where status is defined as:

» 0: Find latest vxWorks or Unix error.
» -1: Don't report status.
» Other: See“Return Status Values’ above.
err Message, viaacal toerr Pri nt f, printsthe message, the status symbol and string values, and the name of the task

which invoked er r Message. It aso prints the name of the source file and the line number from which the call was
issued.

The calling routine is expected to pass a descriptive message to this routine. Many subsystems provide routines built on
top of er r Message which generate descriptive messages.

142 EPICS I0OC Application Developer's Guide

Chapter 10: IOC Error Logging
errlog Task

An 10C global variable err Ver bose, defined as an ext ernal in errMlef. h, specifies verbose messages. If
err Ver bose is TRUE then er r Message should be called whenever an error is detected even if it is known that the
error belongs to a specific client. If er r Ver bose is FALSE then er r Message should be called only for errors that are
not caused by a specific client.

Routineerr Pri nt f isnormally called asfollows:
errPrintf(status, _ FILE , __LINE_ ,"<fm>",...);
Where statusis defined as:

e 0: Find latest vxWorks or Unix error.
» -1: Don't report status.
o Other: See“Return Status Values’, above.

FILE and LINE are defined as:

e FILE _ Asshownor NULL if the file name and line number should not be printed.
e LINE__ Asshown

The remaining arguments are just like the arguments to the C pri nt f routine. er r Ver bose determines if the filename
and line number are shown.

An EPICS status code can aso be converted to a string. If the supplied status code isn't registered in the status code
database then the raw status code number is converted into a string in the destination buffer.

#i ncl ude "errMef. h"
voi d errSymiookup(l ong status, char *pBuf, unsigned bufLength);

10.2.4 Obsolete Routines

int epicsPrintf(const char *pformat, ...);
int epicsVprintf(const char *pformat,va_list pvar);

These are macros that call errlogPrintf and errlogV printf. They are provided for compatibility.

10.3 errlog Task

The error message routines can be called by any non-interrupt level code. These routines pass the message to the errlog
Task. If any of the error message routines are called at interrupt level, epi csl nt er r upt Cont ext Message iscalled
with the message "errlogPrintf called from interrupt level".

Task errlog manages the messages. Messages are placed in a message queue, which is read by the errlog task. The
message queue uses a fixed block of memory to hold all messages. When the message queue is full additional messages
are rejected but a count of missed messages is kept. The next time the message queue empties an extra message about the
missed messages is generated.

The maximum message size is 256 characters. If amessage islonger, the message is truncated and a message explaining
that it was truncated is appended. There is a chance that long messages corrupt memory. This only happensif client code
is defective. Long messages most likely result from "%s" formats with a bad string argument.

errlog prints each message on the console and also passesit to any registered listener.

EPICS Release: R3.14.1
EPICS I0OC Application Developer's Guide 143

Chapter 10: IOC Error Logging
Status Codes

10.3.1 Add and Remove Log Listener

typedef void(*errloglListener) (void *pvt,const char *nessage);
voi d errl ogAddLi stener(errlogLi stener |listener,void *pPrivate);
voi d errl ogRenoveli stener(errlogLi stener |istener);

These routines add/remove a callback that receives each error message. These routines are the interface to the actual
system wide error handlers.

10.3.2 target console routines

int eltc(int yesno); /* error log to console (0 or 1) */
int errloglnit(int bufsize);

eltc determinesif errlog task writes message to the console. During error messages storms this command can be used to
suppress console messages. A argument of O suppresses the messages and any other value lets the message go to the
console.

errloglnit can be used to initialize the error logging system with a larger buffer. The default is 1280 bytes. An extra
MAX_MESSAGE_SIZE (currently 256) bytes are allocated but never used. Thisis a small extra protection against long
error messages.

10.4 Status Codes

EPICS defined status values provide the following features:

» Whenever possible, 10C routines return a status value: (0, non-0) means (OK, ERRCR).

» Theinclude files for each |OC subsystem contain macros defining error status symbols and strings.
* Routines are provided for run time access of the error status symbols and strings.

» A global variable er r Ver bose helps code decide if error messages should be generated.

WARNING: During the fall of 1995 a series of tech-talk messages were generated concerning EPICS status values. No
consensus was reached.

Whenever it makes sense, |OC routines return a status value encoded similar to the vxWorks error status encoding. The
most significant short word indicates the subsystem module within which the error occurred. The low order short word is
a subsystem status value. In order that status values do not conflict with the vxWorks error status values all subsystem
numbers are greater than 500.

A fileepi cs/ shar e/ epi csH err Mlef . h defines each subsystem number. For example the def i ne for the database
access routinesis:

#defi ne M dbAccess (501 << 16) \
/ *Dat abase Access Routines*/

Directory "epi cs/ shar e/ epi csH’ containsani ncl ude library for every |0OC subsystem that returns standard status
values. The status values are encoded with lines of the following format:

#define S xxxxxxx value /*string val ue*/
For example:

#define S _dbAccessBadDBR (M dbAccess| 3) \
/*Invalid Database Request*/

For example, when dbGet Fi el d detects a bad database request type, it executes the statement:

144 EPICS I0OC Application Developer's Guide

Chapter 10: IOC Error Logging
iocLog

return(S_dbAccessBadDBR) ;
The calling routine checks the return status as follows:;

status = dbGetField(...);
if(status) {/* Call was not successful */ }

10.510cLog

NOTE: Many sites use CMLOG instead of iocLog. See the CMLOG documentation for details.

This consists of two modules: iocLogServer and iocLogClient. The client code runs on each ioc and listens for the
messages generated by the errlog system. It aso reports the messages from vxWorks logM sg.

10.5.1 iocL ogServer

Thisruns on ahost. It receives messages for all enabled iocLogClientsin thelocal area network. The messages are written
to afile. Epics base provides a startup file "base/src/util/rc2.1ogServer”, which is a shell script to start the server. Consult
this script for details.

10.5.2 iocL ogClient

Thisrunson eachioc. It is started caling:
iocLoglnit();

The global variablei ocLogDi sabl e can be used to enable/disable the messages from being sent to the server. Setting
this variable to (0,1) (enables,disables) the messages generation. If i ocLogDi sabl e is set to 1 before calling
i ocLogl nit then i ocLogCl i ent will not even initidize itself. i ocLogDi sabl e can aso be changed to turn
logging on or off.

i ocLogd i ent calserr| ogAddLi st ener and sends each messageto thei ocLogSer ver.
The following description was supplied by Jeff Hill:

It is possible to configure EPICS so that alog of 10C error messages is stored in a circular ASCII file on a PC or UNIX
workstation. Each entry in the log contains the IOC's DNS name, the date and time when the message was received by the
log server, and the text of the message generated on the 10C.

All messages generated by the EPICS functions epicsPrintf() and errMessage() are placed in the log. Messages generated
by the vxWorks function logMsg() are aso placed in the log (logMsg() can be safely called from interrupt level).
Messages generated by printf() do not end up in the log and areinstead used primarily by diagnostic functions called from
the vxWorks shell.

To start alog server on a UNIX or PC workstation you must first set the following environment variables and then run the
executable "iocLogServer" on your PC or UNIX workstation.

EPICS IOC_LOG_FILE_NAME
The name and path to the log file.

EPICS IOC_LOG _FILE_LIMIT
The maximum size in characters for the log file (after which it becomes a circular file and writes new
messages over old messages at the beginning of thefile). If the value is zero then thereis no limit on the size
of thelogfile.

EPICS IOC_LOG_FILE_COMMAND

EPICS Release: R3.14.1
EPICS IOC Application Developer’'s Guide 145

Chapter 10: IOC Error Logging
iocLog

A shell command string used to aobtain the log file path name during initialization and in response to

SIGHUP. The new path name will replace any path name supplied in EPICS IOC_LOG_FILE_NAME.
Thus, if EPICS_|OC_LOG_FILE_NAME is

"alb/c.log" and EPICS |IOC _LOG_FILE_ COMMAND returns"A/B" or "A/B/" thelog server will be stored
a "A/B/c.log"

If EPICS_I0C_LOG_FILE_COMMAND is empty then this behavior is disabled. This feature was donated
to the collaboration by KECK, and it is used by them for switching to a new directory at afixed time each

day. Thisvariableis currently used only by the UNIX version of the log server.
EPICS |OC_LOG_PORT

THE TCP/IP port used by the log server.

To configure an 10OC so that its messages are placed in the log you must set the environment variable
EPICS 10C_LOG_INET to the IP address of the host that is running the log server and EPICS 10C_LOG_PORT to the
TCP/IP port used by the log server.

Defaults for all of the above parameters are specified in the files $(EPICS_BASE)/config/ CONFIG_SITE_ENV and
$(EPICS_BASE)/config/ CONFIG_ENV.

In base/src/util there is a solaris script for starting the log server. This can be adapted for use on other host architectures.

10.5.3 Configuring a Private L og Server

In atesting environment it is desirable to use a private log server. This can be done asfollows:

» Add aepicsEnvSet command to your |OC startup file. For example
Id < iocCore
epi csEnvSet ("EPI CS_| OC LOG | NET=XXX. XXX. XXX. XXX")
Theinet addressis for your host workstation.

* Onyou host start a version of the log server.

146 EPICS I0OC Application Developer's Guide

Chapter 11: Record Support

11.1 Overview

The purpose of this chapter is to describe record support in sufficient detail such that a C programmer can write new
record support modules. Before attempting to write new support modules, you should carefully study afew of the existing
support modules. If an existing support module is similar to the desired module most of the work will already be done.

From previous chapters, it should be clear that many things happen as a result of record processing. The details of what
happens are dependent on the record type. In order to allow new record types and new device types without impacting the
core |OC system, the concept of record support and device support has been created. For each record type, a record
support module exists. It is responsible for all record specific details. In order to allow a record support module to be
independent of device specific details, the concept of device support has been created.

A record support module consists of a standard set of routines which are called by database access routines. These
routines implement record specific code. Each record type can define a standard set of device support routines specific to
that record type.

By far the most important record support routine is pr ocess, which dbPr ocess calls when it wants to process a
record. Thisroutine is responsible for the details of record processing. In many casesit calls a device support /O routine.
The next section gives an overview of what must be done in order to process a record. Next is a description of the entry
tables that must be provided by record and device support modules. The remaining sections give example record and
device support modules and describe some global routines useful to record support modules.

The record and device support modules are the only modules that are allowed to include the record specific include files as
defined in base/ r ec. Thus they are the only routines that access record specific fields without going through database
access.

11.2 Overview of Record Processing

The most important record support routine is pr ocess. This routine determines what record processing means. Before
the record specific “pr ocess” routine is called, the following has already been done:

 Decision to process a record.

» Check that record is not active, i.e. pact must be FALSE.

» Check that the record is not disabled.

The pr ocess routine, together with its associated device support, is responsible for the following tasks:

» Set record active whileiit is being processed
Perform /O (with aid of device support)
 Check for record specific alarm conditions
* Raise database monitors

* Request processing of forward links

EPICS Release: R3.14.1
EPICS IOC Application Developer's Guide 147

Chapter 11: Record Support
Record Support and Device Support Entry Tables

A complication of record processing isthat some devices are intrinsically asynchronous. It isNEVER permissible to wait
for aslow device to complete. Asynchronous records perform the following steps:

1. Initiate the I/O operation and set pact TRUE

2. Determine amethod for again calling process when the operation completes
3. Return immediately without completing record processing

4. When processis called after the 1/O operation complete record processing
5. Set pact FALSE and return

The examples given below show how this can be done.

11.3 Record Support and Device Support Entry Tables

Each record type has an associated set of record support routines. These routines are located via the data structures
defined in epi cs/ shar e/ epi csH recSup. h. The concept of record support routines isolatesthe i ocCor e software
from the details of each record type. Thus new records can be defined and supported without affecting the 10C core

software.

Each record type aso has zero or more sets of device support routines. Record types without associated hardware, e.g.
calculation records, normally do not have any associated device support. Record types with associated hardware normally
have a device support module for each device type. The concept of device support isolates IOC core software and even

record support from device specific details.

Corresponding to each record type is a set of record support routines. The set of routines isthe same for every record type.
These routines are located via a Record Support Entry Table (RSET), which has the following structure

/* record support entry table */

/* nunber of support

[* print

routine */
report */

[* init support */

[* init

record */

/* process record */

/* speci al

/* OBSOLETE: Just
dbAddr */

/* cvt

/* get

/* put

struct rset {
| ong number ;
RECSUPFUN report;
RECSUPFUN init;
RECSUPFUN init_record,;
RECSUPFUN process;
RECSUPFUN speci al
RECSUPFUN get _val ue;
RECSUPFUN cvt _dbaddr
RECSUPFUN get _array_info;
RECSUPFUN put _array_info;
RECSUPFUN get _units;
RECSUPFUN get _precision
RECSUPFUN get _enum str,;
RECSUPFUN get _enum strs;
RECSUPFUN put _enum str;
RECSUPFUN get _graphi c_doubl e;
RECSUPFUN get _control _doubl e;
RECSUPFUN get _al ar m doubl e;
1

/* get all

processing */
| eave NULL */

string fromenum */
enum strings */
enum from string */

Each record support module must define its RSET. The external name must be of the form:

<record_t ype>RSET

Any routines not needed for the particular record type should be initialized to the value NULL. Look at the example below
for details.

148

EPICS IOC Application Developer’'s Guide

Chapter 11: Record Support
Example Record Support Module

Device support routines are located via a Device Support Entry Table (DSET), which has the following structure:

struct dset ({

b

| ong

DEVSUPFUN
DEVSUPFUN
DEVSUPFUN
DEVSUPFUN

/* device support entry table */

nunber ; /* nunber of support routines */
report; [* print report */

init; [* init support */

init_record;/* init record instance*/

get _ioint_info; /* get io interrupt info*/

/* other functions are record dependent*/

Each device support module must define its associated DSET. The external name must be the same as the name which
appearsin devSup. asci i .

Any record support module which has associated device support must also include definitions for accessing its associated
device support modules. The field”dset ”, which islocated in dbConmon, contains the address of the DSET. It isgiven a
valuebyioclnit.

11.4 Example Record Support Module

This section contains the skeleton of a record support package. The record type is xxx and the record has the following
fields in addition to the dbConmmon fields: VAL, PREC, EQU, HOPR, LOPR HI HI , LOLO HI GH, LOWHHSV, LLSV, HSV,
LSV, HYST, ADEL, MDEL, LALM ALST, M_ST. These fields will have the same meaning as they have for the ai record.
Consult the Record Reference manual for a description.

11.4.1 Declar ations

/* Create RSET -

#def i
#def i

#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i

Record Support Entry Tabl e*/

ne report NULL

ne initialize NULL
static long init_record();
static |ong process();

ne speci al

NULL

ne get val ue NULL

ne cvt _dbaddr

NULL

ne get _array_info NULL

ne put _array_info NULL
static long get _units();

static |long get precision();

ne get_enumstr NULL

ne get_enumstrs NULL

ne put_enumstr NULL

static | ong get graphic_doubl e();
static | ong get control doubl e();
static | ong get _al arm doubl e();

st ruct
RSETNUMBER,
report,
initialize,

init_record,

rset XxxRSET={

EPICS Release: R3.14.1

EPICS IOC Application Developer’'s Guide 149

Chapter 11: Record Support
Example Record Support Module

process,
speci al

get val ue,

cvt _dbaddr,

get _array_info,

put _array_info,

get _units,

get _preci si on,

get _enum str,

get _enum strs,

put _enumstr,

get _gr aphi c_doubl e,
get _control _doubl e,
get _al ar m doubl e} ;

/* declarations for associ ated DSET */
typedef struct xxxdset { /* anal og input dset */
| ong numnber ;
DEVSUPFUN dev_report;
DEVSUPFUN init;
DEVSUPFUN init_record; /* returns: (1,0)=> (failure, success)*/
DEVSUPFUN get _ioint_info;
DEVSUPFUN read_xxX;
} xxxdset ;

/* forward declaration for internal routines*/
static void checkAl arans(xxxRecord *pxxx);
static void nmonitor(xxxRecord *pxxx);

The above declarations define the Record Support Entry Table (RSET), a template for the associated Device Support
Entry Table (DSET), and forward declarations to private routines.

The RSET must be declared with an external name of xxxRSET. It defines the record support routines supplied for this
record type. Note that forward declarations are given for all routines supported and aNULL declaration for any routine not
supported.

The template for the DSET is declared for use by this module.

11.4.2init_record

static long init_record(void *precord, int pass)
{

xxxXRecor d*pxxx = (xxxRecord *)precord;

xxxdset *pdset;

| ong st at us;

i f(pass==0) return(0);

i f((pdset = (xxxdset *)(pxxx->dset)) == NULL) {
rec@l RecordError (S _dev_noDSET, pxxx, "Xxx: init_record”);
return(S_dev_noDSET) ;

}

/* must have read xxx function defined */

if((pdset->nunber < 5) || (pdset->read_xxx == NULL)) {

150 EPICS I0OC Application Developer's Guide

Chapter 11: Record Support

Example Record Support Module

rec@l Recor dError (S_dev_m ssi ngSup, pxxx,
"XXX: init_record”);
return(S_dev_m ssi ngSup);
}
if(pdset->init_record) {

i f((status=(*pdset->init_record)(pxxx))) return(status);

}

return(0);

}

Thisroutine, which iscalled by i ocl ni t twice for each record of type xxx, checksto seeif it has a proper set of device

support routines and, if present, callsthei ni t _r ecor d entry of the DSET.

During thefirst call toi ni t _r ecor d (pass=0) only initializations relating to this record can be performed. During the
second call (pass=1) initializations that may refer to other records can be performed. Note aso that during the second
pass, other records may refer to fields within this record. A good example of where these rules are important is a
waveform record. The VAL field of a waveform record actually refers to an array. The waveform record support module
must allocate storage for the array. If another record has a database link referring to the waveform VAL field then the
storage must be allocated before the link is resolved. This is accomplished by having the waveform record support
allocate the array during the first pass (pass=0) and having the link reference resolved during the second pass (pass=1).

11.4.3 process

static | ong process(void *precord)

{
xxxXRecor d*pxxx = (xxxRecord *)precord;
xxxdset *pdset = (xxxdset *)pxxx->dset;
| ong st at us;
unsi gned char pact =pxxx->pact;

i f((pdset==NULL) || (pdset->read_xxx==NULL)) {

/* leave pact true so that dbProcess doesnt call again*/

pxxx->pact =TRUE;
recCbl Recor dError (S_dev_mi ssi ngSup, pxxx, " read_xxx");
return(S_dev_m ssi ngSup);

}

/* pact nust not be set true until read_xxx conpletes*/
st at us=(*pdset - >read_xxx) (pxxx); /* read the new val ue */
/* return if beginning of asynch processing*/

i f(!pact && pxxx->pact) return(0);

pxxx->pact = TRUE;

recCbl Get Ti neSt anp(pxxx) ;

/* check for alarns */

al ar m(pxxx) ;

/* check event list */

noni t or (pxxx) ;

/* process the forward scan link record */
recCGbl FwdLi nk(pxxx) ;

pxxx->pact =FALSE;
return(status);

EPICS Release: R3.14.1
EPICS I0C Application Developer's Guide

151

Chapter 11: Record Support
Example Record Support Module

}

The record processing routines are the heart of the IOC software. The record specific process routine is called by
dbPr ocess whenever it decides that arecord should be processed. Process decides what record processing really means.
The above is agood example of what should be done. In addition to being called by dbPr ocess the process routine may
also be called by asynchronous record completion routines.

The above model supports both synchronous and asynchronous device support routines. For example, if r ead_xxx isan
asynchronous routine, the following sequence of events will occur:

» process iscalled with pact FALSE

» read_xxx iscalled. Since pact isFALSE it starts /O, arranges callback, and sets pact TRUE
* read_xxx returns

* because pact went from FALSE to TRUE process just returns

» Any new cal to dbPr ocess isignored because it finds pact TRUE

» Sometime later the callback occurs and pr ocess iscalled again.

» read_xxx iscalled. Since pact is TRUE it knowsthat it is acompletion request.
* read_xxx returns

» process completes record processing

» pact isset FALSE

* process returns

At this point the record has been completely processed. The next time pr ocess is caled everything starts all over from
the beginning.

11.4.4 Miscellaneous Utility Routines
static | ong get units(DBADDR *paddr, char *units)

{
xxxRecord *pxxx=(xxxRecord *)paddr->precord;
strncpy(units, pxxx->egu, si zeof (pxxx->egu));
return(0);

}

static | ong get graphi c_doubl e(DBADDR *paddr,
struct dbr_grDoubl e *pgd)
{

xxxRecord *pxxx=(xxxRecord *)paddr->precord;
i nt fieldl ndex = dbGet Fi el dl ndex(paddr) ;

i f(fieldlndex == xxxRecordVAL) {
pgd- >upper _disp_linmt = pxxx->hopr;
pgd- >l ower disp limt = pxxx->lopr;
} el se rec@l Get G aphi cDoubl e(paddr, pgd) ;
return(0);
}
/* simlar routines would be provided for */
/* get _control doubl e and get _al arm doubl e*/

These are a few examples of various routines supplied by atypical record support package. The functions that must be
performed by the remaining routines are described in the next section.

152 EPICS I0OC Application Developer's Guide

Chapter 11: Record Support
Example Record Support Module

11.4.5 Alarm Processing

static void checkAl arnms(xxxRecord *pxxx)

{
doubl e val ;
fl oat hyst, I al m hi hi, hi gh, | ow, | ol o;
unsi gned short hhsv, |1 sv, hsv, | sv;
i f(pxxx->udf == TRUE){
rec@l Set Sevr (pxxx, UDF_ALARM VALI D ALARM) ;
return;
}
hi hi =pxxx->hi hi; | ol o=pxxx- >l ol o;
hi gh=pxxx->hi gh; | ow=pxxx- >l ow;
hhsv=pxxx->hhsv; || sv=pxxx->l1sv;
hsv=pxxx- >hsv; | sv=pxxx->| sv;
val =pxxx->val ; hyst=pxxx->hyst; | al mrpxxx->lal m
/* alarmcondition hihi */
if (hhsv && (val >= hi hi
[| ((lalme=hihi) & (val >= hihi-hyst)))) {
i f(rec@l Set Sevr (pxxx, H H _ALARM pxxx->hhsv)
pxxx->lal m = hi hi;
return;
}
/* alarmcondition lolo */
if (Ilsv & (val <= lolo
|1 ((lalme=lolo) &% (val <= lolo+thyst)))) {
i f(rec@l Set Sevr (pxxx, LOLO ALARM pxxx->l1sv))
pxxx->lal m= | ol o;
return;
}
/* alarmcondition high */
if (hsv & (val >= high
[| ((1al me=high) && (val >= high-hyst)))) {
i f(recGl Set Sevr (pxxx, H GH_ALARM pxxx->hsv))
pxxx->l al m = hi gh;
return;
}
/* alarmcondition | ow */
if (Isv & (val <= |ow
[] (lal me=low) && (val <= |owthyst)))) {
i f(recGl Set Sevr (pxxx, LON ALARM pxxx->| sv))
pxxx->lal m= | ow
return;
}
/*we get here only if val is out of alarmby at |east hyst*/
pxxx->l al meval ;
return;
}

EPICS Release: R3.14.1
EPICS IOC Application Developer’'s Guide 153

Chapter 11: Record Support
Example Record Support Module

Thisisatypical set of code for checking alarms conditions for an analog type record. The actual set of code can be very
record specific. Note also that other parts of the system can raise alarms. The algorithm is to always maximize alarm
severity, i.e. the highest severity outstanding alarm will be reported.

The above algorithm also honors a hysteresis factor for the alarm. Thisis to prevent alarm storms from occurring in the
event that the current value is very near an alarm limit and noise makes it continually cross the limit. It honors the
hysteresis only when the value is going to alower alarm severity.

Note the test:

i f(pxxx->udf == TRUE){
rec@l Set Sevr (pxxx, UDF_ALARM VALI D_ALARM) ;
return;

}

Database common defines the field UDF, which means that field VAL is undefined. The STAT and SEVR fields are
initialized as though r ecGol Set Sevr (pxxx, UDF_ALARM VALI D_ALARM was called. Thusif the record is never
processed the record will beinan INVALID UNDEFINED alarm state. Field UDF isinitialized to thevalue 1, i.e. TRUE.
Thus the above code will keep the record in the INVALID UNDEFINED aarm state as long as UDF is not given the
value 0.

The UDF field means Undefined, i.e. the VAL field has never been given avalue. When records are loaded into an ioc this
istheinitial state of records. Whevever code gives avalue to the VAL field it is also supposed to set UDF false. Unless a
particular record type has unusual semantics no code should set UDF true. UDF normally means that the field was never
given avaue.

For input records device support is responsible for obtaining an input value. If no input value can be obtained neither
record support nor device support sets UDF false. If device support reads a raw value it returns a value telling record
support to perform a conversion. After the record support sets VAL equal to the converted value, it sets UDF false. If
device support obtains a converted value that it writesto VAL, it sets UDF false.

For output records either something outside record/device support writes to the VAL field or else VAL is given a value
because record support obtains a value via the OMSL field. In either case the code that writes to the VAL field sets UDF
false.

Whenever database access writes to the VAL field it sets UDF false.

Routine recGbl SetSevr is called to raise alarms. It can be called by iocCore, record support, or device support. The code
that detects an alarm is responsible for raising the alarm.

11.4.6 Raising Monitors

static void nmonitor(xxxRecord *pxxx)
{

unsi gned short noni t or _nmask;

fl oat del ta;

noni t or_mask = recCGbl Reset Al ar ms(pxxx) ;
/* check for val ue change */
delta = pxxx->nm st - pxxx->val;
if(delta<0.0) delta = -delta;
if (delta > pxxx->ndel) {
/* post events for value change */
noni t or _mask | = DBE_VALUE;
/* update | ast value nonitored */
pxxx->m st = pxxx->val ;

154 EPICS I0OC Application Developer's Guide

Chapter 11: Record Support
Record Support Routines

/* check for archive change */

delta = pxxx->al st - pxxx->val;

if(delta<0.0) delta = 0.0;

if (delta > pxxx->adel) {
/* post events on value field for archive change */
nmoni t or_mask | = DBE_LOG
/* update | ast archive value nonitored */
pxxx->al st = pxxx->val ;

* send out nonitors connected to the value field */
i f (ronitor_mask){
db_post _event s(pxxx, &xxx->val , noni t or _mask) ;

return;

}

All record types should call r ecGbl Reset Al ar ns as shown. Note that nst a and nsev will have the value O after this
routine completes. Thisis necessary to ensure that alarm checking starts fresh after processing completes. The code aso
takes care of raising alarm monitors when a record changes from an alarm state to the no alarm state. It is essential that
record support routines follow the above model or else alarm processing will not follow the rules.

Analog type records should also provide monitor and archive hysteresis fields as shown by this example.
db_post _event s resultsin channel access issuing monitors for clients attached to the record and field. The cal is

i nt db_post_events(void *precord, void *pfield,
unsi gned int nonitor_mnask)

where:

pr ecor d - The address of the record

pfi el d - The address of the field

nmoni t or _mask - A bit mask that can be any combinations of the following:
DBE_ALARM - A change of alarm state has occured. Thisis set by r ecGbl Reset Al ar ns.
DBE_LOG - Archive change of state.
DBE_VAL - Vaue change of state

IMPORTANT: The record support module is responsible for calling db_post _event for any fields that change as a
result of record processing. Also it should NOT call db_post _event for fields that do not change.

11.5 Record Support Routines

This section describes the routines defined in the RSET. Any routine that does not apply to a specific record type must be
declared NULL.

11.5.1 Generate Report of Each Field in Record

report (void *precord); /* addr of record*/

Thisroutineis not used by most record types. Any action is record type specific.

EPICS Release: R3.14.1
EPICS I0OC Application Developer’'s Guide 155

Chapter 11: Record Support
Record Support Routines

11.5.2 Initialize Record Processing
initialize(void);

Thisroutine is called once at 10C initialization time. Any action is record type specific. Most record types do not need
thisroutine.

11.5.3 Initialize Specific Record

init_record(
void *precord, /* addr of record*/
i nt pass) ;

i ocl nit calls this routine twice (pass=0 and pass=1) for each database record of the type handled by this routine. It
must perform the following functions:

» Check and/or issue initialization calls for the associated device support routines.

 Perform any record type specific initialization.

 During thefirst passit can only perform initializations that affect the record referenced by precord.
* During the second pass it can perform initializations that affect other records.

11.5.4 Process Record

process(void *precord); /* addr of record*/

This routine must follow the guidelines specified previously.

11.5.5 Special Processing

speci al (
struct dbAddr *paddr ,
i nt after);/*(FALSE, TRUE)=>(Before, After)Processi ng*/

This routine implements the record type specific special processing for the field referred to by dbAddr . Note that it is
called twice. Once before any changes are made to the associated field and once after. File speci al . h defines specia
types. Thisroutineisonly called for user special fields, i.e. fieldswith SPC_xxx >= 100. A field is declared special in the
ASCII record definition file. New values should not by added to speci al . h, instead use SPC_MD.

The database access routine, dbCet Fi el dl ndex can be used to determine which field is being modified.

11.5.6 Get Value

Thisroutineis no longer used. It should be left asa NULL procedure in the record support entry table.

11.5.7 Convert dbAddr Definitions

cvt _dbaddr (struct dbAddr *paddr);

Thisroutineis called by dbNaneToAddr if the field has special set equal to SPC_DBADDR. A typica useiswhen afield
refers to an array. This routine can change any combination of the dbAddr fields: no_el enent s, fi el d_t ype,
field_size,special,pfield, and dbr_type. For exampleif the VAL field of a waveform record is passed to
dbNaneToAddr, cvt _dbaddr would change dbAddr so that it refersto the actual array rather then VAL.

156 EPICS I0OC Application Developer's Guide

Chapter 11: Record Support
Record Support Routines

The database access routine, dbCGet Fi el dl ndex can be used to determine which field is being modified.
NOTES:

* Channel access calls db_name to_addr, which is part of old database access. Db _name to addr calls
dbNameToAddr. Thisis done when a client connects to the record.

* no_elements must be set to the maximum number of elements that will ever be stored in the array.

11.5.8 Get Array Information

get _array_i nfo(
struct dbAddr *paddr,
| ong *no_el ement s,
| ong *of fset);

This routine returns the current number of elements and the offset of the first value of the specified array. The offset field
is meaningful if the array is actually acircular buffer.

The database access routine, dbGet Fi el dl ndex can be used to determine which field is being modified. It is
permissiblefor get _array_i nf o tochangepfi el d. Thisfeature can be used to implement double buffering.

When an array field isbeing written get _array_i nf o iscalled before the field values are changed.

11.5.9 Put Array Information

put _array_info(
struct dbAddr *paddr,
| ong nNew) ;

Thisroutineis called after new values have been placed in the specified array.
The database access routine, dbGet Fi el dl ndex can be used to determine which field is being modified.

11.5.10 Get Units

get _units(
struct dbAddr *paddr,
char *punits);

This routine sets units equal to the engineering units for the field.

The database access routine, dbCet Fi el dl ndex can be used to determine which field is being modified.

11.5.11 Get Precision

get _preci si on(
struct dbAddr *paddr,
| ong *preci sion);

This routine gets the precision, i.e. number of decimal places, which should be used to convert the field value to an ASCII
string. r ecGol Get Pr ec should be called for fields not directly related to the value field.

The database access routine, dbCGet Fi el dl ndex can be used to determine which field is being modified.

EPICS Release: R3.14.1
EPICS I0OC Application Developer’'s Guide 157

Chapter 11: Record Support
Record Support Routines

11.5.12 Get Enumerated String

get _enum str(
struct dbAddr *paddr,
char *p);

Thisroutine sets* p equal to the ASCII string for the field value. The field must have type DBF_ENUM
Look at the code for the bi or nbbi records for examples.
The database access routine, dbCet Fi el dl ndex can be used to determine which field is being modified.

11.5.13 Get Strings for Enumerated Field

get _enum strs(
struct dbAddr *paddr ,
struct dbr_enunftrs *p);

Thisroutine gives valuesto all fields of structuredbr _enunst r s.
Look at the code for the bi or nmbbi records for examples.

The database access routine, dbCet Fi el dl ndex can be used to determine which field is being modified.

11.5.14 Put Enumerated String

put _enum str(
struct dbAddr *paddr,
char *p);

Given an ASCII string, this routine updates the database field. It compares the string with the string val ues associated with
each enumerated value and if it finds a match sets the database field equal to the index of the string which matched.

L ook at the code for the bi or nmbbi records for examples.
The database access routine, dbCet Fi el dl ndex can be used to determine which field is being modified.

11.5.15 Get Graphic Double Information

get _graphi c_doubl e(
struct dbAddr *paddr,
struct dbr_grDouble *p); /* addr of return info*/

This routine fills in the graphics related fields of structure dbr _gr Doubl e. r ec@l Get G- aphi cDoubl e should be
called for fields not directly related to the value field.

The database access routine, dbCet Fi el dl ndex can be used to determine which field is being modified.

11.5.16 Get Control Double I nfor mation

get _control _doubl g(
struct dbAddr *paddr,
struct dbr_ctrlDouble *p); /* addr of return info*/

This routine gives values to al fields of structure dbr _ct r| Doubl e. r ecGbl Get Cont r ol Doubl e should be called
for fields not directly related to the value field.

158 EPICS I0OC Application Developer's Guide

Chapter 11: Record Support
Global Record Support Routines

The database access routine, dbCGet Fi el dl ndex can be used to determine which field is being modified.

11.5.17 Get Alarm Double | nformation

get _al ar m doubl e(
struct dbAddr *paddr,
struct dbr_al Double *p); [/* addr of return info*/

Thisroutine gives valuesto all fields of structure dbr _al Doubl e.

The database access routine, dbGet Fi el dl ndex can be used to determine which field is being modified.

11.6 Global Record Support Routines

A number of global record support routines are available. These routines are intended for use by the record specific
processing routines but can be called by any routine that wishes to use their services.

The name of each of these routines beginswith "r ecGol .

11.6.1 Alarm Status and Severity

Alarms may be raised in many different places during the course of record processing. The algorithm is to maximize the
alarm severity, i.e. the highest severity outstanding alarm is raised. If more than one alarm of the same severity is found
then the first one is reported. This means that whenever a code fragment wants to raise an alarm, it does so only if the
alarm severity it will declareis greater then that aready existing. Four fields (in database common) are used to implement
alarms: sevr, st at , nsev, and nst a. Thefirst two are the status and severity after the record is completely processed.
The last two fields (nst a and nsev) are the status and severity values to set during record processing. Two routines are
used for handling alarms. Whenever a routine wants to raise an alarm it calls r ecGol Set Sevr. This routine will only
change nst a and nsev if it will result in the alarm severity being increased. At the end of processing, the record support
module must call r ecCGbl Reset Al ar ms. Thisroutine sets st at =nst a, sevr =nsev, nst a=0, and nsev=0. If st at

or sevr has changed value since the last call it calls db_post _event for st at and sevr and returns a value of
DBE_ALARM If no change occured it returns 0. Thus after calling r ecGbl Reset Al ar ns everything isready for raising
alarms the next time the record is processed. The example record support module presented above shows how these
macros are used.

recCbl Set Sevr (
voi d *precord,
short nst a,
short nsevr);

Returns: (TRUE, FALSE) if (did, did not) change nst a and nsev.
unsi gned short recGbl Reset Alarnms(void *precord);

Returns: Initial value for noni t or _nask

11.6.2 Alarm Acknowledgment

Database common contains two additional alarm related fields: acks (Highest severity unacknowledged alarm) and
ackt (doestransient alarm need to be acknowledged). These field are handled by i ocCor e andr ecGol Reset Al ar s
and are not the responsibility of record support. These fields are intended for use by the alarm handler.

EPICS Release: R3.14.1
EPICS IOC Application Developer’'s Guide 159

Chapter 11: Record Support
Global Record Support Routines

11.6.3 Generate Error: Process Variable Name, Caller, M essage

SUGGESTION: useer r| ogPri nt f instead of thisfor new code.

recGol Dbaddr Er r or (
| ong st at us,
struct dbAddr *paddr,
char *pcal l er_nane); /* calling routine nane */

This routine interfaces with the system wide error handling system to display the following information: Status
information, process variable name, calling routine.

11.6.4 Generate Error: Status String, Record Name, Caller

SUGGESTION: useerr | ogPri nt f instead of thisfor new code.
recCbl Recor dErr or (
| ong st at us,
voi d *precord, /* addr of record */
char *pcal | er _nane) ; /* calling routine nane */

This routine interfaces with the system wide error handling system to display the following information: Status
information, record name, calling routine.

11.6.5 Generate Error: Record Name, Caller, Record Support Message

SUGGESTION: useerr | ogPri nt f instead of thisfor new code.
rec@l RecsupError (
| ong st at us,
st ruct dbAddr *paddr,
char *pcal | er _nane, /* calling routine nane */
char *psupport _nane); /* support routine nane*/

This routine interfaces with the system wide error handling system to display the following information: Status
information, record name, calling routine, record support entry name.

11.6.6 Get Graphics Double

rec@l Get G aphi cDoubl e(
struct dbAddr *paddr,
struct dbr_grDouble *pgd);

Thisroutine can be used by the get _gr aphi ¢_doubl e record support routine to obtain graphics values for fields that it
doesn’t know how to set.

11.6.7 Get Control Double

rec@l Get Cont r ol Doubl e(
struct dbAddr *paddr,
struct dbr_ctrl Doubl e *pcd) ;

This routine can be used by theget _cont r ol _doubl e record support routine to obtain control values for fields that it
doesn’t know how to set.

160 EPICS I0OC Application Developer's Guide

Chapter 11: Record Support
Global Record Support Routines

11.6.8 Get Alarm Double

rec@l Get Al ar nDoubl e(
struct dbAddr *paddr,
struct dbr_al Double *pcd);

This routine can be used by the get _al ar m doubl e record support routine to obtain control values for fields that it
doesn’t know how to set.

11.6.9 Get Precision

rec@l Get Prec(
struct dbAddr *paddr,
| ong *pprecision);

This routine can be used by the get _pr eci si on record support routine to obtain the precision for fields that it doesn’'t
know how to set the precision.

11.6.10 Get Time Stamp
rec@l Get Ti meSt anp(voi d *precord)

This routine gets the current time stamp and putsit in the record It does the following:

 If TSEL referstothe TIME field thetimeis obtained from the record reference by TSEL.
» Other wise

o If TSEL isnot a CONSTANT link it calls dbGetLink and puts the result in TSE

« It cals epicsTimeGetEvent(& precord->time,precord->tse)

11.6.11 Forward link

recGol FwdLi nk(
void *precord);

This routine can be used by process to request processing of forward links.

11.6.12 Initialize Constant Link

i nt recGblInitConstantLink(
struct link *plink,
short dbf Type,
voi d *pdest) ;

Initialize a constant link. This routineis usually called by i nit _record (or by associated device support) to initiaize
the field associated with a constant link. It returns(FALSE, TRUE) if it (did not, did) modify the destination.

EPICS Release: R3.14.1
EPICS IOC Application Developer’'s Guide 161

Chapter 11: Record Support
Global Record Support Routines

162 EPICS I0OC Application Developer's Guide

Chapter 12: Device Support

12.1 Overview

In addition to a record support module, each record type can have an arbitrary number of device support modules. The
purpose of device support is to hide hardware specific details from record processing routines. Thus support can be
developed for a new device without changing the record support routines.

A device support routine has knowledge of the record definition. It also knows how to talk to the hardware directly or how
to call a device driver which interfaces to the hardware. Thus device support routines are the interface between hardware
specific fields in a database record and device drivers or the hardware itself.

Database common contains two device related fields:

 dtyp: Device Type.
* dset: Address of Device Support Entry Table.

Thefield dt yp contains theindex of the menu choice as defined by the device ASCI| definitions. i ocl ni t usesthisfield
and the device support structures defined in devSup. h to initialize the field dset . Thus record support can locate its
associated device support viathe dset field.

Device support modules can be divided into two basic classes. synchronous and asynchronous. Synchronous device
support is used for hardware that can be accessed without delays for 1/0. Many register based devices are synchronous
devices. Other devices, for example all GPIB devices, can only be accessed via l/O requests that may take large amounts
of time to complete. Such devices must have associated asynchronous device support. Asynchronous device support
makes it more difficult to create databases that have linked records.

If a device can be accessed with adelay of less then afew microseconds then synchronous device support is appropriate.
If adevice causes delays of greater than 100 microseconds then asynchronous device support is appropriate. If the delay is
between these values your guess about what to do is as good as mine. Perhaps you should ask the hardware designer why
such a device was created.

If adevice takes along time to accept requests there is another option than asynchronous device support. A driver can be
created that periodicaly polls al its attached input devices. The device support just returns the latest polled value. For
outputs, device support just notifies the driver that a new value must be written. the driver, during one of its polling phases,
writes the new value. The EPICS Allen Bradley device/driver support is agood example.

12.2 Example Synchronous Device Support Module

/* Create the dset for devAi Soft */
long init_record();
I ong read_ai();
struct {
| ong nunber ;
DEVSUPFUN report;
DEVSUPFUN init;

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 163

Chapter 12: Device Support
Example Synchronous Device Support Module

DEVSUPFUN init_record,;

DEVSUPFUN get _ioint_info;

DEVSUPFUN read_ai;

DEVSUPFUN speci al _| i nconv;
}devAi Sof t ={

6,
NULL,
NULL,
init_record,
NULL,
read_ai,
NULL} ;
static long init_record(void *precord)
{
ai Record *pai = (aiRecord *)precord,;
| ong status;
/* ai.inp must be a CONSTANT, PV_LINK, DB LINK or CA LI NK*/
switch (pai->inp.type) {
case (CONSTANT) :
i f(rec@l I nitConstantLink(&pai->i np, DBF_DOUBLE, &pai - >val))
pai - >udf = FALSE;
br eak;
case (PV_LINK)
case (DB_LI NK)
case (CA _LINK)
br eak;
def aul t
rec®l RecordError (S _db_badField, (void *)pai,
"devAi Soft (init_record) Illegal INP field");
return(S_db_badFi el d);
}
/* Make sure record processing routine does not perform any conversion*/
pai - >l i nr=0;
return(0);
}
static long read_ai(void *precord)
{
ai Record*pai =(ai Record *)precord,;
| ong status;
st at us=dbGet Get Li nk(& pai - >i np. val ue. db_l i nk),
(void *)pai, DBR_DOUBLE, & pai ->val), 0,1);
i f (pai->inp.type! =CONSTANT && RTN_SUCCESS(st atus)) pai->udf = FALSE;
return(2); /*don’t convert*/
}

164 EPICS I0OC Application Developer's Guide

Chapter 12: Device Support
Example Asynchronous Device Support Module

The example is devAi Sof t, which supports soft analog inputs. The | NP field can be a constant or a database link or a
channel accesslink. Only two routines are provided (the rest are declared NULL). Thei ni t _r ecor d routinefirst checks
that the link type is valid. If the link is a constant it initializes VAL If the link is a Process Variable link it cals
dbCaCet Li nk toturnit into aChannel Accesslink. Ther ead_ai routine obtainsan input valueif thelink is adatabase
or Channel Access link, otherwise it doesn’t have to do anything.

12.

3 Example Asynchronous Device Support Module

This example shows how to write an asynchronous device support routine. It does the following sequence of operations:

1

6.

When first called pact is FALSE. It arranges for a callback (nyCal | back) routine to be called after a number of
seconds specified by the VAL field. cal | backRequest is an EPICS supplied routine. The watchdog timer
routines are supplied by vxWorks.

. It prints a message stating that processing has started, sets pact TRUE, and returns. The record processing routine

returns without completing processing.

. When the specified time elapses nyCal | back is called. It locks the record, calls pr ocess, and unlocks the

record. It calls the process entry of the record support module, which it locates viather set field in dbConmon,
directly rather than dbPr ocess. dbPr ocess would not call pr ocess because pact is TRUE.

. When pr ocess executes, it again callsr ead_ai . Thistime pact is TRUE.
. read_ai prints amessage stating that record processing is complete and returns a status of 2. Normally a value of

0 would be returned. The value 2 tells the record support routine not to attempt any conversions. This is a
convention (a bad convention!) used by the analog input record.

Whenr ead_ai returnsthe record processing routine completes record processing.

At this point the record has been completely processed. The next time processis called everything starts al over.
/* Create the dset for devAi Test Asyn */

static long init_record();

static long read_ai();

struct {
| ong nunber ;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;
DEVSUPFUN get _ioint_info;
DEVSUPFUN read_ai;
DEVSUPFUN speci al _|i nconv;

} devAi Test Asyn={
6,
NULL,
NULL,
init_record,
NULL,
read_ai
NULL} ;

AL

static long init_record(pai)

struct ai Record *pai
{

CALLBACK *pcal | back;
/* ai.inp nmust be a CONSTANT*/

EPICS Release: R3.14.1

EPICS IOC Application Developer’'s Guide 165

Chapter 12: Device Support
Device Support Routines

switch (pai->inp.type) {
case (CONSTANT) :
pcal | back = (CALLBACK *) (cal |l oc(1, sizeof (CALLBACK)));
pai - >dpvt = (void *)pcal | back
i f(rec@l I nitConstantLink(&pai->i np, DBF_DOUBLE, &pai - >val))
pai - >udf = FALSE
br eak;
def aul t
rec®l RecordError (S _db_badFi el d, (void *) pai
"devAi Test Asyn (init_record) Illegal INP field");
return(S_db_badFi el d);

}
return(0);
}
static | ong read_ai (pai)
struct ai Record *pai
{
CALLBACK *pcal | back = (CALLBACK *) pai - >dpvt;
[* ai.inp must be a CONSTANT*/
switch (pai->inp.type) {
case (CONSTANT) :
i f(pai->pact) {
printf("Conpl eted asynchronous processing: %\n", pai - >nane);
return(2); /* don‘t convert*/
} else {
i f(pai->disv<=0) return(2);
printf("Starting asynchronous processing: %\n", pai->nane);
pai - >pact =TRUE
cal | backRequest ProcessCal | backDel ayed(
pcal | back, pai - >pri o, pai, (doubl e) pai - >di sv) ;
return(0);
defaul t :
i f(rec@l Set Sevr (pai, SOFT_ALARM | NVALI D_ALARM) {
i f(pai->stat!=SOFT_ALARM ({
rec®l RecordError (S _db_badFi el d, (void *)pai
"devAi Test Asyn (read_ai) Illegal INP field");
}
}
}
return(0);
}

12.4 Device Support Routines

This section describes the routines defined in the DSET. Any routine that does not apply to a specific record type must be
declared NULL.

166 EPICS I0OC Application Developer's Guide

Chapter 12: Device Support
Device Support Routines

12.4.1 Generate Device Report
report (
i nt i nterest);

This routine is responsible for reporting all 1/O cards it has found. If i nt er est is (0,1) then generate a (short, long)
report. If a device support moduleis using adriver, it normally does not have to implement this routine because the driver
generates the report.

12.4.2 Initialize Record Processing
i it (
i nt after);

This routine is called twice at 10C initialization time. Any action is device specific. This routine is called twice: once
before any database records are initialized and once after all records are initialized but before the scan tasks are started.
af t er hasthevalue (0,1) (before, after) record initialization.

12.4.3 Initialize Specific Record

init_record(
void *precord); /* addr of record*/

Therecord supporti ni t _record routine callsthisroutine.

12.4.4 Get 1/O Interrupt Information

get _ioi nt_info(
i nt cnd,
struct dbConmon *precord,
| OSCANPVT *ppvt);

Thisis caled by the I/O interrupt scan task. If cnd is (0,1) then this routine is being called when the associated record is
being (placed in, taken out of) an I/O scan list. See the chapter on scanning for details.

It should be noted that a previous type of 1/O event scanning is till supported. It is not described in this document
because, hopefully, it will go away in the near future. When it calls this routine the arguments have completely different
meanings.

12.4.5 Other Device Support Routines

All other device support routines are record type specific.

EPICS Release: R3.14.1
EPICS IOC Application Developer's Guide 167

Chapter 12: Device Support
Device Support Routines

168 EPICS I0OC Application Developer's Guide

Chapter 13: Driver Support

13.1 Overview

It is not necessary to create a driver support module in order to interface EPICS to hardware. For simple hardware device
support is sufficient. At the present time most hardware support has both. The reason for thisis historical. Before EPICS
there was GTACS. During the change from GTACS to EPICS, record support was changed drastically. In order to
preserve all existing hardware support the GTACS drivers were used without change. The device support layer was
created just to shield the existing drivers form the record support changes.

Since EPICS now has both device and driver support the question arises: When do | need driver support and when don’t 1?
Lets give afew reasons why drivers should be created.

» The hardware is actually a subnet, e.g. GPIB. In this case a driver should be provided for accessing the subnet.
There is no reason to make the driver aware of EPICS except possibly for issuing error messages.

» The hardware is complicated. In this case supplying driver support helps modularized the software. The Allen
Bradley driver, which is also an example of supporting a subnet, is a good example.

» An existing driver, maintained by others, isavailable. | don't know of any examples.

» Thedriver should be general purpose, i.e. not tied to EPICS. The CAMAC driver is agood example. It is used by
other systems, such as CODA. Thisis perhaps the most important reason for driver support.

» For common devices, e.g. GPIB, CAN, CAMAC, etc. a generic driver layer should be created. This generic layer
should be independent of EPICS and independent of low level interfaces. It should also define an inteface for low
level drivers. This allows low level interfaces to be replaced without impacting 1OC records, record support, or
device support.

The only thing needed to interface a driver to EPICS isto provide a driver support module, which can be layered on top of
an existing driver, and provide a database definition for the driver. The driver support module is described in the next
section. The database definition is described in chapter “ Database Definition”.

13.2 Device Drivers

Device drivers are modules that interface directly with the hardware. They are provided to isolate device support routines
from details of how to interface to the hardware. Device drivers have no knowledge of the internals of database records.
Thus there is no necessary correspondence between record types and device drivers. For example the Allen Bradley driver
provides support for many different types of signals including analog inputs, analog outputs, binary inputs, and binary
outputs.

In general only device support routines know how to call device drivers. Since device support varieswidely from deviceto
device, the set of routines provided by adevice driver is almost completely driver dependent. The only requirement is that
routinesr eport andi ni t must be provided. Device support routines must, of course, know what routines are provided
by adriver.

Filedr vSup. h describes the format of adriver support entry table. The driver support module must supply adriver entry
table. An example definition is:

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 169

Chapter 13: Driver Support
Device Drivers

LOCAL long report();
LOCAL long init();

struct {
| ong numnber ;
DRVSUPFUN report,;
DRVSUPFUN init;

} drvAb={
2,
report,
init

1

The above exampleisfor the Allen Bradley driver. It has an associated ascii definition of:
driver (drvAb)
Thusit is seen that the driver support module should supply two EPICS callable routines: i nt and r eport .

13.2.0.1 init

This routine, which has no arguments, is called by i ocl ni t. The driver is expected to look for and initialize the
hardware it supports. As an example the init routine for Allen Bradley is:

LOCAL long init()
{

return(ab_driver_init());
}
13.2.0.2 report

The report routine is called by the dbi or, an 10C test routine. It is responsible for producing a report describing the
hardware it found at init time. It is passed one argument, level, which is a hint about how much information to display. An
example, taken from Allen Bradley, is:

LOCAL long report(int level)

{
return(ab_i o_report(level));
}
Guidelinesfor level are asfollows:
Level=0 Display aone line summary for each device
Level=1 Display more information
Level=2 Display alot of information. It is even permissible to

prompt for what is wanted.

13.2.0.3 Hardware Configuration
Hardware configuration includes the following:

* VME/VXI address space
* VME Interrupt Vectors and levels
* Device Specific Information
The information contained in hardware links supplies some but not all configuration information. In particular it does not

define the VME/VXI addresses and interrupt vectors. This additional information is what is meant by hardware
configuration in this chapter.

170 EPICS I0OC Application Developer's Guide

Chapter 13: Driver Support
Device Drivers

The problem of defining hardware configuration information is an unsolved problem for EPICS. At one time
configuration information was defined in nodul e_t ypes.h Many existing device/driver support modules still uses this
method. It should NOT be used for any new support for the following reasons:

» Thereisno way to manage thisfile for the entire EPICS community.
* It does not allow arbitrary configuration information.
* Itishard for usersto determine what the configuration information is.

The fact that it is now easy to include ASCII definitions for only the device/driver support used in each |OC makes the
configuration problem much more manageable than previously. Previously if you wanted to support anew VME modules
it was necessary to pick addresses that nothing in modul e_t ypes.h was using. Now you only have to check modules
you are actually using.

Since there are no EPICS defined rules for hardware configuration, the following minimal guidelines should be used:

» Never use #def i ne to specify things like VME addresses. Instead use variables and assign default values. Allow
the default values to be changed before ioclnit is executed. The best way is to supply a global routine that can be
invoked from the |OC startup file. Note that al arguments to such routines should be one of the following:

i nt
char *
doubl e

* Call the routines described in chapter “Device Support Library” whenever possible.

EPICS Release: R3.14.1
EPICS IOC Application Developer’'s Guide 171

Chapter 13: Driver Support
Device Drivers

172 EPICS I0OC Application Developer's Guide

Chapter 14: Static Database Access

14.1 Overview

An10C database is created on a Unix system via a Database Configuration Tool and stored in a Unix file. EPICS provides
two sets of database access routines: Static Database Access and Runtime Database Access. Static database access can be
used on Unix or 10C database files. Runtime database requires an initialized |OC databases. Static database access is
described in this chapter and runtime database access in the next chapter.

Static database access provides asimplified interface to a database, i.e. much of the complexity is hidden. DBF_MENU and
DBF_DEVI CE fields are accessed viaa common type called DCT_MENU. A set of routines are provided to simplify access
to link fields. All fields can be accessed as character strings. This interface is called static database access because it can
be used to access an uninitialized, as well as an initialized database.

Before accessing database records, the files describing menus, record types, and devices must be read via
dbReadDat abase or dbReadDat abaseFP. These routines, which are also used to load record instances, can be
called multiple times.

Database Configuration Tools (DCTs) should manipulate an EPICS database only viathe static database access interface.
An 10C database is created on a Unix system via a database configuration tool and stored in a Unix file with a file
extension of ”.db”. Three routines (dbReadDat abase, dbReadDat abaseFP and dbW i t eRecor d) access a Unix
database file. These routines read/write a database file to/from a memory resident EPICS database. All other access
routines manipulate the memory resident database.

An include file dbSt ati cLi b. h contains all the definitions needed to use the static database access library. Two
structures (DBBASE and DBENTRY) are used to access a database. The fields in these structures should not be accessed
directly. They are used by the static database access library to keep state information for the caller.

14.2 Definitions

14.2.1 DBBASE

Multiple memory resident databases can be accessed simultaneously. The user must provide definitionsin the form:
DBBASE *pdbbase;

14.2.2 DBENTRY

A typical declaration for a database entry structureis:

DBENTRY *pdbentry;
pdbent r y=dbAl | ocEnt r y(pdbbase);

Most static access to a database is viaa DBENTRY structure. As many DBENTRYSs as desired can be alocated.

EPICS Release: R3.14.1
EPICS IOC Application Developer's Guide 173

Chapter 14: Static Database Access
Allocating and Freeing DBBASE

The user should NEVER access the fields of DBENTRY directly. They are meant to be used by the static database access
library.

Most static access routines accept an argument which contains the address of a DBENTRY. Each routine uses this structure
to locate the information it needs and gives values to as many fieldsin this structure as possible. All other fields are set to
NULL.

14.2.3 Field Types

Each database field has atype as defined in the next chapter. For static database access anew and simpler set of field types
are defined. In addition, at runtime, a database field can be an array. With static database access, however, al fields are
scalars. Static database access field types are called DCT field types.

The DCT field types are:

* DCT_STRING: Character string.

* DCT_INTEGER: Integer value

* DCT_REAL: Foating point number

 DCT_MENU: A set of choice strings

« DCT_MENUFORM: A set of choice strings with associated form.

* DCT_INLINK: Input Link

 DCT_OUTLINK: Qutput Link

» DCT_FWDLINK: Forward Link

* DCT_NOACCESS: A private field for use by record access routines

A DCT_STRI NGfield contains the address of a NULL terminated string. The field types DCT_| NTEGER and DCT__REAL
are used for numeric fields. A field that has any of these types can be accessed viathe dbGet St ri ng, dbPut St ri ng,
dbVeri fy, and dbGet Range routines.

Thefield type DCT_MENU has an associated set of strings defining the choices. Routines are avail able for accessing menu
fields. A menu field can also be accessed via the dbGet Stri ng, dbPut Stri ng, dbVeri fy, and dbGet Range
routines.

The field type DCT_MENUFORMis like DCT_MENU but in addition the field has an associated link field. The information
for thelink field can be entered via a set of form manipulation fields.

DCT_I NLI NK (input), DCT_QUTLI NK (output), and DCT_FWDLI NK (forward) specify that the field is a link, which has
an associated set of static access routines described in the next subsection. A field that has any of these types can also be
accessed viathe dbGet St ri ng, dbPut Stri ng, dbVeri fy, and dbGet Range routines.

14.3 Allocating and Freeing DBBASE

14.3.1 dbAllocBase
DBBASE *dbAl | ocBase(voi d);
Thisroutine allocates and initializes a DBBASE structure. It does not return if it is unable to allocate storage.

dbAl | ocBase alocates and initidlizes a DBBASE structure. Normally an application does not need to call
dbAl | ocBase because a cal to dbReadDat abase or dbReadDat abaseFP automatically calls this routine if
pdbbase isnull. Thusthe user only hasto supply code like the following:

174 EPICS I0OC Application Developer's Guide

Chapter 14: Static Database Access
DBENTRY Routines

DBBASE *pdbbase=0;
status = dbReadDat abase(&dbbase, "sanpl e. db",
"<pat h>","<nmacro substitutions>");

The static database access library allows applications to work with multiple databases, each referenced via a different
(DBBASE *) pointer. Such applications may find it necessary to call dbAl | ocBase directly.

dbAl | ocBase does not return if it is unable to allocate storage.

14.3.2 dbFreeBase

voi d dbFr eeBase(DBBASE *pdbbase);
dbFr eeBase freesthe entire database reference by pdbbase including the DBBASE structure itself.

14.4 DBENTRY Routines

14.4.1 Alloc/Free DBENTRY

DBENTRY *dbAl | ocEnt r y(DBBASE *pdbbase) ;
voi d dbFreeEntry(DBENTRY *pdbentry);

These routines alocate, initialize, and free DBENTRY structures. The user can allocate and free DBENTRY structures as
necessary. Each DBENTRY is, however, tied to a particular database.

dbAl | ocEntry and dbFr eeEnt ry act as a pair, i.e. the user calls dbAl | ocEnt ry to create a new DBENTRY and
calls dbFr eeEnt r y when done.

14.4.2 dbl nitEntry dbFinishEntry

voi d dbl ni t Ent ry(DBBASE * pdbbase, DBENTRY *pdbentry);
voi d dbFi ni shEnt ry(DBENTRY *pdbentry);

Theroutinesdbl ni t Ent ry and dbFi ni shEnt ry are provided in case the user wants to allocate a DBENTRY structure
on the stack. Note that the caler MUST call dbFi ni shEntry before returning from the routine that cals
dbl ni t Ent ry. An example of how to use these routinesis:

i nt xxx(DBBASE *pdbbase)

{
DBENTRY dbentry;
DBENTRY *pdbentry = &dbentry;
dbl ni t Entry(pdbbase, pdbentry);
dbFi ni shEnt ry(pdbentry);
}
14.4.3 dbCopyEntry

EPICS Release: R3.14.1
EPICS I0OC Application Developer’'s Guide 175

Chapter 14: Static Database Access
Read and Write Database

dbCopyEntry
Contents

DBENTRY *dbCopyEnt r y(DBENTRY *pdbentry);
voi d dbCopyEnt ryCont ent s(DBENTRY * pfrom DBENTRY *pt 0);

Theroutine dbCopyEnt r y allocates anew entry, viaacall to dbAl | ocEnt ry, copies the information from the original
entry, and returns the result. The caller must free the entry, viadbFr eeEnt r y when finished with the DBENTRY.

Theroutine dbCopyEnt r yCont ent s copiesthe contents of pfrom to pto. Code should never perform structure copies.

14.5 Read and Write Database

14.5.1 Read Database File

| ong dbReadDat abase(DBBASE **ppdbbase, const char *fil enane,
char *path, char *substitutions);

| ong dbReadDat abaseFP(DBBASE **ppdbbase, FI LE *f p,
char *path, char *substitutions);

| ong dbPat h(DBBASE *pdbbase, const char *path);

| ong dbAddPat h(DBBASE *pdbbase, const char *path);

dbReadDat abase and dbReadDat abaseFP both read a file containing database definitions as described in chapter
“Database Definitions’. If *ppdbbase is NULL, dbAl | ocBase is automatically invoked and the return address
assigned to * pdbbase. The only difference between the two routines is that one accepts afile name and the other a"FILE
*"_ Any combination of these routines can be called multiple times. Each adds definitions with the rules described in
chapter “Database Definitions’.

TheroutinesdbPat h and dbAddPat h specify paths for use by include statements in database definition files. These are
not normally called by user code.

14.5.2 Write Database Definitons

| ong dbWiteMenu(DBBASE *pdbbase, char *fil enanme, char *nmenuNane);

| ong dbWiteMenuFP(DBBASE *pdbbase, FI LE *fp, char *nmenuNane) ;

| ong dbWiteRecordType(DBBASE *pdbbase, char *fil enanme, char *recordTypeNane);
| ong dbWiteRecordTypeFP(DBBASE *pdbbase, FI LE *fp, char *recordTypeNane);
| ong dbWiteDevi ce(DBBASE *pdbbase, char *fil enane);

| ong dbWit eDevi ceFP(DBBASE *pdbbase, FILE *fp);

I ong dbWiteDriver(DBBASE *pdbbase, char *fil enane);

| ong dbWiteDriver FP(DBBASE *pdbbase, FILE *fp);

| ong dbWiteFuncti onFP(DBBASE *pdbbase, FI LE *fp);

| ong dbW it eBr eakt abl e(DBBASE *pdbbase, const char *fil enane);

| ong dbW it eBreakt abl eFP(DBBASE *pdbbase, FI LE *fp);

Each of these routines writes files in the same format accepted by dbReadDat abase and dbReadDat abaseFP. Two
versions of each type are provided. The only difference isthat one accepts a filename and the other a"FI LE*". Thus only
one of each type has to be described.

dbW i t eMenu writes the description of the specified menu or, if nenuNane isNULL, the descriptions of all menus.

176 EPICS I0OC Application Developer's Guide

Chapter 14: Static Database Access
Manipulating Record Types

dbW it eRecor dType writes the description of the specified record type or, if recor dTypeNane is NULL, the
descriptions of al record types.

dbW i t eDevi ce writes the description of al devices to stdout.
dbWi t eDri ver writesthe description of all driversto stdout.

dbW it eFunct i onFP writesthelist of al functions to the given open file (no filename version is provided).

14.5.3 Write Record I nstances

| ong dbWiteRecor d(DBBASE *pdbbase, char * file,
char *precordTypeNane,int |evel);

| ong dbW it eRecor dFP(DBBASE *pdbbase, FI LE *f p,
char *precordTypeNane,int |evel);

Each of these routines writes files in the same format accepted by dbReadDat abase and dbReadDat abaseFP. Two
versions of each type are provided. The only differenceisthat one accepts afilename and the other a“FI LE*". Thus only
one of each type has to be described.

dbW i t eRecor d writes record instances. If pr ecor dTypeNane is NULL, then the record instances for al record
types are written, otherwise only the records for the specified type are written. | evel has the following meaning:

» 0- Writeonly prompt fields that are different than the default value.
» 1- Writeonly the fields which are prompt fields.
e 2 - Writethe values of all fields.

14.6 Manipulating Record Types

14.6.1 Get Number of Record Types
int dbGet NRecordTypes(DBENTRY *pdbentry);

This routine returns the number of record types in the database.

14.6.2 L ocate Record Type

| ong dbFi ndRecor dType(DBENTRY *pdbentry,
char *recordTypeNane);

| ong dbFi rst Recor dType(DBENTRY *pdbentry);

| ong dbNext Recor dType(DBENTRY *pdbentry);

dbFi ndRecor dType locates a particular record type. dbFi r st Recor dType locates the first, in aphabetical order,
record type. Given that DBENTRY pointsto a particular record type, dbNext Recor dType locates the next record type.
Each routine returns O for success and a non zero status value for failure. A typical code segment using these routinesis:

status = dbFirstRecordType(pdbentry);
whil e(!status) {
/*Do sormet hi ng*/
status = dbNext RecordType(pdbentry)
}

EPICS Release: R3.14.1
EPICS IOC Application Developer’'s Guide 177

Chapter 14: Static Database Access
Manipulating Field Descriptions

14.6.3 Get Record Type Name

char *dbGet Recor dTypeNane(DBENTRY *pdbentry);

This routine returns the name of the record type that DBENTRY currently references. This routine should only be called
after a successful call to dbFi ndRecor dType, dbFi r st Recor dType, or dbNext Recor dType. It returns NULL if
DBENTRY does not point to arecord description.

14.7 Manipulating Field Descriptions

The routines described in this section all assume that DBENTRY references a record type, i.e. that
dbFi ndRecor dType, dbFi r st Recor dType, or dbNext Recor dType has returned success or that arecord instance
has been successfully located.

14.7.1 Get Number of Fields

int dbGet NFi el ds(DBENTRY *pdbentry,int dctonly);
Returns the number of fields for the record instance that DBENTRY currently references.

14.7.2 Locate Field

| ong dbFi rstFi el d(DBENTRY *pdbentry,int dctonly);
| ong dbNext Fi el d(DBENTRY *pdbentry,int dctonly);

These routines are used to locate fields. If any of these routines returns success, then DBENTRY references that field
description.

14.7.3 Get Field Type
int dbGetFiel dType(DBENTRY *pdbentry);

This routine returns the integer value for a DCT field type, see Section 14.2.3 on page 174, for a description of the field
types.

14.7.4 Get Field Name

char *dbCet Fi el dName(DBENTRY *pdbentry);

This routine returns the name of the field that DBENTRY currently references. It returns NULL if DBENTRY does not
point to afield.

14.7.5 Get Default Value

char *dbGet Def aul t (DBENTRY *pdbentry);

This routine returns the default value for the field that DBENTRY currently references. It returns NULL if DBENTRY
does not point to afield or if the default valueis NULL.

178 EPICS I0OC Application Developer's Guide

Chapter 14: Static Database Access
Manipulating Record Attributes

14.7.6 Get Field Prompt

char *dbGet Pronpt (DBENTRY *pdbentry);
i nt dbGet Pr onpt G oup(DBENTRY * pdbentry);

The dbGet Pronpt routine returns the character string prompt value, which describes the field. dbGet Pr onpt Gr oup
returns the field group as described in guigroup.h.

14.8 Manipulating Record Attributes

A record attribute is a "psuedo” field definition attached to arecord type. If a attribute value is assigned to a psuedo field
name then all record instances of that record type appear to have that field with the defined value. All attribute fields are
DCT_STRING fields.

Two field attributes are automatically created: RTYP and VERS. RTYP is set equal to ,the record type name. VERS is
initialized to the value "none specified" but can be changed by record support.

14.8.1 dbPutRecord
Attribute

| ong dbPut Recor dAttri but e(DBENTRY *pdbentry,
char *name, char *val ue)

This creates or modifies attribute nane with val ue.

14.8.2 dbGetRecord
Attribute

| ong dbGet Recor dAttri but e(DBENTRY *pdbentry, char *nane);

14.9 Manipulating Record I nstances

With the exception of dbFindRecord, each of the routines described in this section require that DBENTRY references a
valid record type, i.e. that dbFi ndRecor dType, dbFi r st Recor dType, or dbNext Recor dType has been called
and returned success.

14.9.1 Get Number of Records
int dbGet NRecords(DBENTRY *pdbentry);

Returns the number of record instances for the record type that DBENTRY currently references.

EPICS Release: R3.14.1
EPICS I0OC Application Developer’'s Guide 179

Chapter 14: Static Database Access
Manipulating Record Instances

14.9.2 Locate Record

| ong dbFi ndRecor d(DBENTRY *pdbentry, char *precordNane) ;
| ong dbFi rst Recor d(DBENTRY *pdbentry);
| ong dbNext Recor d(DBENTRY *pdbentry);

These routines are used to locate record instances. |f any of these routines returns success, then DBENTRY references the
record. dbFi ndRecor d can be called without DBENTRY referencing a valid record type. dbFi r st Record only
works if DBENTRY references a record type. The dbDunpRecor ds example given at the beginning of this chapter
shows how these routines can be used.

dbFi ndRecor d also calls dbFi ndFi el d if the record name includes a field name, i.e. it endsin “.XXX’. The routine
dbFoundFi el d returns (TRUE, FALSE) if the field (was, was not) found. If it was not found, then dbFi ndFi el d must
be called before individual fields can be used.

14.9.3 Get Record Name
char *dbGet Recor dName(DBENTRY *pdbentry);

This routine only works properly if called after dbFi ndRecor d, dbFi r st Recor d, or dbNext Recor d has returned
success.

14.9.4 Create/Delete/Free Record

| ong dbCreat eRecor d(DBENTRY *pdbentry, char *precordNane);
| ong dbDel et eRecor d(DBENTRY *pdbentry);
| ong dbFr eeRecor ds(DBBASE *pdbbase);

dbCr eat eRecor d, which assumes that DBENTRY references a valid record type, creates a new record instance and
initializes it as specified by the record description. If it returns success, then DBENTRY references the record just created.
dbDel et eRecor d deletes asingle record instance/. dbFr eeRecor ds deletes all record instances.

14.9.5 Copy Record

| ong dbCopyRecor d(DBENTRY *pdbentry, char *newRecor dNane
int overWite(OK)

This routine copies the record instance currently referenced by DBENTRY. Thus it creates and new record with the name
newRecor dNanme that is of the same type as the original record and copies the original records field values to the new
record. If newRecor dNane already exists and over Wi t eOK is true, then the original newRecor dNane is deleted
and recreated. If dbCopyRecor d completes successfully, DBENTRY references the new record.

14.9.6 Rename Record
| ong dbRenaneRecor d(DBENTRY *pdbentry, char *newnane)

This routine renames the record instance currently referenced by DBENTRY. If dbRenaneRecor d completes
successfully, DBENTRY references the renamed record.

14.9.7 Record Visibility

These routines are for use by graphical configuration tools.

180 EPICS I0OC Application Developer's Guide

Chapter 14: Static Database Access
Manipulating Menu Fields

| ong dbVi si bl eRecor d(DBENTRY *pdbentry);
| ong dbl nvi si bl eRecor d(DBENTRY * pdbentry);
i nt dbl sVisi bl eRecor d(DBENTRY *pdbentry);

dbVi si bl eRecord sets a record to be visble dblnvisibleRecord sets a record invisible
dbl sVi si bl eRecor d returns TRUE if arecord is visible and FAL SE otherwise.

14.9.8 Find Field

| ong dbFi ndFi el d(DBENTRY *pdbentry, char *pfi el dNane);
i nt dbFoundFi el d(DBENTRY *pdbentry);

Given that a record instance has been located, dbFi ndFi el d finds the specified field. If it returns success, then
DBENTRY references that field. dbFoundFi el d returns (FALSE, TRUE) if (no field instance is currently available, a
field instance is available).

14.9.9 Get/Put Field Values

char *dbGet Stri ng(DBENTRY *pdbentry);

| ong dbPut String(DBENTRY *pdbentry, char *pstring);
char *dbVerify(DBENTRY *pdbentry, char *pstring);
char *dbGet Range(DBENTRY *pdbentry);

i nt dbl sDef aul t Val ue(DBENTRY *pdbentry);

These routines are used to get or change field values. They work on all the database field types except DCT_NQACCESS
but should NOT be used to prompt the user for information for DCT_MENU, DCT__MENUFORM or DCT_LI NK_xxx fields.
dbVeri fy returns (NULL, amessage) if the string is (valid, invalid). Please note that the strings returned are volatile, i.e.
the next call to aroutines that returns a string will overwrite the value returned by a previous call. Thusit is the caller’s
responsibility to copy the strings if the value must be kept.

DCT_MENU, DCT_MENUFCRM and DCT_LI NK_xxx fields can be manipulated via routines described in the following
sections. If, however dbCet String and dbPut Stri ng are used, they do work correctly. For these field types
dbGet St ri ng and dbPut St ri ng areintended to be used only for creating and restoring versions of a database.

14.10 Manipulating Menu Fields

These routines should only be used for DCT_MENU and DCT_MENUFCRM fields. Thus they should only be called if
dbFi ndFi el d, dbFi rstFi el d, or dbNext Fi el d has returned success and the field type is DCT_MENU or
DCT_MENUFCRM

14.10.1 Get Number of Menu Choices
i nt dbGet NMenuChoi ces(DBENTRY *pdbentry);

This routine returns the number of menu choices for menu.

14.10.2 Get Menu Choice
char **dbGet MenuChoi ces(DBENTRY *pdbentry);

EPICS Release: R3.14.1
EPICS I0OC Application Developer’'s Guide 181

Chapter 14: Static Database Access
Manipulating Link Fields

This routine returns the address of an array of pointers to strings which contain the menu choices.

14.10.3 Get/Put Menu

int dbGet Menul ndex(DBENTRY *pdbentry);
| ong dbPut Menul ndex(DBENTRY *pdbentry,int index);
char *dbGet MenuSt ri ngFr om ndex(DBENTRY *pdbentry,int index);
i nt dbGet Menul ndexFronst ri ng(DBENTRY *pdbentry,
char *choice);

NOTE: These routines do not work if the current field value contains a macro definition.

dbGet Menul ndex returnstheindex of the menu choice for the current field, i.e. it specifies which choice to which the
field iscurrently set. dbPut Menul ndex setsthe field to the choice specified by the index.

dbGet MenuSt ri ngFr o ndex returns the string value for a menu index. If the index value is invalid NULL is
returned. dbGet Menul ndexFr onSt r i ng returns the index for the given string. If the string is not avalid choice a-1
is returned.

14.10.4 L ocate Menu
dbMenu *dbFi ndMenu(DBBASE *pdbbase, char *nane);

dbFi ndMenu is most useful for runtime use but is a static database access routine. This routine just finds a menu with the
given name.

14.11 Manipulating Link Fields

14.11.1 Link Types

Links are the most complicated types of fields. A link can be a constant, reference afield in another record, or can refer to
a hardware device. Two additional complications arise for hardware links. The first is that field DTYP, which is a menu
field, determines if the | NP or QUT field is a device link. The second is that the information that must be specified for a
device link is bus dependent. In order to shelter database configuration tools from these complications the following is
done for static database access.

* Static database access will treat DTYP as a DCT_ MENUFCORMfield.

» The information for the link field related to the DCT_MENUFCRM can be entered via a set of form manipulation
routines associated with the DCT_MENUFCRMfield. Thus the link information can be entered via the DTYP field
rather than thelink field.

» The Form routines described in the next section can also be used with any link field.
Each link is one of the following types:

* DCT_LINK_CONSTANT: Constant value.
e DCT_LINK_PV: A process variable link.
* DCT_LINK_FORM: A link that can only be processed via the form routines described in the next chapter.

Database configuration tools can change any link between being a constant and a process variable link. Routines are
provided to accomplish these tasks.

182 EPICS I0OC Application Developer's Guide

Chapter 14: Static Database Access
Manipulating MenuForm Fields

The routines dbGet St ri ng, dbPut Stri ng, and dbVeri fy can be used for link fields but the form routines can be
used to provide afriendlier user interface.

14.11.2 All Link Fields

int dbGet NLi nks(DBENTRY *pdbentry);
| ong dbGCet Li nkFi el d(DBENTRY *pdbentry,int index)
int dbCetLinkType(DBENTRY *pdbentry);

These are routines for manipulating DCT_xxxLI NK fields. dbGet NLi nks and dbGet Li nkFi el d are used to walk
through all the link fields of a record. dbGet Li nkType returns one of the values: DCT_LI NK_CONSTANT,
DCT_LI NK_PV, DCT_LI NK_FORM or thevalue -1 if it iscalled for anillegal field.

14.11.3 Constant and Process Variable Links

| ong dbCvtLi nkToConst ant (DBENTRY *pdbentry);
| ong dbCvtLi nkToPvl i nk(DBENTRY *pdbentry);

These routines should be used for modifying DCT_LI NK_CONSTANT or DCT_LI NK_PV links. They should not be used
for DCT_LI NK_FORMIinks, which should be processed via the associated DCT_ MENUFCRMfield described above.

14.12 Manipulating MenuForm Fields

These routines are used with a DCT_MENUFCRM field (a DTYP field) to manipulate the associated DCT_I NLI NK or
DCT_QUTLI NK field. They can also be used on any DCT_| NLI NK, DCT_QUTLI NK, or DCT_FWDLI NK field.

14.12.1 Alloc/Free Form

i nt dbAl | ocFor m(DBENTRY *pdbentry)
| ong dbFr eeFor m{ DBENTRY *pdbentry)

dbAl | ocFor mallocates storage needed to manipulate forms. The return value is the number of elementsin the form. If
the current field value contains a macro definition, the number of linesreturned is 0.

14.12.2 Get/Put Form

char **dbGCet For nPr onpt (DBENTRY *pdbentry)
char **dbCet For nVal ue(DBENTRY *pdbentry)
| ong dbPut For m DBENTRY *pdbentry, char **val ue)

dbGet For nPr onpt returns a pointer to an array of pointers to character strings specifying the prompt string.
dbGet For nVal ue returns the current values. dbPut For m which can use the same array of values returned by
dbGet For m sets new values.

14.12.3 Verify Form
char **dbVeri f yFor m{ DBENTRY *pdbentry, char **val ue)

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 183

Chapter 14: Static Database Access
Find Breakpoint Table

dbVer i f yFor mcan be called to verify user input. It returns NULL if no errors are present. If errors are present, it returns
apointer to an array of character strings containing error messages. Lines in error have amessage and correct lines have a
NULL string.

14.12.4 Get Related Field

char *dbGet Rel at edFi el d(DBENTRY *pdbentry)

This routine returns the field name of the related field for aDCT_MENUFORM field. If it is called for any other type of
field it returns NULL.

14.12.5 Example

The following is code showing use of these routines:

char **val ue;
char **pronpt;
char **error;
int n;

n = dbAl | ocFor m(pdbentry);
i f(n<=0) {<Error>}
prompt = dbGet For mPronpt (pdbentry);
val ue = dbGCet For nVal ue(pdbentry);
for(i=0; i<n; i++) {
printf("% (%) : \n",pronmpt[i],value[i]);
/*The follw ng accepts input from stdin*/
scanf ("9%”,val ue[i]);
}
error = dbVerifyForn(pdbentry, val ue);
if(error) {
for(i=0; i<n; i++) {
if(error[i]) printf("Error: % (%) %\n", pronpt[i],
value[i],error[i]);
}
}else {
dbPut For m(pdbent ry, val ue)

}
dbFr eeFor n{ pdbentry) ;

All value strings are MAX_STRI NG_SI ZE in length.

A set of form calls for a particular DBENTRY, MUST begin with a call to dbAl | ocFor mand end with a call to
dbFr eeFor m The values returned by dbGet For nPr onpt , dbGet For nVal ue, and dbVer i f yFor mare valid only
between the calls to dbAl | ocFor mand dbFr eeFor m

14.13 Find Breakpoint Table

br kTabl e *dbFi ndBr kTabl e(DBBASE *pdbbase, char *nane)

184 EPICS I0OC Application Developer's Guide

Chapter 14: Static Database Access
Dump Routines

This routine returns the address of the specified breakpoint table. It is normally used by the runtime breakpoint conversion
routines so will not be discussed further.

14.14 Dump Routines

voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d

dbDunpPat h(DBBASE * pdbbase)

dbDunpRecor d(DBBASE *pdbbase, char *precordTypeNane,int |evel);
dbDunpMenu(DBBASE *pdbbase, char *nenuNane) ;

dbDunpRecor dType(DBBASE *pdbbase, char *recordTypeNane);
dbDunpFi el d(DBBASE *pdbbase, char *recordTypeNane, char *fnane);
dbDunpDevi ce(DBBASE *pdbbase, char *recor dTypeNane) ;

dbDunpDri ver (DBBASE *pdbbase);

dbDunpFunct i on(DBBASE *pdbbase) ;

dbDunpBr eakt abl e(DBBASE *pdbbase, char *nane);

dbPvdDunp(DBBASE *pdbbase, i nt verbose);

dbReport Devi ceConfi g(DBBASE *pdbbase, FI LE *report);

These routines are used to dump information about the database. dbDunpRecor d, dbDunpMenu, dbDunpDr i ver
and dbDunpFunction just cal the corresponding dbWritexxxFP routine specifying stdout for the file.

dbDunpRe

cor dType, dbDunpFi el d, and dbDunpDevi ce give interna information useful on an ioc. These

commands can be executed viaiocsh. Just specify pdbbase as the first argument.

14.15 Examples

14.15.1 Expand Include

Thisexampleislikethe dbExpand utility, except that it doesn’t allow path or macro substitution options, It reads a set of
database definition files and writes al definitions to stdout. All include statements appearing in the input files are

expanded.

/* dbExp
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

DBBASE *

int main
{
| ong
i nt
i nt

i f(ar

and.c */
<stdlib. h>

<st ddef. h>
<stdi o. h>

<epi csPrint. h>
<dbSt ati cLi b. h>

pdbbase = NULL;

(int argc, char **argv)
st at us;
i
arg;

gc<?2) {

EPICS Rele

ase: R3.14.1
EPICS IOC Application Developer’'s Guide 185

Chapter 14: Static Database Access
Examples

printf("usage: expandlnclude filel.db file2.db...\n");
exit(0);
}
for(i=1; i<argc; i++) {
status = dbReadDat abase(&dbbase, argv[i], NULL, NULL);
i f(!status) continue;
fprintf(stderr,"For input file %",argv[i]);
err Message(status, "from dbReadDat abase") ;
}
dbW it eMenuFP(pdbbase, st dout, 0) ;
dbW it eRecor dTypeFP(pdbbase, st dout, 0) ;
dbW it eDevi ceFP(pdbbase. st dout) ;
dbWiteDri ver FP(pdbbase. st dout) ;
dbW i t eRecor dFP(pdbbase, st dout, 0, 0) ;
return(0);

14.15.2 dbDumpRecords
NOTE: This exampleis similar but not identical to the actual dbDunpRecor ds routine.

The following example demonstrates how to use the database access routines. The example shows how to locate each
record and display each field.

voi d dbDunpRecor ds(DBBASE *pdbbase)
{

DBENTRY *pdbentry;

| ong status;

pdbentry = dbAl | ocEntry(pdbbase);
status = dbFirstRecordType(pdbentry);
if(status) {printf(”"No record descriptions\n”);return;}
whil e(!status) {
printf(”"record type: %", dbGet Recor dTypeNane(pdbentry));
status = dbFirstRecord(pdbentry);
if(status) printf(” No Records\n");
else printf(”"\n Record: %s\n", dbGet Recor dNane(pdbentry));
whil e(!status) {
status = dbFirstFiel d(pdbentry, TRUE)
i f(status) printf(” No Fields\n");
whil e(!status) {
printf(” %: %", dbGet Fi el dNane(pdbentry),
dbGet Stri ng(pdbentry));
st at us=dbNext Fi el d(pdbent ry, TRUE)

}
status = dbNext Record(pdbentry);

}
status = dbNext RecordType(pdbentry);

}
printf(”"End of all Records\n");

dbFreeEntry(pdbentry);

186 EPICS I0OC Application Developer's Guide

Chapter 14: Static Database Access
Examples

EPICS Release: R3.14.1
EPICS I0OC Application Developer’'s Guide 187

Chapter 14: Static Database Access
Examples

188 EPICS I0OC Application Developer's Guide

Chapter 15: Runtime Database Access

15.1 Overview

This chapter describes routines for manipulating and accessing an initialized |OC database.

This chapter is divided into the following sections:

Database related include files. All of interest are listed and those of general interest are discussed briefly.
Runtime database access overview.

Description of each runtime database access routine.

Runtime modification of link fields.

Lock Set Routines

Database to Channel Access Routines

Old Database Access. Thisisthe interface still used by Channel Access and thus by Channel Access clients.

15.2 Database I nclude Files

Directory base/ i ncl ude contains anumber of database related include files. Of interest to this chapter are:

dbDefs.h: Miscellaneous database related definitions
dbFldTypes.h: Field type definitions

dbAccess.h: Runtime database access definitions.
link.h: Definitions for link fields.

15.2.1 dbDefs.h

Thisfile contains a number of database related definitions. The most important are:

PVNAME_SZ: The number of characters alowed in the record name.

FLDNAME_SZ: The number of characters formerly allowed in afield name. This restriction no longer appliesin
any base software except dbCalLi nk.c. THIS SHOULD BE FIXED. It is unknown what effect removing this
restriction will have on Channel Access Clients.

MAX_STRING_SIZE: The maximum string size for string fields or menu choices.

DB_MAX_CHOICES: The maximum number of choices for a choice field.

15.2.2 dbFIdTypes.h

Thisfile defines the possible field types. A field'stype is perhaps its most important attribute. Changing the possible field
typesis afundamental change to the I0C software, because many 10C software components are aware of the field types.

EPICS Release: R3.14.1

EPICS I0OC Application Developer’s Guide 189

Chapter 15: Runtime Database Access
Database Include Files

Thefield types are:

* DBF_STRING: ASCII character string
» DBF_CHAR: Signed character
 DBF_UCHAR: Unsigned character
 DBF_SHORT: Short integer

» DBF_USHORT: Unsigned short integer
 DBF_LONG: Long integer
 DBF_ULONG: Unsigned long integer
» DBF_FLOAT: Floating point number

» DBF_DOUBLE: Double precision float
« DBF_ENUM: An enumerated field
 DBF_MENU: A menu choicefield

» DBF_DEVICE: A device choicefield

* DBF_INLINK: Input Link

* DBF_OUTLINK: Output Link
 DBF_FWDLINK: Forward Link

* DBF_NOACCESS: A privatefield for use by record access routines

A field of type DBF_STRI NG ..., DBF_DOUBLE can be a scalar or an array. A DBF_STRI NG field contains a NULL
terminated ascii string. The field types DBF_CHAR, ..., DBF_DOUBLE correspond to the standard C data types.

DBF_ENUMis used for enumerated items, which is analogous to the C language enumeration. An example of an enum
fieldisfield VAL of amulti bit binary record.

The field types DBF_ENUM DBF_MENU, and DBF_DEVI CE all have an associated set of ASCII strings defining the
choices. For a DBF_ENUM the record support modul e supplies values and thus are not available for static database access.
The database access routines |ocate the choice strings for the other types.

DBF_I NLI NK and DBF_QUTLI NK specify link fields. A link field can refer to asignal located in a hardware module, to a
field located in a database record in the same |OC, or to afield located in arecord in another IOC. A DBF_FWDLI NK can
only refer to arecord in the same IOC. Link fields are described in alater chapter.

DBF_I NLI NK (input), DBF_QUTLI NK (output), and DBF_FWDLI NK (forward) specify that the field isalink structure as
definedin | i nk. h. There are three classes of links:

1. Constant - The value associated with the field is a floating point value initialized with a constant value. This is
somewhat of a misnomer because constant link fields can be modified viadbPut Fi el d or dbPut Li nk.

2. Hardwarelinks - Thelink contains a data structure which describes asignal connected to a particular hardware bus.
Seel i nk. h for adescription of the bus types currently supported.

3. Process Variable Links - Thisis one of three types:
a PV_LINK: The process variable name.
b. DB_LINK: A referenceto aprocess variable in the same |OC.
c. CA_LINK: A reference to avariable located in another 10C.

DCT aways creates a PV_LI NK. When the IOC is initialized each PV_LI NK is converted either to a DB _LI NK or a
CA LI NK

DBF_NQACCESS fields are for private use by record processing routines.

15.2.3 dbAccess.h

Thisfile isthe interface definition for the run time database access library, i.e. for the routines described in this chapter.

190 EPICS I0OC Application Developer's Guide

Chapter 15: Runtime Database Access
Runtime Database Access Overview

An important structure defined in this header file is DBADDR

typedef struct dbAddr{
struct dbConmmon *precord;/* address of record*/

voi d *pfi el d; /* address of field*/

voi d *pf | dDes; /* address of struct fldDes*/

voi d *asPvt ; /* Access Security Private*/

| ong no_elements; /* nunber of elenments (arrays)*/

short field type; /* type of database field*/

short field size; /* size (bytes) of the field*/

short speci al ; /* special processing*/

short dbr _field_type; /*optiml database request type*/
} DBADDR,;

 precord: Address of record. Note that its type is a pointer to a structure defining the fields common to all record
types. The common fields appear at the beginning of each record. A record support module can cast pr ecor d to
point to the specific record type.

« pfield: Address of the field within the record. Note that pf i el d provides direct access to the data value.

 pfldDes: This points to a structure containing all details concerning the field. See Chapter “Database Structures’
for details.

 asPvt: A field used by access security.

* no_elements: A string or numeric field can be either a scalar or an array. For scalar fieldsno_el ermrent s hasthe
value 1. For array fields it is the maximum number of elements that can be stored in the array.

« field_type: Field type.

» field_size: Size of one element of the field.

 gpecial: Some fields require special processing. This specifies the type. Special processing is described later in this
manual.

 dbr_field_type: This specifies the optimal database request type for thisfield, i.e. the request type that will require
the least CPU overhead.

NOTE: pfi el d, no_el ements,field_type,field_size,special,anddbr_field_type canall be set by
record support (cvt _dbaddr). Thusfi el d_type, fi el d_si ze, and speci al can differ from that specified by
pf | dDes.

15.2.4link.h
This header file describes the various types of link fields supported by EPICS.

15.3 Runtime Database Access Overview

With the exception of record and device support, all accessto the database is viathe channel or database access routines.
Even record support routines access other records only via database or channel access. Channel Access, in turn, accesses
the database via database access.

Perhaps the easiest way to describe the database access layer is to list and briefly describe the set of routines that
constitute database access. This provides agood look at the facilities provided by the database.

Before describing database access, one caution must be mentioned. The only way to communicate with an |OC database
from outside the |OC is via Channel Access. In addition, any special purpose software, i.e. any software not described in
this document, should communicate with the database via Channel Access, not database access, even if it resides in the

EPICS Release: R3.14.1
EPICS I0OC Application Developer's Guide 191

Chapter 15: Runtime Database Access
Runtime Database Access Overview

same |OC as the database. Since Channel Access provides network independent access to a database, it must ultimately
call database access routines. The database accessinterface was changed in 1991, but Channel Access was never changed.
Instead a module was written which translates old style database access calls to new. This interface between the old and
new style database access callsis discussed in the last section of this chapter.

The database access routines are:
* dbNameToAddr: Locate a database variable.

» dbGetField: Get values associated with a database variable.

» dbGetLink: Get value of field referenced by database link (Macro)

» dbGetLinkValue: Get value of field referenced by database link (Subroutine)
» dbGet: Routine called by dbGet Li nkVal ue and dbGet Fi el d

» dbPutField: Change the value of a database variable.

» dbPutLink: Change value referenced by database link (Macro)

» dbPutLinkValue: Change value referenced by database link (Subroutine)
 dbPut: Routine called by dbPut xxx functions.

» dbPutNotify: A database put with notification on completion

» dbNotifyCancel: Cancel dbPut Not i fy

» dbNotifyAdd: Add anew record for to notify set.

» dbNotifyCompletion: Announce that put notify is complete.

 dbBuffer Size: Determine number of bytesin request buffer.
» dbValueSize: Number of bytesfor avalue field.

» dbGetRset: Get pointer to Record Support Entry Table
 dblsValueField: Isthisfield the VAL field.

» dbGetFieldlndex: Get field index. Thefirst field in arecord hasindex O.
» dbGetNelement: Get number of elementsin the field

» dblsLinkConnected: Isthelink field connected.

» dbGetPdbAddrFromLink: Get address of DBADDR.

» dbGetLinkDBFtype: Get field type of link.

» dbGetControlLimits: Get Control Limits.

» dbGetGraphicLimits: Get Graphic Limits.

o dbGetAlarmLimits: Get Alarm Limits

» dbGetPrecision: Get Precision

» dbGetUnits: Get Units

» dbGetNelements: Get Number of Elements

* dbGetSevr: Get Severity

» dbGetTimeStamp: Get Time Stamp

» dbPutAttribute Give avalueto arecord attribute.

» dbScanPassive: Process record if it is passive.

» dbScanLink: Process record referenced by link if it is passive.
* dbProcess: Process Record

» dbScanFwdLink: Scan aforward link.

192 EPICS I0OC Application Developer's Guide

Chapter 15: Runtime Database Access
Runtime Database Access Overview

15.3.1 Database Request Types and Options

Before describing database access structures, it is necessary to describe database request types and request options. When
dbPut Fi el d or dbGet Fi el d are called one of the arguments is a database request type. This argument has one of the
following values:

* DBR_STRING: VaueisaNULL terminated string

 DBR_CHAR: Valueisasigned char

* DBR_UCHAR: Vaueisan unsigned char

 DBR_SHORT: Vaueisashort integer

* DBR_USHORT: Valueis an unsigned short integer

 DBR_LONG: Valueisalong integer

 DBR_ULONG: Vaueisan unsigned long integer

* DBR_FLOAT: Valueis an |EEE floating point value

- DBR_DOUBLE: Vaueisan |EEE double precision floating point value
« DBR_ENUM: Valueis ashort which isthe enum item

* DBR_PUT_ACKT: Vaueisan unsigned short for setting the ACKT.
 DBR_PUT_ACKS: Valueis an unsigned short for global aarm acknowledgment.

The request types DBR_STRI NG,..., DBR_DOUBLE correspond exactly to valid data types for database fields. DBR_ENUM
corresponds to database fields that represent a set of choices or options. In particular it corresponds to the fields types
DBF_ENUM DBF_DEVI CE, and DBF_MENU. The complete set of database field types are defined in dbFI dTypes. h.
DBR_PUT_ACKT and DBR_PUT_ACKS are used to perform global aarm acknowledgment.

dbCet Fi el d also accepts argument options which is amask containing a bit for each additional type of information the
caller desires. The complete set of optionsis:

* DBR_STATUS: returnsthe alarm status and severity

« DBR_UNITS: returns a string specifying the engineering units
» DBR_PRECISION: returns along integer specifying floating point precision.
* DBR_TIME: returnsthetime

e DBR_ENUM _STRS: returns an array of strings

» DBR_GR _LONG: returnsgraphicsinfo aslong values
 DBR_GR_DOUBLE: returns graphicsinfo as double values

« DBR_CTRL_LONG: returns control info aslong values

« DBR_CTRL_DOUBLE: returns control info as double values
* DBR_AL_LONG: returnsaarm info aslong values

« DBR_AL _DOUBLE: returnsalarm info as double values

15.3.2 Options
Example

ThefiledbAccess. h contains macros for using options. A brief example should show how they are used. The following
example defines a buffer to accept an array of up to ten float values. In addition it contains fields for options
DBR_STATUS and DBR_TI ME.

struct buffer {
DBRst at us
DBRt i me
float val ue[10];
} buffer;

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 193

Chapter 15: Runtime Database Access
Database Access Routines

The associated dbCet Fi el d call is:
| ong options, nunber _el enent s, st at us;
options = DBR_STATUS | DBR_TI ME;

nunber el ements = 10;
status = dbGCet Fi el d(paddr, DBR_FLQOAT, &buf f er, &opt i ons, &unber _el enent s) ;

Consult dbAccess. h for acomplete list of macros.

Structure dbAddr contains afield dbr _fi el d_t ype. Thisfield is the database request type that most closely matches
the database field type. Using this request type will put the smallest load on the IOC.

Channel Access provides routines similar to dbCet Fi el d, and dbPut Fi el d. It provides remote access to
dbGet Fi el d, dbPut Fi el d, and to the database monitors described below.

15.3.3 ACKT and ACKS

Therequest types DBR_PUT _ACKT and DBR_PUT _ACKS are used for global alarm acknowledgment. The alarm handler
uses these requests. For each of these types the user (normally channel access) passes an unsigned short value. This value
represents:

DBR_PUT_ACKT - Do transient alarms have to be acknowledged? (0,1) means (no, yes).

DBR_PUT_ACKS - The highest alarm severity to acknowledge. If the current alarm severity is less then or equal to this
value the alarm is acknowledged.

15.4 Database Access Routines

15.4.1 dbNameToAddr

L ocate a process variable, format:

| ong dbNanmeToAddr (
char *pname, /*ptr to process variable nane */
struct dbAddr *paddr);

The most important goal of database access can be stated simply: Provide quick access to database records and fields
within records. The basic rules are:

« Cal dbNanmeToAddr once and only once for each field to be accessed.
» Read field valuesviadbGet Fi el d and write valuesviadbPut Fi el d.

The routines described in this subsection are used by channel access, sequence programs, etc. Record processing routines,
however, use the routines described in the next section rather then dbCGet Fi el d and dbPut Fi el d.

Given a process variable name, this routine locates the process variable and fills in the fields of structure dbAddr. The
format for a process variable nameis:

“<record_nane>. <fi el d_name>"
For example the value field of arecord with record name sanpl e_nan® is:
“sanpl e_nane. VAL".

Therecord nameis case sensitive. Field names always consist of all upper case letters.

194 EPICS I0OC Application Developer's Guide

Chapter 15: Runtime Database Access
Database Access Routines

dbNaneToAddr locates arecord via a process variable directory (PVD). It fills in a structure (dbAddr) describing the
field. dbAddr contains the address of the record and also the field. Thus other routines can locate the record and field
without a search. Although the PVD allows the record to be located via a hash algorithm and the field within arecord via
a binary search, it still takes about 80 microseconds (25MHz 68040) to located a process variable. Once located the
dbAddr structure allows the process variable to be accessed directly.

15.4.2 Get Routines

15.4.2.1 dbGetField
Get values associated with a process variable, format:

| ong dbGet Fi el d(
struct dbAddr *paddr,
short dbrType, [/* DBR xxx */
voi d *pbuffer, /[/*addr of returned data */
| ong *options, [/*addr of options */
| ong *nRequest, [/*addr of nunber of elenents */
voi d *pfl); [/*used by nonitor routines */

Thus routine locks, calls dbGet , and unlocks.

15.4.2.2 dbGetLink and dbGetLinkValue
Get value from the field referenced by a database link, format:

[ong dbGCet Li nk(
struct db_link *pdbLink,/*addr of database |ink*/
short dbrType,/* DBR_Xxx*/
void *pbuffer,/*addr of returned data*/
long *options,/*addr of options*/
long *nRequest);/*addr of nunber of elenents desired*/

NOTES:
1) options can be NULL if no options are desired.
2) nRequest can be NULL for a scal ar.

dbGet Li nk is actually a macro that calls dbGet Li nkVal ue. The macro skips the call for constant links. User code
should never call dbGet Li nkVal ue.

Thisroutineis called by database access itself and by record support and/or device support routinesin order to get values
for input links. The value can be obtained directly from other records or via a channel access client. This routine honors
the link options (process and maximize severity). In addition it has code that optimizes the case of no options and scalar.

15.4.2.3 dbGet
Get values associated with a process variable, format:

l ong dbGet (
struct dbAddr*paddr,
short dbrType, /* DBR _xxx*/
void *pbuffer,/*addr of returned data
long *options,/*addr of options*/
I ong *nRequest,/*addr of nunber of el enents*/
void *pfl); /*used by nonitor routines*/

EPICS Release: R3.14.1
EPICS I0OC Application Developer's Guide 195

Chapter 15: Runtime Database Access
Database Access Routines

Thus routine retrieves the data referenced by paddr and convertsit to the format specified by dbr Type.

"opt i ons” is aread/write field. Upon entry to dbGet , opt i ons specifies the desired options. When dbGet Fi el d
returns, opt i ons specifies the options actually honored. If an option is not honored, the corresponding fields in buffer
arefilled with zeros.

"nRequest " isalso aread/write field. Upon entry to dbGet it specifies the maximum number of data elementsthe caller
iswilling to receive. When dbGet returns it equals the actual number of elements returned. It is permissible to request
zero elements. Thisis useful when only option datais desired.

"pf | " isafield used by the Channel Access monitor routines. All other users must set pf | =NULL.

dbGet callsone of anumber of conversion routines in order to convert data from the DBF types to the DBR types. It calls
record support routines for special cases such as arrays. For example, if the number of field elementsis greater then 1 and
record support routine get _ar ray_i nf o exists, thenit is called. It returns two values: the current number of valid field
elements and an offset. The number of valid elements may not match dbAddr.no_el ement s, which is really the
maximum number of elements allowed. The offset isfor use by records which implement circular buffers.

15.4.3 Put Routines

15.4.3.1 dbPutField
Change the value of a process variable, format:

| ong dbPut Fi el d(
struct dbAddr *paddr,
short dbrType, /* DBR_xxx*/
void *pbuffer,/*addr of data*/
I ong nRequest);/*nunber of elenents to wite*/

This routine is responsible for accepting data in one of the DBR_xxx formats, converting it as necessary, and modifying
the database. Similar to dbGCet Fi el d, this routine calls one of a number of conversion routines to do the actua
conversion and relies on record support routines to handle arrays and other special cases.

It should be noted that routine dbPut does most of the work. The actual algorithm for dbPut Fi el d is:

1. If the DI SPfield is TRUE then, unlessit isthe DI SP field itself which is being modified, the field is not written.
2. Therecord islocked.
3. dbPut iscalled.
4. If thedbPut is successful then:
If thisisthe PROCfield or if both of the following are TRUE: 1) the field is a process passive field, 2) the record is
passive.
a. If therecord is aready active ask for the record to be reprocessed when it completes.
b. Call dbScanPassi ve after setting put f TRUE to show the process request came from dbPut Fi el d.
5. Therecord is unlocked.

15.4.3.2 dbPutLink and dbPutLinkValue
Change the value referenced by a database link, format:

[ong dbPut Li nk(
structdb_Iink *pdbLink,/*addr of database Iink*/
short dbrType, /* DBR_Xxx*/
void *pbuffer,/*addr of data to wite*/
long nRequest);/*nunber of elenents to wite*/

196 EPICS I0OC Application Developer's Guide

Chapter 15: Runtime Database Access
Database Access Routines

dbPut Li nk is actually a macro that calls dbPut Li nkVal ue. The macro skips the call for constant links. User code
should never call dbPut Li nkVal ue.

Thisroutineis called by database access itself and by record support and/or device support routines in order to put values
into other database records via output links.

For Channel Accesslinksit callsdbCaPut Li nk.
For database links it performs the following functions:

1. CallsdbPut .
2. Implements maximize severity.

3. If thefield being referenced is PROC or if both of the following are true: 1) pr ocess_passi ve is TRUE and 2)
the record is passive then:
a If therecord is already active because of a dbPut Fi el d request then ask for the record to be reprocessed
when it compl etes.
b. otherwise call dbScanPassi ve.

15.4.3.3 dbPut
Put avalue to a database field, format:

[ong dbPut (
struct dbAddr *paddr,
short dbrType, /* DBR_Xxx*/
void *pbuffer,/*addr of data*/
long nRequest);/*nunber of elenents to wite*/

This routine is responsible for accepting data in one of the DBR_xxx formats, converting it as necessary, and modifying
the database. Similar to dbGet , this routine calls one of a number of conversion routines to do the actual conversion and
relies on record support routines to handle arrays and other special cases.

15.4.4 Put Notify Routines

dbPut Not i fy is a request to notify the caller when all records that are processed as a result of a put complete
processing. Complications occur because of record linking and asynchronous records. A put can cause an entire chain of
records to process. If any record is an asynchronous record then record compl etion means asynchronous completion.

The following rules are implemented:

1. The user code must allocate a putNotify control block. If aputNotify isalready in use, i.e. a dbPutNotify has been
issued and the userCallbach has not been called, it isillegal to issue a new dbPutNotify with the same putNotify
control block. Any such attempt will cause an assert failure.

2. The userCallback routine will be always be called unlessdbNot i f yCancel iscalled. The userCallback is called
when the dbPutNotify is complete. The user is then free to reuse or delete the putNotify control block. The user
supplied callback is called when all processing is complete or when an error is detected. If everything completes
synchronously the callback routine will be called BEFORE dbPut Not i fy returns.The userCallback is called
without anything locked

3. If the user calls dbNotifyCancel then the userCallback will NOT be called after dbNotifyCancel returns. It may get
called while dbNotifycancel is active. Thus after dbNotifyCancel returns the user may reuse or delete the putNotify
control block.

4. If aputNotify is aready active on the record associated with the putNotify, the new putNotify is put on arestart list
and automatically restarted.

5. If the record associated with the putNotify is already active for some other reason, the putNotify takes ownership of
the record and starts the put request when the record completes processing.

EPICS Release: R3.14.1
EPICS I0OC Application Developer's Guide 197

Chapter 15: Runtime Database Access
Database Access Routines

6. In general a set of records may be processed as aresult of asingledbPut Not i fy. If arecord in the set isfound to
be active, either because PACT istrue or because a putNotify already owns the record, then that record is not made
part of the set of records that must complete before the putNotify request compl etes.

15.4.4.1 dbPutNotify
Perform a database put and notify when record processing is compl ete.
Format:

voi d dbPut Notify(putNotify *pputnotify);

where PUTNOTI FY is
t ypedef enum {
put Not i f yOK,
put Not i f yCancel ed,
put Noti f yBl ocked,
put Noti f yError
}put Not i f ySt at us;

typedef struct putNotify{

voi d (*userCal | back) (struct putNotify *);

DBADDR *paddr; [/ *dbAddr set by dbNaneToAddr*/

voi d *pbuffer; [*address of data*/

| ong nRequest ; [*nunber of elements to be witten*/
short dbr Type; / *dat abase request type*/

voi d *usr Pvt ; /[*for private use of user*/

/*The following is status of request.Set by dbPutNotify*/
| ong st at us;

[*fields private to database access*/

}put Noti fy;
The caller must allocate aput Not i f y structure and set the fields:
user Cal | back - Routine that is called upon conpletion
paddr - address of a dbAddr
pbuffer - address of data
nRequest - nunber of data el enents

dbr Type - dat abase request type
usrPvt - a void * field that caller can use as needed.

The status value in putNotify.status is one of

» putNotifyOK Success

» putNotifyCanceled User issued a dbNotifyCancel.

» putNotifyBlocked The record was found active after three retries.
» putNotifyError Either doPut of dbProcess returned an error.

The user callback is always called unless dbNot i f yCancel is called before the put notify competes. It may be called
while dbPutNotify or doNotifyCancel is active.

15.4.4.2 dbNotifyCancel
Cancel an outstanding dbPut Not i fy.

198 EPICS I0OC Application Developer's Guide

Chapter 15: Runtime Database Access
Database Access Routines

Format:
voi d dbNoti fyCancel (putNotify *pputnotify);
This cancels an active dbPut Not i fy.

15.4.4.3 doNotifyAdd
Thisroutineis called by database access itself. It should never be called by user code.

15.4.4.4 dbNotifyCompletion
Thisroutineis called by database access itself. It should never be called by user code.

15.4.5 Utility Routines

15.4.5.1 dbBufferSize
Determine the buffer size for adbGet Fi el d request, format:

| ong dbBufferSize(
short dbrType, /* DBR _xxx*/
long options, /* options nask*/
I ong nRequest);/* nunber of el enments*/

This routine returns the number of bytes that will be returned to dbGet Fi el d if the request type, options, and number of
elements are specified as given to dbBuf f er Si ze. Thusit can be used to allocate storage for buffers.

NOTE: This should become a Channel Access routine

15.4.5.2 dbValueSize
Determine the size avalue field, format:
dbVal ueSi ze(short dbrType);/* DBR xxx*/
This routine returns the number of bytes for each element of type dbr Type.

NOTE: This should become a Channel Access routine

15.4.5.3 dbGetRset
Get address of arecord support entry table.
Format:
struct rset *dbGet Rset (DBADDR *paddr);
This routine returns the address of the record support entry table for the record referenced by the DBADDR.

15.4.5.4 dblsValueField
Isthisfield the VAL field of the record?
Format:
i nt dbl sVal ueFi el d(struct dbFl dDes *pdbFl dDes);

Thisisthe routine that makesthe get _val ue record support routine obsolete.

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 199

Chapter 15: Runtime Database Access
Database Access Routines

15.4.5.5 dbGetFieldindex
Get field index.
Format:

i nt dbCet Fi el dl ndex(DBADDR * paddr) ;
Record support routines such as speci al and cvt _dbaddr need to know which field the DBADDR references. The
include file describing the record contains define statements for each field. dbGet Fi el dl ndex returns the index that
can be matched against the define statements (normally via a switch statement).
15.4.5.6 dbGetNelements
Get number of elementsin afield.
Format:

| ong dbGet Nel enent s(struct |ink *plink,long *nel enents);

Thissets*nel enment s to the number of elementsin the field referenced by plink.

15.4.5.7 dblsLinkConnected
Isthe link connected.
Format:
i nt dbl sLi nkConnected(struct Iink *plink);
Thisroutine returns (TRUE, FALSE) if thelink (is, is not) connected.

15.4.5.8 dbGetPdbAddrFromLink
Get address of DBADDR from link.
Format:
DBADDR *dbCGet PdbAddr Fronii nk(struct [ink *plink);
This macro returns the address of the DBADDR for a database link and NULL for all other link types.

15.4.5.9 dbGetLinkDBFtype
Get field type of alink.
Format:
i nt dbGet Li nkDBFtype(struct |ink *plink);

15.4.5.10 dbGetControlLimits
Get Control Limitsfor link.
Format:

| ong dbGet Control Limts(struct |ink *plink, double *Iow, double *high);

15.4.5.11 dbGetGraphicLimits
Get Graphic Limitsfor link.
Format:

200 EPICS I0OC Application Developer's Guide

Chapter 15: Runtime Database Access
Database Access Routines

| ong dbGet GraphicLimts(struct |ink *plink, double *Iow, double *high);

15.4.5.12 dbGetAlarmLimits
Get Alarm Limitsfor link.
Format:

[ong dbGet Al arnLimits(struct |ink *plink,

doubl e I ol o, doubl e *I ow, doubl e *hi gh, doubl e hihi);

15.4.5.13 dbGetPrecision
Get Precision for link.
Format:

| ong dbGet Precision(struct |ink *plink,short *precision);

15.4.5.14 dbGetUnits
Get Unitsfor link.
Format:
l ong dbGetUnits(struct |ink *plink,char *units,int unitsSize);

15.4.5.15 dbGetSevr
Get Severity for link.
Format:

[ong dbGet Sevr(struct link *plink,short *sevr);

15.4.5.16 dbGetTimeStamp
Get Time Stamp for record containing link.
Format:
| ong dbGet Ti meStanmp(struct |ink *plink, TS STAMP *pst anp);

15.4.6 Attribute Routine

15.4.6.1 dbPutAttribute

Give avalue to arecord attribute.

| ong dbPut Attribute(char *recordTypenane,
char *nane, char*val ue) ;

This sets the record attribute nane for record typer ecor dTypenane toval ue. For example the following would set
the version for the ai record.

dbPut At tri bute("ai ", " VERS', "V800. 6. 95")

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 201

Chapter 15: Runtime Database Access
Runtime Link Modification

15.4.7 Process Routines

15.4.7.1 dbScanPassive
dbScanLink
dbScanFwdLink

Processrecord if it is passive, format:

| ong dbScanPassi ve(

struct dbCommon *pfrom

struct dbCommmon *pto); /* addr of record*/
| ong dbScanLi nk(

struct dbCommon *pfrom

struct dbCommon *pto);
voi d dbScanFwdLi nk(struct |ink *plink);

dbScanPassi ve and dbScanLi nk are given the record requesting the scan, which may be NULL, and the record to
be processed. If the record is passive and pact =FALSE then dbPr ocess iscaled. Note that these routine are called by
dbGet Li nk, dbPut Fi el d, and by r ecGbl FwdLi nk.

dbScanFwdLi nk isgiven alink that must be a forward link field. It follows the rules for scanning aforward link. That
isfor DB_LINKSsit calls dbScanPassive and for CA_LINKS it does a dbCaPutLink if the PROC field of record is being
addressed.
15.4.7.2 dbProcess
Request that a database record be processed, format:

| ong dbProcess(struct dbConmom *precord);

Request that record be processed. Record processing is described in detail below.

15.5 Runtime Link Modification

Database links can be changed at run time but only via a channel access client, i.e. via callsto dbPut Fi el d but not to
dbPut Li nk. Thefollowing restrictions apply:
* Only DBR_STRI NGis allowed.

« If alink is being changed to a different hardware link type then the DTYP field must be modified before the link
field.

» The syntax for the string field is exactly the same as described for link fieldsin chapter “ Database Definition”

NOTE: For this release modification to/from hardware links has not been tested. In addition modification to record/device
support will be needed in order to properly support dynamic modification of hardware links.

202 EPICS I0OC Application Developer's Guide

Chapter 15: Runtime Database Access
Channel Access Monitors

15.6 Channel Access Monitors

There are facilities within the Channel Access communication infrastructure which allow the value of a process variable
to be monitored by a channel access client. It is aresponsibility of record support (and db common) to notify the channel
access server when the internal state of a process variable has been modified. State changes can include changes in the
value of a process variable and also changes in the alarm state of a process variable. The routine “db_post_events()” is
called to inform the channel access server that a process variable state change event has occurred.

#i ncl ude <caevent nask. h>

int db_post_events(void *precord, void *pfield,
unsi gned intsel ect);

The first argument, “precord”, should be passed a pointer to the record which is posting the event(s). The second
argument, “pfield”, should be passed a pointer to the field in the record that contains the process variable that has been
modified. The third argument, “select”, should be passed an event select mask. This mask can be any logical or
combination of { DBE_VALUE, DBE_LOG, DBE_ALARM}. A description of the purpose of each flag in the event select
mask follows.

» DBE_VALUE This indicates that a significant change in the process variable's value has occurred. A significant
change is often determined by the magnitude of the monitor “dead band” field in the record.

« DBE_LOG Thisindicates that a change in the process variable's value significant to archival clients has occurred.
A significant change to archival clientsis often determined by the magnitude of the archive “dead band” field in the
record.

 DBE_ALARM Thisindicates that a change in the process variable's alarm state has occurred.

The function “db_post_events()” returns O if it is successful and -1 if it fails. It appears to be common practice within
EPICS record support to ignore the status from “db_post_events()”. At this time “db_post_events()” always returns 0
(success). because so many records at this time depend on this behavior it is unlikely that it will be changed in the future.

The function “db_post_events()” is written so that record support will never be blocked attempting to post an event
because a slow client is not able to process events fast enough. Each call to “db_post_events()” causes the current value,
alarm status, and time stamp for the field to be copied into aring buffer. The thread calling “db_post_events()” will not be
delayed by any network or memory alocation overhead. A lower priority thread in the server is responsible for
transferring the events in the event queue to the channel access clients that may be monitoring the process variable.

Currently, when an event is posted for aDBF_STRING field or afield containing array datathe valueis NOT saved in the
ring buffer and the client will receive whatever value happensto bein the field when the lower priority thread transfers the
event to the client. This behavior may be improved in the future.

15.7 Lock Set Routines

User code only callsdbScanLock and dbScanUnl ock. All other routines are called by i ocCor e.

15.7.0.1 dbScanL ock
Lock alock set:
| ong void dbScanLock(struct dbCommon *precord);

Lock the lock set to which the specified record belongs.

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 203

Chapter 15: Runtime Database Access
Lock Set Routines

15.7.0.2 dbScanUnlock
Unlock alock set:
l ong voi d dbScanUnl ock(struct dbConmon *precord);

Lock the lock set to which the specified record belongs

15.7.0.3 dbL ockGetL ockld
Get lock setid:
| ong dbLockGet Lockl d(struct dbCommon *precord);

Each lock set is assigned a unique ID. This routine retrieves it. Thisis most useful to determine if two records are in the
same lock set.

15.7.0.4 dbL ockInitRecords
Determine lock sets for each record in database.

voi d dbLockl nit Recor ds(dbBase *pdbbase);
Cdledbyioclnit.

15.7.0.5 dbLockSetM erge
Merge records into same lock set.

voi d dbLockSet Merge(struct dbCommon *pfirst,
struct dbCommon *psecond);

If specified records are not in same lock set the lock sets are merged. Called by dbL ocklnitRecords and aso when links
are modified by dbPut Fi el d.

15.7.0.6 dbL ockSetSplitS

Recompute lock sets for given lock set

voi d dbLockSet Split(struct dbComon *psource);

Thisiscalled when dbPut Fi el d modifyslinks.

15.7.0.7 dbL ockSetGbl L ock
Global lock for modifying links.
voi d dbLockSet Gbl Lock(voi d);

Only one task at atime can modify link fields. This routine provides a global lock to prevent conflicts.

15.7.0.8 dbL ockSetGblUnlock
Unlock the global lock.
voi d dbLockSet Gol Unl ock(voi d);

15.7.0.9 dbL ockSetRecordL ock
If record is not already scan locked lock it.
voi d dbLockSet Recor dLock(struct dbComon *precord);

204 EPICS I0OC Application Developer's Guide

Chapter 15: Runtime Database Access
Channel Access Database Links

15.8 Channel Access Database Links

The routines described here are used to create and manipulate Channel Access connections from database input or output
links. At 10C initialization an attempt is made to convert all process variable links to database links. For any link that
fails, it is assumed that the link is a Channel Access link, i.e. alink to a process variable defined in another IOC. The
routines described here are used to manage these links. User code never needs to call these routines. They are
automatically called by ioclnit and database access.

Atioclnit timeatask dbCaLi nk is spawned. This task is a channel access client that issues channel access requests
for al channel access links in the database. For each link a channel access search request is issued. When the search
succeeds a channel access monitor is established. The monitor is issued specifying ca_fiel d_type and
ca_el ement _count . A buffer is also alocated to hold monitor return data as well as severity. When dbCaGet Li nk is
called data is taken from the buffer, converted if necessary, and placed in the location specified by the pbuf f er
argument.

When the first dbCaPut Li nk is called for a link an output buffer is allocated, again using ca_fi el d_t ype and
ca_el ement _count . The data specified by the pbuffer argument is converted and stored in the buffer. A request isthen
made to dbCali nk task toissueaca_put . Subsegquent callsto dbCaPut Li nk reuse the same buffer.

15.8.1 Basic Routines

These routines are normally only called by database access, i.e. they are not called by record support modules.

15.8.1.1 dbCaL inklnit
Caled byi ocl ni t toinitializethedbCa library
voi d dbCaLi nklnit(void);

15.8.1.2 dbCaAddLink
Add anew channel access link
voi d dbCaAddLi nk(struct link *plink);

15.8.1.3 dbCaRemovelL ink
Remove channel access link.

voi d dbCaRenoveli nk(struct |ink *plink);

15.8.1.4 dbCaGetLink
Get link value
| ong dbCaCet Li nk(struct |ink *plink,short dbrType,
voi d *pbuffer,unsigned short *psevr,long *nRequest);
15.8.1.5 dbCaPutLink
Put link value

| ong dbCaPut Li nk(struct |ink *plink,short dbrType,
voi d *buffering nRequest);

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 205

Chapter 15: Runtime Database Access
Channel Access Database Links

15.8.2 Attributes of Link

The routines in this section are meant for use by device support to find out information about link fields. They must be
called with dbScanL ock held, i.e. normally they are called by the read or write method provided by device support.
15.8.2.1 dbCal sLinkConnected
Is Channel Connected

i nt dbCal sLi nkConnected(struct Iink *plink)
Thisroutine returns (TRUE, FALSE) if thelink (is, is not) connected.

15.8.2.2 dbCaGetNelements
Get Number of Elements
| ong dbCaCet Nel ement s(struct link *plink,long *nel ements);

This call, which returns an error if the link is not connected, sets the native number of e ements.

15.8.2.3 dbCaGetSevr
Get Alarm Severity
| ong dbCaGet Sevr (struct |ink *plink,short *severity);

Thiscall, which returns an error if the link is not connected, setsthe alarm severity.

15.8.2.4 dbCaGetTimeStamp
Get Time Stamp
| ong dbCaCet Ti meSt anp(struct |ink *plink, TS STAMP *pstanp));
This call, which returns an error if the link is not connected, sets pstamp to the time obtained by the last CA monitor.

15.8.2.5 dbCaGetLinkDBFtype
Get link type
i nt dbCaGet Li nkDBFt ype(struct |ink *plink);

This call, which returns an error if the link is not connected, returns the field type.

15.8.2.6 dbCaGetAttributes
Get Attributes

| ong dbCaGet Attributes(struct |ink *plink,
void (*call back)(void *usrPvt),void *usrPvt);

When ever dbCa receives a connection it issues a CA get request to obtain the control, graphic, and alarm limits and to
obtain the precision and units. By calling dbCaGetAttributes the caller can be notified when this get compl etes.
15.8.2.7 dbCaGetControl Limits
Get Control Limits
| ong dbCaCGet Control Limts(struct |ink *plink,double *low, double *high);

206 EPICS I0OC Application Developer's Guide

Chapter 15: Runtime Database Access
Channel Access Database Links

This call returns an error if the link is not connected or if the CA get request for limits, etc has not completed. If it returns
success it has set the control limits.

15.8.2.8 dbCaGetGraphicLimits
Get graphic Limits
| ong dbCaGet Graphi cLi mits(struct |ink *plink,double *I ow, double *high);
This call returns an error if the link is not connected or if the CA get request for limits, etc has not completed. If it returns
success it has set the graphic limits.
15.8.2.9 dbCaGetAlarmLimits
Get Alarm Limits

| ong dbCaGet Al arnmli mits(struct |ink *plink,
doubl e *1 ol o, double *low, double *high, double *hihi);

This call returns an error if thelink is not connected or if the CA get request for limits, etc has not completed. If it returns
successit has set the alarm limits.
15.8.2.10 dbCaGetPrecision
Get Precision
| ong dbCaCet Preci sion(struct link *plink,short *precision);
This call returns an error if the link is not connected or if the CA get request for limits, etc has not completed. If it returns
successiit has set the precision.
15.8.2.11 dbCaGetUnits
Get Units
[ong dbCaGet Units(struct Iink *plink,char *units,int unitsSize);

This call returns an error if the link is not connected or if the CA get request for limits, etc has not completed. If it returns
successit has set the units.

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 207

Chapter 15: Runtime Database Access
Channel Access Database Links

208 EPICS I0OC Application Developer's Guide

Chapter 16: Device Support Library

NOTE: For 3.14 thisisonly available on vxWorks

16.1 Overview

IncludefiledevLi b. h provides definitions for alibrary of routines useful for device and driver modules. These are anew
addition to EPICS and are not yet used by all device/driver support modules. Until they are, the registration routines will
not prevent addressing conflicts caused by multiple device/drivers trying to use the same VME addresses.

16.2 Registering VME Addresses

16.2.1 Definitions of Address Types

t ypedef enum {
at VMEAL1G6,
at VVEA24,
at VMEA32,
atLast /* atlLast nust be the last enumin this list */
} epi csAddressType;

char *epi csAddressTypeNaneg[]
= {
"VNVE Al6",
"VNVE A24",

"VVE A32"

b

i nt EPI CSt ovxWor ksAddr Type[]
= {
VME_AM SUP_SHCORT_I G,
VME_AM STD_SUP_DATA,
VME_AM EXT_SUP_DATA

b

16.2.2 Register Address

| ong devRegi sterAddress(
const char *pOwner Nane,
epi csAddressType addr Type,
void *baseAddress,

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 209

Chapter 16: Device Support Library
Interrupt Connect Routines

unsi gned si ze,
void **plLocal Address);

Thisroutine is called to register a VME address. This routine keeps a list of all VME addresses requested and returns an
error message if an attempt is made to register any addresses that are already being used. *pLocal Addr ess is set equal
to the address as seen by the caller.

16.2.3 Unregister Address

I ong devUnregi st er Address(
epi csAddressType addr Type,
void *baseAddress,
const char *pOaner Nane) ;

This routine rel eases addresses previously registered by acall to devRegi st er Addr ess.

16.3 Interrupt Connect Routines

16.3.1 Definitions of Interrupt Types
typedef enum {intCPU, intVME, intVXl} epicslnterruptType;

16.3.2 Connect

I ong devConnect | nterrupt(
epi csl nterrupt Type i nt Type,
unsi gned vect or Nunber,
void (*pFunction)(),
void *paraneter);

16.3.3 Disconnect

| ong devDi sconnect | nterrupt(
epi csl nterrupt Type intType,
unsi gned vect or Nunber);

16.3.4 Enable Levd

| ong devEnabl el nterruptLevel (
epi csl nterrupt Type intType,
unsi gned | evel);

16.3.5 DisableLeve

| ong devDi sabl el nterruptLevel (
epi csl nterrupt Type intType,

210 EPICS I0OC Application Developer's Guide

Chapter 16: Device Support Library
Macros and Routines for Normalized Analog Values

unsi gned |evel);

16.4 Macros and Routines for Normalized Analog Values

16.4.1 Normalized GetField

| ong devNormalizedGol Get Fi el d(
l ong rawval ue,
unsi gned nbits,
DBREQUEST *pdbr equest,
int pass,
CALLBACK *pcal | back);

This routine is just like recGbl Get Fi el d, except that if the request type is DBR_FLOAT or DBR _DQOUBLE, the
normalized value of r awval ue isobtained, i.e. r awVal ue is converted to avalue in the range 0.0<=value<.1.0

16.4.2 Convert Digital Valueto a Normalized Double Value

#defi ne devCreat eMask(NBITS) ((1<<(NBITS))-1)
#define devDi gToNm (DI G TAL, NBI TS) \
(((doubl e) (DI A TAL))/ devCr eat eMask(NBI TS))

16.4.3 Convert Normalized Double Value to a Digital Value

#def i ne devNm ToDi g(NORMVAL, NBI TS) \
(((long) (NORVAL)) * devCreat eMask(NBITS))

EPICS Release: R3.14.1
EPICS I0OC Application Developer's Guide 211

Chapter 16: Device Support Library
Macros and Routines for Normalized Analog Values

212 EPICS I0OC Application Developer's Guide

Chapter 17: EPICS General Purpose Tasks

17.1 Overview
This chapter describes two sets of EPICS supplied general purpose tasks: 1) Callback, and 2) Task Watchdog.

Often when writing code for an 10C there is no obvious task under which to execute. A good example is completion code
for an asynchronous device support module. EPICS supplies the callback tasks for such code.

If an 10C tasks "crashes’ there is normally no one monitoring the vxWorks shell to detect the problem. EPICS provides a
task watchdog task which periodically checks the state of other tasks. If it finds that a monitored task has terminated or
suspended it issues an error message and can also call other routines which can take additional actions. For example a
subroutine record can arrange to be put into alarm if a monitored task crashes.

Since IOCs normally run autonomously, i.e. no one is monitoring the vxWorks shell, 10C code that issuespri nt f cals
generates errors messages that are never seen. In addition the vxWorks implementation of fprintf requires much more
stack space then pri nt f calls. Another problem with vxWorks is the | ogMsg facility. | ogMsg generates messages at
higher priority then all other tasks except the shell. EPICS solves all of these problems via an error message handling
facility. Code can call any of the routines er r Message, errPrintf, or errl ogPrintf. Any of these result in the
error message being generated by a separate low priority task. The calling task has to wait until the message is handled but
other tasks are not delayed. In addition the message can be sent to a system wide error message file.

17.2 General Purpose Callback Tasks

17.2.1 Overview

EPICS provides three genera purpose |OC callback tasks. The only difference between the tasks is scheduling priority:
Low, Medium, and High. The low priority task runs at a priority just higher than Channel Access, the medium at a priority
about equal to the median of the periodic scan tasks, and the high at a priority higher than the event scan task.The callback
tasks provide a service for any software component that needs a task under which to run. The callback tasks use the task
watchdog (described below). They use a rather generous stack and can thus be used for invoking record processing. For
example the 1/O event scanner uses the general purpose callback tasks.

The following steps must be taken in order to use the general purpose callback tasks:

1. Include callback definitions:

#i ncl ude <cal | back. h>

2. Provide storage for a structure that is a private structure for the callback tasks:

CALLBACK nycal | back;

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 213

Chapter 17: EPICS General Purpose Tasks
General Purpose Callback Tasks

It is permissible for thisto be part of alarger structure, e.g.
struct {
CALLBACK mycal | back;
\ Ce
3. Call routines (actually macros) to initialize fields in CALLBACK:
cal | backSet Cal | back(VO DFUNCPTR, CALLBACK *);

This defines the callers callback routine. The first argument is the address of a function returning VO D. The
second argument is the address of the CALLBACK structure.

cal | backSetPriority(int, CALLBACK *);

The first argument is the priority, which can have one of the values: pri orityLow priorityMedi um or
priorityH gh. These values are defined in cal | back. h. The second argument is again the address of the
CALLBACK structure.

cal | backSet User (VO D *, CALLBACK *);
Thiscall isused to save avalue that can be retrieved viaacall to:

cal | backGet User (VO D *, CALLBACK *);

4. Whenever a callback request is desired just call one of the following:

cal | backRequest (CALLBACK *);
cal | backRequest ProcessCal | back(CALLBACK *);

Either can be called from interrupt level code. The callback routine is passed a single argument, which is the same
argument that was passed to cal | backRequest , i.e., the address of the CALLBACK structure.

17.2.2 Syntax

The following calls are provided:

voi d cal | backlnit(void);

voi d cal | backSet Cal | back(voi d *pcal | backFuncti on,
CALLBACK *pcal | back);
void cal | backSetPriority(int priority, CALLBACK *pcal | back);
voi d cal | backSet User (voi d *user, CALLBACK *pcal | back);
voi d cal | backGet User (voi d *user, CALLBACK *pcal | back);

voi d cal | backRequest (CALLBACK *);
voi d cal | backRequest ProcessCal | back(CALLBACK *pCal | back,
int Priority, void *pRec);
voi d cal | backRequest Del ayed(CALLBACK *pCal | back, doubl e seconds);
voi d cal | backRequest ProcessCal | backDel ayed(

214 EPICS I0OC Application Developer's Guide

Chapter 17: EPICS General Purpose Tasks

General Purpose Callback Tasks

CALLBACK *pCal | back, int Priority, void *pRec, doubl e seconds);
i nt call backSet QueueSi ze(int size);

Notes:

cal | backl ni t is performed automatically when EPICS initializes and 10C. Thus user code never calls this
function.

cal | backSet Cal | back, cal | backSet Priority, call backSet User, and cal | backGet User are
actually macros.

All cal | backRequest routines can both be called at interrupt level.

The delayed version of the cal | backRequest routines wait the specified amout of time before scheduling the
callback.

cal | backRequest ProcessCal | back is designed for the completion phase of asynchronous record
processing. It issues the calls:

cal | backSet Cal | back(ProcessCal | back, pCall back);
cal I backSetPriority(Priority, pCallback);

cal | backSet User (pRec, pCall back);

cal | backRequest (pCal I back) ;

ProcessCal | back, which is designed for asynchronous device completion applications, consists of the
following code:

static void ProcessCal | back(CALLBACK *pCal | back)

{

dbConmon *pRec;
struct rset *prset;

cal | backGet User (pRec, pCall back);
prset = (struct rset *)pRec->rset;
dbScanLock(pRec) ;
(*prset->process) (pRec);

dbScanUnl ock(pRec) ;

17.2.3 Example

An example use of the callback tasks.

#i ncl ude <cal | back. h>

static structure {

char begi d[80] ;

CALLBACK cal | back;

char endi d[80] ;
}nyStruct;

voi d nyCal | back(CALLBACK *pcal | back)

{

struct myStruct *pnyStruct;
cal | backGet User (pny St ruct, pcal | back)
printf(”begi d=% endi d=%\n", &nySt ruct - >begi d[0] ,

EPICS Release: R3.14.1

EPICS IOC Application Developer's Guide

215

Chapter 17: EPICS General Purpose Tasks
Task Watchdog

&pnt ruct - >endi d[0]) ;

exanpl e(char *pbegi d, char*pendi d)

{
strcpy(&myStruct. begi d[0], pbegi d);
strcpy(&myStruct. endi d[0], pendi d);
cal | backSet Cal | back(nyCal | back, &yStruct. cal | back);
cal | backSet Priority(priorityLow, &yStruct. call back);
cal | backSet User (&mryStruct, &myStruct . cal | back);
cal | backRequest (&nyStruct. cal | back) ;

}

The example can be tested by issuing the following command to the vxWorks shell:
exanpl e(” begin”, "end”)

This simple example shows how to use the callback tasks with your own structure that contains the CALLBACK structure
at an arbitrary location.

17.2.4 Callback Queue

The callback requests put the requests on a vxWorks ring buffer. Thus buffer is set by default to hold 2000 requests. This
value can bechanged by calling cal | backSet QueueSi ze beforei ncl ni t inthe startup file. The syntax is:

i nt cal |l backSet QueueSi ze(int size)

17.3 Task Watchdog

EPICS provides an 10C task that is a watchdog for other tasks. Any task can make a request to be watched. The task
watchdog runs periodically and checks each task in itstask list. If any task is suspended, an error message is issued and,
optionally, a callback task isinvoked. The task watchdog provides the following features:

1. Include module:

#i ncl ude <taskwd. h>

2. Insert request:

taskwdl nsert (int tid, TASKWDFUNCPRR cal | back,
VO D *userarg);

This is the request to include the task with the specified t i d in the list of tasks to be watched. If callback is not
NULL then if the task becomes suspended, the callback routine will be called with a single argument user ar g.

3. Remove request:
t askwdRenove(int tid);

This routine would typically be called from the callback routine invoked when the original task goes into the
suspended state.

4. Insert request to be notified if any task suspends:

216 EPICS I0OC Application Developer's Guide

Chapter 17: EPICS General Purpose Tasks
Task Watchdog

t askwdAnyl nsert (voi d *user pvt, TASKWDFUNCPRR cal | back,
VO D *userarg);

The callback routine will be called whenever any of the tasks being monitored by the task watchdog task suspends.
user pvt must have anon NULL unique valuet askwdAnyl nser t , because the task watchdog system uses this
value to determine who to remove if t askwdAnyRenove iscalled.

5. Remove request for t askwdAnyl nsert :
t askwdAnyRenove(voi d *userpvt);

user pvt isthe value that was passed tot askwdAnyl nsert .

EPICS Release: R3.14.1
EPICS IOC Application Developer's Guide 217

Chapter 17: EPICS General Purpose Tasks
Task Watchdog

218 EPICS I0OC Application Developer's Guide

Chapter 18: Database Scanning

18.1 Overview

Database scanning is the mechanism for deciding when to process arecord. Five types of scanning are possible:

» Periodic: A record can be processed periodically. A number of time intervals are supported.

» Event: Event scanning is based on the posting of an event by another component of the software viaa call to the
routine post _event .

e |/O Event: The original meaning of this scan type is a request for record processing as a result of a hardware
interrupt. The mechanism supports hardware interrupts as well as software generated events.

» Passive: Passive records are processed only viarequests to dbScanPassi ve. This happens when database links
(Forward, Input, or Output), which have been declared " Process Passive” are accessed during record processing. It
can also happen as a result of dbPut Fi el d being caled (This normally results from a Channel Access put
reguest).

» Scan Once: In order to provide for caching puts, The scanning system provides a routine scanOnce which
arranges for arecord to be processed one time.

This chapter explains database scanning in increasing order of detail. It first explains database fields involved with
scanning. It next discusses the interface to the scanning system. The last section gives a brief overview of how the
scanners are implemented.

18.2 Scan Related Database Fields

The following fields are normally defined via DCT. It should be noted, however, that it is quite permissible to change any
of the scan related fields of arecord dynamically. For example, a display manager screen could tie a menu control to the
SCANfield of arecord and allow the operator to dynamically change the scan mechanism.

18.2.1 SCAN

Thisfield, which specifies the scan mechanism, has an associated menu of the following form:

Passive: Passively scanned.

Event: Event Scanned. The field EVNT specifies event number
I/O Event scanned.

10 Second: Periodically scanned - Every 10 seconds

.1 Second: Periodically scanned - Every .1 seconds

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 219

Chapter 18: Database Scanning
Scan Related Software Components

18.2.2 PHAS

This field determines processing order for records that are in the same scan set. For example all records periodically
scanned at a 2 second rate are in the same scan set. All Event scanned records with the same EVNT are in the same scan
set, etc. For records in the same scan set, all records with PHAS=0 are processed before records with PHAS=1, which are
processed before all records with PHAS=2, etc.

In general it isnot agood ideato rely on PHAS to enforce processing order. It is better to use database links.

18.2.3 EVNT - Event Number

Thisfield only has meaning when SCANis set to Event scanning, in which case it specifies the event number. In order for
a record to be event scanned, EVNT must be in the range 0,...255. It should also be noted that some EPICS software
components will not request event scanning for event 0. One exampleisthe event Recor d record support module. Thus
the application devel oper will normally want to define eventsin the range 1,...,255.

18.2.4 PRIO - Scheduling Priority

This field can be used by any software component that needs to specify scheduling priority, e.g. the event and 1/O event
scan facility usesthisfield.

18.3 Scan Related Software Components

18.3.1 menuScan.dbd

Thisfile contains definitions for amenu related to field SCAN. The definitions are of the form:

menu(nenuScan) {
choi ce(nenuScanPassi ve, " Passi ve”)
choi ce(nenuScanEvent, ” Event ")
choi ce(nmenuScanl _O Intr,”1/O Intr”)
choi ce(nmenuScanl10_second, " 10 second”)
choi ce(nmenuScan5_second,”5 second”)
choi ce(nmenuScan2_second, "2 second”)
choi ce(nmenuScanl_second,”1 second”)
choi ce(nmenuScan_5 _second,”.5 second”)
choi ce(nmenuScan_2_second, ”. 2 second”)
choi ce(nmenuScan_1 second,”.1 second”)

}

Thefirst three choices must appear first and in the order shown. The remaining definitions are for the periodic scan rates,
which must appear in order of decreasing rate. At 10C initialization, the menu values are read by scan initialization. The
number of periodic scan rates and the value of each rate is determined from the menu values. Thus periodic scan rates can
be changed by changing menuScan. dbd and loading this version viadbLoadDat abase. The only requirement is that
each periodic definition must begin with the value and the value must be in units of seconds.

220 EPICS I0OC Application Developer's Guide

Chapter 18: Database Scanning
Scan Related Software Components

18.3.2 dbScan.h

All software components that interact with the scanning system must include thisfile.
The most important definitionsin thisfile are:

/* Note that these nust match the first four definitions*/
/* in choice®l.dbd*/

#defi ne SCAN PASSIVE O

#defi ne SCAN EVENT 1

#define SCAN | O EVENT 2

#define SCAN 1ST PERRODIC 3

/*definitions for SCAN | O EVENT */
typedef void * | OSCANPVT;
extern int interruptAccept;

| ong scanlnit(void);

voi d post _event (int event);

voi d scanAdd(struct dbConmon *);
voi d scanDel et e(struct dbConmon *);
voi d scanOnce(void *precord);

i nt scanOnceSet QueueSi ze(int size);

i nt scanppl (voi d); [*print periodic |ists*/
i nt scanpel (voi d); /[*print event |ists*/
i nt scanpiol (void); /[*print io_event list*/

voi d scanl ol nit (I OSCANPVT *);
voi d scanl oRequest (1 OSCANPVT) ;

The first set of definitions defines the various scan types. The next two definitions (I OSCANPVT and
i nt errupt Accept) are for interfacing with the 1/0 event scanner. The remaining definitions define the public scan
access routines. These are described in the following subsections.

18.3.3 I nitializing Database Scanners
scanl nit(void);

Theroutinescanl ni t iscaled by i ocl ni t . It initializes the scanning system.

18.3.4 Adding And Deleting Records From Scan List

The following routines are called each time arecord is added or deleted from a scan list.

scanAdd(struct dbCommon *);
scanDel et e(struct dbConmon *);

These routines are called by scanl ni t at 10C initialization time in order to enter al records created via DCT into the
correct scan list. The routine dbPut calls scanDel et e and scanAdd each time a scan related field is changed (each
scan related field is declared to be SPC_SCANin dbConmon. dbd). scanDel et e is called before the field is modified
and scanAdd after the field is modified.

18.3.5 Declaring Database Event

Whenever any software component wants to declare a database event, it just calls:

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 221

Chapter 18: Database Scanning
Scan Related Software Components

post _event (event)

This can be called by virtually any 10C software component. For example sequence programs can call it. The record
support module for event Recor d calsit.

18.3.6 Interfacing to
I/O Event Scanning

Interfacing to the I/O event scanner is done via some combination of device and driver support.

1. Include <dbScan. h>
2. For each separate event source the following must be done:

a. Declarean | OSCANPVT variable, e.g.
static | OSCANPVT i oscanpvt;
b. Cdl scanl ol nit,eg.
scanl ol nit (& oscanpvt);

. Provide the device support get _i oi nt _i nf o routine. This routine has the format:

l ong get _ioint_info(
int cnd,
struct dbCommon *precord,
| OSCANPVT *ppvt);
This routine is called each time the record pointed to by pr ecor d is added or deleted from an 1/0 event scan list.
cmd has the value (0,1) if the record is being (added to, deleted from) an 1/0O event list. This routine must give a
valueto *ppvt .

. Whenever an 1/O event is detected call scanl oRequest , e.g.

scanl oRequest (i oscanpvt)
This routine can be called from interrupt level. The request is actually directed to one of the standard callback
tasks. The actual oneis determined by the PRI Ofield of dbConmon.

The following code fragment shows an event record device support module that supports I/O event scanning:

#incl ude <vxWbrks. h>

#i nclude <types. h>

#i nclude <stdioLib.h>
#include <intlLib.h>
#incl ude <dbDefs. h>

#i ncl ude <dbAccess. h>

#i ncl ude <dbScan. h>

#i nclude <recSup. h>

#i nclude <devSup. h>

#i ncl ude <event Record. h>
/* Create the dset for devEvent XXX */
long init();

I ong get _ioint_info();
struct {

| ong

nunber ;

DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;
DEVSUPFUN get i oint _info;
DEVSUPFUN read_event;
}devEvent Test | oEvent ={

51

222

EPICS IOC Application Developer’'s Guide

Chapter 18: Database Scanning
Implementation Overview

NULL,

init,

NULL,

get _ioint_info,

NULL} ;
static | OSCANPVT i oscanpvt;
static void int_service(l OSCANPVT i oscanpvt)
{

scanl oRequest (i oscanpvt);

}
static long init()
{
scanl ol nit (& oscanpvt);
i nt Connect (<vector>, (FUNCPTR)i nt _servi ce, i oscanpvt);
return(0);
}
static |l ong get _ioint_info(
i nt cnd,
struct eventRecord *pr,
| OSCANPVT *ppvt)
{
*ppvt = ioscanpvt;
return(0);
}

18.4 | mplementation Overview

The code for the entire scanning system resides in dbScan. c, i.e. periodic, event, and 1/O event. This section gives an
overview of how the code in dbScan. ¢ is organized. The listing of dbScan. ¢ must be studied for a complete

understanding of how the scanning system works.

18.4.1 Definitions And Routines Common To All Scan Types

Everything is built around two basic structures:

struct scan_list {
FAST_LOCK | ock;
ELLLIST Iist;
short nodi fi ed;
| ong ticks; /*used only for

b

struct scan_el ement {
ELLNODE node;
struct scan_li st
struct dbConmon

*pscan_list;
*precord;

peri odi c scan sets*/

EPICS Release: R3.14.1
EPICS I0C Application Developer's Guide

223

Chapter 18: Database Scanning
Implementation Overview

pevent_list[][] —
——| event_scan_list

list —| scan_element
node —>| scan_element
node —_—
precord cee
precord

Figure 18-1: Scan List Memory Layout

Later we will seehow scan_| i st s are determined. For now just realizethat scan_| i st. | i st isthehead of alist of
records that belong to the same scan set (for example, al recordsthat are periodically scanned at a1 second rate arein the
same scan set). Thenodefield in scan_el enent contain the list links. The normal vxWorks| st Li b routines are used
to access the list. Each record that appears in some scan list has an associated scan_el enment . The SPVT field which
appears in dbConmon holds the address of the associated scan_el ement .

Thel ock, nodi fi ed, and pscan_| i st fieldsallow scan_el enment s, i.e. records, to be dynamically removed and
added to scan lists. If scanLi st , the routine which actually processes ascan list, is studied it can be seen that these fields
alow the list to be scanned very efficiently if no modifications are made to the list while it is being scanned. This s, of
course, the normal case.

ThedbScan. ¢ module contains several private routines. The following access a single scan set:

 printList: Printsthe names of all recordsin a scan set.
» scanList: Thisroutineisthe heart of the scanning system. For each record in a scan set it does the following:
dbScanLock(precord);
dbProcess(precord);
dbScanUnl ock(precord);
It also has code to recognize when a scan list is modified while the scan set is being processed.
» addToList: Thisroutine adds a new element to a scan list.
» deleteFromList: Thisroutine deletes an element from a scan list.

18.4.2 Event Scanning

Event scanning is built around the following definitions:

#def i ne MAX_EVENTS 256
typedef struct event _scan_list {
CALLBACK cal | back;
scan_li st scan_list;
}event scan_list;
static event _scan_|i st
*pevent _| i st[NUM_CALLBACK PRI ORI Tl ES] [MAX_EVENTS] ;

pevent |i st isa?2darray of pointersto scan_| i st s. Note that the array allows for 256 events, i.e. one for each
possible event number. In other words, each event number and priority has its own scan list. No scan_I i st isactualy
created until the first request to add an element for that event number. The event scan lists have the memory layout
illustrated in Figure 18-1.

224 EPICS I0OC Application Developer's Guide

Chapter 18: Database Scanning
Implementation Overview

18.4.2.1 post_event
post _event (i nt event)

This routine is called to request event scanning. It can be caled from interrupt level. It looks at each
event _scan_| i st referenced by pevent _I| i st [*][event] (one for each callback priority) and if any elements are
present in the scan_list a callbackRequest is issued. The appropriate calback task calls routine
event Cal | back, which just callsscanLi st .

18.4.31/0O Event Scanning

I/0 event scanning is built around the following definitions:

struct io_scan_list {
CALLBACK cal | back;
struct scan_|ist scan_list;
struct io_scan_|ist *next ;

}

static struct io_scan_|ist
*i osl _head[NUM_CALLBACK_PRI ORI Tl ES]
= { NULL, NULL, NULL};

Thearray i osl _head andthefield next areonly kept so that scanpi ol can beimplemented and will not be discussed
further. 1/0 event scanning uses the general purpose callback tasks to perform record processing, i.e. no task is spawned
for I/0O event. The callback field of i 0_scan_| i st isused to communicate with the callback tasks.

The following routines implement I/O event scanning:

18.4.3.1 scanlolnit
scanlolnit (1 OSCANPVT *ppi oscanpvt)

This routine is called by device or driver support. It is called once for each interrupt source. scanl ol ni t allocates and
initializes an array of i 0_scan_| i st structures; one for each callback priority and puts the address in pi oscanpvt .
Remember that three callback priorities are supported (low, medium, and high). Thus for each interrupt source the
structures areillustrated in Figure 18-1.

When scanAdd or scanDel et e are called, they cal the device support routine get _i oi nt _i nf o which returns
pi oscanpvt . Thescan_el enent isadded or deleted from the correct scan list.

18.4.3.2 scanloRequest
scanl oRequest (1 OSCANPVT pi oscanpvt)

pioscanpvt —=>

io_scan_list
.callback
scan_list
— | scan_list |7 | scan_element
- node
list ce
C precord

Figure 18-1: Interrupt Source Structure

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 225

Chapter 18: Database Scanning
Implementation Overview

papPeriodic ——

scan_list

list

— s R ———
> | scan_element scan_element
node node
precord precord

Figure 18-1: Structure after ioclnit

Thisroutineis called to request 1/0 event scanning. It can be called from interrupt level. It looks at eachi o_scan_I i st
referenced by pi oscanpvt (one for each callback priority) and if any elements are present in the scan_list a
cal | backRequest is issued. The appropriate callback task cals routine i oevent Cal | back, which just cals
scanli st.

18.4.4 Periodic Scanning

Periodic scanning is built around the following definitions:

static int nPeriodic;
static struct scan_list **papPeri odic;
static int *periodi cTaskl d;

nPeri odi ¢, which is determined at i ocl ni t time, is the number of periodic rates. papPer i odi ¢ isapointer to an
array of pointers to scan_| i sts. There is an array element for each scan rate. Thus the structure illustrated in
Figure 18-1 exists afteri ocl ni t.

A periodic scan task is created for each scan rate. The following routines implement periodic scanning:

18.4.4.1 initPeriodic

i nitPeriodic()
This routine first determines the scan rates. It does this by accessing the SCAN field of the first record it finds. It issues a
call todbCet Fi el d withaDBR_ENUMrequest. This returns the menu choices for SCAN. From this the periodic rates are
determined. The array of pointers referenced by papPeri odi c is alocated. For each scan rate a scan_| i st is
allocated and aper i odi cTask is spawned.
18.4.4.2 periodicTask

peri odi cTask (struct scan_list *psl)

This task just performs an infinite loop of calling scanLi st and then calling t askDel ay to wait until the beginning of
the next time interval.

18.4.5 Scan Once

18.4.5.1 scanOnce
voi d scanOnce (void *precord)

A task onceTask waits for requests to issue a dbPr ocess request. The routine scanOnce puts the address of the
record to be processed in aring buffer and wakes up onceTask.

226 EPICS I0OC Application Developer's Guide

Chapter 18: Database Scanning
Implementation Overview

This routine can be called from interrupt level.

18.4.5.2 SetQueueSize

scanOnce places its request on a vxWorks ring buffer.This is set by default to 1000 entries. It can be changed by
executing the following command in the vxWorks startup file.

i nt scanOnceSet QueueSi ze(int size);

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 227

Chapter 18: Database Scanning
Implementation Overview

228 EPICS I0OC Application Developer's Guide

Chapter 19: 10C Shdll

Eric Norum is the author of this chapter.

19.1 Introduction

The EPICS 10C shell is asimple command interpreter which provides a subset of the capabilities of the vxWorks shell. It
is used to interpret startup scripts (st.cmd) and to execute commands entered at the console terminal. In most cases
vxWorks startup scripts can be interpreted by the IOC shell without modification. The following sections of this chapter
describe the operation of the I0C shell from the user's and programmer's points of view.

19.2 | OC Shell Operation

The 10C shell reads lines of input, breaks them into commands and arguments and calls functions corresponding to the
decoded command. Commands and arguments are separated by one or more “space’ characters. Characters interpreted as
spaces include the actual space character and the tab character as well as commas and open and close parentheses. Thus,
the command line

dbLoadRecor ds(" db/ dbExanpl el. db", "user =nr k")

would be interpreted by the 10C shell as the dbLoadRecor ds command with arguments db/ dbExanpl el. db and
user=nr k.

Unrecognized commands result in a diagnostic message but are otherwise ignored. Missing arguments are given a default
value (0 for numeric arguments, NULL for string arguments). Extra arguments are ignored.

Unlike the vxWorks shell, string arguments do not have to be enclosed in quotes unless they contain one or more of the
“space' characters in which case one of the quoting mechanisms described in the following section must be used.

19.2.1 Quoting

Quoting is used to remove the special meaning normally assigned to certain characters and can be used to include “space’
or quote characters in arguments. Quoting can not be used to extend a command over more than one input line.

There are three quoting mechanisms: the backslash character, single quotes, and double quotes. A backslash (\) preserves
the literal value of the following character. Enclosing characters in single or double quotes preserves the literal value of
each character (except a backslash) within the quotes. A single quote may occur between double quotes and a double
guote may occur between single quotes.

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 229

Chapter 19: IOC Shell
I0C Shell Operation

19.2.2 Command-line editing and history

The IOC shell can use the readline library to obtain input from the console terminal. This provides full command-line
editing as well as easy access to previous commands through the command-line history capabilties provided by the
readline routines. See the readline library documentation for full details. Command and argument completion is not
supported.

If the readline library is not used, the only command-line editing and history capabilities will be those supplied by the
underlying operating system. The console keyboard driver in Windows, for example, provides its own command-line
editing and history commands.

19.2.3 Utility Commands

The 1OC shell recognizes the following commands as well as the commands described in chapter 6 (Database Design) and
chapter 9 (I0C Test Facilities) among others. In addition, the commands described in the sequencer documentation are

recognized.

Command

< filename

Description

Read commands from filename until an exit command or EOF is encountered. The 10OC shell then
resumes reading commands from the current source. Commands read from filename are not added to
the readline command history.

The level of nesting islimited only by the maximum number of files can be open simultaneously.

help [command ...]

Print synopsis of specified commands.
With no arguments print alist of all commands.

A “# in thefirst column of aline indicates the beginning of a comment which continues to the end of
theline

exit Stop reading commands. When the top-level command interpreter encounters an exit command or
end-of-file (EOF) it returnsto itscaler.

cd directory Change working directory to directory.

pwd Print the name of the working directory.

show [-level] [task ...] Show information about specified tasks. If no task arguments are present, show information on all
tasks. The level argument controls the amount of information printed. The default level isO. The
task arguments can be task names or task i.d. numbers.

epicsEnvSet name value Set environment variable name to the specified value.

epicsEnvShow [name]

If no name is specified the names and values of al environment variables will be shown.
If aname is specified the value of that environment variable will be shown.

epicsParamShow Show names and values of al EPICS configuration parameters.
iocLoglnit Initialize 10C logging.

epicsThreadSleep sec Pause execution of 10C shell for sec seconds.

230 EPICS I0OC Application Developer's Guide

Chapter 19: I0C Shell
IOC Shell Programming

19.2.4 ENVIRONMENT VARIABLES

The IOC shell uses the following environment variables to control its operation.

Variable Description

IOCSH_PS1 Prompt string. Default is "epics>".

IOCSH_HISTSIZE Number of previous command lines to remember. If the IOCSH_HISTSIZE environment variable is not
present the value of the HISTSIZE environment variable isused. In the absence of both environment
variables, 10 command lines will be remembered.

TERM, INPUTRC These and other environment variables are used by the readline and termcap libraries and are described in
the documentation for those libraries.

19.3 1OC Shell Programming

The declarations described in this section are included in the <iocsh.h> header file.

19.3.1 Invoking the |OC shell

The prototype for the IOC shell command interpreter is:
int iocsh (const char *pathnane);

The argument is the name of the file from which commands are to be read. If the pathname argument is NULL,
commands are read from the standard input and prompts are issued to the standard output. Commands are read until an
exit command is encountered or until end-of-file is reached at which point iocsh returns avalue of 0. If the specified file
can not be opened iocsh returns - 1.

19.3.2 Registering Commands

Commands must be registered before they can be recognized by the IOC shell. Registration is achieved by calling the
registration function:

voi d i ocshRegi ster(const iocshFuncDef *pi ocshFuncDef, iocshCall Func func);

The first argument is a pointer to a data structure which describes the command and any arguments it may take. The
second argument is a pointer to a function which will be called by iocsh when the corresponding command is
encountered.

The command is described by the i ocshFuncDef structure:

struct iocshFuncDef {

const char *nane;

i nt nargs;

const iocshArg * const *arg;
b
The name element is the name of the command. The arg element is a pointer to an array of pointers to structures each of
which defines a single argument. The nargs element declares the number of entries in the array of pointers to the
argument descriptions. The structures which define each of the argumentsis:

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 231

Chapter 19: IOC Shell
I0C Shell Programming

struct iocshArg {
const char *nane;
i ocshArgType type;
}iocshArg;

The name element is used by the help command to print a synopsis for the command. The type element describes the type
of the argument and takes one of the following values:

Type Specifier Description

iocshArgint The argument will be converted to an integer value.

iocshArgDouble The argument will be converted to a double-precision floating point
value.

iocshArgString The argument will be left as a string.

iocshArgPdbbase The argument must be pdbbase.

iocshArgArgv An arbitrary number of argumentsis expected. Subsequent iocshArg
structures will be ignored.

The “handler' function which is called when its corresponding command is recognized should be of the form:
voi d showCal | Func(const iocshArgBuf *args);

The argument to the handler function is a pointer to an array of unions. The number of elements in this array is equal to
the number of arguments specified in the structure describing the command. The type and name of the union element
which contains the argument value depends on the “type' element of the corresponding argument descriptor:

Type Specifier Type Union element
iocshArgint int arggfi].iva
iocshArgDouble double | argdi].dval
iocshArgString char * arggi].sval
iocshArgPdbbase void * argg[i].vval
iocshArgArgv int arggi].aval.ac

char ** | argdi].aval.av

If ani ocshAr gAr gv argument typeis present it is usually the first and only argument specified for the command. In
this case, ar gs[0] . aval . av[0] will be the name of the command, args[0] . aval . av[1] will be the first
argument, and so on.

19.3.3 Automatic Command Registration

A C++ static constructor can be used to register 10C shell commands before the EPICS application begins. The following
example shows how the "<' command could be described and registered.

#i ncl ude "iocsh. h"
static const iocshArg runScriptArg0 = { "conmmand file name",iocshArgString};

static const iocshArg * const runScriptArgs[1] = {& unScri pt Arg0};
static const iocshFuncDef runScriptFuncDef = {"<",1,runScriptArgs};

232 EPICS I0OC Application Developer's Guide

Chapter 19: I0C Shell
10C Shell Programming

static void runScriptCall Func(const iocshArgBuf *args)

{
i ocsh (args[0].sval);
}
cl ass locshRegi ster ({
publi c:
| ocshRegi ster() { iocshRegister(runScriptFuncDef, runScriptCall Func); }
1

static |l ocshRegi ster iocshRegisterQbj;

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 233

Chapter 19: IOC Shell
I0C Shell Programming

234 EPICS I0OC Application Developer's Guide

Chapter 20: libCom

This chapter and the next describe the facilities provided in <base>/ src/|i bCom This chapter describes facilities
which are platform independent. The next chapter describes facilities which have different implementations on different
platforms.

20.1 bucketLib

bucket Li b. h describes a hash facility for integers, pointers, and strings. It is used by the Channel Access Server. Itis
currently undocumented.

20.2 calc

post fi x. h defines routines used by the calculation record type calcRecord, access security, and other code. Read the
description of the calcRecord in the Record Reference Manual to see a description of what is supported.

| ong postfix(char *pinfix, char *ppostfix, short *perror);
| ong cal cPerforn{double *parg, double *presult, char *ppostfix);

The caller calls postfix() to convert the expression from infix to postfix notation. It is the callers's responsibility to make
sure that ppostfix points to sufficient storage to hold the postfix expression. The calcRecord uses an array of size 200.

The arguments to calcPerform() are:

parg - The address of aarray of doubles containing the arguments A-L that can appear in the expression.
presult - The address of the calculation result of calling calcPerform().
ppostfix - The postfix expression created by postfix().

sCal cPost fi x. h contains definitions for code that adds string manipulation facilities in addition to the facilities
supported by post fi x. h

20.3 cppStd

This subdirectory of libCom isintended for facilities such as class and function templates that implement parts of the ISO
standard C++ library where such facilities are not available or not efficient on all the target platforms on which EPICSis
supported. Eventually it is hoped that these files will not be required, athough the speed of some standard library
implementations may prevent their removal in all cases.

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 235

Chapter 20: libCom
cppStd

20.3.1 epicsList

epi csLi st. h provides a C++ doubly-linked list template class that has been optimized for speed while remaining
compatible with the the std::list template from the standard C++ header | i st . The epicsList template provides most of
the functionality of std::list but omits some of the more esoteric member functions, can only be instantiated for pointer
types (integers may also work but have not been tested), and cannot be assigned or copied. This requires the application to
manage the creation and destruction of objects that are inserted or removed from the list, but because only pointers are
stored such objects do not have to be assignable or default-constructable. Detailed information on the list and iterator
member functions can be found in any recent C++ textbook that coversthe final 1SO standard C++ library.

tenpl ate <class T>

cl ass epicsList {

public:
typedef size t size type;
class iterator;
class const_iterator;

epi csList();
~epi csLi st ();

iterator begin();

const _iterator begin() const;
iterator end();

const iterator end() const;

bool enpty() const;
size_type size() const;

T front();

const T front() const;
T back();

const T back() const;

void push front(const T X);
void pop_front();

voi d push_back(const T x);
voi d pop_back();

iterator insert(iterator position, const T x);
iterator erase(iterator position);

iterator erase(iterator position, iterator |eave);
voi d swap(epi csLi st<T>& X);

void clear();

private:
i
Method Meaning
epicsList() Create anew, empty list.
~epicsList() Destructor, releases list nodes back to central pool.

236 EPICS I0OC Application Developer's Guide

Chapter 20: libCom
cppStd

Method Meaning
begin() Returns an iterator or const_iterator for the first item on the list.
end() Returns an iterator or const_iterator that is one beyondthe last item on the list.
empty() Returnstrueiif list contains no items.
size() Number of elementsthe list contains.
front() Returns thefirst item on the list.
back() Returns the last item on the list.

push_front(const T x)

Pushes x onto the front of the list (x becomes the new first element).

pop_front()

Removes the first item from the list (returns nothing).

push_back(const T x)

Pushes x onto the back of the list (x becomes the new last element).

pop_back()

Removes the last item from the list (returns nothing).

insert(iterator pos, const T x)

Insert new element x immediately before pos, returns an iterator referring to x.

erase(iterator pos)

Remove list element at pos, returns iterator for the following element or end().

erase(iterator pos, iterator leave)

Remove list elements from pos up to but excluding leave.

swap(epicsList<T>& X)

Swap contents of thislist with list x.

clear()

Remove all itemsfrom list.

tenpl ate <class T>

inline void swap(epi csLi st<T>& x, epicsList<T>& y);

tenpl ate <class T>

inline void epi csSwap(epi csLi st<T>& x, epicsList<T>& y);

The two convenience template functions given above define the common algorithms swap(a, b) and epicsSwap(a, b) for

epicsList template classes.

The list template provides two iterator classes which are used to step through the list and have the functionality shown in
the table below. Note that a const_iterator cannot be used to modify an object it refers to, being analagous to a const
pointer, but is otherwise interchangable with a normal iterator in the expressions below unless stated otherwise.

Expression

M eaning

epicsList<T>:iterator it_a;

Constructsit_a, which initially points nowhere.

epicsList<T>:iterator it_b=1it_a;

Copy constructor, it_a and it_b now refer to the same element (maybe nowhere!).

epicsList<T>::const_iterator cit_a=it_a | A const_iterator can be copy-constructed from a mutable iterator, but not vice-versa.

it a=ithb Iterator assignment is allowed, the operator=() being compiler generated.

cita=ith A mutable iterator can be assigned to a const_iterator, but not the reverse.

*it a Dereference, returnsthe list object at the iterator’s current position. Note that this
returns a copy of the list object, not areferenceto it so (unlike a std::list<T>::iterator
where T is apointer) you can't use an iterator to modify the pointer that the list holds.

it_b->member Dereference asfor *it_a, gives access to member data and functions of class*T

EPICS Release: R3.14.1

EPICS I0C Application Developer’s Guide 237

Chapter 20: libCom

cvtFast
Expression M eaning

it at++ Stepsiterator to next list item but returns atemporary iterator that refersto the original
list item. Because of this temporary, where possible use the pre-increment form below.

++it_b Stepsiterator to the next list item and returns areference to itself.

it_a- Stepsiterator to the previous list item but returns atemporary iterator that refersto the
original list item. As before, where possible use the pre-decrement form below.

-it_b Steps iterator to the previous list item and returns a reference to itself.

(ita==it_b), (it_a!=it_b) Iterators are (in)equality-comparable, but not less-than or grater-than comparable.

20.3.2 epicsAlgorithm

epi csAl gorit hm h contains afew templates that are also available in the C++ standard header al gori t hm but are
provided here in a much smaller file —al gor i t hmcontains many templates for sorting and searching. If all you need
from thereis std::min(), std::max() and/or std::swap() your code will compile faster if you include epi csAl gorit hm h
and use epicsMin(), epicsMax() and epicsSwap() instead.

template <class T> Meaning

const T& epicsMin(const T& a, const T& b) Returns the smaller of a or b compared using a<b.

const T& epicsMax(const T& a, const T& b) Returns the larger of a or b compared using a<b.

void epicsSwap(T& a, T& b) Swaps the values of a and b; T must have a copy-constructor and operator=.

20.4 cvtFast

cvt Fast . h provides routines for converting various numeric types into an ascii string. They offer a combination of
speed and convenience not avail able with sprintf().

/* These functions return the nunber of ASCI| characters generated */
int cvtFloatToString(float value, char *pstr, unsigned short precision);
i nt cvtDoubl eToString(doubl e val ue, char *pstr, unsigned short prec);
int cvtFl oat ToExpString(float value, char *pstr, unsigned short prec);
i nt cvtDoubl eToExpStri ng(doubl e val ue, char *pstr, unsigned short prec);
i nt cvtFl oat ToConpact String(fl oat value, char *pstr, unsigned short prec);
i nt cvtDoubl eToConpact Stri ng(doubl e val ue, char *pstr, unsigned short prec);
int cvtCharToString(char value, char *pstring);
int cvtUcharToString(unsi gned char val ue, char *pstr);
int cvtShortToString(short value, char *pstr);
int cvtUshortToString(unsigned short val ue, char *pstr);
i nt cvtLongToString(epicslnt32 value, char *pstr);
int cvtU ongToString(epicsU nt32 value, char *pstr);
i nt cvtLongToHexString(epicslnt32 value, char *pstr);
int cvtLongToCctal String(epicslnt32 value, char *pstr);
unsi gned | ong cvtBitsToU ong(
epi csU nt 32 src,
unsi gned bitFiel dOffset,

238 EPICS I0OC Application Developer's Guide

Chapter 20: libCom
cxxTemplates

unsi gned bit Fi el dLengt h);
unsi gned | ong cvtU ongToBi t s(

epi csU nt 32 src,

epi csU nt 32 dest,

unsi gned bitFi el dOfset,

unsi gned bit Fi el dLengt h);

20.5 cxxTemplates

This directory contains the following C++ template headers:

* resour celLi b. h - A C++ hash facility that implements the same functionality as bucketLib
* t sBTree. h - Binary tree.

* tsDLLi st . h - Double Linked List

» tsFreeli st. h - FreeList for efficient new/delete

* t sM nMax. h - min and max.

e tsSLLi st. h-SingleLinked List

Currently these are only being used by Channel Access Clients and the portable Channel Access Server. It has not been
decided if any of these will remainin libCom.

20.6 domf

dbnf . h (Database Macro/Free) describes afacility that prevents memory fragmentation when memory is allocated and
then freed a short time later.

Routines within iocCore like dbL oadDatabase() have the following attributes:

» They issue many calls to malloc() followed a short time later by a call to freg().

» Between acall to malloc() and the associated free(), an additional call to malloc() is made that does NOT have an
associated free().

In some environments, e.g. vxWorks, this behavior causes severe memory fragmentation.

The dbmif facility stops the memory fragmentation. It should NOT be used by code that allocates storage and then keepsiit
for aconsiderable period of time before releasing. Such code can use the freeList library described below.

int dbnflnit(size_ t size, int chunkltemns);
voi d *dbnf Mal | oc(size_t bytes);

voi d dbnf Free(voi d* bytes);

voi d dbnf FreeChunks(voi d);

i nt dbnf Show(int |evel);

EPICS Release: R3.14.1
EPICS I0C Application Developer’s Guide 239

Chapter 20: libCom

ellLib
Routine Meaning
domfinit() Initialize the facility. Each time malloc() must be called si ze* chunkl t ens bytesare
allocated. si ze isthe maximum size request from domfMalloc() that will be allocated from the
domf pool. If domfInit() was not called before one of the other routines then it is automatically
caled withsi ze=64 and chuckl t ens=10.
domfMalloc() Allocate memory. If byt es is> si ze then malloc() is used to allocate the memory.
domfFree() Free the memory allocated by dbmfMalloc().
domfFreeChunks() | Freeall chunksthat have contain only free items.
dbmf Show() Show the status of the dbomf memory pool.
20.7 ellLib

el I Li b. h describes adouble linked list library. It provides functionality similar to the vxWorks IstLib library. See the
vxWorks documentation for details. There isan ellXXX() routine to replace most vxWorks IstX XX () routines.

New code that is written in C++ should seriously consider using the epi csLi st template classinstead of ellLib.

typedef struct ELLNODE {
struct ELLNODE *next;
struct ELLNODE *previous;
} ELLNODE;

typedef struct ELLLIST {
ELLNODE node;
i nt count;
void elllnit (ELLLIST *pList);
int ell Count (ELLLIST *pList);
ELLNODE *el | First (ELLLIST *pList);
ELLNODE *el | Last (ELLLI ST *pList);
ELLNODE *el | Next (ELLNODE *pNode);
ELLNODE *el | Previ ous (ELLNODE *pNode);
void ell Add (ELLLI ST *pList, ELLNODE *pNode);
void ell Concat (ELLLIST *pDstList, ELLLIST *pAddList);
void ell Delete (ELLLIST *pList, ELLNODE *pNode);
void el |l Extract (ELLLIST *pSrcList, ELLNODE *pStart Node,
ELLNODE *pEndNode, ELLLI ST *pDstList);
ELLNODE *el | Get (ELLLI ST *pList);
void elllnsert (ELLLIST *plist, ELLNODE *pPrev, ELLNODE *pNode);
ELLNODE *el | NNh (ELLLI ST *pList, int nodeNun;
ELLNODE *el | NSt ep (ELLNODE *pNode, int nStep);
int ell Find (ELLLIST *pList, ELLNODE *pNode);
void ell Free (ELLLI ST *pList);
void ell Verify (ELLLIST *pList);

240 EPICS I0OC Application Developer's Guide

Chapter 20: libCom
epicsRingBytes

20.8 epicsRingBytes
epi csRi ngByt es. h contains

epi csRi ngBytesl d epi csRi ngByt esCreate(int nbytes);

voi d epi csRi ngByt esDel et e(epi csRi ngBytesld id);

i nt epi csRi ngByt esGet (epi csRi ngBytesld id, char *val ue,int nbytes);
i nt epi csRi ngByt esPut (epi csRi ngBytesld id, char *val ue,int nbytes);
voi d epi csRi ngByt esFl ush(epi csRi ngBytesid id);

i nt epi csRi ngByt esFreeByt es(epi csRi ngBytesld id);

i nt epi csRi ngByt esUsedByt es(epi csRi ngBytesld id);

i nt epi csRingBytesSi ze(epi csRi ngBytesld id);

i nt epi csRi ngBytesl senpty(epicsRingBytesld id);

i nt epi csRingByteslsFull (epicsRingBytesld id);

Method Meaning
epicsRingBytesCreate() Create anew ring buffer of size nbytes. The returned epicsRingBytesld is passed to the other ring
methods.
epicsRingBytesDel ete() Delete the ring buffer and free any associated memory.
epicsRingBytesGet() Move up to nbytes from the ring buffer to value. The number of bytes actually moved is returned.
epicsRingBytesPut() Move up to nbytes from value to the ring buffer. The number of bytes actually moved is returned.
epicsRingBytesFlush() Make the ring buffer empty.

epicsRingBytesFreeBytes() Return the number of free bytesin the ring buffer.

epicsRingBytesUsedBytes() | Return the number of bytes currently stored in the ring buffer.

epicsRingBytesSize() Return the size of the ring buffer, i.e., nbytes specified in the call to epicsRingBytesCreate().

epicsRingBytesI sEmpty() Return (true, false) if the ring buffer is currently empty.

epicsRingBytes| sFull() Return (true, false) if thering buffer is currently empty.

epicsRingBytes has the following properties:

« For aring buffer with asingle writer it is not necessary to lock epicsRingBytesPut() calls.
* For aring buffer with a single reader it is not necessary to lock epicsRingBytesGet() calls.
* epicsRingBytesFlush() should only be used when both gets and puts are locked out.

20.9 epicsRingPointer

epi csRi ngPoi nt er . h describes a C++ and a C facility for acommonly used type of ring buffer.

EPICS Release: R3.14.1
EPICS IOC Application Developer’'s Guide 241

Chapter 20: libCom
epicsRingPointer

20.9.1 C++ Interface

EpicsRingPointer provides methods for creating and using ring buffers (first in first out circular buffers) that store
pointers. It is designed so that a writer thread and reader thread can access the ring simultaneously without requiring
mutual exclusion.

tenpl ate <class T>
cl ass epi csRi ngPoi nter {
public:
epi csRi ngPoi nter (int size);
~epi csRi ngPoi nter();
bool push(T *p);
T pop();
void flush();
int getFree() const;
i nt getUsed() const;
int getSize() const;
bool isEmpty() const;
bool isFull () const;

private: // Prevent conpiler-generated nenber functions
/1 default constructor, copy constructor, assignnment operator
epi csRi ngPointer();
epi csRi ngPoi nt er (const epi csRi ngPoi nter &);
epi csRi ngPoi nt er & oper at or =(const epi csR ngPoi nter &);

private: // Data

i
An epicsRingPointer cannot be assigned to, copy-constructed, or constructed without giving the size argument. The C++
compiler will object to some of the statements bel ow:

epi csRi ngPoi nter rp0(); /1 Error: default constructor is private

epi csRi ngPoi nter rpl(10); // K

epi csRingPointer rp2(tl); // Error: copy constructor is private

epi csRi ngPoi nter *prp; /1 OK, pointer
*prp = rpl; /1 Error: assignnent operator is private
prp = & pil; /1 OK, pointer assignnent and address- of
Method Meaning
epicsRingPointer() Constructor. The size is the maximum number of elements (pointers) that can be stored in the
ring.

~epicsRingPointer() Destructor.

push() Push anew entry on thering. It returns (false,true) is (successful, failed). Failure means the ring
was full. If asingle writer is present it does not have to use alock while performing the push. If
multiple writers are present they must use a common lock while issuing the push.

pop() Take aelement off thering. It returns O (null) if the ring was empty. If asingle reader is present it
does not have to lock while issuing the pop. If multiple readers are present they must use a
common lock while issuing the pop.

242 EPICS I0OC Application Developer's Guide

Chapter 20: libCom
epicsTimer

Method Meaning

flush() Remove all elements from the ring. If this operation is performed then all accessto thering
should be locked.

getFree() Return the amount of empty spacein thering, i.e. how many additional elementsit can hold.
getUsed() Return the number of elements stored on the ring

getSize() Return the size of thering, i.e. the value of size specified when the ring was created.
isEmpty() Returnstrueif thering is empty, else false.

isFull() Returnstrueif thering isfull, else false.

20.9.2 Cinterface

typedef void *epi csRi ngPoi nterld;
epi csRi ngPoi nterld epi csRi ngPoi nterCreate(int size);
voi d epi csRi ngPoi nt er Del et e(epi csRi ngPointerld id);
/*epi csRi ngPoi nterPop returns O if the ring was enpty */
void * epi csRi ngPoi nt er Pop(epi csRi ngPointerld id) ;
/ *epi csRi ngPoi nter Push returns (0,1) if p (was not, was) put on ring*/
i nt epi csRi ngPoi nt er Push(epi csRi ngPointerlid id,void *p);
voi d epi csRi ngPoi nt er Fl ush(epi csRi ngPointerld id);
i nt epi csRi ngPoi nt er Get Free(epi csRi ngPointerld id);
i nt epi csRi ngPoi nt er Get Used(epi csRi ngPoi nterld id);
i nt epi csRi ngPoi nterCGet Si ze(epi csRi ngPointerld id);
i nt epi csRingPoi nterl seEnpty(epicsRingPointerlid id);
i nt epi csRingPointerlsFull (epicsRi ngPointerld id);

Each C function corresponds to one of the C++ methods.

20.10 epicsTimer

epi csTi mer. h describes a C++ and a C timer facility.

20.10.1 C++ Interface

20.10.1.1 epicsTimerNotify and epicsTimer

class epicsTimerNotify {
public:
enumrestart _t { noRestart, restart };
cl ass expireStatus {
public:
expireStatus (restart_t);
expireStatus (restart_t, const double &expireDel aySec);
bool restart () const;
doubl e expirationbDelay () const;
private:

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 243

Chapter 20: libCom

epicsTimer
doubl e del ay;

b
virtual ~epicsTinerNotify ();
/1 return noRestart OR return expireStatus (restart, 30.0 /* sec */);
virtual expireStatus expire (const epicsTime & currentTinme) = 0;
virtual void show (unsigned int |evel) const;

1

cl ass epicsTimer {

publi c:
virtual void destroy () = 0; // requires existence of timer queue
virtual void start (epicsTimerNotify & const epicsTime &) = O;
virtual void start (epicsTinmerNotify & double del aySeconds) = O;
virtual void cancel () = 0;

struct expirelnfo {

relnfo (bool active, const epicsTinme & expireTinme);
active;

epi csTi me expireTi nme;

expi
bool
b
vi rtual

expirelnfo getExpirelnfo () const = O;

doubl e get ExpireDelay ();

virtual void show (unsigned int level) const = O;
pr ot ect ed:

virtual ~epicsTiner () = 0; // use destroy
1

Method Meaning

epicsTimerNotify
expire()

Code using an epicsTimer must include a class that inherits from epicsTimerNotify. The derived
class must implement the method expire(), which is called by the epicsTimer when the associated
timer expires. epicsTimerNotify defines a class expireStatus which makes it easy to implement
both one shot and periodic timers. A one-shot expire() returns with the statement:
return(noRestart);
A periodic timer returns with a statement like:
return(restart, 10.0);
whereis second argument is the delay until the next callback.

epicsTimer epicsTimer is an abstract base class. An epics timer can only be created by calling
creat eTi mer, which isamethod of epi csTi mer Queue.

destroy Thisis provided instead of a destructor. Thiswill automatically call cancel before freeing all
resources used by the timer.

start() Starts the timer to expire either at the specified time or the specified number of secondsin the
future. If the timer is already active when start is called, it isfirst canceled.

cancel() If the timer is scheduled, cancel it. If it is not scheduled do nothing. Note that if the expire()
method is already running, this call delays until the expire() completes.

getExpirelnfo Get expi r el nf o, which saysif timer is active and if so when it expires.

getExpireDelay() Return the number of seconds until the timer will expire. If the timer is not active it returns
DBL_MAX

show() Display info about object.

244 EPICS I0OC Application Developer's Guide

Chapter 20: libCom
epicsTimer

20.10.1.2 epicsTimerQueue

cl ass epi csTi mer Queue {
publi c:

virtual epicsTimer & createTiner () = 0;

virtual void show (unsigned int level) const = O;
pr ot ect ed:

virtual -~epicsTi nerQeue () = 0;

1
Method M eaning
createTimer() Thisisa"factory" method to create timers which use this queue.
show() Display info about object
20.10.1.3 epicsTimerQueueActive
cl ass epi csTi mer QueueActive : public epicsTi ner Queue {
public:

static epicsTi ner QueueActive & allocate (
bool okToShare, unsigned threadPriority = epicsThreadPriorityMn + 10);
virtual void release () = O;
pr ot ect ed:
virtual -~epicsTi ner QueueActive () = 0;

b
Method Meaning

allocate() Thisisa"factory" method to create atimer queue. If okToShareis (true,false) then a (shared,
separate) thread will manage the timer requests. The thread priority is only meaningfull if
okToShareistrue.

release() Release the queue, i.e. the calling facility will no longer use the queue. The caller MUST ensure
that it does not own any active timers. When the last facility using the queue calls release, all
resources used by the queue are freed.

20.10.1.4 epicsTimerQueueNotify and epicsTimerQueuePassive

These two classes manage a timer queue for single threaded applications. Since it is single threaded, the application is
responsible for requesting that the queue be processed.

cl ass epicsTi mer QueueNotify {

publi c:
/1 called when a newtinmer is inserted into the queue and the
/1 delay to the next expire has changed
virtual void reschedule () = O;

EPICS Release: R3.14.1
EPICS I0OC Application Developer's Guide 245

Chapter 20: libCom
epicsTimer

cl ass epi csTi mer QueuePassi ve {
publi c:
static epicsTi ner QueuePassive & create (epicsTi ner QueueNotify &);
virtual -~epicsTi ner QueuePassive () = 0;
/1 process returns the delay to the next expire
virtual double process (const epicsTine & currentTinme) = O;

b
Method Meaning
epicsTimerQueueNotify This class has a single method reschedule(). It is called whenever a new timer isinserted into the
reschedule() queue or the delay to the next expire is changed.
epicsTimerQueuePassive epicsTimerQueuePassive is an abstract base class so cannot be instantiated directly, but contains a
static member function to create a concrete passive timer queue object of a (hidden) derived class.
create() A "factory" method to create a non-threaded timer queue. The calling software also passes an object

derived from epicsTimerQueueNotify to receive reschedule() callbacks.

~epicsTimerQueuePassive() | Destructor. The caller MUST ensure that it does not own any active timers, i.e. it must cancel any
active timers before del eting the epicsTimerQueuePassive object.

process() This calls expire() for al timersthat have expired. The facility that creates the queue MUST call
this. It returns the delay until the next timer will expire.

20.10.2 C Interface

typedef struct epicsTinerForC * epicsTinmerld,;
typedef void (*epicsTinmerCallback) (void *pPrivate);

/* thread managed timer queue */
typedef struct epicsTi ner QueueActi veForC * epi csTi mer Queuel d;
epi csTi mer Queuel d epi csTi ner QueueAl | ocat e(

i nt okToShare, unsigned int threadPriority);
voi d epi csTi mer QueueRel ease (epi csTi mer Queuel d);
epi csTinmerld epicsTi mer QueueCreateTi mer (epicsTi mer Queuel d queuei d,

epi csTi ner Cal | back cal | back, void *arg);

voi d epi csTi mer QueueDestroyTi ner (epicsTi ner Queuel d queueid, epicsTimerld id);
voi d epi csTi mer QueueShow (epi csTi ner Queuel d id, unsigned int |evel);

/* passive tiner queue */
typedef struct epicsTi ner QueuePassi veFor C * epi csTi mer QueuePassi vel d;
typedef void (*epicsTi mer ueueReschedul eCal | back) (void *pPrivate);
epi csTi mer QueuePassi vel depi csTi mer QueuePassi veCr eat e(
epi csTi mer QueueReschedul eCal | back, void *pPrivate);
voi d epi csTi mer QueuePassi veDestroy (epicsTi ner QueuePassi veld);
epi csTinmerld epi csTi mer QueuePassi veCreat eTi mer (epicsTi ner QueuePassi vel d queuei d,
epi csTi ner Cal | back pCal | back, void *pArg);
voi d epi csTi mer QueuePassi veDestroyTi mer (
epi csTi mer QueuePassi vel d queuei d, epicsTinmerld id);
doubl e epi csTi mer QueuePassi veProcess (epi csTi ner QueuePassi veld);
voi d epi csTi mer QueuePassi veShow epi csTi ner QueuePassi veld id, unsigned int |evel);

246 EPICS I0OC Application Developer's Guide

Chapter 20: libCom
epicsTimer

[* timer */

void epicsTinmerStartTi me(epicsTinmerld id, const epicsTineStanp *pTine);
voi d epicsTinmerStartDel ay(epicsTinmerld id, double del aySeconds);

voi d epicsTi mer Cancel (epicsTimerld id);

doubl e epi csTi mer Get Expi reDelay (epicsTinerld id);

voi d epicsTi mer Show (epicsTinerld id, unsigned int |evel)

The C interface provides most of the facilities as the C++ interface. It does not support the periodic timer features.

20.10.3 Example

This example alocates atimer queue and two objects which have atimer that uses the queue. Each object is requested to
schedule itself. The expire() callback just prints the name of the object. After scheduling each object the main thread just
deeps long enough for each expire to occur and then just returns after releasing the queue.

#i ncl ude <stdio. h>
#i ncl ude "epi csTinmer. h"

class sonething : public epicsTimerNotify {
public:
sonet hi ng(const char* nm epi csTi ner QueueActi ve &queue)
nanme(nm, timer(queue.createTinmer()) {}
virtual ~sonething() { tiner.destroy();}
void start(double delay) {tinmer.start(*this,delay);}
virtual expireStatus expire(const epicsTime & currentTine) {
printf("%\n", nane);
current Ti ne. show(1) ;
return(noRestart);
)
private:
const char* nane;
epi csTiner &tinmer;

i
voi d epi csTi nmer Exanpl e()
{
epi csTi ner QueueActi ve &queue = epi csTi ner QueueActive: :allocate(true);
{
sonething first("first", queue);
sonet hi ng second("second", queue) ;
first.start(1.0);
second. start(1.5);
epi csThreadSl eep(2.0);
}
gueue. rel ease();
}

EPICS Release: R3.14.1
EPICS I0OC Application Developer's Guide 247

Chapter 20: libCom
fdmar

20.11 fdmgr

File Descriptor Manager. f dManager . h describes a C++ implementation. f dngr . h describes a C implementation.
Neither is currently documented.

20.12 freeList

freeLi st. h describes routines to alocate and free fixed size memory elements. Free elements are maintained on a
free list rather then being returned to the heap via calls to free. When it is necessary to call malloc(), memory is allocated
in multiples of the element size.

void freeListlnitPvt(void **ppvt, int size, int nmalloc);
void *freeListCalloc(void *pvt);

void *freeListMalloc(void *pvt);

void freelLi stFree(void *pvt, void*pnen);

voi d freelLi stC eanup(void *pvt);

size t freeListltensAvail (void *pvt);

where

pvt - For internal use by the freelist library. Caller must provide storage for a"void * pvt
size - Size in bytes of each element. Note that all elements must be same size
nmalloc - Number of elements to allocate when regular malloc() must be called.

20.13 gpHash

gpHash. h describes a general purpose hash table for character strings. The hash table contains tableSze entries. Each
entry is alist of members that hash to the same value. The user can maintain separate directories which share the same
table by having a different pvt value for each directory.

t ypedef struct{

ELLNODE node;
const char *nane; / *address of name placed in directory*/
voi d *pvti d; /[*private name for subsystem user*/
voi d *user Pvt ; [*private for user*/
} GPHENTRY;

/*tabl eSi ze must be power of 2 in range 256 to 65536*/
void gphlnitPvt(void **ppvt,int tableSize);

GPHENTRY *gphFi nd(voi d *pvt, const char *name,void *pvtid);
GPHENTRY *gphAdd(voi d *pvt, const char *nane,void *pvtid);
voi d gphDel ete(void *pvt, const char *nane, void *pvtid);
voi d gphFreeMem(void *pvt);

voi d gphDunp(void *pvt);

where

pvt - For internal use by the gpHash library. Caller must provide storage for a"void * pvt
name - The character string that will be hashed and added to table.
pvtid - The name plus value of this pointer constitute a unique entry.

248 EPICS I0OC Application Developer's Guide

Chapter 20: libCom

logClient

20.14 logClient
TheiocLog client. This does not really belong in libCom.
20.15 macLib
macLi b. h describes ageneral purpose macro substitution library. It is used for all macro substitution in base.
| ong nacCreat eHandl e(

MAC HANDLE **handl e, /* address of variable to receive pointer */

/* to new macro substitution context */
char *pairs[] /* pointer to NULL-term nated array of */

/* {name, val ue} pair strings; a NULL */
/* value inplies undefined; a NULL */
/* argument inplies no macros */

)
voi d macSuppr essWar ni ng(

MAC HANDLE *handl e, /* opaque handle */

i nt fal seTrue /*0 nmeans ussue, 1 nmeans suppress*/
)

/*followi ng returns #chars copied, <0 if any nacros are undefined*/
| ong nacExpandStri ng(

MAC HANDLE *handl e, /* opaque handle */

char *src, /* source string */

char *dest /* destination string */

| ong max| en /* maxi mum nunber of characters to copy */

/* to destination string */

)

/*following returns length of value */
| ong nacPut Val ue(

MAC HANDLE *handl e, /* opaque handle */
char *nane, /* macro name */
char *val ue /* macro val ue */

)

/*follow ng returns #chars copied (<0 if undefined) */
| ong nacGet Val ue(

MAC HANDLE *handl e, /* opaque handle */

char *name, /* macro name or reference */

char *val ue, /* string to receive nacro value or nane */
/* argument if macro is undefined */

| ong max| en /* maxi mum nunber of characters to copy */

/* to value */

)

| ong nacDel et eHandl e(MAC HANDLE *handl e) ;
| ong nacPushScope(MAC HANDLE *handl e);

EPICS Release: R3.14.1
EPICS I0C Application Developer’s Guide 249

Chapter 20: libCom
misc

| ong macPopScope(MAC_HANDLE *handl e) ;
| ong nmacReport Macr os(MAC_HANDLE *handl e) ;

/* Function prototypes (utility library) */

/*followi ng returns #defns encountered; <0 = ERROR */
| ong macPar seDef ns(

MAC_HANDLE *handl e, /* opaque handl e; can be NULL if default */
/* special characters are to be used */

char *def ns, /* macro definitions in "a=xxx, b=yyy" */
[* format */

char **pairsf] /* address of variable to receive pointer */

/* to NULL-term nated array of {nane, */
/* value} pair strings; all storage is */
/* allocated contiguously */

)

/*followi ng returns #nacros defined; <0 = ERROR */
| ong macl nstal | Macr os(MAC_HANDLE *handl e,
char *pairs[] /* pointer to NULL-term nated array of */
/* {name, val ue} pair strings; a NULL */
/* value inplies undefined; a NULL */
/* argunment inplies no macros */

)

NOTE: The directory <base>/src/libCom/macLib contains two files macLi bNOTES and nacLi bREADME that explain
thislibrary.

20.16 misc

20.16.1 aTol PAddr

The function prototype for this routine appearsin osi Sock. h

i nt aTol PAddr (const char *pAddrString, unsigned short defaultPort,
struct sockaddr _in *plP);

arolPAddr() fills in the structure pointed to by the plP argument with the Internet address and port number specified by
the pAddr String argument.

Three forms of pAddrString are accepted:
1. n.n.n.n:p
The Internet address of the host, specified as four numbers separated by periods.

2. XXXXXXXX:P
The Internet address number of the host, specified as a single number.

3. hostname:p
The Internet host name of the host.

In all cases the ‘:p’ may be omitted in which case the port number is set to the value of the defaultPort argument. All
numbers are read in base 16 if they begin with ‘0x’ or ‘0X’, in base 8 if they begin with ‘0", and in base 10 otherwise.

250 EPICS I0OC Application Developer's Guide

Chapter 20: libCom
misc

20.16.2 adjustment

adj ust ment . h describes asingle function:
size_t adj ust ToWworst CaseAl i gnrment (si ze_t size);

adjustToWorstCaseAlignment() returns a value >= size that an exact multiple of the worst case alignment for the
architecture on which the routine is executed.

20.16.3 cantProceed

cant Proceed. h describesroutines that are provided for code that can’t proceed when an error occurs.

voi d cant Proceed(const char *errorMessage);
void *cal | ocMust Succeed(size_t count, size_t size,const char *errorMessage);
void *mal | ocMust Succeed(si ze_t size, const char *errorMessage);

cantProceed() issues the error message and does not return. callocMustSucceed() and mallocMustSucceed() can be used
in place of calloc() and malloc(). If they fail they just call cantProceed().

20.16.4 dbDefs

dbDef s. h contains definitions that are still used in base but should not be. Hopefully these all go away some day. This
has been the hope for about ten years.

20.16.5 epicsString

epi csString. h currently describes asingle function.
i nt dbTransl at eEscape(char *dst, const char *src);

dbTransateEscape() copies the string src to dst while substituting escape sequences. It returns the length of the resultant
string (which may contain null bytes). The caller must ensure that the buffer dst is large enough.

20.16.6 epicsTypes

epi csTypes. h provides typedefs for architecture independent data types.

t ypedef char epi csl nt 8;

t ypedef unsi gned char epi csUl nt 8;

t ypedef short epi csl nt 16;

t ypedef unsigned short epicsU nt16;
t ypedef epicsU nt16 epi csEnuml6;
typedef int epi csl nt 32;

t ypedef unsi gned epi csUl nt 32;
t ypedef fl oat epi csFl oat 32;
t ypedef doubl e epi csFl oat 64;
t ypedef unsigned | ong epi csl ndex;

t ypedef epicslnt32 epi csSt at us;

So far the definitions provided in this header file have worked on all architectures. In addition to the above definitions
epi csTypes. h hasanumber of definitions for displaying the types and other useful definitions. See the header file for
details.

EPICS Release: R3.14.1
EPICS IOC Application Developer's Guide 251

Chapter 20: libCom
misc

20.16.7 gsd_sync_defs.h

Not documented.

20.16.8 locationException

A C++ template. Not documented, nor particularly useful with the C++ standard exception hierarchy. This should be in
cxxTemplates or replaced with epi csExcept . h.

20.16.9 epicsExcept

epi csExcept . h contains definitions and macros that can be used to throw an exception along with source file and line
number information indicating where the exception arose. Although similar to the functionality provided in the header file
| ocati onExcepti on. h thisversion allows all such exceptionsto be caught and reported by single a handler that does
not have to use C++ Run-Time Type I dentification. Any C++ exception class may be used in conjuntion with this facility,
including those defined in st dexcept .

FIXME: This should be merged into | ocat i onExcepti on. h

20.16.10 shareLib.h
Thisisthe header file for the "decorated names' that appear in header files, e.g.

epi csShar eFunc int epicsShareAPl a_func (int arg)

This is used for creating DLLs for windows. Hopefully a way can be found to generated win32 DLLs which does not
require decorated names.

20.16.11 truncateFile.h

enum TF_RETURN { TF_OK=0, TF_ERROR=1};
TF_RETURN truncateFil e (const char *pFil eName, unsigned size);

where
pFileName - name (and optionally path) of file

truncateFile() truncates the file to the specified size. truncate() is not used because it is not portable. It returns TF_OK if
thefileislessthan size bytes or if it was successfully truncated. It returns TF_ERROR if the file could not be truncated.

20.16.12 unixFileName.h
Defines macros OSI_PATH_LIST _SEPARATOR and OSl_PATH_SEPARATOR

252 EPICS I0OC Application Developer's Guide

Chapter 21: [ibCom OSlI libraries

21.1 Overview

Most code in base is operating system independent, i.e. the code is exactly the same for all supported operating systems.
Thisis accomplished by providing epics defined libraries for facilities that are different on the various systems. The code
is called Operating System Independent or OSl. OSlI libraries have multiple implementations.

21.1.1 OSl sourcedirectory

Directory <base>/ src/ | i bConl osi contains the code for the operating system independent libraries. The structure
of thisdirectory is:

osi/
epi cs*. h
*.cpp - A few generic c++ inplenentations
os/
Li nux/
Dar wi n/
RTEMS/
W N32/
cygw n32/
def aul t/
posi x/
sol ari s/
vxWor ks/
NOTE: Ot her systenms are al so present but are not currently supported.

21.1.2 Rulesfor building OSl.

The osi directory contains header files that start with epi ¢s. These contain the definitions used by user code. Each of the
directories under osi / <ar ch> contain architecture dependent code. The file names begin with osd. In most cases
both a header and source file are present.

Installing header filesresiding under sr ¢/ | i bCom osi into<base>/i ncl ude

» Filesinosi areingtaledinto <base>/i ncl ude
e Filesinosi/ os/ <*> areinstaled into <base>/ i ncl ude/ os/ <ar ch>. The search order for locating afile
is:
e li bConi osi / os/ <ar ch>
e |i bCom osi/ os/ posi x
e |ibCom osi/os/default

The search order for locating osd sourcefilesis:

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 253

Chapter 21: libCom OSl libraries
epicsAssert

¢ |libCom/osi/os/<arch>
¢ libCom/osi/os/posix
* |ibCom/osi/os/default

21.1.3 Locating OSI header files.

When code is compiled the search order for locating header filesin base/ i ncl ude is:

» <base>/include/os/<arch>
» <base>/include

21.2 epicsAssert

Thisisareplacement for ANSI C'sassert . To usethisversion just include:
i ncl ude "epi csAssert.h"

instead of

i ncl ude <assert. h>

If anassert fails,itcalserr| og indicating the program’s author, file name, and line number. Under each OS there are
specialized instructions assisting the user to diagnose the problem and generate a good bug report. For instance, under
vxWorks, there are instructions on how to generate a stack trace, and on posix there are instructions about saving the core
file. After printing the message the calling thread is suspended.

21.3 epicsEvent

epi csEvent . h containsa C++ and a C description for an event semaphore.

21.3.1 C++ Interface

t ypedef enum {
epi csEvent i t OK, epi csEvent Wi t Ti neout, epi csEvent Wai t Err or
} epi csEvent Wai t St at us;

t ypedef enum {epi csEvent Enpty, epi csEventFul |} epicsEventlnitial State;

cl ass epi csEvent{
public:
epi csEvent (epi csEventlnitial State initial =epi csEvent Enpty);
~epi csEvent () ;
voi d signal ();
void wait(); /*blocks until full*/
bool wait(double tineQut); /* false if enpty at tine out */
bool trywait(); /* false if enpty */
voi d show(unsigned level) const;

254 EPICS I0OC Application Developer's Guide

Chapter 21: libCom OSl libraries

epicsEvent
cl ass invalidSemaphore {}; /* exception */
private:
1
Method M eaning

epicsEvent An epicsEvent can be created empty or full. If it is created empty then await issued
before asignal will block. If created full then the first wait will always succeed.
Multiple signals may be issued between waits but have the same effect asasingle
signal.

~epicsEvent Remove the event and any resourcesit uses. Any further use of the semaphore result in
unknown (most certainly bad) behavior. No outstanding take can be active when this
call ismade.

signal Signal the event i.e. ensures that the next or current call to wait completes.

wait() Wait for the event.

wait(double Similar to wait except that if event does not happen the call completes after the

timeOut) specified time out. The return value is (false,true) if the event (did not, did) happen.

tryWait() Similar to wait except that if event does not happen the call completes immediately.
The return valueis (false,true) if the event (did not, did) happen.

show Display information about the semaphore. The information displayed is architecture
dependent.

The primary use of an event semaphore is for synchronization. An example of using an event semaphore is a consumer
thread that processes requests from one or more producer threads. For example:

* When creating the consumer thread also create an epicsEvent.
epi csEvent *pevent = new epi csEvent;
» The consumer thread has code containing:
while(1l) {
pevent ->wait();
whil e(/*nore work*/) {
[*process wor k*/
}
}
* Producers create requests and issue the statement:
pevent - >si gnal () ;

21.3.2 C Interface
t ypedef struct epi csEvent OSD *epi csEvent|d;

epi csEvent 1 d epi csEvent Create(epi csEventlnitial State initial State);

epi csEvent 1 d epi csEvent Must Create (epicsEventlnitial State initial State);
voi d epi csEvent Destroy(epi csEventld id);

voi d epi csEvent Si gnal (epi csEventld id);

EPICS Release: R3.14.1
EPICS IOC Application Developer’'s Guide 255

Chapter 21: libCom OSl libraries
epicsFindSymbol

epi csEvent Vi t St at us epi csEvent Wai t (epi csEventid id);

voi d epi csEvent Must Wi t (epi csEventld id);

epi csEvent Vi t St at us epi csEvent Vi t Wt hTi neout (epi csEventld id, double tinmeQut);
epi csEvent Vi t St at us epi csEvent TryWai t (epi csEventld id);

voi d epi csEvent Show(epi csEventld id, unsigned int |evel);

Each C routine corresponds to one of the C++ methods. epi csEvent Must Cr eat e and epi csEvent Must Wi t do
not return if they fail.

21.4 epicsFindSymbol

epi csFi ndSynbol . h contains the following definition:

voi d * epi csFi ndSynbol (const char *nane);

Method M eaning

epicsFindSymbol Return the address of the variable name

vxWorks provides a function symFindByName, which finds and returns the address of global variables. The registry,
described in the next chapter, provides an alternative but also requires extra work by iocCore and/or user code. If the
registry is asked for a name that has not been registered, it calls epicsFindSymbol. If epicsFindSymbol can locate the
global symboal it returns the address, otherwise it returns null.

On vxWorks epicsFindSymbol calls symFindByName.

A default version just returns null, i.e. it alwaysfails.

21.5 epicslnterrupt

epi csl nt errupt . h contains the following:

21.5.1 C Interface

i nt epicslnterruptLock();

voi d epicslnterruptUnl ock(int key);

int epicslinterruptlslnterruptContext();

voi d epi csl nterrupt Cont ext Message(const char *nessage);

256 EPICS I0OC Application Developer's Guide

Chapter 21: libCom OSl libraries
epicsMath

Method Meaning

epicslnterruptL ock Lock interrupts and return a key to be passed to
epicsinterruptUnlock
To lock the following is done.

int key;

key = epicsinterruptLock();

epicsinterruptUnlock(key);

epicslnterruptUnlock Unlock interrupts.

epicslnterruptlsinterruptContext | Return (true, false) if current context is interrupt context.

epicslnterruptContextM essage Generate a message while interrupt context is true.

21.5.2 mplementation notes

A vxWorks specific version is provided. It maps directly to intLib calls.
An RTEMS version is provided that mapsto rtems_ calls.

A default version is provided that uses agloba semaphoreto lock. Thisversion isintended for operating systemsin which
iocCore will run asamulti threaded process. The global semaphore isthus only global within the process. Thisversionis
intended for use on all except real time operating systems.

The vxWorks implementation will most likely not work on symmetric multiprocessing systems.
The reason epicsinterrupt is needed is:

* callbackRequest and scanOnce can be issued from interrupt level.
» The errlog routines can be called while at interrupt level.

21.6 epicsMath

epi csMat h. h includesmat h. h and also ensuresthat i snan andi si nf are defined.

21.7 epicsMutex

epi csMut ex. h contains both C++ and C descriptions for a mutual exclusion semaphore.

21.7.1 C++ Interface

t ypedef enum {
epi csMut exLockOK, epi csMut exLockTi neout , epi csMut exLockEr r or
} epi csMut exLockSt at us;

EPICS Release: R3.14.1
EPICS IOC Application Developer’'s Guide 257

Chapter 21: libCom OSl libraries
epicsMutex

cl ass epi csMutex {

publi c:
epi csMutex ();
~epi csMutex ();
void lock (); /* blocks until success */
bool tryLock (); /* true if successful */
voi d unlock ();
voi d show (unsigned | evel) const;

cl ass invalidSemaphore {}; /* exception */

private:
1
Method Meaning
epicsMutex Create amutual exclusion semaphore.
~epicsM utex Remove the semaphore and any resources it uses. Any further use of the semaphore
result in unknown (most certainly bad) results.
lock() Wait until the resourceisfree. After asuccessful lock additional, i.e. recursive, locks of
any type can be issued but each must have an associated unlock.
tryLock() Similar to lock except that, if the resource is owned by another thread, the call
completesimmediately. The return valueis (falsetrue) if the resource (isnot, is) owned
by the caller.
unlock Release the resource. If athread issues recursive locks, there must be an unlock for
each lock
show Display information about the semaphore. The results are architecture dependent.

Mutual exclusion semaphores are for situations requiring mutually exclusive access to resources. A mutual exclusion
semaphore may be taken recursively, i.e. can be taken more than once by the owner thread before releasing it. Recursive
takes are useful for a set of routines that call each other while working on a mutually exclusive resource.

Thetypical use of amutual exclusion semaphoreis:

epi csMut ex *pl ock = new epi csMit ex;

pl ock->l ock();
/* process resource */
pl ock->unl ock() ;

21.7.2 C Interface
t ypedef struct epi csMut exOSD* epi csMut exl d;

epi csMut exl d epi csMut exCr eat e(voi d);

epi csMut exl d epi csMut exMust Create (voi d);
voi d epi csMut exDestroy(epi csMutexld id);
voi d epi csMut exUnl ock(epi csMutexl d id);

258 EPICS I0OC Application Developer's Guide

Chapter 21: libCom OSl libraries
epicsThread

epi csMut exLockSt at us epi csMut exLock(epi csMutexlid id);

epi csMut exLockSt at us epi csMut exMust Lock(epi csMutexl d id);
epi csMut exLockSt at us epi csMut exTryLock(epi csMutexl d id);
voi d epi csMut exShow(epi csMutexld id, unsigned int |evel);
voi d epi csMut exShowAl | (i nt onl yLocked, unsigned int |evel);

Each C routine corresponds to one of the C++ methods. epi csMut exMust Cr eat e and epi csMut exMust Lock do
not return if they fail.

21.7.3 Implementation Notes

The implementation:

» Must implement recursive locking
* May implement priority inheritance and be deletion safe

A posix version is implemented via pthreads.

21.8 epicsThread

epi csThread. h contains C++ and C descriptions for a thread.

21.8.1 C Interface
typedef void (*EPI CSTHREADFUNC) (void *parm;

static const unsigned epicsThreadPriorityMax
static const unsigned epicsThreadPriorityMn
/* sone generic val ues */

static const unsigned epicsThreadPriorityLow = 10;

static const unsigned epicsThreadPriorityMedi um = 50;
static const unsigned epicsThreadPriorityH gh = 90;

/* sone iocCore specific values */

static const unsigned epicsThreadPriorityCAServerLow = 20;

99;
0;

static const unsigned epicsThreadPriorityCAServerH gh = 40;
static const unsigned epicsThreadPriorityScanLow = 60;
static const unsigned epicsThreadPriorityScanH gh = 70;
static const unsigned epicsThreadPrioritylocsh = 91;

static const unsigned epicsThreadPriorityBaseMax = 91;

/* stack sizes for each stackSi zeC ass are inplenmentation and CPU dependent */
t ypedef enum {

epi csThreadSt ackSnal |, epi csThreadSt ackMedi um epi csThreadSt ackBi g
} epi csThreadSt ackSi zed ass;

t ypedef enum {
epi csThr eadBool eanSt at usFai |, epi csThr eadBool eanSt at usSuccess
} epi csThreadBool eanSt at us;

unsi gned int epicsThreadGet St ackSi ze(epi csThreadSt ackSi zeC ass si ze);

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 259

Chapter 21: libCom OSl libraries
epicsThread

typedef int epicsThreadOncel d;
#define EPI CS_THREAD ONCE_INIT O

voi d epi csThreadOnce(epi csThreadOnceld *id, EPI CSTHREADFUNC, void *arg);
voi d epi csThreadExit Mai n(voi d);

/* (epicsThreadld)O is guaranteed to be an invalid thread id */
typedef struct epicsThreadOSD *epi csThreadl d;

epi csThreadl d epi csThreadCreat e(const char *nane,
unsigned int priority, unsigned int stackSize,
EPI CSTHREADFUNC funptr, void *parm;
voi d epi csThr eadSuspendSel f (voi d);
voi d epi csThreadResune(epi csThreadld id);
unsi gned int epicsThreadGetPriority(epicsThreadld id);
unsi gned int epicsThreadGetPrioritySelf();
voi d epicsThreadSetPriority(epicsThreadld id,unsigned int priority);
epi csThr eadBool eanSt at us epi csThreadH ghest PrioritylLevel Bel ow (
unsigned int priority, unsigned *pPriorityJustBel ow);
epi csThr eadBool eanSt at us epi csThreadLowest Pri orityLevel Above (
unsigned int priority, unsigned *pPriorityJustAbove);
i nt epi csThreadl sEqual (epi csThreadld i dl, epicsThreadld id2);
i nt epi csThreadl sSuspended(epi csThreadld id);
voi d epi csThreadSl eep(doubl e seconds);
epi csThreadl d epi csThreadGet | dSel f (voi d);
epi csThreadl d epi csThreadGet |l d(const char *nane);

const char * epi csThreadGet NaneSel f (void);
voi d epi csThreadGet Nane(epi csThreadld id, char *nane, size_t size);

voi d epi csThreadShowAl | (unsi gned int |evel);
voi d epi csThreadShow epi csThreadl d id, unsigned int |evel);

typedef void * epicsThreadPrivateld,;

epi csThreadPrivatel d epi csThreadPri vat eCreate(void);
voi d epi csThreadPri vat eDel et e(epi csThreadPrivateld id);
voi d epi csThreadPri vat eSet (epi csThreadPrivateld,void *);
void * epicsThreadPrivateCet (epi csThreadPrivateld);

Method Meaning

epicsThreadGetStackSize Get a stack size value that can be given to epicsThreadCreate. Three sizes can be
regquested: small, medium, and large.

260 EPICS I0OC Application Developer's Guide

Chapter 21: libCom OSl libraries
epicsThread

Method

Meaning

epicsThreadOnce

Thisisused asfollows:
void mylnitFunc(void * arg)

{

}...

é[.).icsThreadOnceld onceFlag = OSITHREAD_ONCE_INIT;

e.[.).i csThreadOnce(& onceFlag,mylnitFunc,(void *)myParm)
For each unique epicsThreadOncel d, epicsThreadOnce guarantees

1) myInitFunc is called only once.
2) mylnitFunc completes before any epicsThreadOnce call completes.

epicsThreadExitMain

If the main routineis done but wantsto let other threadsrun it can call thisroutine. This
should be the last call in main, except the final return. On most systems
epicsThreadExitMain never returns. This must only be called by the main thread.

epicsThreadCreate

Create a new thread. The use made of the name, priority, and stacksize argumentsis
implementation dependent. Some implementation may ignore one or more of these.
The funptr argument specifies a function that implements the thread and parm is the
single argument passed to funptr. A thread terminates when funptr returns.

epicsThreadSuspendSel f

This causes the calling thread to suspend. The only way it can resumeis for another
thread to call epicsThreadResume.

epicsThreadResume

Resume a suspended thread. Only do this if you know that it is safe to resume a
suspended thread.

epicsThreadGetPriority

Get the priority of the specified thread.

epicsThreadGetPriority Self

Get the priority of thisthread.

epicsThreadSetPriority

Set anew priority for the specified thread. The result isimplementation dependent.

epicsThreadHighestPriorityL evel Below

Get apriority that isjust lower than the specified priority.

epicsThreadlL owestPriorityL evel Above

Get apriority that is just above the specified priority.

epicsThreadlsEqual

Compares two threadlds and returns (0,1) if they (are not, are) the same.

epicsThreadl sSuspended

BAD NAME. taskwd needs this call. It really means: |s there something wrong with
this thread? This could mean suspended or no longer exists or etc. It isaproblem
because it isimplementation dependent.

epicsThreadSleep

Sleep for the specified period of time, i.e. sleep without using the cpu. If delay is>0
then the thread will sleep at least until the next clock tick. The exact time is determined
by the underlying architecture. If delay is <= 0 then adelay of O is requested of the
underlying architecture. What happens is architecture dependent but often it allows
other threads of the same priority to run.

epicsThreadGetl dSelf

Get the threadid of the calling thread.

epicsThreadGetld

Get the threadld of the specified thread. A return of 0 means that no thread was found
with the specified name.

EPICS Release: R3.14.1

EPICS I0C Application Developer's Guide

261

Chapter 21: libCom OSl libraries
epicsThread

Method Meaning

epicsThreadGetNameSelf Get the name of the calling thread.

epicsThreadGetName Get the name of the specified thread. The value is copied to a caller specified buffer so
that if the thread terminatesthe caller is not |eft with a pointer to something that may no
longer exist.

epicsThreadShowAll Display info about al threads.

epicsThreadShow Display info about the specified thread.

epicsThreadPrivateCreate Thread private variables are intended for use by legacy libraries written for asingle
threaded environment and which uses a global variable to store private data. The only
code in base that currently needs this facility is channel access. A library that needs a
private variable should make exactly one call to epicsThreadPrivateCreate. Each thread
should call epicsThreadPrivateSet when the thread is created. Each library routine can
call epicsThreadPrivateGet each timeit is called.

epicsThreadPrivateDel ete Delete athread private variable.

epicsThreadPrivateSet Set the value for athread private variable.

epicsThreadPrivateGet Get the value of athread private variable, the value is the value set by the call to
epicsThreadPrivateSet that was made by the same thread. If called before
epicsThreadPrivateSet it returns 0.

epicsThread is meant as a somewhat minimal interface for multithreaded applications. It can be implemented on a wide
variety of systems with the restriction that the system MUST support a multithreaded environment. A POSIX pthreads
version is provided.

Theinterface provides the following thread facilities, with restrictions as noted:

Life cycle - A thread starts life as a result of a call to epicsThreadCreate. It terminates when the thread function
returns. It should not return until it hasreleased all resourcesit uses. If athread is expected to terminate as anatural
part of it'slife cycle then the thread function must return.

epicsThreadOnce - This provides the ability to have an initialization function that is guaranteed to be called exactly
once.

main - If amain routine finishesit’s work but wants to |eave other threads running it can call epicsThreadExitMain,
which should be the last statement in main.

Priorities - Ranges between 0 and 99 with a higher number meaning higher priority. A humber of constants are
defined for iocCore specific threads. The underlying implementation may collapse the range 0 to 99 into a smaller
range; even asingle priority. User code should never use priorities to guarantee correct behavior.

Stack Size - epicsThreadCreate accepts a stack size parameter. Three generic sizes are available: small, medium,
and large. Portable code should always use one of the generic sizes. Some implementation may ignore the stack
Size request and use a system default instead. Virtual memory systems providing generous stack sizes can be
expected to use the system default.

epicsThreadld - This is given a value as a result of a call to epicsThreadCreate. A value of 0 always means no
thread. If athreadld is used for athread that has terminated the result is not defined (but will normally lead to bad
things happening). Thus code that |ooks after other threads MUST be aware of threads terminating.

21.8.2 C++ Interface

cl ass epi csShareC ass epi csThreadRunabl e {

262

EPICS IOC Application Developer’'s Guide

Chapter 21: libCom OSl libraries
epicsThread

publi c:
virtual void run() = 0;
virtual void stop();
virtual void showunsigned int |evel) const;

b

cl ass epi csShareC ass epi csThread {
publi c:
epi csThread (epi csThreadRunabl e & const char *nane, unsigned int stackSize,
unsigned int priority=epicsThreadPrioritylLow);
virtual ~epicsThread ();
void start();
void exitWait ();
bool exitWait (double delay);
void exitWaitRelease (); // noop if not called by nanaged thread
static void exit ();
void resume ();
voi d get Nane (char *name, size_t size) const;
unsigned int getPriority () const;
void setPriority (unsigned int);
bool prioritylsEqual (const epicsThread &other Thread) const;
bool isSuspended () const;
bool isCurrentThread () const;
bool operator == (const epicsThread & hs) const;
/* these operate on the current thread */
static void suspendSelf ();
static void sleep (double seconds);
static epicsThread & getSelf ();
static const char * getNaneSelf ();
private:

1
templ ate <class T>
cl ass epicsThreadPrivate {
publi c:
epi csThreadPrivate ();
~epi csThreadPrivate ();
T *get () const;
void set (T *);
cl ass unabl eToCreat eThreadPrivate {}; // exception
private:

b
The C++ interface is just a wrapper around the C interface. Two differences are the method st art and the class
epi csThr eadRunabl e.

The method st art must be called only after the epi csThead object is constructed. It in turn calls the r un method of
theepi csThr eadRunabl e object.

Code using the C++ interface code must provide a class that derives from epi csThr eadRunabl e. One way to
accomplish thisis asfollows:

class nyThread: public epicsThreadRunabl e {
publi c:

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 263

Chapter 21: libCom OSl libraries
epicsTime

myThread(int arg, const char *nane);
virtual ~nmyThread();

virtual void run();

epi csThread thread;

}

myThr ead: : myThread(i nt arg, const char *nane)
t hread(*thi s, name, epi csThr eadCet St ackSi ze(epi csThreadSt ackSmal |), 50)

{

}
nyThread: : ~nyThread() {}

thread. start();

voi d nyThread: : run()
{

}

21.9 epicsTime

epi csTi nme. h contains C++ and C descriptions for time.

21.9.1 Time Related Structures

/* epics tinme stanp for Cinterface*/

typedef struct epicsTi neStanp {
epi csU nt 32 secPast Epoch; /* seconds since 0000 Jan 1, 1990 */
epi csU nt 32 nsec; /* nanoseconds within second */

} epicsTi neSt anp;

/*TS STAWP is deprecated */
#defi ne TS _STAMP epi csTi meSt anp

struct tinespec; /* POSIX real time */
struct tineval; /* BSD */
struct | _fp; /* NIP tinestanp */

/1 extend ANSI C RTL "struct tm' to include nano seconds within a second
/1 and a struct tmthat is adjusted for the |local tinezone
struct | ocal _tmnano_sec {

struct tmansi _tm /* ANSI Ctine details */

unsi gned |l ong nSec; /* nano seconds extension */

}s

/!l extend ANSI C RTL "struct tnm' to includes nano seconds within a second
/1 and a struct tmthat is adjusted for GVI (UTC)
struct gmtmnano_sec {

struct tmansi _tm /* ANSI Ctine details */

264 EPICS I0OC Application Developer's Guide

Chapter 21: libCom OSl libraries
epicsTime

unsi gned | ong nSec; /* nano seconds extension */

b

/1 wrapping this in a struct allows conversion to and
/1 fromANSI time_t but does not allow unexpected
/1 conversions to occur
struct tinme_t_wrapper ({
tinme_t ts;

b

The above structures are for the various time formats.

» epi csTi meSt anp - Thisisthe structure used by the C interface for epics time stamps. The C++ interface stores
thisinformation in private members. The two elements of the class are:

» secPast Epoch - The number of seconds since January 1, 1990 (the epics epoch).

* nsec - hanoseconds within a second
NOTE: TS_STAMP isdefined for compatibility with existing code.

* ti mespec - Thisisdefined by POSIX Real Time. It requires two mandatory fields:
e tinme_t tv_sec - Number of seconds since 1970 (The POSIX epoch)
e | ong tv_nsec - nanoseconds within a second
e timeval -BSD and SRV5 Unix timestamp. It has two fields:
e tinme_t tv_sec - Number of seconds since 1970 (The POSIX epoch)
e tine_t tv_nsec - nanoseconds within a second
e struct | _fp - Network Time Protocol timestamp. The fields are:
* |_ui - Number of seconds since 1900 (The NTP epoch)
« |_uf - Fraction of a second. For example 0x800000000 represents 1/2 second.

* local _tmnano_sec and gmtm nano_sec - Defined by epics. It just adds a nanosecond field to
struct tm

e time_t_wapper - This is for converting to/from the ANSI C time_t. Since ti ne_t is usualy an
elementary type providing a conversion operator from ti nme_t to/from epi csTi me could cause undesirable
implicit conversions. Providing a conversion operator to/from a tinme_t_w apper prevents implicit
conversions.

NOTE on conversion. The epics implementation will properly convert between the various formats from the beginning of
the EPICS epoch until at least 2038. Unless the underlying architecture support has defective POSIX, BSD/SRV5, or
standard C time support the epics implementation should be valid until 2106.

21.9.2 C++ Interface

cl ass epi csTi ne;

cl ass epi csTi neEvent

{
friend class epicsTineg;
public:
epi csTi neEvent (const int &event Nane);
private:
i nt event Nunber;
1

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 265

Chapter 21: libCom OSl libraries
epicsTime

cl ass epicsTinme

{

publi c:
/] exceptions
cl ass unabl eToFetchCurrent Time {};
cl ass formatProbl emWNthStruct TM {};

epi csTime ();
epi csTine (const epicsTinme &t);

static epicsTi ne get Event (const epicsTi neEvent &event);
static epicsTine getCurrent ();

/1 convert to and from EPICS epi csTi meStanp for nat
operator epicsTimeStanmp () const;

epi csTine (const epicsTimeStanp &ts);

epi csTinme operator = (const epicsTineStanp & hs);

/1 convert to and fromANSI tine_t

operator time_t_wapper () const;

epi csTine (const time_t_wapper &tv);

epi csTinme operator = (const tine_t_wapper & hs);

/1l convert to and from ANSI Cs "struct tnf (w th nano seconds)
/1l adjusted for the local time zone

operator |ocal _tmnano_sec () const;

epi csTinme (const |ocal _tmnano_sec &ts);

epi csTinme operator = (const |ocal _tmnano_sec &rhs);

/1l convert to ANSI Cs "struct tnf (with nano seconds)
/1 adjusted for GMtine (UTQ
operator gmtm nano_sec () const;

/1 convert to and fromPOSI X RT's "struct tinespec”
operator struct timespec () const;

epi csTinme (const struct timespec &ts);

epi csTinme operator = (const struct tinmespec & hs);

/1 convert to and fromBSD s "struct tineval"”
operator struct tinmeval () const;

epi csTinme (const struct timeval &ts);

epi csTime operator = (const struct timeval &rhs);

/1 convert to and from NTP tinestanp format
operator | _fp () const;

epi csTine (const | _fp &)

epi csTine operator = (const | _fp &hs);

/1 convert to and from GDD s aitTi neStanp format
operator aitTinmeStanmp () const;

epi csTinme (const aitTineStanp &ts);

epi csTinme operator = (const aitTimeStanp & hs);

266 EPICS I0OC Application Developer's Guide

Chapter 21: libCom OSl libraries
epicsTime

/1 convert to and from WN32s FILETIME (inplenented only on W N32)

operator struct _FILETIME () const;
epi csTine (const struct _FILETIME &);

epi csTine & operator = (const struct _FILETIME &);

/1 arithnetic operators

doubl e operator- (const epicsTime & hs) const; // returns seconds
epi csTi me operator+ (const double & hs) const; // add rhs seconds
epi csTi me operator- (const double & hs) const; // subtract
epi csTi nme operator+= (const double &hs); // add rhs seconds
epi csTi me operator-= (const double &hs); // subtract

/1 conparison operators

bool operator == (const epicsTine & hs) const;
bool operator != (const epicsTine & hs) const;
bool operator <= (const epicsTine & hs) const;
bool operator < (const epicsTinme & hs) const;
bool operator >= (const epicsTine & hs) const;
bool operator > (const epicsTinme & hs) const;

/1 convert current state to user-specified string

rhs seconds

rhs seconds

size_t strftime (char *pBuff, size_t buflLength, const char *pFormat) const;

/1 dunp current state to standard out
voi d show (unsigned interestlLevel) const;

/1 depricated

static void synchronize ();
private:

b

21.9.3 class epicsTimeEvent

cl ass epi csShared ass epi csTi neEvent

{
friend class epicsTine;
public:
epi csTi neEvent (const int &event Nane);
private:
i nt event Nunber ;
1

M ethod Meaning

epicsTimeEvent(eventName) | Thisisthe only method provided for this
class. Why isit needed?

EPICS Release: R3.14.1
EPICS I0C Application Developer's Guide

267

Chapter 21: libCom OSl libraries
epicsTime

21.9.4 class epicsTime

Method

Meaning

epicsTime()
epicsTime(const epicsTime& t);

The default constructor sets the time to the beginning of the epics epoch.

getEvent Returns the time for the associated event. See the description of the C routine
epicsTimeGetEvent described below for details.
getCurrent Gets the current time. An exampleis:

epi csTime time = epicsTine::getCurrent();

convert to/from
epicsTimeStamp

Three methods are provided for epicsTimeStamp. A copy constructor, an assignment
operator, and a conversion to epicsTimeStamp. Assume the following definitions:
epi csTime tinme;
epi csTimeStanp ts;

An example of the copy constructor is:
epi csTime timel(ts);

An example of the assignment operator is:
tine = ts;

An example of the epicsTimeStamp operator is:

ts = tine;

Convert to/from
ANSI time t

Three methods are provided for ANSI time _t. A copy constructor, an assignment
operator, and a conversion to time_t_wrapper. The structuretime _t wrapper must be
used instead of time_t because undesired conversions could occur; Assume the
following definitions:

time_t tt;

tinme_t_wapper ttw

epi csTime tine;

An example of the copy constructor is:

ttw tt = tt;
epicsTime timel(ttw);

An example of the assignment operator is:
time = ttw
An example of thetime_t_wrapper operator is:

ttw = tine;
tt =ttw tt;

268

EPICS IOC Application Developer’'s Guide

Chapter 21: libCom OSl libraries
epicsTime

Method

Meaning

convert to and from
tm_nano_sec

Three methods are provided for tm_nano_sec A copy constructor, an assignment
operator, and a conversion to tm_nano_sec. Assume the following definitions:

| ocal _tm nano_sec ttn;

epi csTime timne;

An example of the copy constructor is:
epi csTime timel(ttn);

An example of the assignment operator is:
time = ttn;
An example of thetm_nano_sec operator is:

ttn = tine;

convert to and from
POSIX RT’s"struct timespec"

Three methods are provided for struct timespec. A copy constructor, an assignment
operator, and a conversion to struct timespec. Assume the following definitions:
struct tinespec tts;
epi csTinme tine;

An example of the copy constructor is:
epi csTime timel(tts);

An example of the assignment operator is:
time = tts;
An example of the struct timespec operator is:

tts = tine;

convert to and from
BSD’s "struct timeval"

Three methods are provided for struct timeval. A copy constructor, an assignment
operator, and a conversion to struct timeval. Assume the following definitions:
struct timeval ttv;
epi csTime tine;

An example of the copy constructor is:
epi csTime timel(ttv);

An example of the assignment operator is:
time = ttv;
An example of the struct timeval operator is:

ttv = tine;

EPICS Release: R3.14.1

EPICS I0OC Application Developer’s Guide 269

Chapter 21: libCom OSl libraries
epicsTime

Method

Meaning

convert to and from NTP
timestamp format

Three methods are provided for ntpTimeStamp. A copy constructor, an assignment
operator, and a conversion to ntpTimeStamp. Assume the following definitions:

| _fp ntp;
epi csTime timne;

An example of the copy constructor is:
epi csTime timel(ntp);

An example of the assignment operator is:
time = ntp;
An example of the ntpTimeStamp operator is:

ntp = time;

arithmetic operators
+
+=

The arithmetic operators allow the difference of two epicsTimes, with the result in
seconds. It also alows -, +, +=, and -= where the | eft hand argument is an epicsTime
and the right hand argument is a double. Examples are:

epicsTime time, tinmel, tinez,

double t1,t2,13;

tl =time2 - tinel;
time = tinel + 4.5;
time = tine2 - t3;
time2 += 6.0;

Comparison operators

Two epics times can be compared:

==, |5, <5, <, >5, > epicsTime tinmel, tinme2;
if(timel<=time2) {
strftime Thisisafacility similar to the ANSI C library routine strftime. See K&R for details

about strftime. The epicsTime method al so provides support for the printing the

nanoseconds portion of the time. It looks at the end of the format string for something

on the form "%0<n>f". It uses this format to display the nanoseconds converted to the

correct precision. For example:
epicsTinme tine =
char buf[30];
tinme.strftine(buf, 30, "%/ %1 % %1 %V ¥5. %06 ") ;
printf("%\n", buf);

epi csTime::getCurrent();

Will print the timein the format:
2001/ 01/ 26 20:50: 29. 813505

show

Shows the date/time.

21.95 C Interface

/* Al
#def i ne epicsTi medK 0

epi csTine routines return (-1,0) for

(failure, success) */

#def i ne epi csTi MTeERROR (-1)

270

EPICS IOC Application Developer’'s Guide

Chapter 21: libCom OSl libraries
epicsTime

/*Some special values for eventNumber*/
#def i ne epi csTi meEventCurrentTinme O
#def i ne epi csTi meEventBestTinme -1

#def i ne epi csTi meEvent Devi ceTi me -2

/* convert to and fromANSI Cs "time_t" */
int epicsTimeGetCurrent (epicsTimeStanp *pDest);
i nt epicsTi meGet Event (epicsTi meStanp *pDest, int eventNunber);

/* convert to and fromANSI C s "struct tnf with nano second */
int epicsTimeToTime_t (tinme_t *pDest, const epicsTineStanp *pSrc);
int epicsTimeFronli me_t (epicsTi meStanp *pDest, time_t src);

/[*convert to and fromANSI Cs "struct tnf' with nano seconds */

int epicsTi meToTM (struct tm *pDest, unsigned | ong *pNSecDest,
const epicsTi meStanmp *pSrc);

i nt epicsTi meToGMIM (struct tm *pDest, unsigned |ong *pNSecDest,
const epicsTi meStanmp *pSrc);

i nt epicsTi meFromIM (epi csTi neSt anp *pDest, const struct tm *pSrc,
unsi gned | ong nSecSrc);

/* convert to and fromPOSI X RT's "struct timespec” */
i nt epicsTi meToTi mespec (struct tinmespec *pDest, const epicsTineStanp *pSrc);
i nt epicsTi meFronili mespec (epicsTi meStanp *pDest, const struct tinmespec *pSrc);

/* convert to and fromBSD s "struct tinmeval" */
i nt epicsTimeToTi meval (struct tineval *pDest, const epicsTi neStanp *pSrc);
i nt epicsTi meFronili meval (epicsTi meStanp *pDest, const struct tinmeval *pSrc);
[*arithmetic operations */
doubl e epi csTi neDi ffl nSeconds (
const epicsTi meStanp *plLeft, const epicsTi meStanp *pRight);
voi d epi csTi mreAddSeconds (
epi csTi nmeSt anp *pDest, doubl e secondsToAdd); /* adds seconds to *pDest */

/*conpari son operations: returns (0,1) if (false,true) */
i nt epicsTi meEqual (const epicsTi meStanp *plLeft, const epicsTi meStanp *pRight);
i nt epi csTi meNot Equal (const epicsTi meStanp *pLeft, const epicsTi meStanp *pRight);
i nt epicsTi meLessThan(const epicsTi meStanp *pLeft, const epicsTi meStanp *pRi ght);
i nt epi csTi meLessThanEqual (
const epicsTi meStanp *plLeft, const epicsTi meStanp *pRight);
i nt epicsTi meG eaterThan (
const epicsTi meStanp *plLeft, const epicsTi mreStanp *pRight);
i nt epicsTi meG eat er ThanEqual (
const epicsTi meStanp *plLeft, const epicsTi meStanp *pRight);
/*convert to ASCII string */
Size_t epicsTineToStrftinme (
char *pBuff, size_t buflLength, const char *pFormat, const epicsTi neStanp
*pTS);

/* dunp current state to standard out */

voi d epi csTi meShow (const epicsTi neStanp *, unsigned interestlLevel);
/* OS dependent reentrant versions of the ANSI C interface because */
/* vxWorks gntinme_r interface does not match POSI X standards */

EPICS Release: R3.14.1
EPICS IOC Application Developer's Guide 271

Chapter 21: libCom OSl libraries
osiPoolStatus

int epicsTime_localtime (const time_t *clock, struct tm*result);
int epicsTime_gntine (const tine_t *clock, struct tm*result);

The C interface provides most of the features as the C++ interface. The features of the C++ operators are provided as
functions.

21.10 osiPool Status

osi Pool St at us. h contains the following description:

i nt osi Sufficent Spacel nPool (voi d);

Method M eaning

osi SufficentSpacel nPool Return (truefalse) if thereis sufficient free memory.

This determinesif enough free memory exists to continue.
A vxWorks version returns (true,false) if memFindMax returns (>100000, <=100000) bytes.

The default version always returns true.

21.11 osiProcess

osi Process. h containsthe following:

t ypedef enum osi Get User NaneRet urn {
osi Get User NaneFai | ,
osi Get User NameSuccess

} osi Get User NaneRet ur n;

osi Get User NaneRet urn osi Get User Nane (char *pBuf, unsigned bufSize);

/*
* Spawn detached process with naned executable, but return
* osi SpawnDet achedPr ocessNoSupport if the local OS does not
* support heavy wei ght processes.
*/
t ypedef enum osi SpawnDet achedPr ocessReturn {
osi SpawnDet achedPr ocessFai | ,
osi SpawnDet achedPr ocessSuccess,
osi SpawnDet achedPr ocessNoSuppor t
} osi SpawnDet achedPr ocessRet ur n;

osi SpawnDet achedPr ocessRet urn osi SpawnDet achedPr ocess(
const char *pProcessNane, const char *pBaseExecut abl eNane);

272 EPICS I0OC Application Developer's Guide

Chapter 21: libCom OSl libraries
osiSigPipelgnore

Not documented.

21.12 osiSigPipel gnore

osi Si gPi pel gnor e. h containsthe following:
voi d install Si gPi pel gnore (void);

Not documented.

21.13 0s1Sock.h

See the header file in <base>/src/libCom/osi.

EPICS Release: R3.14.1
EPICS I0C Application Developer’s Guide 273

Chapter 21: libCom OSl libraries
osiSock.h

274 EPICS I0OC Application Developer's Guide

Chapter 22: Registry

Under vxWorks osiFindGlobal Symbol can be used to dynamically bind to record, device, and driver support and
functions for use with subroutine records. Since on some systems this always returns failure, aregistry facility is provided
to implement the binding. The basic ideais that any storage meant to be "globally" accessable must be registered before it
can be accessed by other code.

A perl script is provided that reads the xxxApp.dbd file and produces a c file containing a routine
registerRecordDeviceDriver, which registers all record/device/driver/function support defined in the xxxApp.dbd file.

22.1 Registry.h

int registryAdd(void *regi stryl D, const char *nane,void *data);
void *registryFind(void *registrylD, const char *nane);

int regi strySet Tabl eSi ze(int size);

void registryFree();

int registrybunp(void);

This is the code which does the work. Each different set of things to register must have it's own unique ID. Everything to
be registered is stored in the same gpHash table.

Routine registrySetTableSize is provided in case the default hash table size (1024 entries) is not sufficient.

22.2 registryRecordType.h

typedef int (*conputeSizeOfset)(dbRecordType *pdbRecordType);

typedef struct recordTypelLocation {
struct rset *prset;

conput eSi zeOf f set si zeOf f set
}recordTypelLocati on;

i nt regi stryRecordTypeAdd(const char *name, recordTypelLocation *prtl);
recordTypelLocati on *regi stryRecordTypeFi nd(const char *nane);

Some features:

» Access to both the record support entry table and to the routine which computes the size and offset of each field are
provided

» Type safe access is provided.

EPICS Release: R3.14.1
EPICS IOC Application Developer's Guide 275

Chapter 22: Registry
registryDeviceSupport.h

22.3 registryDeviceSupport.h

i nt regi stryDevi ceSupport Add(const char *name, struct dset *pdset)
struct dset *regi stryDevi ceSupportFind(const char *nane);

This provides access to the device support entry table.

22.4 registryDriver Support.h

int registryDriverSupportAdd(const char *name, struct drvet *pdrvet);
struct drvet *registryDriverSupportFi nd(const char *nane);

/* The followi ng function is generated by registerRecordDevi ceDriver/pl */
i nt regi sterRecordDevi ceDriver (DBBASE *pdbbase) ;

This provides access to the driver support table.

22.5 registryFunction.h

typedef void (*REG STRYFUNCTI ON) (voi d);

[* c interface definitions */

i nt regi stryFuncti onAdd(const char *name, REGA STRYFUNCTI ON func) ;
REGQ STRYFUNCTI ON regi stryFuncti onFi nd(const char *nane);

Thisregisters afunction. Thisisused for subroutine records and the like. For example:

#i ncl ude <stdi o. h>
#i ncl ude "subRecord. h"

typedef |ong (*processMet hod)(subRecord *precord);

| ong nySublnit (subRecord *precord, processMet hod process)

{
printf("% nySublnit process %\n", precord->nanme, (void*) process);
return(0);
}
| ong nySubProcess(subRecord *precord)
{
printf ("% mySubProcess\n", precord->nane);
return(0);
}

The example registers these functions at application startup using a pair of entries in the dbd file, which are converted by
the registerRecordDeviceDriver.pl script into the necessary registration C source code. The two dbd file entries are:

function("mySublnit")
function("mySubProcess")

The example application includes this example.

276 EPICS I0OC Application Developer's Guide

Chapter 22: Registry
registerRecordDeviceDriver.c

22.6 registerRecordDeviceDriver.c

A version of thisis provided for vxWorks. This version makes it unnecessary to use registerRecordDeviceDriver.pl or
register other external names. Thus for vxWorks everything can work almost exactly like it did in release 3.13.x

22.7 register RecordDeviceDriver.pl

Thisisthe perl script which creates a ¢ source file that registers record/device/driver/function support. Make rules:

* execute this script using the dbd file created by dbExpand
» compilethe resulting C file
» Makethe object file part of the xxxLib file

EPICS Release: R3.14.1
EPICS IOC Application Developer's Guide 277

Chapter 22: Registry
registerRecordDeviceDriver.pl

278 EPICS I0OC Application Developer's Guide

Chapter 23: Database Structures

23.1 Overview

This chapter describes the internal structures describing an |OC database. It is of interest to EPICS system devel opers but
serious application developers may also find it useful. This chapter is intended to make it easier to understand the |OC
source listings. It also gives alist of the header files used by IOC Code.

23.2 Include Files

This section lists the files in base/include that are of most interest to |OC Application Devel opers:
alarm.h alarmString.h - These files contain definitions for all alarm status and severity values.
cadef.h caerr.h caeventmask.h - These files are of interest to anyone writing channel access clients.
callback.h - The definitions for the General Purpose callback system.

dbAccess.h - Definitions for the runtime database access routines.

dbBase.h - Definitions for the structures used to store an EPICS database.

dbDefs.h - A catchal file for definitions that have no other reasonable place to appear.
dbFIdTypes.h - Definitions for DBF_xxx and DBR_xxX types.

dbScan.h - Definitions for the scanning system.

dbStaticL ib.h - The static databases access system.

db_access.h db_addr.h - Old database access.

devLib.h - The device support library

devSup.h - Device Support Modules

drvSup.h - Driver Support Modules

ellLib.h - A library that is provides the same functions as the vxWorks | st Li b. All routines start with el | instead of
I st. Theel | Li b routineswork on both IOCs and on UNIX.

epicsPrint.h errMdef.h - EPICS error handling system
fast_lock.h - The FASTLOCK routines.

freeList.h - A general purpose freelist facility

gpHash.h - A general purpose hash library.

guigroup.h - The guigroup definitions.

initHooks.h - Definitions used by i ni t Hooks.c routines.

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 279

Chapter 23: Database Structures
Include Files

link.h - Link definitions

module_types.h - VME hardware configuration. SHOUL D NOT BE USED BY NEW SUPPORT.
recSup.h - The record global routines.

special.h - Definitions for special fields, i.e. SPC_xxXx.

task_params.h - Definitions for task priorities, stack space, etc.

taskwd.h - Task Watchdog System

tsDefs.h - Time stamp routines. Will also have to look at base/sr ¢/l i bComit sSubr .c

280 EPICS I0OC Application Developer's Guide

Chapter 23: Database Structures

Structures
23.3 Structures
.. [dbMent
node
name
nChoice
papChoiceName
papChoiceValue p-[d0RecordNode
node
precord
recordname
visible
™ dbRecordType
node clevsup
attributeL ist node
recList name
dbBase devList | pset
menuList — name link_type
recordTypeList no_fields P GEFADES
drvList — no_prompt romot
bptList link_ind Eamep
patthvt papsortFldName extra
ppv sortFldind
i ariDe prbay
ignoreMissingM enus indval Flddes special
papFldDes field_type
process_passive
drvSup pase
L | promptgroup
node interest
name as_level
pdrvet initial
| prkTadle
node ®brkTnt
name raw
number 9 ope
papBrkint eng

EPICS Release: R3.14.1
EPICS I0OC Application Developer’s Guide 281

Chapter 23: Database Structures
Structures

282 EPICS I0OC Application Developer's Guide

Chapter 24: INDEX

A

AB IO, . 87
AccessSecurity. ... 107
addpathl 76,78
adjustment.h L L 251
adjustToWorstCaseAlignment 251
algorithm. 238
Alloc/FreeDBENTRY, 175
dlocate ... 245
ANSI . 54
asAddClient. 116
asAddMember. L 116
asChangeClient. 117
asChangeGroup.ovvviiiiiiit 116
ascheck oo 110
asCheckGet(..............coL 117
asCheckPut 117
asCompute. 118
asComputeAllASg. . ..o 118
asCOMPUtEAST . .. oo 118
asdbdump 121, 133
asDbGetAsl 120
asDbGetMemberPvt 120
asDump(... 118
asDumpHag. 118
asDumpHash. 119
asDumpMem. i 119
asDumpRules 118
asDumpuag.o 118
................................. 109
................................... 108
asGetClientPvt 117
asGetMemberPvt. 116
aslnit.................... 101, 111, 120, 133
aslnitAsyn. ... 120
aslnitFile. oo 115
aslnitFP. ... 115
aslnitialize. L. 115
ASL . 108
ad - field definitionrules. 79
asl_level - field definition 80

asphag. ... 121,133
BSPMEM . .ottt 121, 134
asprules. ... 121,134
BSPUAT - - o v e 121,133
asPutClientPvt. 117
asPutMemberPvt., 116
asPvtinDBADDR 191
asRegisterClientCallback 117
asRemoveClient 117
asRemoveMember 116
asSetFilename. 110, 120, 133
asSetSubstitutions. 110, 120
asSublnit........... ... 111,121
asSubProcess. 111, 121
ASAC. ot 120
asTrapWriteAfter 122-123
asTrapWriteBefore 122-123
asTrapWriteld. 123
asTrapWriteListener 123
asTrapWriteMessage. 123
asTrapWriteRegisterListener 122123
asTrapWriteUnregisterListener. 123
asynchronous device support example 165
afolPAddr. ... 250
B
base - field definition. 82
base - field definitionrules 80
BBGPIB IO ... 88
Bininstall files 48
BIN_INSTALLS.cooviiin. 48, 57
BITBUSIO ... 88
BPTS. .. 34-35
breakpoint table - database definition. 85
Breakpoint Tables................. 34-35, 89
Breakpoints. 129
breaktable 76
bucketLibh........ 235
Build Facility 25
C
CHtlibrary ... 235
cachannel_status...................... 134
caput calback.............. 71
CachedPuts., 71
CALC ... 110
cacPerform......... L. 235
CALLBACKt 213
calbackGetUser 214
calbacklnit L. 214
calbackRequest 214
callbackRequestDelayed. 214
callbackRequestProcessCallback 214

283

EPICS IOC Application Developer’'s Guide

callbackRequestProcessCallbackDelayed. . . . 214

callbackSetCallback 214
callbackSetPriority 214
callbackSetQueueSize. 102, 215-216
calbackSetUser. 214
calocMustSucceed 251
CAMAC IO ... 87
cancel ... 244
cantProceed. i 251
cantProceed.hol 251
CAS ot 134
CFLAGS. ... o 53
Channel ACCeSS.oiiiii e 17
channel accesslink 63
Channel AccessMonitors. 203
checkAlarms. 153
choice ... 76
choice_string - device definition. 84
classtemplates 235
CLASSES. ...t 56
clean 33
CMPLR. ... 54
comment - Database Definitions. 78
computeSizeOffset 275
CONFIG 58
CONFIG.CrossCommon. 58, 60-61
CONFIG ADDONS. ... 58
CONFIG_APP_INCLUDE................ 29
CONFIGBASE. ...t 58
CONFIG_ BASE VERSION 58
CONFIG_ COMMON 58
CONFIG ENV ... 58
CONFIG SITE. ... 58
CONFIG SITEENV..............o..... 58
Configure. 58, 60-61
configure/osFile........................ 59
configure/tool File. 59
CONSTANT .. 87
constant link 63
coreRelease. il 136
PPl 59
createTimer. ... 245
CROSS OP.....ovv i 54
CROSS WARN ...t 54
cvt_dbaddr - Record Support Routine 156
cviBitsToUlong.t 238
cvitCharToStringovvv oot 238
cvtDoubleToCompactString 238
cvtDoubleToExpString 238
cvtDoubleToString oo 238
cvtFasth 238
cvtFloatToCompactString. 238
cvtFloatTOEXpString.cov vt 238
cvtFloatToStringo 238
cvtLongToHexString. 238
cvtLongToOctalString.o oo vt 238
cvtLongToString.t 238
cvtShortToString. . ..o oo 238
cvtUcharToStringcovv it 238
cvtUlongToBits.t 239
cvtUlongToStringo vt 238
cvtUshortToString.coovviieent 238

D
database accessroutines- Listof 192
Database Definition. 35-36
Database DefinitionFile. 75
database definitions. 75
DatabaseFiles. 36
Database Format - Summary 75
databaselink 63
Database Link Guiddlines. 66
DatabaseLinkst 63
DatabaseLocking....................... 64
DatabaseScanning 65
DB 36
DB_MAX CHOICES................... 189
do post events. ...l 203
doa. ... 128
dbAccessh 189
doAdd 191
doAddPath. 176
DBADDR ... 191
dbAllocBase 174
dbAllocEntry. ... 175
dbAllocForm. 183
dbap. 130
dbAsciiToMenuH 91
dbAsciiToRecordtypeH. 92
dob. ... 129
dbBufferSize. 199
doc. ..o 130
dbCaAddLinkoiii.. 205
dbCaGetAlarmLimits. 207
dbCaGetAttributes 206
dbCaGetControlLimits.................. 206
dbCaGetGraphicLimits. 207
dbCaGetLink. 205
dbCaGetPrecision.ccvvvnnn.. 207
doCaGetSevr.oovvi i 206
dbCaGetTimeStampoo.... 206
dbCaGetUnits. ... 207
doCaLinklnit. 101, 205
doCaPutLink............cc ... 205
dbcar.......... 135, 137
dbCaRemoveLink. 205
dbCopyENntry. ... 176
dbCopyEntryContents. 176
dbCopyRecord 180
dbCreateRecord. 180
dbCvtLinkToConstant. 183
dbCvtLinkToPvlink. 183
dod. 130
doDefsh ... 189, 251
doDeleteRecord.o . 180
DBDEXPANDcoiiiiiies. 35
DBDINSTALLcoviiiiiii 36
DBDNAME 35
dbDumpBreaktable. 185
doDumpDevice.................... 139, 185
doDumpDriver 139, 185
doDumpField L. 139
doDumpFldDes. ...t 185
dbDumpFunction 185
doDumpMenu. 138-139, 185

284

EPICS IOC Application Developer’'s Guide

doDumpPath 185

dbDumpRecord. 185
doDumpRecords. 140, 186
dbDumpRecordType. 139, 185
DBE ALARMccciiiiiiiinnn,. 155
DBELOGcoviiiiiiie e 155
DBE VAL......cciiiiiiiiinnn, 155
doel ... 135
doExpand 94, 185
DBF CHAR ..., 190
DBFDEVICEcccoviiiieiinnnn 190
DBF DOUBLE........................ 190
DBF ENUM..........coiiiii 190
DBF FLOAT ... 190
DBF FWDLINK 88, 190
DBF_INLINK
................................... 190
DBFELONG..........cciiiieeenn 190
DBF MENU................oiiinn.. 190
DBF NOACCESScoivieiinnnn. 190
DBF OUTLINK..........ccovieiiin. 190
DBF SHORTcoviiiiiei e 190
DBF UCHAR..........cooiiiiiinnn, 190
DBFULONG.........coiiieiennn 190
DBF USHORT..........ccoiiieiinnn,. 190
DBF_xxx Definitions of Field types. 190
doFindBrkTable 184
doFindField. 181
doFindMenuo i 182
doFindRecord 180
dbFindRecordType 177
doFinishEntry 175
doFirstField. 178
dbFirstRecord 180
dbFirstRecordType 177
doFldTypesh. ... oL 189
doFoundField 178, 181
doFreeBase............cooiiiiiiii. 175
doFreeEntry. 175
dbFreeForm. 183
dbGet. 195
dbGetDefaultName. 178
dbGetField. 195
dbGetFieldindex 200
dbGetFieldName. 178
dbGetFieldType.t 178
dbGetFormPrompt 183
dbGetFormValue. 183
dbGetLink.......... ..., 195
dbGetLinkDBFtype. 200
dbGetLinkField. 183
dbGetLinkType. ...t 183
dbGetMenuChoices. 181
dbGetMenulndex 182
dbGetMenulndexFromString 182
dbGetMenuStringFromindex 182
dbGetNelements, 200
dbGetNFiglds 178
dbGetNLinks. 183
dbGetNMenuChoices................... 181
dbGetNRecords.cooviiiiii 179
dbGetNRecordTypes.covvevvnnn. 177
dbGetPdbAddrFromLink 200
dbGetPrompt. L 179

dbGetPromptGroup.l 179
doGetRange. 181
dbGetRecordAttribute. 179
dbGetRecordName 180
dbGetRecordTypeName 178
doGetRset 199
dbGetString. 181
dogf ... 128
dbgrep. ..o 127
doher. ... 131, 137
dolnitEntry 175
dblnvisibleRecord. 181
doior 131
dolsDefaultVaue. 181
dblsLinkConnected. 200
dolsvValueField 199
dblsVisibleRecord. 181
dol ..o 127
dbLoadDatabase 94
dbLoadRecords.ccoiiiiiiin. 95
doLoadTemplate. 95
dbLockGetLockld. 204
dbLockInitRecords 101, 204
dbLockSetGblLock., 204
dbLockSetGblUnlock 204
doLockSetMerge. 204
dbLockSetRecordLock 204
dbLockSetSplitS ... 204
dolsr. ..o 137
domf.h. .o 239
domfFree..........., 239
domfFreeChunks. 239
domflnit. 239
domfMalloc. 239
domfShow............................ 239
dbNameToAddr. 194
doNextField. 178
doNextRecord.ccovvun... 180
dbNextRecordType. 177
dbNotifyAdd. 199
dbNotifyCancel 199
dbNotifyCompletion. 199
donr. 129
dop. ..o 130
doPath. ... 176
dopfo 128
dopr.......co i 128
dbProcess 202
doPut........... 197
doPutAttribute. 89, 201
doPutField., 196
dbPutForm. 183
doPutLink 196
dbPutMenulndex. 182
dbPutNotify. 71, 197-198
dbPutNotifylnit........................ 101
dbPutRecordAttribute. 179
dbPutStringo 181
doPvdDump 140, 185
dbPvdTableSize. 102
DBR AL DOUBLE.................... 193
DBR AL LONG..............coouun.. 193
DBR CHAR.........ciiiii 193
DBR CTRL DOUBLE................. 193

285

EPICS IOC Application Developer’'s Guide

DBR CTRL_LONG.................... 193

DBR DOUBLEt 193
DBR ENUM.......... .o 193
DBR ENUM_STRS.................... 193
dor_field_ typeinDBADDR.............. 191
DBR FLOAT 193
DBR_ GR DOUBLE.................... 193
DBR GR LONGcooveieianannnn. 193
DBRLONG.......coiiiiiiiiiii 193
DBR PRECISIONccoon... 193
DBR PUT ACKSccvvun.. 193-194
DBR PUT_ACKTcooont 193-194
DBR SHORT ... 193
DBR STATUSo 193
DBR.TIME..........oiiiiiii i 193
DBR UCHAR 193
DBRULONGcoiviiin 193
DBRUNITS. ... 193
DBR USHORT.coiiin... 193

DBR_xxx Database Reguest Types and Options .
193

dbReadDatabase 176
dbReadDatabaseFP. 176
dbReadTest . ..o 97
dbRenameRecord 180
dbReportDeviceConfig.................. 185
dbs. .o 130
doScan.h 221
dbScanFwdLink, 202
dbScanLink............. 202
dbScanLock. 203
dbScanPassive. 202
dbScanUnlock.t 204
dostat..........ooiii 130
dotgf 136
dbToMenuH 91
dbToRecordtypeH 91
dotpf 136
dbotpn. ... 136
dotr ... 129
dbTrandlateEscape 77, 251
dovalueSize............. 199
doVerify. ... 181
doVerifyForm 183
dbVisibleRecord, 181
dbWriteBreaktable 176
doWriteBreaktableFP 176
dbWriteDevice oo 176
dbWriteDeviceFP 176
doWriteDriver.o 176
dbWriteDriverFP. 176
dbWriteFunctionFP. 176-177
doWwriteMenuo 176
doWriteMenuFP 176
dbWriteRecord 177
dowriteRecordFP. 177
dbWriteRecordType 176
dbWriteRecordTypeFP 176
DCT_FWDLINK 174
DCT_INLINK. ... 174
DCT INTEGER....................... 174
DCT_LINK_CONSTANT 182
DCT LINK DEVICE 182
DCT LINK FORM 182

DCT LINK PV ... 182
DCT_ MENU..........cciiiiiinn 174
DCT_MENUFORM 174
DCT NOACCESS........ccvivieennnnn. 174
DCT_OUTLINK. ... 174
DCT REALcoiiiiiiiie e 174
DCT STRINGcoiiiiiieenn 174
destroy. 244
devConnectinterrupt 210
devCreateMask 211
devDisablelnterruptLevel 210
devDisconnectinterrupt. 210
devEnablelnterruptLevel 210
device ... 76
device - database definition. 84
Device Support Entry Table 149
devNmIToDigt 211
devNormalizedGblGetField 211
devRegisterAddress 209
devUnregisterAddress. 210
DIR . 54
Directory structure 25
Docfile. ... 43
DOCS ...t 44,56
doubly-linked list 236
driver. 76
driver - database definition 85
Driver Support Entry Table Example.. 170
drvet_name - driver definition. 85
DSET. .ot 149
dset-dbCommon 163
dset_name - device definition.............. 84
dtyp-dbCommon. 163
E

E2DB FLAGS 56
elAdd. ... 240
elConcat............ciiiiiiiii 240
elCount. 240
elDelete ... 240
elExtract.o 240
elFind. 240
elFirst. ... 240
elFree. 240
elGet. ... 240
elinit. 240
ellnsert. o 240
ellast. ... 240
ellibh ... 240
ELLLIST. ... 240
eINext. ... 240
ELLNODE ..., 240
eINStep. . ..o 240
eINth. 240
elPrevious. 240
elVerify. ... 240
et ... 131, 144
Environment Prerequisites 27
Environment Variables 104
EPICS. ... 7,17

Basic Attributes. 17

286

EPICS IOC Application Developer’'s Guide

OVENVIEW. ..o 7
EPICS CA_ADDR_LIST 104
EPICS CA_AUTO_ADDR _LIST......... 104
EPICS CA_BEACON_PERIOD.......... 104
EPICS CA_CONN_TMO 104
EPICS CA_REPEATER PORT 104
EPICS CA_SERVER PORT............. 104
EPICS HOST ARCH 27
EPICS 10C_LOG_FILE_COMMAND..... 145
EPICS I0OC_LOG_FILE_LIMIT.......... 145
EPICS I0C_LOG_FILE_NAME 145
EPICS IOC LOG_INET 104
EPICS IOC LOG_PORT............ 104, 146
EPICS THREAD_ONCE_INIT........... 260
EPICS TS MIN_WEST 104
EPICS TS NTP_INET 104
epicsAddressType. 209
epicsAddressTypeName 209
epicsAlgorithm.h. L 238
EPICSASSENt .\ 254
epicsEnvSet. 104
epicsEnvShow. 104, 136
epicsEvent. ... 254
epicsEvent.h L. 254
epicsEventCreate. 255
epicsEventDestroy 255
epicsEventldl 255
epicsEventMustCreate 255
epicsEventMustWait.................... 256
epicsEventShow 256
epicsEventSignal, 255
epicsEventTryWait 256
epicsEventWait 256
epicsEventWaitError. 254
epicsEventWaitoOK 254
epicsEventWaitStatus 254
epicsEventWaitTimeout 254
epicsEventWaitWithTimeout 256
epicsExcept.h ... 252
epicskFindSymbol 256
epicsFindSymbol.h 256
epicsinterrupt 256
epicsinterrupth........................ 256
epicsinterruptContextMessage 256
epicslnterruptlsinterruptContext. 256
epicsinterruptLock 256
epicsinterruptType ... 210
epicsinterruptUnlock. 256
epicsList.h......... ... 236
epicsMath oo 257
epicsMath.h. 257
EPICSMaAX . . ot 238
EpICSMIN 238
epicsMUteX 257-258
epicsMutex.h. oL 257
epicsMutexCreate. 258
epicsMutexDestroy 258
epicsMutexId. 258
epicsMutexLockl 259
epicsMutexLockError., 257
epicsMutexLockOK 257
epicsMutexLockStatus 257
epicsMutexLockTimeout 257

epicsMutexMustCreate. 258
epicsMutexMustLock 259
epicsMutexShow. 259
epicsMutexShowAll 259
epicsMutexTryLock 259
epicsMutexUnlock 258
epicsParamShow 135
epicsPrintf.......... 143
epicsPrtEnvParams 104
epicsReleasel 136
epicsRingBytesh 241
epicsRingBytesCreate. 241
epicsRingBytesDelete. 241
epicsRingBytesFlush 241
epicsRingBytesFreeBytes. 241
epicsRingBytesGet, 241
epicsRingBytesld 241
epicsRingBytesIsEmpty 241
epicsRingBytesIsFull 241
epicsRingBytesPut 241
epicsRingBytesSize. 241
epicsRingBytesUsedBytes 241
epicsRingPointer. 241
epicsRingPointer.h 241
epicsString.h. ... L 251
EPICSSWAD . .ttt 238
epicsThread. 259, 263
epicsThread.h 259
epicsThreadBooleanStatus 259
epicsThreadBooleanStatusFail 259
epicsThreadBooleanStatusSuccess. 259
epicsThreadCreate. 260-261
epicsThreadExitMain 260-261
EPICSTHREADFUNC. 259
epicsThreadGetld 260-261
epicsThreadGetldSelf............... 260-261
epicsThreadGetName 260, 262
epicsThreadGetNameSelf............ 260, 262
epicsThreadGetPriority. 260-261
epicsThreadGetPrioritySelf. 260-261
epicsThreadGetStackSize. 259-260
epicsThreadHighestPriorityL evelBelow . 260261
epicsThreadld 260
epicsThreadInit........................ 260
epicsThreadIsEqual. 260-261
epicsThreadisSuspended. 260-261
epicsThreadL owestPriorityL evel Above . 260-261
epicsThreadOnce. 260-261
epicsThreadOnceld. 260
epicsThreadPriorityChannel AccessServer . . . 259
epicsThreadPriorityHigh. 259
epicsThreadPriorityLow 259
epicsThreadPriorityMax 259
epicsThreadPriorityMedium. 259
epicsThreadPriorityMin 259
epicsThreadPriorityScanHigh. 259
epicsThreadPriorityScanLow 259
epicsThreadPrivateCreate. 260, 262
epicsThreadPrivateDelete. 260, 262
epicsThreadPrivateGet 260, 262
epicsThreadPrivateld 260
epicsThreadPrivateSet. 260, 262
epicsThreadResume 260-261
epicsThreadRunable 262

287

EPICS IOC Application Developer’'s Guide

Chapter 24: INDEX

epicsThreadSetPriority 260-261
epicsThreadShow 260, 262
epicsThreadShowAll. 260, 262
epicsThreadSleep 260-261
epicsThreadStackBig 259
epicsThreadStackMedium 259
epicsThreadStackSizeClass 259
epicsThreadStackSmall 259
epicsThreadSuspendSelf. 260-261
EPICSTIME . . .ot 264
epicsTimeh. 264
epicSTIMEr ... 243-244
epicsTimerh........ 243
epicsTimerld. ..., 246
epicsTimerNotify 244
epicsTimerQueueActive. 245
epicsTimerQueueld. 246
epicsTimerQueueNotify 245
epicsTimerQueuePassive 246
EPICStovxWorksAddrType 209
epicsTypesh........t 251
epicsvVprintf 143
erlogTask ... 143
errlogAddListener. 144
erlogFatal. 142
errlogFlush L. 141
errlogGetSevEnumSstring 142
errlogGetSevToLogo vvi v 142
erloginfo 142
errloglnit. i 102, 144
errlogListener 144
erlogMaor. 142
erlogMessage. 141
errlogMinor. i 142
errlogPrintf 141, 160
errlogRemovelistener 144
errlogSetSevToLog.coovvii it 142
errlogSevEnum. oL 142
errlogSevPrintf L 142
errflogSevVvoprintf......... 142
errlogVprintf. L 141
erMESSage 142
errPrintf. 142-143
EscapeSequence.cooviiinn. 77
Event......... ... 219
Event-ScanType.............. 219
EventScanning........................ 224
EVNT - Scan Related Field 220
EXIt . 230
BXPITE ottt e 244
extra- field definitionrules. 80
extra info - field definition. 82
F
fied. ... 76
field_name- field definition............... 80
field_name - record instance definition 86
field sizeinDBADDR.................. 191
field_typeinDBADDR 191
filed_type - field definition................ 80
filename extension conventions 78

288 EPICS I0OC Application Developer's Guide

Chapter 24: INDEX

FLDNAME SZt 189
freelisth.............. i 248
freeListCalloc. it 248
freeListCleanup 248
freeListFree. ... 248
freeListinitPvt. 248
freeListitemsAvail 248
freeListMalloc 248
function. 76
Function - database defintion 85
functiontemplates. 235
FWDLINK ..o 63

get_alarm_double Record Support Routine. . 159
get_array_info - Record Support Routine . .. 157
get_control_double - Record Support Routine 158

get_enum_str - record Support Routine. 158
get_enum_strs - record Support Routine 158
get_graphic_double-example............ 152
get_graphic_double - Record Support Routinel58
get joint_info......................... 223
get_ioint_info - device support routine. 167
get_precision - Record Support Routine 157
get_units-.example............. 152
get_units - Record Support Routine. 157
getExpireDelayo 244
getExpirelnfo ... i 244
Ot 138
GNUmMakeo, 27
gnumake 32-33
gphAdd. ... 248
gpHash.h.o o 248
gphDelete 248
gphDUMpP .. 248
GPHENTRY 248
gphFind. ... 248
gphFreeMem. ...t 248
gehinitPvt. 248
GPIB_IO. ...t 87
grecord ..o 76
gui_group - field definition. 80
Guidelines for Asynchronous Records. 69
Guidelines for Synchronous Records. 68
HAG ... 108-110
help. ... 230
HOST _OPT ... 54
HOST WARN ..., 54
Html ..o 43
HTMLS. ... 43, 56
HTMLSDIR ... 56

EPICS Release: R3.14.0beta3

EPICS I0C Application Developer's Guide

289

Chapter 24: INDEX

|

I/OEvent-ScanType.ocovnn.. 219
I/OEventscanned. 219
I/OEvent Scanning. 222,225
INC....oi 43,55
includeo 76
include - Database Definitions. 78
Include File Generation 91
Includefiles. 37,43
init - device support routine 167
init - Record Support Routine. 156
init_record - device support routine.. 167
init_record-example 150
init_record - Record Support Routine 156
init_value- field definition................ 80
InitDatabase, 101
InitDevSupo 101
INItDIvSup ..o 101
initHookFunction 103
initHookRegister. 103
iNitHOOKS 103
initHookState 103
initial - field definitionrules. 79
InitidizeLogging. ..., 105
initialProcess.c i 102
initPeriodic............. 226
INItRECSUP . ..o 101
INLINK ... 63
INP .. 109
Input/Output Controller 7

Hardware/Software Platforms 18

Software Components. 19
INPUTRC. ... 231
INST IO, ... e 88
INSTALL_LOCATION 57
installEpicspl i 59
interest - field definitionrules. 80
interest_level - field definition 82
interruptAceept. 102
IOC . 17

See Input/Out Controller
IOCErrorLogging.oovvvvevnn... 141
IOCShel ... 229
iochnit 100
iocLogClient. 145
jocLoglnit............... i 105
iocLogServer 145
IOCSH_HISTSIZE.o.. .. 231
IOCSH PSL..........coiiii e 231
isinf. ... 257
ISNAN . ..o 257
ISOCH . . 235

J

AR . . 57
JARINPUT ... 57
Javaclasses. ... 56

290 EPICS I0OC Application Developer's Guide

Chapter 24: INDEX

Keywords, 76
LAN .. 17
LDFLAGS i 54
LexandyaC........coovviiiinnaan.. 44, 49
LEXOPT. ..o 56
LIBOBJS ... 40
Libraries. ... 38
LIBRARY ... 37-39, 43, 51
Library example
................................... 41
libraayname 38
Library object file........... 29-30, 4041, 47
Library Sourcefile 39, 41
LIBRARY_HOST 39, 43, 45, 47, 50-51
LIBRARY_IOC....... 37-39, 4344, 47, 50-51
LIBS. .o 46, 54
LIBSRCS ... 39, 52
linkh. o 189
LINK_ ALARM, 64
link_type - device definition. 84
linkedlistoo i 236
Local Area Network
Hardware/Software Platforms 18
macCreateHandle. 249
macDeleteHandle. 249
macExpandString 249
macGetvalue. 249
maclnstallMacros. 250
macParseDefns. 250
MacPoPSCOPe oo 250
MacPuUShSCopPeo 249
macPutvValue. 249
macReportMacros. 250
Macro Substitution. 7
macSuppressWarningo..... 249
MaKe. ... 32
Makecommands. 33
Maketargets. ..o 33-34
makeConfigAppincludepl 59
makeDbDepends.pl. 59
Makefiles ... 31
makelocCdCommandspl 59
makeMakefilepl L 59
makeMakefilelncludepl.................. 59
mallocMustSucceed 251
MANIFEST 57
MAX_STRING SIZE 189
Maximize Severity, 64
0= 016 P 76
menu - field definitionrules 80
MENUS 35

EPICS Release: R3.14.0beta3

EPICS I0C Application Developer's Guide

291

Chapter 24: INDEX

Menus.o i 35
menuScandbd. 220
monitor -example. 154
MS 64
Multiple Definitions 77
munch.pl. 60
VPl 60
N
name - breakpointtable 86
NMS. 64
no_elementsinDBADDR 191
NOTRAPWRITEootet 109
NPP. . 64
nstall Directories.t 25
o
OBJS. ... 42,55
OBISHOST ...t 55-56
OBISIOC ...ttt 55
Operator Interface
Hardware/Software Platforms 18
OPl .o 17
OSI_PATH_LIST_SEPARATOR.......... 252
OSI_PATH_SEPARATOR 252
osiFindGlobalSymbol 256
osMutex.hl 272
osiPoolStatus.h. 272
osiProcessh L 272
osiSemh........... ...l 273
osiSigPipelgnorehl 273
osiSock.h......... ...l 250, 273
osi SufficentSpacelnPool 272
OUTLINK ... 63
Overview of Record Processing. 147
P
PACKAGE ... 57
Passive 219
Passive-ScanType ...t 219
path. ..o 76
path - Database Definitions. 78
Periodic- ScanType. 219
PeriodicScanning. 226
periodicTaskcooviiiii... 226
Perl ..o 27
pfieldinDBADDR. 191
pfldDesinDBADDR 191
PIt 138
PHAS- ScanRelated Field 220
post_event..........coviiiiiii... 222,225
POStiX. ..o 235
postfix.h ... 235
PP 64
pp - field definitionrules. 80

292 EPICS I0OC Application Developer's Guide

Chapter 24: INDEX

pp_vaue- field definition. 82
precord-DBADDR 191
PRIO- ScanRelated Field 220
process-example. 151
process - Record Support Routine 156
process - record support routine. 66
ProcessPassive.coooin... 64
PROD ..ot 50
PROD LIBS.............ciiin... 46,54
PROD SRCS...........coiiiiiiinn 52
product libraries L. 46
productname, 14
product objectfile. 45
product sourcefile 45
Productsc. L. 44, 50
prompt - field definitionrules. 80
prompt_value - field definition. 80

..................................... 79
PsuedoField........................... 89

put_array_info - Record Support Routine . . . 157
put_enum_str - Record Support Routine 158

putNotify. 71
putNotifyBlocked 198
putNotifyCanceled 198
putNotifyOK 198
PV _LINK .. 87
PYNAME SZ.........ccoviiiiiiin. .. 189
QuotedString vo i 7
RANLIBFLAGS.o 56
RCS. . 57
rebuild. 33
recGbIDbaddrError. 160
recGblFwdLink. 161
recGblGetAlarmDouble 161
recGblGetControlDouble. 160
recGblGetGraphicDouble. 160
recGblGetPrec L. 161
recGbhlGetTimeStamp. 161
recGblInitConstantLink 161
recGblRecordError 160
recGblRecsupError. 160
recGblResetAlarms. 159
recGblSetSevr. L. 159
TECOMd . oo v et 76
recordattribute 89
record instance - database definition 86
Record InstanceFile. 75
Record Processingccoounn.. 66
Record Support Entry Table. 148
record type - Database Definition. 79
Record Type Definitions. 35
record_name - record instance definition.. 86
record_type - device definition............. 84
record_type - record instance definition. 86

EPICS Release: R3.14.0beta3

EPICS I0C Application Developer's Guide

293

Chapter 24: INDEX

record_type - record type definition. 80
1= 07010117/ o= TSP 76
RECTYPES ... 35
registerRecordDeviceDriver. 276
registerRecordDeviceDriver.c............. 277
registerRecordDeviceDriver.pl 277
Registry.h 275
registryAdd. 275
registryDeviceSupport.h. 276
registryDeviceSupportAdd. 276
registryDeviceSupportFind. 276
registryDriverSupport.h 276
registryDriverSupportAdd 276
registryDriverSupportFind 276
registryDump ... 275
registryFind. 275
registryFree. 275
registryFunctionh.ol 276
registryFunctionAdd. 276
registryFunctionFind 276
registryRecordTypeAdd 275
registrySetTableSize. 275
RELEASE. ... 58
FElEBSE. . . 245
replaceVARDpl. ... 60
report - device support routine. 167
report - Record Support Routine 155
resourceLib.h il 239
REIO. ... 88
ringPointer 242
ringPointerCreate 243
ringPointerDelete 243
ringPointerFlush. 243
ringPointerGetFree. 243
ringPointerGetSize..................... 243
ringPointerGetUsed 243
ringPointerld., 243
ringPointerlsEmpty. 243
ringPointerIsFull. 243
ringPointerPop 243
ringPointerPush 243
MPl 60
RSET ... 148
RSET-example....................... 149
RULE ... 109
RULES...........co 58
rules

field definition.t 79
RULESDb ...t 58
RULES ARCHS 58
RULES BUILD ...t 58
RULESDIRS. ... 58
RULES JAVA. ... 58
RULESTOP ... 58

S

sCalcPostfix.h......... L 235
SCAN - Scan Related Field 219
ScanOnce-ScanType. 219
Scan Related Database Fields. 219
SCAN_1ST PERIODIC 221

294 EPICS I0OC Application Developer's Guide

Chapter 24: INDEX

scanAdd 221
scanDelete. 221
scanlnit. ... 221
scanlolnito 225
scanloRequest. 225
SCANONCE. . o\ v vt 226
scanOnceSetQueueSize 102, 227
SCaNPEl L. 132
SCANPIOl. .. 132
scanppl .. 132
SCH2EDIF FLAGS.ccciiiienn. 56
SCRIPTS ... e 55
SCHPLS. oo 42
SHARED LIBRARIES.................. 51
SNOW oo 230
SHRLIB_ VERSION. 51
size-field definitionrules 80
size value- field definition. 82
SNCFLAGSo 56
SPC ALARMACKccoiiiiinn. 81
SPC AS .. 81
SPC CALC 82
SPC DBADDR ...t 81
SPC LINCONVcoiiiiiiiiaea 81
SPC MOD ..ot 81
SPCNOMODcoviiiiiiiiiiaean 81
SPC RESET.....ciiiiiii i 81
SPC SCAN 81
specia - field definitionrules.............. 80
special - Record Support Routine. 156
special iNDBADDR.................... 191
specia_value - field definition 81
Specifying libraries. 46
SRCS ... 39, 41, 47, 52-53
standard C++ library. 235-236
Start. .. 244
State Notation Programs. 42
STATICBUILD. ... 55
StAUSCOAES. . . oot 144
std

list. oo 236

1072 QP 238

mn............ooooionn. 238

SWaP .o v 238
STRICT .. e 54
structdbAddr ... 191
struct putNotify. 198
synchronous device support example. 163
SYSLIBS ... 47,54
SYSPROD_LIBS................... 46, 54
far . 33
Targetfiles ... o i 47
TARGETS. 48, 57
taskwdh....... 216
taskwdAnylnsert. 217
taskwdAnyRemove. 217
taskwdlnsert L 216
taskwdRemove 216

EPICS Release: R3.14.0beta3

EPICS I0C Application Developer's Guide

295

Chapter 24: INDEX

TCLIibraries.ccoiiii... 48
TCLINDEX ... 48, 55
TCLLIBNAME.oovvint. 48, 55
TEMPLATES. ... 44, 56
Templateso 44, 48
templates. 235
TEMPLATESDIR. ... 56
TERM ..o e 231
TestProducts. 47
TESTCLASSES. ..o 56
TESTPRODcoiiiiiiiennn 47,51
O, 25
Tornado Il i 27
PN, 138
TRAD ..o 54
TRAPWRITE...........covvnn... 109, 122
truncateFile., 252
tsBTreeh. ... 239
TSConfigure. 103
TSconfigure ... 103
tsDLListh. ... 239
tsFreeListh. 239
tsMinMax.h. 239
TSreport 132
tsSLList.h. ..o 239
U
UAG ... 108-110
UDF . i 154
udf. .o 154
uninstall ... 33
Unguoted String 7
USER DBDFLAGS.ccconn... 36
USER VPATH 57
USES TEMPLATEcu.... 37
USR CFLAGS. ... 53
USR CPPFLAGS. ... 53
USR CXXFLAGS............cciinnn.. 53
USR INCLUDE.............covinn... 53
USR LDFLAGS. ..ot 54
USRLIBS........oiiiiei e 46, 54
\
value - record instance definition 86
VeClist ..o 135
VME_AM_EXT SUP DATA 209
VME_AM_STD_SUP DATA 209
VME_ AM_SUP SHORT IO 209
VME IO.o 87
VXI 1O, o 88
VXWOIKS . .o 27
vxWorks startup command file. 99
Y
YACCOPT ..ot 56

296 EPICS I0OC Application Developer's Guide

	EPICS: Input / Output Controller Application Developer’s Guide Release 3.14.1 20DEC2002
	Martin R. Kraimer, Janet Anderson, Andrew Johnson, Eric Norum
	Table of Contents
	Chapter 1: Introduction
	1.1 Overview
	1.2 Acknowledgments

	Chapter 2: New Features for 3.14
	2.1 Introduction
	2.2 Example Application
	2.2.1 Check that EPICS_HOST_ARCH is defined
	2.2.2 Create the example application
	2.2.3 Inspect files
	2.2.4 Sequencer Example
	2.2.5 Build
	2.2.6 Inspect files
	2.2.7 Run the ioc example
	2.2.8 Channel Access Host Examples
	2.2.9 vxWorks boot parameters

	2.3 Shell for non vxWorks environment
	2.4 Some Unresolved Items

	Chapter 3: EPICS Overview
	3.1 What is EPICS?
	3.2 Basic Attributes
	3.3 Hardware - Software Platforms (Vendor Supplied)
	3.3.1 OPI
	3.3.2 LAN
	3.3.3 IOC

	3.4 IOC Software Components
	3.4.1 IOC Database
	3.4.2 Database Access
	3.4.3 Database Scanning
	3.4.4 Record Support, Device Support and Device Drivers
	3.4.5 Channel Access
	3.4.6 Database Monitors

	3.5 Channel Access
	3.5.1 Client Services
	3.5.2 Search Server
	3.5.3 Connection Request Server
	3.5.4 Connection Management

	3.6 OPI Tools
	3.6.1 Examples of channel Access Tools
	3.6.2 Examples of other OPI Tools

	3.7 EPICS Core Software

	Chapter 4: EPICS Build Facility
	4.1 Overview
	4.1.1 <top> Directory structure
	4.1.2 Install Directories
	4.1.3 Elements of build system
	4.1.4 Features
	4.1.5 Multiple host and target systems

	4.2 Build Requirements
	4.2.1 Host Environment Variable
	4.2.2 System Prerequisites
	4.2.3 Path and LD_LIBRARY_PATH requirements
	4.2.3.1 Unix path
	4.2.3.2 Unix LD_LIBRARY_PATH
	4.2.3.3 Win32 PATH

	4.2.4 Startup files

	4.3 Configuration Definitions
	4.3.1 Site-specific EPICS Base Configuration
	4.3.1.1 Site configuration
	4.3.1.2 Host configuration
	4.3.1.3 Target configuration
	4.3.1.4 R3.13 compatibility configuration

	4.3.2 Directory definitions
	4.3.3 Extension and Application Specific Configuration
	4.3.4 RELEASE file
	4.3.5 Modifying configure/RELEASE* files
	4.3.6 Specifying osclass
	4.3.7 Host and Ioc targets

	4.4 Makefiles
	4.4.1 Name
	4.4.2 Included Files
	4.4.3 Contents of Makefiles
	4.4.4 Simple Makefile examples

	4.5 Make
	4.5.1 Make vs. gnumake
	4.5.2 Frequently used Make commands
	4.5.3 Make targets
	4.5.4 Header file dependencies

	4.6 Makefile definitions
	4.6.1 Source file directories
	4.6.2 Posix C source code
	4.6.3 Breakpoint Tables
	4.6.4 Record Type Definitions
	4.6.5 Menus
	4.6.6 Expanded Database Definition File
	4.6.7 Registering Support Routines for Expanded Database Definition Files
	4.6.8 Database Definition Files
	4.6.9 Database Files
	4.6.10 Compile and link command options
	4.6.10.1 Options for all compile/link commands.
	4.6.10.2 Options for a target specific compile/link command.

	4.6.11 Libraries
	4.6.11.1 Specifying the library name.
	4.6.11.2 Specifying library source file names
	4.6.11.3 Specifying library object file names
	4.6.11.4 LIBOBJS definitions
	4.6.11.5 Specifying dependant library names
	4.6.11.6 Specifying library DLL file names
	4.6.11.7 Specifying shared library version number
	4.6.11.8 Library example:

	4.6.12 Generate and install object Files
	4.6.13 State Notation Programs
	4.6.14 Scripts, etc.
	4.6.15 Include files
	4.6.16 Html and Doc files
	4.6.17 Templates
	4.6.18 Lex and yac
	4.6.19 Products
	4.6.19.1 Specifying the product name.
	4.6.19.2 Specifying product object file names
	4.6.19.3 Specifying product source file names
	4.6.19.4 Specifying libraries to be linked when creating the product
	4.6.19.5 Specifying product version number

	4.6.20 Test Products
	4.6.21 Target files
	4.6.22 Bin install files
	4.6.23 Win32 resource files
	4.6.24 TCL libraries
	4.6.25 Java class files
	4.6.25.1 Example 1
	4.6.25.2 Example 2

	4.6.26 Java jar file
	4.6.26.1 Example 1
	4.6.26.2 Example 2

	4.6.27 Java native method C header files
	4.6.27.1 Example

	4.7 Table of Makefile definitions
	4.8 Configuration Files
	4.8.1 Base Configure Directory
	4.8.2 Base Configure File Descriptions
	4.8.3 Base configure/os File Descriptions
	4.8.4 Base configure/tool File Descriptions

	4.9 Build Documentation Files
	4.9.1 Base Documentation Directory
	4.9.2 Base Documentation File Descriptions

	4.10 Startup Files
	4.10.1 Base Startup Directory
	4.10.2 Base Startup File Descriptions

	Chapter 5: Database Locking, Scanning, And Processing
	5.1 Overview
	5.2 Record Links
	5.3 Database Links
	5.3.1 Process Passive
	5.3.2 Maximize Severity

	5.4 Database Locking
	1. The periodic, I/O event, and event tasks lock before and unlock after processing:
	2. dbPutField locks before modifying a record and unlocks afterwards.
	3. dbGetField locks before reading and unlocks afterwards.
	4. Any asynchronous record support completion routine must lock before modifying a record and unl...

	5.5 Database Scanning
	1. Periodic - Records are scanned at regular intervals.
	2. I/O event - A record is scanned as the result of an I/O interrupt.
	3. Event - A record is scanned as the result of any task issuing a post_event request.
	4. Passive - A record is scanned as a result of a call to dbScanPassive. dbScanPassive will issue...

	5.6 Record Processing
	5.7 Guidelines for Creating Database Links
	1. A begins processing. While processing a request is made to process B.
	2. B starts processing. While processing a request is made to process C.
	3. C starts processing. One of the first steps is to get a value from A via the input link.
	4. At this point a question occurs. Note that the input link specifies process passive (signified...
	5. C obtains the value from A and completes its processing. Control returns to B.
	6. B completes returning control to A
	7. A completes processing.
	5.7.1 Rules Relating to Database Links
	5.7.1.1 Processing Order
	1. Forward links are processed in order from left to right and top to bottom. For example the fol...
	2. If a record has multiple input links (calculation and select records) the input is obtained in...
	3. All input and output links are processed before the forward link.

	5.7.1.2 Lock Sets
	5.7.1.3 PACT - processing active
	5.7.1.4 Process Passive: Link option
	1. Fanout starts processing and asks that B be processed.
	2. B begins processing. It calls dbGetLink to obtain data from A.
	3. Because the input link has process passive true, a request is made to process A.
	4. A is processed, the data value fetched, and control is returned to B
	5. B completes processing and control is returned to fanout. Fanout asks that C be processed.
	6. C begins processing. It calls dbGetLink to obtain data from A.
	7. Because the input link has process passive TRUE, a request is made to process A.
	8. A is processed, the data value fetched, and control is returned to C.
	9. C completes processing and returns to fanout
	10. The fanout completes

	5.7.1.5 Process Passive: Field attribute
	5.7.1.6 Maximize Severity: Link option

	5.8 Guidelines for Synchronous Records
	1. A record can be scanned periodically (at one of several rates), via I/O event, or via Event.
	2. For each periodic group and for each Event group the phase field can be used to specify proces...
	3. The application programmer has no control over the record processing order of records in diffe...
	4. The disable fields (SDIS, DISA, and DISV) can be used to disable records from being processed....
	5. A record (periodic or other) can be the root of a set of passive records that will all be proc...
	6. The process_passive option specified for each field of each record determines if a passive rec...
	7. The process_passive option for input and output links provides the application developer contr...
	8. General link structures can be defined. The application programmer should be wary, however, of...

	5.9 Guidelines for Asynchronous Records
	1. pact is set TRUE
	2. Data is obtained for all input links
	3. Record processing is started
	4. The record processing routine returns
	5. Record processing continues
	6. Record specific alarm conditions are checked
	7. Monitors are raised
	8. Forward links are processed
	9. pact is set FALSE.
	10. Asynchronous record processing does not delay the scanners.
	11. Between the time record processing begins and the asynchronous completion routine completes, ...
	12. Forward and output links are triggered only when the asynchronous completion routine complete...
	5.9.1 Infinite Loop
	1. A starts record processing and returns leaving pact TRUE.
	2. Sometime later the record completion for A occurs. During record completion a request is made ...
	3. Sometime later the record completion for B occurs. During record completion a request is made ...

	5.9.2 Obtain Old Data
	5.9.3 Delays
	5.9.4 Task Abort

	5.10 Cached Puts
	5.11 putNotify
	5.12 Channel Access Links
	1. A record link that references a record in a different IOC.
	2. A link that the application developer forces to be a channel access link.
	5.12.1 INLINK
	5.12.2 OUTLINK
	5.12.3 FWDLINK

	Chapter 6: Database Definition
	6.1 Overview
	6.2 Brief Summary of Database Definition Syntax
	6.3 General Rules for Database Definition
	6.3.1 Keywords
	6.3.2 Unquoted Strings
	6.3.3 Quoted Strings
	6.3.4 Macro Substitution
	6.3.5 Escape Sequences
	6.3.6 Define before referencing
	6.3.7 Multiple Definitions
	6.3.8 filename extension
	6.3.9 path addpath
	6.3.10 include
	6.3.11 comment

	6.4 Menu
	6.5 Record Type
	6.5.1 Format:
	6.5.2 rules
	6.5.3 definitions
	6.5.4 Example

	6.6 Device
	6.6.1 Format:
	6.6.2 definitions
	6.6.3 Examples

	6.7 Driver
	6.7.1 Format:
	6.7.2 Definitions
	6.7.3 Examples

	6.8 Function Declaration
	6.8.1 Format:
	6.8.2 Definitions
	6.8.3 Examples

	6.9 Breakpoint Table
	6.9.1 Format:
	6.9.2 Definitions
	6.9.3 Example

	6.10 Record Instance
	6.10.1 Format:
	6.10.2 definitions
	6.10.3 Examples

	6.11 Record Attribute
	6.12 Breakpoint Tables - Discussion
	1. No Conversion.
	2. Linear Conversion.
	3. Breakpoint table.

	6.13 Menu and Record Type Include File Generation.
	6.13.1 Introduction
	6.13.2 dbToMenuH
	6.13.3 dbToRecordtypeH

	6.14 dbExpand
	6.15 dbLoadDatabase
	6.15.1 EXAMPLE

	6.16 dbLoadRecords
	6.17 dbLoadTemplate
	6.17.1 EXAMPLE

	6.18 dbReadTest

	Chapter 7: IOC Initialization
	7.1 Overview - Environments requiring a main program
	7.2 Overview - vxWorks
	7.3 Overview - RTEMS
	7.4 iocInit
	7.4.1 coreRelease
	7.4.2 taskwdInit
	7.4.3 callbackInit
	7.4.4 dbCaLinkInit
	7.4.5 initDrvSup
	7.4.6 initRecSup
	7.4.7 initDevSup
	7.4.8 initDatabase
	7.4.9 dbLockInitRecords
	7.4.10 finishDevSup
	7.4.11 scanInit
	7.4.12 asInit
	7.4.13 dbPutNotifyInit
	7.4.14 initialProcess
	7.4.15 interruptAccept
	7.4.16 rsrv_init

	7.5 Changing iocCore fixed limits
	7.5.1 callbackSetQueueSize
	7.5.2 dbPvdTableSize
	7.5.3 scanOnceSetQueueSize
	7.5.4 errlogInit

	7.6 TSconfigure
	7.7 initHooks
	7.8 Environment Variables
	7.9 Initialize Logging

	Chapter 8: Access Security
	8.1 Overview
	1. Overview - This section
	2. Quick start - A summary of the steps necessary to start access security.
	3. User’s Guide - This explains what access security is and how to use it.
	4. Design Summary - Functional Requirements and Design Overview.
	5. Application Programmer’s Interface
	6. Database Access Security - Access Security features for EPICS IOC databases.
	7. Channel Access Security - Access Security features in Channel Access
	8. Trapping Channel Access Writes - This allows trapping of all writes from external channel acce...
	9. Implementation Overview

	8.2 Quick Start
	8.3 User’s Guide
	8.3.1 Features
	8.3.2 Limitations
	8.3.3 Definitions
	8.3.4 Access Security Configuration File
	8.3.4.1 Simple Example
	8.3.4.2 Syntax Definition
	8.3.4.3 Discussion
	1. The ASG associated with the record is searched.
	2. Each RULE is checked for the following:
	a. The field’s level must be less than or equal to the level for this RULE.
	b. If UAG is defined, the user must belong to one of the specified UAGs. If UAG is not defined al...
	c. If HAG is defined, the user’s host must belong to one one of the HAGs. If HAG is not defined a...
	d. If CALC is specified, the calculation must yield the value 1, i.e. TRUE. If any of the INP fie...
	3. The maximum access allowed by step 2 is the access chosen.

	8.3.5 ascheck - Check Syntax of Access Configuration File
	8.3.6 IOC Access Security Initialization
	8.3.7 Database Configuration
	8.3.7.1 Access Security Group
	8.3.7.2 Subroutine Record Support
	1. Modify the file specified by the last call to asSetFilename so that it contains the new config...
	2. Write a 1 to the subroutine record VAL field. Note that this can be done via channel access.
	3. When the value is found to be 1, asInit is called and the value set back to 0.
	4. The record is treated as an asynchronous record. Completion occurs when the new access configu...

	8.3.7.3 Record Type Description

	8.3.8 Example:
	1. Anyone can have read access to all fields at anytime.
	2. Linac engineers, located in the injection control or control room, can have write access to mo...
	3. Operators, located in the injection control or control room, can have write access to most lev...
	4. The operations supervisor, linac supervisor, and the application developers can have write acc...
	5. Most records use the above rules but a few (high voltage power supplies, etc.) are placed unde...
	6. IOC channel access clients always have level 1 write privilege.

	8.4 Design Summary
	8.4.1 Summary of Functional Requirements
	1. Each field of each record type is assigned an access security level.
	2. Each record instance is assigned to a unique access security group.
	3. Each user is assigned to one or more user access groups.
	4. Each node is assigned to a host access group.
	5. For each access security group a set of access rules can be defined. Each rule specifies:
	a. Access security level
	b. READ or READ/WRITE access.
	c. An optional list of User Access Groups or * meaning anyone.
	d. An optional list of Host Access Groups or * meaning anywhere.
	e. Conditions based on values of process variables

	8.4.2 Additional Requirements
	8.4.2.1 Performance
	8.4.2.2 Generic Implementation
	8.4.2.3 No Access Security within an IOC
	8.4.2.4 Defaults
	8.4.2.5 Access Security is Optional

	8.4.3 Design Overview
	8.4.3.1 Configuration File
	8.4.3.2 Access Security Library
	8.4.3.3 IOC Database Access Security
	8.4.3.4 Channel Access Security

	8.4.4 Comments
	8.4.5 Performance and Memory Requirements
	1. A database consisting of 5000 soft analog records was created.
	2. A channel access client (caput) was created that performs ca_puts on each of the 5000 channels...
	3. A channel access client (caget) was created that has monitors on each of the 5000 channels.

	8.5 Access Security Application Programmer’s Interface
	8.5.1 Definitions
	8.5.2 Initialization
	8.5.3 Group manipulation
	8.5.3.1 add Member
	8.5.3.2 remove Member
	8.5.3.3 get Member Pvt
	8.5.3.4 put Member Pvt
	8.5.3.5 change Group

	8.5.4 Client Manipulation
	8.5.4.1 add Client
	8.5.4.2 change Client
	8.5.4.3 remove Client
	8.5.4.4 get Client Pvt
	8.5.4.5 put Client Pvt
	8.5.4.6 register Callback
	8.5.4.7 check Get
	8.5.4.8 check Put

	8.5.5 Access Computation
	8.5.5.1 compute all Asg
	8.5.5.2 compute Asg
	8.5.5.3 compute access rights

	8.5.6 Diagnostic
	8.5.6.1 dump
	8.5.6.2 dump UAG
	8.5.6.3 dump HAG
	8.5.6.4 dump Rules
	8.5.6.5 dump member
	8.5.6.6 dump hash table

	8.6 Database Access Security
	8.6.1 Access Level definition
	1. Structure fldDes (dbBase.h), which describes the attributes of each field, contains a field ac...
	2. Each field description in a record description contains a field with the value ASLx.

	8.6.2 Access Security Group definition
	8.6.3 Access Client Definition
	8.6.4 Database Access Library
	8.6.4.1 Initialization
	8.6.4.2 Routines used by Channel Access Server
	8.6.4.3 Routine to test asAddClient
	8.6.4.4 Subroutines attached to a subroutine record
	8.6.4.5 Diagnostic Routines

	8.7 Channel Access Security
	8.7.1 CA Server Interfaces to the Access Security System
	8.7.2 Client Interfaces

	8.8 Trapping Channel Access Writes
	1. The facility, e.g. the channel access server, using access security must make two calls: asTra...
	2. asTrapWrite gets called by asTrapWriteBefore and asTrapWriteAfter. asTrapWrite uses the TRAPWR...
	3. Some facility not included with access security must call asTrapWriteRegisterListener. If noth...

	8.9 Access Control: Implementation Overview
	8.9.1 Implementation Overview
	8.9.2 Locking

	8.10 Structures

	Chapter 9: IOC Test Facilities
	9.1 Overview
	9.2 Database List, Get, Put
	9.2.1 dbl
	9.2.2 dbgrep
	9.2.3 dba
	9.2.4 dbgf
	9.2.5 dbpf
	9.2.6 dbpr
	9.2.7 dbtr
	9.2.8 dbnr

	9.3 Breakpoints
	9.3.1 dbb
	9.3.2 dbd
	9.3.3 dbs
	9.3.4 dbc
	9.3.5 dbp
	9.3.6 dbap
	9.3.7 dbstat

	9.4 Error Logging
	9.4.1 eltc

	9.5 Hardware Reports
	9.5.1 dbior
	9.5.2 dbhcr

	9.6 Scan Reports
	9.6.1 scanppl
	9.6.2 scanpel
	9.6.3 scanpiol

	9.7 Time Server Report
	9.7.1 TSreport

	9.8 Access Security Commands
	9.8.1 asSetSubstitutions
	9.8.2 asSetFilename
	9.8.3 asInit
	9.8.4 asdbdump
	9.8.5 aspuag
	9.8.6 asphag
	9.8.7 asprules
	9.8.8 aspmem

	9.9 Channel Access Reports
	9.9.1 ca_channel_status
	9.9.2 casr
	9.9.3 dbel
	9.9.4 dbcar

	9.10 Interrupt Vectors
	9.10.1 veclist

	9.11 EPICS
	9.11.1 epicsParamShow
	9.11.2 epicsEnvShow
	9.11.3 epicsRelease

	9.12 Database System Test Routines
	9.12.1 dbtgf
	9.12.2 dbtpf
	9.12.3 dbtpn

	9.13 Record Link Reports
	9.13.1 dblsr
	9.13.2 dbcar
	9.13.3 dbhcr

	9.14 Old Database Access Testing
	9.14.1 gft
	9.14.2 pft
	9.14.3 tpn

	9.15 Routines to dump database information
	9.15.1 dbDumpPath
	9.15.2 dbDumpMenu
	9.15.3 dbDumpRecordType
	9.15.4 dbDumpField
	9.15.5 dbDumpDevice
	9.15.6 dbDumpDriver
	9.15.7 dbDumpRecord
	9.15.8 dbDumpBreaktable
	9.15.9 dbPvdDump

	Chapter 10: IOC Error Logging
	10.1 Overview
	10.2 Error Message Routines
	10.2.1 Basic Routines
	10.2.2 Log with Severity
	10.2.3 Status Routines
	10.2.4 Obsolete Routines

	10.3 errlog Task
	10.3.1 Add and Remove Log Listener
	10.3.2 target console routines

	10.4 Status Codes
	10.5 iocLog
	10.5.1 iocLogServer
	10.5.2 iocLogClient
	10.5.3 Configuring a Private Log Server

	Chapter 11: Record Support
	11.1 Overview
	11.2 Overview of Record Processing
	1. Initiate the I/O operation and set pact TRUE
	2. Determine a method for again calling process when the operation completes
	3. Return immediately without completing record processing
	4. When process is called after the I/O operation complete record processing
	5. Set pact FALSE and return

	11.3 Record Support and Device Support Entry Tables
	11.4 Example Record Support Module
	11.4.1 Declarations
	11.4.2 init_record
	11.4.3 process
	11.4.4 Miscellaneous Utility Routines
	11.4.5 Alarm Processing
	11.4.6 Raising Monitors

	11.5 Record Support Routines
	11.5.1 Generate Report of Each Field in Record
	11.5.2 Initialize Record Processing
	11.5.3 Initialize Specific Record
	11.5.4 Process Record
	11.5.5 Special Processing
	11.5.6 Get Value
	11.5.7 Convert dbAddr Definitions
	11.5.8 Get Array Information
	11.5.9 Put Array Information
	11.5.10 Get Units
	11.5.11 Get Precision
	11.5.12 Get Enumerated String
	11.5.13 Get Strings for Enumerated Field
	11.5.14 Put Enumerated String
	11.5.15 Get Graphic Double Information
	11.5.16 Get Control Double Information
	11.5.17 Get Alarm Double Information

	11.6 Global Record Support Routines
	11.6.1 Alarm Status and Severity
	11.6.2 Alarm Acknowledgment
	11.6.3 Generate Error: Process Variable Name, Caller, Message
	11.6.4 Generate Error: Status String, Record Name, Caller
	11.6.5 Generate Error: Record Name, Caller, Record Support Message
	11.6.6 Get Graphics Double
	11.6.7 Get Control Double
	11.6.8 Get Alarm Double
	11.6.9 Get Precision
	11.6.10 Get Time Stamp
	11.6.11 Forward link
	11.6.12 Initialize Constant Link

	Chapter 12: Device Support
	12.1 Overview
	12.2 Example Synchronous Device Support Module
	12.3 Example Asynchronous Device Support Module
	1. When first called pact is FALSE. It arranges for a callback (myCallback) routine to be called ...
	2. It prints a message stating that processing has started, sets pact TRUE, and returns. The reco...
	3. When the specified time elapses myCallback is called. It locks the record, calls process, and ...
	4. When process executes, it again calls read_ai. This time pact is TRUE.
	5. read_ai prints a message stating that record processing is complete and returns a status of 2....
	6. When read_ai returns the record processing routine completes record processing.

	12.4 Device Support Routines
	12.4.1 Generate Device Report
	12.4.2 Initialize Record Processing
	12.4.3 Initialize Specific Record
	12.4.4 Get I/O Interrupt Information
	12.4.5 Other Device Support Routines

	Chapter 13: Driver Support
	13.1 Overview
	13.2 Device Drivers
	13.2.0.1 init
	13.2.0.2 report
	13.2.0.3 Hardware Configuration

	Chapter 14: Static Database Access
	14.1 Overview
	14.2 Definitions
	14.2.1 DBBASE
	14.2.2 DBENTRY
	14.2.3 Field Types

	14.3 Allocating and Freeing DBBASE
	14.3.1 dbAllocBase
	14.3.2 dbFreeBase

	14.4 DBENTRY Routines
	14.4.1 Alloc/Free DBENTRY
	14.4.2 dbInitEntry dbFinishEntry
	14.4.3 dbCopyEntry dbCopyEntry Contents

	14.5 Read and Write Database
	14.5.1 Read Database File
	14.5.2 Write Database Definitons
	14.5.3 Write Record Instances

	14.6 Manipulating Record Types
	14.6.1 Get Number of Record Types
	14.6.2 Locate Record Type
	14.6.3 Get Record Type Name

	14.7 Manipulating Field Descriptions
	14.7.1 Get Number of Fields
	14.7.2 Locate Field
	14.7.3 Get Field Type
	14.7.4 Get Field Name
	14.7.5 Get Default Value
	14.7.6 Get Field Prompt

	14.8 Manipulating Record Attributes
	14.8.1 dbPutRecord Attribute
	14.8.2 dbGetRecord Attribute

	14.9 Manipulating Record Instances
	14.9.1 Get Number of Records
	14.9.2 Locate Record
	14.9.3 Get Record Name
	14.9.4 Create/Delete/Free Record
	14.9.5 Copy Record
	14.9.6 Rename Record
	14.9.7 Record Visibility
	14.9.8 Find Field
	14.9.9 Get/Put Field Values

	14.10 Manipulating Menu Fields
	14.10.1 Get Number of Menu Choices
	14.10.2 Get Menu Choice
	14.10.3 Get/Put Menu
	14.10.4 Locate Menu

	14.11 Manipulating Link Fields
	14.11.1 Link Types
	14.11.2 All Link Fields
	14.11.3 Constant and Process Variable Links

	14.12 Manipulating MenuForm Fields
	14.12.1 Alloc/Free Form
	14.12.2 Get/Put Form
	14.12.3 Verify Form
	14.12.4 Get Related Field
	14.12.5 Example

	14.13 Find Breakpoint Table
	14.14 Dump Routines
	14.15 Examples
	14.15.1 Expand Include
	14.15.2 dbDumpRecords

	Chapter 15: Runtime Database Access
	15.1 Overview
	15.2 Database Include Files
	15.2.1 dbDefs.h
	15.2.2 dbFldTypes.h
	1. Constant - The value associated with the field is a floating point value initialized with a co...
	2. Hardware links - The link contains a data structure which describes a signal connected to a pa...
	3. Process Variable Links - This is one of three types:
	a. PV_LINK: The process variable name.
	b. DB_LINK: A reference to a process variable in the same IOC.
	c. CA_LINK: A reference to a variable located in another IOC.

	15.2.3 dbAccess.h
	15.2.4 link.h

	15.3 Runtime Database Access Overview
	15.3.1 Database Request Types and Options
	15.3.2 Options Example
	15.3.3 ACKT and ACKS

	15.4 Database Access Routines
	15.4.1 dbNameToAddr
	15.4.2 Get Routines
	15.4.2.1 dbGetField
	15.4.2.2 dbGetLink and dbGetLinkValue
	15.4.2.3 dbGet

	15.4.3 Put Routines
	15.4.3.1 dbPutField
	1. If the DISP field is TRUE then, unless it is the DISP field itself which is being modified, th...
	2. The record is locked.
	3. dbPut is called.
	4. If the dbPut is successful then: If this is the PROC field or if both of the following are TRU...
	a. If the record is already active ask for the record to be reprocessed when it completes.
	b. Call dbScanPassive after setting putf TRUE to show the process request came from dbPutField.
	5. The record is unlocked.

	15.4.3.2 dbPutLink and dbPutLinkValue
	1. Calls dbPut.
	2. Implements maximize severity.
	3. If the field being referenced is PROC or if both of the following are true: 1) process_passive...
	a. If the record is already active because of a dbPutField request then ask for the record to be ...
	b. otherwise call dbScanPassive.

	15.4.3.3 dbPut

	15.4.4 Put Notify Routines
	1. The user code must allocate a putNotify control block. If a putNotify is already in use, i.e. ...
	2. The userCallback routine will be always be called unless dbNotifyCancel is called. The userCal...
	3. If the user calls dbNotifyCancel then the userCallback will NOT be called after dbNotifyCancel...
	4. If a putNotify is already active on the record associated with the putNotify, the new putNotif...
	5. If the record associated with the putNotify is already active for some other reason, the putNo...
	6. In general a set of records may be processed as a result of a single dbPutNotify. If a record ...
	15.4.4.1 dbPutNotify
	15.4.4.2 dbNotifyCancel
	15.4.4.3 dbNotifyAdd
	15.4.4.4 dbNotifyCompletion

	15.4.5 Utility Routines
	15.4.5.1 dbBufferSize
	15.4.5.2 dbValueSize
	15.4.5.3 dbGetRset
	15.4.5.4 dbIsValueField
	15.4.5.5 dbGetFieldIndex
	15.4.5.6 dbGetNelements
	15.4.5.7 dbIsLinkConnected
	15.4.5.8 dbGetPdbAddrFromLink
	15.4.5.9 dbGetLinkDBFtype
	15.4.5.10 dbGetControlLimits
	15.4.5.11 dbGetGraphicLimits
	15.4.5.12 dbGetAlarmLimits
	15.4.5.13 dbGetPrecision
	15.4.5.14 dbGetUnits
	15.4.5.15 dbGetSevr
	15.4.5.16 dbGetTimeStamp

	15.4.6 Attribute Routine
	15.4.6.1 dbPutAttribute

	15.4.7 Process Routines
	15.4.7.1 dbScanPassive dbScanLink dbScanFwdLink
	15.4.7.2 dbProcess

	15.5 Runtime Link Modification
	15.6 Channel Access Monitors
	15.7 Lock Set Routines
	15.7.0.1 dbScanLock
	15.7.0.2 dbScanUnlock
	15.7.0.3 dbLockGetLockId
	15.7.0.4 dbLockInitRecords
	15.7.0.5 dbLockSetMerge
	15.7.0.6 dbLockSetSplitSl
	15.7.0.7 dbLockSetGblLock
	15.7.0.8 dbLockSetGblUnlock
	15.7.0.9 dbLockSetRecordLock

	15.8 Channel Access Database Links
	15.8.1 Basic Routines
	15.8.1.1 dbCaLinkInit
	15.8.1.2 dbCaAddLink
	15.8.1.3 dbCaRemoveLink
	15.8.1.4 dbCaGetLink
	15.8.1.5 dbCaPutLink

	15.8.2 Attributes of Link
	15.8.2.1 dbCaIsLinkConnected
	15.8.2.2 dbCaGetNelements
	15.8.2.3 dbCaGetSevr
	15.8.2.4 dbCaGetTimeStamp
	15.8.2.5 dbCaGetLinkDBFtype
	15.8.2.6 dbCaGetAttributes
	15.8.2.7 dbCaGetControlLimits
	15.8.2.8 dbCaGetGraphicLimits
	15.8.2.9 dbCaGetAlarmLimits
	15.8.2.10 dbCaGetPrecision
	15.8.2.11 dbCaGetUnits

	Chapter 16: Device Support Library
	16.1 Overview
	16.2 Registering VME Addresses
	16.2.1 Definitions of Address Types
	16.2.2 Register Address
	16.2.3 Unregister Address

	16.3 Interrupt Connect Routines
	16.3.1 Definitions of Interrupt Types
	16.3.2 Connect
	16.3.3 Disconnect
	16.3.4 Enable Level
	16.3.5 Disable Level

	16.4 Macros and Routines for Normalized Analog Values
	16.4.1 Normalized GetField
	16.4.2 Convert Digital Value to a Normalized Double Value
	16.4.3 Convert Normalized Double Value to a Digital Value

	Chapter 17: EPICS General Purpose Tasks
	17.1 Overview
	17.2 General Purpose Callback Tasks
	17.2.1 Overview
	1. Include callback definitions:
	2. Provide storage for a structure that is a private structure for the callback tasks:
	3. Call routines (actually macros) to initialize fields in CALLBACK:
	4. Whenever a callback request is desired just call one of the following:

	17.2.2 Syntax
	17.2.3 Example
	17.2.4 Callback Queue

	17.3 Task Watchdog
	1. Include module:
	2. Insert request:
	3. Remove request:
	4. Insert request to be notified if any task suspends:
	5. Remove request for taskwdAnyInsert:

	Chapter 18: Database Scanning
	18.1 Overview
	18.2 Scan Related Database Fields
	18.2.1 SCAN
	18.2.2 PHAS
	18.2.3 EVNT - Event Number
	18.2.4 PRIO - Scheduling Priority

	18.3 Scan Related Software Components
	18.3.1 menuScan.dbd
	18.3.2 dbScan.h
	18.3.3 Initializing Database Scanners
	18.3.4 Adding And Deleting Records From Scan List
	18.3.5 Declaring Database Event
	18.3.6 Interfacing to I/O Event Scanning
	1. Include <dbScan.h>
	2. For each separate event source the following must be done:
	a. Declare an IOSCANPVT variable, e.g.
	b. Call scanIoInit, e.g.
	3. Provide the device support get_ioint_info routine. This routine has the format:
	4. Whenever an I/O event is detected call scanIoRequest, e.g.

	18.4 Implementation Overview
	18.4.1 Definitions And Routines Common To All Scan Types
	18.4.2 Event Scanning
	Figure 18-1: Scan List Memory Layout
	18.4.2.1 post_event

	18.4.3 I/O Event Scanning
	18.4.3.1 scanIoInit
	Figure 18-1: Interrupt Source Structure

	18.4.3.2 scanIoRequest

	18.4.4 Periodic Scanning
	Figure 18-1: Structure after iocInit
	18.4.4.1 initPeriodic
	18.4.4.2 periodicTask

	18.4.5 Scan Once
	18.4.5.1 scanOnce
	18.4.5.2 SetQueueSize

	Chapter 19: IOC Shell
	19.1 Introduction
	19.2 IOC Shell Operation
	19.2.1 Quoting
	19.2.2 Command-line editing and history
	19.2.3 Utility Commands
	19.2.4 ENVIRONMENT VARIABLES

	19.3 IOC Shell Programming
	19.3.1 Invoking the IOC shell
	19.3.2 Registering Commands
	19.3.3 Automatic Command Registration

	Chapter 20: libCom
	20.1 bucketLib
	20.2 calc
	20.3 cppStd
	20.3.1 epicsList
	20.3.2 epicsAlgorithm

	20.4 cvtFast
	20.5 cxxTemplates
	20.6 dbmf
	20.7 ellLib
	20.8 epicsRingBytes
	20.9 epicsRingPointer
	20.9.1 C++ Interface
	20.9.2 C interface

	20.10 epicsTimer
	20.10.1 C++ Interface
	20.10.1.1 epicsTimerNotify and epicsTimer
	20.10.1.2 epicsTimerQueue
	20.10.1.3 epicsTimerQueueActive
	20.10.1.4 epicsTimerQueueNotify and epicsTimerQueuePassive

	20.10.2 C Interface
	20.10.3 Example

	20.11 fdmgr
	20.12 freeList
	20.13 gpHash
	20.14 logClient
	20.15 macLib
	20.16 misc
	20.16.1 aToIPAddr
	1. n.n.n.n:p The Internet address of the host, specified as four numbers separated by periods.
	2. xxxxxxxx:p The Internet address number of the host, specified as a single number.
	3. hostname:p The Internet host name of the host.

	20.16.2 adjustment
	20.16.3 cantProceed
	20.16.4 dbDefs
	20.16.5 epicsString
	20.16.6 epicsTypes
	20.16.7 gsd_sync_defs.h
	20.16.8 locationException
	20.16.9 epicsExcept
	20.16.10 shareLib.h
	20.16.11 truncateFile.h
	20.16.12 unixFileName.h

	Chapter 21: libCom OSI libraries
	21.1 Overview
	21.1.1 OSI source directory
	21.1.2 Rules for building OSI.
	21.1.3 Locating OSI header files.

	21.2 epicsAssert
	21.3 epicsEvent
	21.3.1 C++ Interface
	21.3.2 C Interface

	21.4 epicsFindSymbol
	21.5 epicsInterrupt
	21.5.1 C Interface
	21.5.2 Implementation notes

	21.6 epicsMath
	21.7 epicsMutex
	21.7.1 C++ Interface
	21.7.2 C Interface
	21.7.3 Implementation Notes

	21.8 epicsThread
	21.8.1 C Interface
	21.8.2 C++ Interface

	21.9 epicsTime
	21.9.1 Time Related Structures
	21.9.2 C++ Interface
	21.9.3 class epicsTimeEvent
	21.9.4 class epicsTime
	21.9.5 C Interface

	21.10 osiPoolStatus
	21.11 osiProcess
	21.12 osiSigPipeIgnore
	21.13 osiSock.h

	Chapter 22: Registry
	22.1 Registry.h
	22.2 registryRecordType.h
	22.3 registryDeviceSupport.h
	22.4 registryDriverSupport.h
	22.5 registryFunction.h
	22.6 registerRecordDeviceDriver.c
	22.7 registerRecordDeviceDriver.pl

	Chapter 23: Database Structures
	23.1 Overview
	23.2 Include Files
	23.3 Structures

	Chapter 24: INDEX

