EPICS
Input / Output Controller (10C)
Application Developer’s Guide

Martin R. Kraimer

Argonne National Laboratory
Advanced Photon Source
November 2000

EPICS Release 3.14.0alphal

EPICS Release: R3.13.0.betal2 EPICS IOC Application Developer's Guide

EPICS IOC Application Developer’'s Guide

Table of Contents

Table of Contents. 1
Chapter 1: Introduction. 7
1.1 OVERIVIEW .« ot et e e e 7
1.2. Acknowledgments 9
Chapter 2: New Featuresfor 3.14 11
2.0, IntrodUCHION . . . oot e 11
2.2. Example Application 11
2.3. Shell for non vxWorks environment 13
2.4.Some Unresolved tems 14
Chapter 3: EPICS OVerview oo e 17
3.l Whatis EPICS? . ..o 17
3.2. Basic Attributes e 17
3.3. Hardware - Software Platforms (Vendor Supplied). 18
3.4. 10C Software COMPONENTSttt e 19
3.5. Channel ACCESS 21
3.6. OPIT00IS . . i 22
3.7.EPICS Core Software. e 23
Chapter 4: EPICS Build Facility. 25
O O 1Y = V= 25
4.2. MakKefiles 27
4.3, MaKe. . . 28
4.4. Makefile definitions 29
4.5. Table of Makefile definitions. 38
4.6. Configuration Files 43
Chapter 5: Database Locking, Scanning, And Processing 47
DL OVBIVIEBW . ettt 47
5.2, ReCOrd LinKS . . .ot 47
5.3, Database LinKS.t 48
5.4. Database Locking. e 48
5.5. Database SCanningttt e 49
5.6. RECOId ProCESSING . . . vttt ettt e e e e 50
5.7. Guidelines for Creating Database Links 50
5.8. Guidelines for Synchronous Records., 52
5.9. Guidelines for Asynchronous Records i, 53
5.10.Cached PULS.o 55
5.11.Channel Access LINKS.o 55
Chapter 6: Database Definition. 57

EPICS Release: R3.14.0alphal EPICS IOC Application Developer’s Guide

Table of Contents

B.1. OVEIVIEW . . . ettt et e e e e 57
6.2. Brief Summary of Database Definition Syntax. 57
6.3. General Rules for Database Definition. 58
B.4. MENU 1....6
B.5. RECOrd TYPe . . oot 61
B.6. DRVICE . . . oot 6....6
B.7. DIIVEI . . 7....6
6.8. Breakpoint Table. 67
6.9. ReCOrd INStANCE.ot 68
6.10.Record Attribute. 71
6.11.Breakpoint Tables - DiSCUSSION 71
6.12.Menu and Record Type Include File Generation. 72
6.13.dbEXpand e 75
6.14.dbLoadDatabase e 76
6.15.dbLoadRECOrdS. oo 77
6.16.dbLoadTemplate. 77
6.17.dbReadTest. 78
Chapter 7: 10C Initialization 81
7.1. Overview - Environments requiringa mainprogramcvvve... 81
7.2.0verview - VXWOIKSo 81
7.3.0verview - RTEMS 82
7 T Yo [82 ...
7.5. Changing iocCore fixed limits i, 84
7.6, TSCONfIQUIE. . . .o e e 85
7.7 INtHOOKS . . .o 85
7.8. Environment Variables 86
7.9. Initialize Logging . . . vt e 87
Chapter 8: ACCESS SECUIMLYt e e 89
8.l OVEIVIBW . . o o e 89
8.2. QUICK Start. 89
8.3.USer's GUIAEo e 90
8.4. DeSigN SUMIMANY oottt e e e 95
8.5. Access Security Application Programmer’s Interface 97
8.6. Database ACCESS SECUIMLYo vt 101
8.7. Channel ACCESS SECUNMLY.ttt e e 103
8.8. Access Control: Implementation Overview, 104
8.0, SHTUCIUIES. . . . oo e e e 106
Chapter 9: I0OC Test Facilities. i 107
0.0, OVEIVIBW . . o oo e 107
9.2. Database List, Get, PUt 107
9.3. Breakpointso 109
9.4, Error LOQging . . .o oottt 111
9.5. Hardware Reportsttt 111
0.6. SCaN REPOISo 112
9.7. Time Server RepOrt.o e e 112
9.8. Access Security Commands 113
9.9. Channel ACCeSS REPOITS e 114
9.10.INterrupt VECIONS. . . . o o 115
0. L EPICS . . 115
9.12.Database System Test Routines 116

2 EPICS I0OC Application Developer's Guide

Table of Contents

9.13.Record LINK RepOItSo 117
9.14.0ld Database Access Testing e 117
9.15.Routines to dump database information oL 118
Chapter 10: IOC Error Loggingo e 121
L0. 1. 0VEIVIBW . . .ttt e 121
10.2.Error Message ROULINESttt e e e e 121
10.3.errl0g TasK. . ..ot e e 123
10.4.Status COUESottt 124
10.500CLOg . o e 5...12
Chapter 11: Record SUPPOIt 127
110 OVEIVIEW . o o ottt e e e 127
11.2.0verview of Record ProCessingv vttt 127
11.3.Record Support and Device Support Entry Tables 128
11.4.Example Record Support Module. 129
11.5.Record Support ROULINES 135
11.6.Global Record Support Routines. 138
Chapter 12: Device SUPPOIt.ot e 143
12 0. 0VEIVIEW . .« . oottt 143
12.2.Example Synchronous Device SupportModule 143
12.3.Example Asynchronous Device Support Module. 145
12.4.Device SUpport ROULINES.o 147
Chapter 13: Driver SUPPOIT. oo 149
13, L OVEIVIBW . . ettt e 149
13.2.DEVICE DIIVEIS. . . ot 149
Chapter 14: Static Database ACCESS i 153
LA OVEIVIEW . . o o ottt e e e e e 153
14.2. DefiNitioNS. e 153
14.3.Allocating and Freeing DBBASE 154
14.4.DBENTRY ROULINES.ottt e e e 155
14.5.Read and Write Database i 156
14.6.Manipulating Record TYPESt iie 157
14.7 Manipulating Field Descriptions. 158
14.8.Manipulating Record Attributes 159
14.9.Manipulating Record InStances. 159
14.10.Manipulating Menu Fields 161
14.11.Manipulating Link Fields 162
14.12.Manipulating MenuForm Fields 163
14.13.Find Breakpoint Table. 165
14.14.DUMP ROULINES . . . oo e e 165
14, 05 EXamMPIES . 165
Chapter 15: Runtime Database Access. 169
15, 1. 0VEIVIEW . . . o ottt 169
15.2.Database Include Files 169
15.3.Runtime Database ACCeSS OVEIVIEWttt 171
15.4.Database AcCesSs ROULINES. it 174
15.5.Runtime Link Modification. 182
15.6.Channel ACCeSS MONItOISottt e 183
15.7.L0CK SEt ROULINESt 183

EPICS Release: R3.14.0alphal
EPICS I0C Application Developer's Guide 3

Table of Contents

15.8.Channel Access Database Links. i 185
Chapter 16: Device Support Library. 189
16.1.0VEIVIEW . o ottt e e e e e e 189
16.2.Registering VME AddreSSsesttt e 189
16.3.Interrupt Connect ROULINES. i e e 190
16.4.Macros and Routines for Normalized Analog Values 191
Chapter 17: EPICS General Purpose Tasks 193
17.0.0VEIVIEW . . .ttt ettt e 193
17.2.General Purpose Callback Tasks 193
17.3.Task Watchdog.o 196
Chapter 18: Database Scanning 199
L18.1.0OVEIVIEW . . . ettt ettt e e 199
18.2.Scan Related Database Fields. 199
18.3. Scan Related Software COmMpoNeNntS 200
18.4.Implementation OVEIVIEWt 203
Chapter 19: libCom 209
19.1.bucketlib.h. .. 209
10.2.CalC . .ot 209. ..
103 cVtFast.n . . 209
194 cxxTemplates.h.o 210
10.5.dbmfh. .. 210
19.6.elllib.h ..o 1...21
10.7.0dmgr.h . e e 212
19.8.freeList.h. 212
10.9.gpHash.h. e 212
10.00.00gClent e 213
19.01.mackib.h. ..o 213
1902 MISC. . vttt 4...21
10,03 tIMer N, . 216
Chapter 20: libCom OSl libraries. 217
20.1.0VEIVIEBW . o ot e 217
20.2.epicSASSert.h. ... 218
20.3.0SIEVENt. N . . . 218
20.4.0siFindGlobalSymbol.h 218
20.5.0siInterrupt.h 218
20.6.0SIMUtEX. N . ..o e 219
20.7.0SIPo0IStatus.h 220
20.8.0SIProcess.h . .. 220
20.9.0SIRING.N. . ..o 221
20.10.0SISemM. N . .. 221
20.11.0siSigPipelgnore.h 224
20.12.0SIS0CK.h . .. 224
20.13.0siThread.h. 224
20.14.0SiTime.h . . 227
20.05.8Stamp.h .. 227
Chapter 21: RegiStry.o 229
21 L RegiStry.h . 229
21.2.registryRecordType.n. . .. 229

4 EPICS I0OC Application Developer's Guide

Table of Contents

21.3.registryDeviceSupport.h 230
21.4.registryDriverSupport.h. 230
21.5.reqistryFunction.h 230
21.6.registerRecordDeviceDriver.C. 230
21.7.registerRecordDeviceDriver.pl. 230
Chapter 22: Database Structures 231
22. 0. 0VEIVIBW . « .\ ettt e 231
22.2.Anclude Files . ..o 231
22 3. S T UCTUIS. .« . o ettt 233

EPICS Release: R3.14.0alphal
EPICS I0C Application Developer's Guide

Table of Contents

6 EPICS I0OC Application Developer's Guide

Chapter 1: Introduction

1.1 Overview

This document describes the core software that resides in an Input/Output Controller (IOC), one of the major components
of EPICS. It is intended for anyone developing EPICS I0C databases and/or new record/device/driver support.

The plan of the book is:
New Features for release 3.14

A brief description of new features. The most important new feature is that iocCore is now supported on systems in
addition to vxWorks.

EPICS Overview

An overview of EPICS is presented, showing how the IOC software fits into EPICS. This is the only chapter that
discusses OPI software and Channel Access rather than just IOC related topics.

EPICS Build Facility

This chapter, which was written by Janet Anderson, describes the EPICS build facility including directory
structure, environment and system requirements, configuration files, Makefiles, and related build tools.

Database Locking, Scanning, and Processing
Overview of three closely related I0C concepts. These concepts are at the heart of what constitutes an EPICS 10C.
Database Definition

This chapter gives a complete description of the format of the files that describe 10C databases. This is the format
used by Database Configuration Tools and is also the format used to load databases into an IOC.

IOC Initialization
A great deal happens at IOC initialization. This chapter removes some of the mystery about initialization.
Access Security

Channel Access Security is implemented in I0Cs. This chapter explains how it is configured and also how it is
implemented.

IOC Test Facilities

Epics supplied test routines that can be executed via the epics or vxWorks shell.
IOC Error Logging

IOC code can call routines that send messages to a system wide error logger.
Record Support

The concept of record support is discussed. This information is necessary for anyone who wishes to provide
customized record and device support.

Device Support

EPICS Release: R3.14.0alphal
EPICS I0C Application Developer's Guide 7

Chapter 1: Introduction
Overview

The concept of device support is discussed. Device support takes care of the hardware specific details of record
support, i.e. it is the interface between hardware and a record support module. Device support can directly access
hardware or may interface to driver support.

Driver Support

The concepts of driver support is discussed. Drivers, which are not always needed, have no knowledge of records
but just take care of interacting with hardware. Guidelines are given about when driver support, instead of just
device support, should be provided.

Static Database Access
This is a library that works on Unix and vxWorks and on initialized or uninitialized EPICS databases.
Runtime Database Access

The heart of the IOC software is the memory resident database. This chapter describes the interface to this
database.

Device Support Library
A set of routines are provided for device support modules that use shared resources such as VME address space.
EPICS General Purpose Tasks
General purpose callback tasks and task watchdog.
Database Scanning
Database scan tasks, i.e. the tasks that request records to process.
libCom

EPICS base includes a subdirectory src/libCom, which contains a number of ¢ and c++ libraries that are used by
the other components of base. This chapter describes most of these libraries.

libCom OSI

This chapter describes the libraries in libCom that provide Operating System Independent (OSI) interrfaces used
by the rest of EPICS base. LibCom also contains operating system dependent code that implements the OSI
interfaces.

Registry

Under vxWorks osiFindGlobalSymbol can be used to dynamically bind to record, device, and driver support. Since
on some systems this always returns failure, a registry facility is provided to implement the binding. The basic idea
is that any storage meant to be "globally" accessable must be registered before it can be accessed

Database Structures
A description of the internal database structures.

Other than the first chapter this document describes only core I0C software. Thus it does not describe other EPICS tools
which run in an 10C such as the sequencer. It also does not describe Channel Access.

The reader of this manual should also have the following documents:

» EPICS Record Reference Manuhilip Stanley, Janet Anderson and Marty Kraimer
See LANL Web site for latest version.

* EPICS I0C Software Configuration Management, Marty Kraimer, Andrew Johnson, Janet Anderson, Ralph Lange
http://www.aps.anl.gov/asd/controls/epics/EpicsDocumentation/AppDevManuals/iocScm-3.13.2/index.html

» vxXWorks Programmer’s Guid&Vvind River Systems
» vxWorks Reference Many&Vind River Systems
» RTEMS C User’s Guide, Online Applications Research

8 EPICS I0OC Application Developer's Guide

Chapter 1: Introduction
Acknowledgments

1.2 Acknowledgments

The basic model of what an I0C should do and how to do it was developed by Bob Dalesio at LANL/GTA. The principle
ideas for Channel Access were developed by Jeff Hill of LANL/GTA. Bob and Jeff also were the principle implementers
of the original 10C software. This software (called GTACS) was developed over a period of several years with feedback
from LANL/GTA users. Without their ideas EPICS would not exist.

During 1990 and 1991, ANL/APS undertook a major revision of the I0C software with the major goal being to provide
easily extendible record and device support. Marty Kraimer (ANL/APS) was primarily responsible for designing the data
structures needed to support extendible record and device support and for making the changes needed to the IOC resident
software. Bob Zieman (ANL/APS) designed and implemented the UNIX build tools and IOC modules necessary to
support the new facilities. Frank Lenkszus (ANL/APS) made extensive changes to the Database Configuration Tool
(DCT) necessary to support the new facilities. Janet Anderson developed methods to systematically test various features
of the 10C software and is the principal implementer of changes to record support.

During 1993 and 1994, Matt Needes at LANL implemented and supplied the description of fast database links and the
database debugging tools.

During 1993 and 1994 Jim Kowalkowski at ANL/APS developed GDCT and also developed the ASCII database instance
format now used as the standard format. At that time he also cobdteatiRecords anddblLoadTemplate

The build utility method resulted in the generation of binary files of UNIX that were loaded into IOCs. As new IOC
architectures started being supported this caused problems. During 1995, after learning from an abandoned effort now
referred to a€picsRX , the build utilities and binary file (calledefault .dctsdr) were replaced by all ASCII files.

The new method provides architecture independence and a more flexible environment for configuring the record/device/
driver support. This principle implementer was Marty Kraimer with many ideas contributed by John Winans and Jeff Hill.
Bob Dalesio made sure that we did not go to far, i.e. 1) make it difficult to upgrade existing applications and 2) lose
performance.

In early 1996 Bob Dalesio tackled the problem of allowing runtime link modification. This turned into a cooperative
development effort between Bob and Marty Kraimer. The effort included new code for database to Channel Access links,
a new library for lock sets, and a cleaner interface for accessing database links.

In early 1999 the port of iocCore to non vxWorks operating systems was started. The principle developers were Marty
Kraimer, Jeff Hill, and Janet Anderson. William Lupton converted the sequencer as well as helping with the posix threads
implementation of osiSem and osiThread. Eric Norum provided the port to RTEMS and also contributed the shell that is
used on non vxWorks environments.

Many other people have been involved with EPICS development, including new record, device, and driver support
modules.

EPICS Release: R3.14.0alphal
EPICS I0C Application Developer's Guide 9

Chapter 1: Introduction
Acknowledgments

10 EPICS I0OC Application Developer's Guide

Chapter 2: New Features for 3.14

2.1 Introduction

This is the first release that supports iocCore on non vxWorks operating systems.
The following components of iocCore are included with base:

» Database locking, scanning, and processing
» Channel access client and server support
 Standard record types and soft device support
» Access security
» General purpose soft device support.
The port to non vxWorks operating systems is based on the following assumptions:

 All hardware support is unbundled from base.

< A multithreaded environment is necessary.
» Operating system independent (OSI) components are defined such that:

« vxWorks implementation has minimal overhead compared to vxWorks specific calls

e The components can be implemented via a combination of POSIX, POSIX.4 (posix real time), and POSIX
threads (pthreads).
« Each OS can use the posix implementation or provide it's own implementation.

It must be emphasized that this is alpha software. The first alpha version is not ready for existing vxWorks applications.
Later versions will provide a relatively easy conversion path from 3.13 applications.

2.2 Example Application

This section explains how to create an example 10C application in a directory <top>, naming the application
exampleApp and the ioc directorppcexample

2.2.1 Check thaterics_HOST_ARCHis defined
Execute the command:

echo $EPICS_HOST_ARCH (Unix)
or

set EPICS_HOST_ARCH (Windows)

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 11

Chapter 2: New Features for 3.14
Example Application

This should display your workstation architecture, for examgaris-sparc or win32-x86 . If you get an
"Undefined variable" error, you should set EPICS_HOST_ARCH to your host operating system followed by a dash and
then your host architecture, e.g. solaris-sparc. The perl script EpicsHostArch.pl in the base/startup directory has been
provided to help set EPICS_HOST_ARCH.

2.2.2 Create the example application

The following commands create an example application.

mkdir <top>

cd <top>

<base>/bin/<arch>/makeBaseApp.pl -t example example
<base>/bin/<arch>/makeBaseApp.pl -i -t example example

The last command will ask you to enter an architecture. This is only used for a vxWorks target. Just enter one of the
CROSS_COMPILER_TARGET_ARCécified incbase>/configure/ CONFIG_SITE

Windows Users Note: Perl scripts are invoked with the command perl <scripthame> on win95/NT. Perl script names are
case sensitive. For example to create an application on WIN95/NT:

perl C:\epics\base\bin\win32\makeBaseApp.pl -t example example

2.2.3 Inspect files

Spend some time looking at the files that appear under <top>. Do this BEFORE building. This allows you to see typical
files which are needed to build an application without seeing the files generated by make.

2.2.4 Build

In directory <top> execute the command
gnumake
Linux Note: On linux gnumake is the native make so just execute:

make

2.2.5 Inspect files

This time you will see the files generated by make as well as the original files.

2.2.6 Run the example

The example can be run on vxWorks, RTEMS, or on a supported host.

» vxWorks - Set your boot parameters as described below and then boot the ioc.

 RTEMS - RTEMS uses TFTP to read startup scripts and configuration files. On your TFTP server:
» Copy all db/xxx files to <tftpbase>/epics/<target_hostname>/db/xxx.
« Copy all dbd/xxx files to <tftpbase>/epics/<target_hostname>/dbd/xxx.
« Copy iocBoot/iocexample/st.cmd to <tftpbase>/epics/<target _hostname>/st.cmd.

12 EPICS I0OC Application Developer's Guide

Chapter 2: New Features for 3.14
Shell for non vxWorks environment

« Transfer the application executable image to the target machine and start it. The method of doing this
depends on your target hardware. Typical methods include BOOTP/TFTP, booting from a floppy disk,
burning the application into flash memory or using gdb to download and execute the application.

* On a host, e.g. solaris
« cd <top>/iocBoot/iocexample
« ../../Ibin/solaris-sparc/example stcmd.host

After the ioc is started try some of the shell commands @by. or dbpr <recordname>) described in chapter "IOC
Test Facilities”. In particular rudbl to get a list of the records.

The channel access application caExample is run by executing the command
<mytop>/bin/<hostarch>/caExample <pvname>
where

<mytop> is the full path name to your application top directory.
<hostarch> is your host architecture.
<pvname> is one of the record names displayed bydihle ioc shell command.

2.2.7 vxWorks boot parameters

The vxWorks boot parameters are set via the console serial port on your I0C. Life is much easier if you find out how to
connect the serial port to a window on your workstation.

The vxWorks boot parameters look something like the following:

boot device § XXX

processor number :0

host name XXX

file name . <full path to board support>/vxWorks
inet on ethernet (8) : XXX.XXX.XXX.XXX:<netmask>

host inet (h) - XXX XXX XXX XXX

user (u) ;XXX

ftp password (pw) : Xxx

flags (f) : Ox0

target name (tn) : <hostname for this inet address>

startup script (s) : <top>/iocBoot/iocexample/st.cmd

The actual values for each field are site and I0C dependent. Two fields that you can change at will are the vxWorks boot
image and the location of the startup script.

Note that the full path name for the correct board support boot image must be specified. If bootp is used the same
information will need to be placed in the bootp host’s configuration database instead.

When your boot parameters are set properly, just press the reset button on your IOC, or use the @ command to commence
booting. You will find it VERY convenient to have the console port of the IOC attached to a scrolling window on your
workstation.

2.3 Shell for non vxWorks environment

Because the vxWorks shell is not available, EPICS base provides a simple shell ioccrf(IOC Call Registered Function). In
the main program it can be invoked as follows:

EPICS Release: R3.14.0alphal
EPICS I0C Application Developer’s Guide 13

Chapter 2: New Features for 3.14
Some Unresolved Items

ioccrf("filename™)
or
ioccrf(0)

If the argument is a filename, the commands in the file are executed and ioccrf returns. If the argument is O then ioccrf
goes into interactive mode, i.e. it prompts for and executes commands until an exit command is issued.

If ioccrf can use the GNU readline utility, which provides bash style command history and command line editing. In order
to implement these features it must be compiled with the options:

OP_SYS_LDLIBS = -Ireadline
OP_SYS_CPPFLAGS = -DIOCSH_USE_READLINE

loccrf supports the following builtin commands:

< "filename" Execute commands from filename
exit Exit ioccrf

cd dir Change directory

show Show threads

threadlnit Call threadlnit

loccrf calls registered commands. A call to ioccrfrRegister, which should be made in all main programs, registers the
following:

dbLoadDatabase

dbLoadRecords

dbLoadTemplate

Most commands described in chapter "IOC Test facilities”

NOTE: This started as just as a shell that could just call registered functions, which is why it is named ioccrf. Since it is
now more general it should have a different name. Perhaps iocsh?

2.4 Some Unresolved Items

» Currently beacons do not perform properly if two or more versions of iocCore and/or portable servers are runing on
the same workstation.

* Mutex Performance. Currently iocCore requires recursive mutexes, semMutexTakeTimeout, and
semMutexTakeNoWait. Implementing these on many systems causes semMutexTake and semMutexGive to use
excessive cpu cycles.

» CA client performance. Existing cllients linked against 3.14 use considerably more cpu time than when linked
against 3.13.

* libcom reviewed

e C++ APIs in libCom. This is the first release of iocCore that is using C++. The current developer’s are
having major disputes about C++ conventions and design standards.

¢ 0si naming conventions. Current naming conventions are not uniform.
* When should user code see "osi"
» For c++ what are conventions
» For c what are the conventions
* osiRing
* Move this from libCom/osi to libCom/ringBuffer. Change the name from osiRing. Perhaps
ringBufferBytes?

14 EPICS I0OC Application Developer's Guide

Chapter 2: New Features for 3.14
Some Unresolved Items

* Implement a ringPointer, which only gets and puts a single pointer. Use this in src/db instead of
osiRing.
» osiThread
» Should threadDestroy be allowed?

* osiMutex
» Should we remove the requirement for recursive mutexes?
» Should we remove semMutexTakeNoWait?
» Should we remove semMutexTakeTimeout?

 shell for non vxWorks environments

« Additional extensions to ioccrf? Also give it a better name such as iocsh.
* Provide a help facility that shows callable functions and their arguments?
 Other features?

e Tcl/Tk wrapper ?
« facility initialization
» Use c++ static classes to initialize where possible. This is already done in many places. Are we missing
some?
< What should applications use?
 Lazy initialization? This is already done in many places. Are we missing some?
» Should logClient and logServer be moved to separate directory under src or even unbundled?
 devLib - Thus is actually support for VME. What should we do with devLib?
» Decorated Names. This is for creating win32 DLLs. We should consider a way of creating the DLLs which does
not require the decorated names.
» Compiler optimization switches. What should we use? Turning on the -g flag for GNU causes a factor of 10
increase in size of libraries on Linux.

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 15

Chapter 2: New Features for 3.14
Some Unresolved Items

16 EPICS I0OC Application Developer's Guide

Chapter 3: EPICS Overview

3.1 What is EPICS?

EPICS consists of a set of software components and tools that Application Developers use to create a control system. The
basic components are:

» OPI: Operator Interface. This is a workstation which can run various EPICS tools.

» I0C: Input/Output Controller. Any platform that can support EPICS run time databases together with the other
software components described in the manual. One example is a workstation. Another example is a VME/VXI
based system using vxWorks or RTEMS as the realtime operating system.

* LAN: Local Area Network. This is the communication network which allows the I0Cs and OPIs to communicate.
EPICS provides a software component, Channel Access, which provides network transparent communication
between a Channel Access client and an arbitrary number of Channel Access servers.

A control system implemented via EPICS has the following physical structure.

OPI ce OPI <+ | OPI

LAN

I0C e [o]e:

The rest of this chapter gives a brief description of EPICS:

 Basic Attributes: A few basic attributes of EPICS.

 Platforms: The vendor supplied Hardware and Software platforms EPICS supports.

» 10C Software: EPICS supplied IOC software components.

» Channel Access EPICS software that supports network independent access to IOC databases.

» OPI Tools: EPICS supplied OPI based tools.

EPICS Core: A list of the EPICS core software, i.e. the software components without which EPICS will not work.

3.2 Basic Attributes

The basic attributes of EPICS are:

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 17

Chapter 3: EPICS Overview
Hardware - Software Platforms (Vendor Supplied)

» Tool Based EPICS provides a number of tools for creating a control system. This minimizes the need for custom
coding and helps ensure uniform operator interfaces.

« Distributed: An arbitrary number of IOCs and OPIs can be supported. As long as the network is not saturated, no
single bottle neck is present. A distributed system scales nicely. If a single IOC becomes saturated, its functions can
be spread over several IOCs. Rather than running all applications on a single host, the applications can be spread
over many OPIs.

» Event Driven: The EPICS software components are all designed to be event driven to the maximum extent
possible. For example, rather than having to poll IOCs for changes, a Channel Access client can request that it be
notified when a change occurs. This design leads to efficient use of resources, as well as, quick response times.

» High Performance: A SPARC based workstation can handle several thousand screen updates a second with each
update resulting from a Channel Access event. A 68040 IOC can process more than 6,000 records per second,
including generation of Channel Access events.

3.3 Hardware - Software Platforms (Vendor Supplied)

3.3.1 OPI

Hardware

» Unix based Workstations: Well supported platforms include SOLARIS, and HP-UX
* Linux

» Windows NT

« Limited support for VMS

Software

e UNIX or Linux or winNT
* X Windows
» Motif Toolkit

3.3.2 LAN

Hardware
» Ethernet (most flavors)
Software

» TCP/IP protocols via sockets

3.3.310C

Hardware

* VME/VXI bus and crates
 Various VME modules (ADCs, DAC, Binary I/O, etc.)
« Allen Bradley Scanner (Most AB I/O modules)
* GPIB devices
« BITBUS devices

18 EPICS I0OC Application Developer's Guide

Chapter 3: EPICS Overview
I0C Software Components

« CAMAC
« CANBUS
Motorola 68xxx
* Intel
e PowerPC
e Sparc

Software

» vxWorks operating system
* Real time kernel

* Extensive “Unix like”

* RTEMS
» Host, e.g. solaris

libraries

3.4 10C Software Components

An IOC contains the following EPICS supplied software components.

Ethernet

Scanners

Driver or

Device
Interrupt
Routines

Channel Sequencer
Access

— Monitors
Database
Access

I0C Database

Record Support

Device Support

VME

Device
Drivers

» |OC Database The memory resident database plus associated data structures.
» Database Access Database access routines. With the exception of record and device support, all access to the

database is via the database access routines.

» Scanners The mechanism for deciding when records should be processed.
» Record Support Each record type has an associated set of record support routines.

» Device Support Each record type can have one or more sets of device support routines.
» Device Drivers Device drivers access external devices. A driver may have an associated driver interrupt routine.

EPICS Release: R3.14.0alphal

EPICS I0C Application Developer’s Guide

19

Chapter 3: EPICS Overview
I0C Software Components

* Channel Access The interface between the external world and the 10C. It provides a network independent
interface to database access.

» Monitors: Database monitors are invoked when database field values change.
» Sequencer A finite state machine.

Let's briefly describe the major components of the IOC and how they interact.

3.4.1 10C Database

The heart of each IOC is a memory resident database together with various memory resident structures describing the
contents of the database. EPICS supports a large and extensible set of record types(Anglog Input),ao (Analog
Output), etc.

Each record type has a fixed set of fields. Some fields are common to all record types and others are specific to particular
record types. Every record has a record name and every field has a field name. The first field of every database record
holds the record name, which must be unique across all IOCs that are attached to the same TCP/IP subnet.

Data structures are provided so that the database can be accessed efficiently. Most software components, because they
access the database via database access routines, do not need to be aware of these structures.

3.4.2 Database Access

With the exception of record and device support, all access to the database is via the channel or database access routines.
See Chapter 15, “Runtime Database Access” on page 169 for details.

3.4.3 Database Scanning

Database scanning is the mechanism for deciding when to process a record. Five types of scanning are possible: Periodic,
Event, 1/0 Event, Passive and Scan Once.

 Periodic: A request can be made to process a record periodically. A number of time intervals are supported.

» Event: Event scanning is based on the posting of an event by any I0C software component. The actual subroutine
call is:

post_event(event_num)

* /O Event: The I/O event scanning system processes records based on external interrupts. An IOC device driver
interrupt routine must be available to accept the external interrupts.

» Passive Passive records are processed as a result of linked records being processed or as a result of external
changes such as Channel Access puts.

» Scan Once In order to provide for caching puts, The scanning system provides a rasgaréOnce which
arranges for a record to be processed one time.

3.4.4 Record Support, Device Support and Device Drivers

Database access needs no record-type specific knowledge, because each record-type has its associated record support
module. Therefore, database access can support any humber and type of records. Similarly, record support contains no
device specific knowledge, giving each record type the ability to have any number of independent device support
modules. If the method of accessing the piece of hardware is more complicated than what can be handled by device
support, then a device driver can be developed.

Record typesot associated with hardware do not have device support or device drivers.

20 EPICS I0OC Application Developer's Guide

Chapter 3: EPICS Overview
Channel Access

The 10C software is designed so that the database access layer knows nothing about the record support layer other than
how to call it. The record support layer in turn knows nothing about its device support layer other than how to call it.
Similarly the only thing a device support layer knows about its associated driver is how to call it. This design allows a
particular installation and even a particular IOC within an installation to choose a unique set of record types, device types,
and drivers. The remainder of the IOC system software is unaffected.

Because an Application Developer can develop record support, device support, and device drivers, these topics are
discussed in greater detail in later chapters.

Every record support module must provide a record processing routine to be called by the database scanners. Record
processing consists of some combination of the following functions (particular records types may not need all functions):

* Input: Read inputs. Inputs can be obtained, via device support routines, from hardware, from other database
records via database links, or from other IOCs via Channel Access links.
» Conversion Conversion of raw input to engineering units or engineering units to raw output values.

» Output: Write outputs. Output can be directed, via device support routines, to hardware, to other database records
via database links, or to other IOCs via Channel Access links.

» Raise Alarms Check for and raise alarms.
* Monitor : Trigger monitors related to Channel Access callbacks.
 Link: Trigger processing of linked records.

3.4.5 Channel Access

Channel Access is discussed in the next section.

3.4.6 Database Monitors

Database monitors provide a callback mechanism for database value changes. This allows the caller to be notified when
database values change without constantly polling the database. A mask can be set to specify value changes, alarm
changes, and/or archival changes.

At the present time only Channel Access uses database monitors. No other software should use the database monitors.
The monitor routines will not be described because they are of interest only to Channel Access.

3.5 Channel Access

Channel Access provides network transparent access to IOC databases. It is based on a client/ server model. Each I0C
provides a Channel Access server which is willing to establish communication with an arbitrary number of clients.
Channel Access client services are available on both OPIs and I0Cs. A client can communicate with an arbitrary number
of servers.

3.5.1 Client Services

The basic Channel Access client services are:

» Search Locate the IOCs containing selected process variables and establish communication with each one.
» Get: Get value plus additional optional information for a selected set of process variables.
» Put: Change the values of selected process variables.

EPICS Release: R3.14.0alphal
EPICS I0C Application Developer’'s Guide 21

Chapter 3: EPICS Overview
OPI Tools

» Add Event: Add a change of state callback. This is a request to have the server send information only when the
associated process variable changes state. Any combination of the following state changes can be requested:
change of value, change of alarm status and/or severity, and change of archival value. Many record types provide
hysteresis factors for value changes.

In addition to requesting process variable values, any combination of the following additional information may be
requested:

» Status Alarm status and severity.

» Units: Engineering units for this process variable.

» Precision Precision with which to display floating point numbers.

» Time: Time when the record was last processed.

* Enumerated: A set of ASCII strings defining the meaning of enumerated values.
» Graphics: High and low limits for producing graphs.

Control: High and low control limits.

* Alarm: The alarmHIHI , HIGH, LOWandLOLOvalues for the process variable.

It should be noted that Channel Access doesprovide access to database records as records. This is a deliberate design
decision. This allows new record types to be added without impacting any software that accesses the database via Channel
Access, and it allows a Channel Access client to communicate with multiple IOCs having differing sets of record types.

3.5.2 Search Server

Channel Access provides an IOC resident server which waits for Channel Access search messages. These are generated
when a Channel Access client (for example when an Operator Interface task starts) searches for the IOCs containing
process variables the client uses. This server accepts all search messages, checks to see if any of the process variables are
located in this I0C, and, if any are found, replies to the sender with and “I have it” message.

3.5.3 Connection Request Server

Once the process variables have been located, the Channel Access client issues connection requests for each 10C

containing process variables the client uses. The connection request server, in the IOC, accepts the request and establishes
a connection to the client. Each connection is managed by two separatectaghet andca put . Theca get and

ca_put requests map tdbGetField anddbPutField database access requests.add _event requests result in

database monitors being established. Database access and/or record support routines trigger the monitors via a call to

db_post_event

3.5.4 Connection Management

Each IOC provides a connection management service. When a Channel Access server fails (e.g. its IOC crashes) the
client is notified and when a client fails (e.g. its task crashes) the server is notified. When a client fails, the server breaks
the connection. When a server crashes, the client automatically re-establishes communication when the server restarts.

3.6 OPI Tools

EPICS provides a number of OPI based tools. These can be divided into two groups based on whether or not they use
Channel Access. Channel Access tools are real time tools, i.e. they are used to monitor and control 10Cs.

22 EPICS I0OC Application Developer's Guide

Chapter 3: EPICS Overview
EPICS Core Software

3.6.1 Examples of channel Access Tools

A large number of Channel Access tools have been developed. The following are some representative examples.

MEDM : Maotif version of combined display manager and display editor.

DM: Display Manager. Reads one or more display list files created by EDD, establishes communication with all
necessary 10Cs, establishes monitors on process variables, accepts operator control requests, and updates the
display to reflect all changes.

ALH : Alarm Handler. General purpose alarm handler driven by an alarm configuration file.
AR: Archiver. General purpose tool to acquire and save data from IOCs.
Sequencer Runs in an IOC and emulates a finite state machine.

BURT: Backup and Restore Tool. General purpose tool to save and restore Channel Access channels. The tool can
be run via Unix commands or via a Graphical User Interface.

KM : Knob Manager - Channel Access interface for the sun dials (a set of 8 knobs)

PROBE: Allows the user to monitor and/or change a single process variable specified at run time.
CAMATH : Channel Access interface for Mathematica.

CAWINGZ : Channel Access interface for Wingz.

IDL/PVWAVE Channel Access Interfaces exist for these products.

TCL/TK Channel Access Interface for these products.

CDEV - A library designed to provide a standard API to one or more underlying packages, typically control
system interfaces. CDEV provides a Channel Access service.

3.6.2 Examples of other OPI Tools

JDCT: Java Database Configuration Tool. A JAVA based toll for creating run time databases.

GDCT: Graphical Database Configuration Tool. Used to create a run time database for an IOC. This is no longer
being developed since it is based on an open source software system called unidraw, which is no longer being
supported.

EDD: Display Editor. This tool is used to create a display list file for the Display Manager. A display list file
contains a list of static, monitor, and control elements. Each monitor and control element has an associated process
variable.

SNC: State Notation Compiler. It generates a C program that represents the states for the IOC Sequencer tool.
Database Tools -Tools are provided which generate C include files from menu and record type database definition
files.

Source/Release EPICS provides a Source/Release mechanism for managing EPICS.

3.7 EPICS Core Software

EPICS consists of a set of core software and a set of optional components. The core software, i.e. the components of
EPICS without which EPICS would not function, are:

Channel Access - Client and Server software
IOC Database

Scanners

Monitors

Database Definition Tools

Source/Release

EPICS Release: R3.14.0alphal

EPICS IOC Application Developer’s Guide 23

Chapter 3: EPICS Overview
EPICS Core Software

All other software components are optional. Of course, any application developer would be crazy to ignore tools such as
MEDM (or EDD/DM). Likewise an application developer would not start from scratch developing record and device
support. Most OPI tools do not, however, have to be used. Likewise any given record support module, device support
module, or driver could be deleted from a particular IOC and EPICS will still function.

24 EPICS I0OC Application Developer's Guide

Chapter 4. EPICS Build Facility

Janet Anderson is the author of this chapter.

4.1 Overview

This chapter describes the EPICS build facility including directory structure, environment and system requirements,
configuration files, Makefiles, and related build tools.

4.1.1 <top> Directory structure

EPICS software can be divided into multiple <top> areas. Examples of <top> areas are EPICS base itself, EPICS
extensions, and simple or complicated IOC applications. Each <top> may be maintained separately. Different <top> areas
can be on different releases of external software such as EPICS base releases.

A <top> directory has the following directory structure:

<top>/
Makefile
configure/
dirl/
dir2/

where configure is a directory containing build configuration files and a Makefile and where dirl, dir2, ... are user created
subdirectory trees with Makefiles and source files to be built.

4.1.2 Install Directories

The following directories may also exist in the installation directory, $(INSTALL_LOCATION). which defaults to
$(TOP), the <top> directory. They are created in the <top> directory by the build and contain the installed build
components.

» dbd - Installed Database Definitions Directory.

* include - The directory into which C header files are installed. These header files may be generated from menu and
record type definitions.

« bin - This directory contains a subdirectory for the host architecture and for each target architecture. These are the
directories in which executables, binaries, etc. are installed.

« lib - This directory contains a subdirectory for each host architecture. These are the directories in which libraries
are installed.

» db - This is the directory into which record instance, template, and substitution files are installed.
e html - This is the directory into which html documentation is installed.
» templates- The directory into which template files are installed.

EPICS Release: R3.14.0alphal
EPICS I0C Application Developer's Guide 25

Chapter 4: EPICS Build Facility
Overview

4.1.3 Elements of build system

The main ingredients of the build system are:

A set of configuration files and tools provided in the EPICS base/configure directory

» A corresponding set of configuration files in the <top>/configure directory of a non-base directory structure to be
built. The makeBaseApp.pl and makeBaseExtension.pl scripts create these files. Many of these configuration files
justinclude a file of the same name from the base/configure directory.

» Makefiles in each directory of the <top> directory structure to be built

4.1.4 Features

The principal features of the build system are:

» Requires a single Makefile in each directory of a <top> directory structure
» Supports both host os native compiler and GNU compiler

» Supports building multiple types of software (libraries, executables, databases, java class files, etc.) stored in a
single directory tree.

» Supports building EPICS base, extensions and 10C applications.

» Supports multiple host and target operating system - architecture combinations.

« Existing configuration files need no changes at most sites

« Allows builds for all hosts and targets within a single <top> source directory tree.

* Allows sharing of components such as special record/device/drivers across <top> areas.
e gnumake is the only command used to build a <top> area.

4.1.5 Environment Prerequisites

Only one environment variablEPICS_HOST_ARCHs required to build EPICS <top> areas. This variable should be
set to be your workstation's operating system - architecture combination. Exampsedagi® sparc, linux-

x86, win32-x86 . The EPICS base distribution tar file contains a startup script, EpicsHostArch, which can be used to
define this variable.

4.1.6 System Prerequisites

Before you can build EPICS components your host system must have the following software installed:

 Perl version 5 or greater

* GNU make, version 3.7 or greater

» C++ compiler (host operating system vendor's compiler or GNU compiler)

If you will be building EPICS components for vxWorks targets you will also need:

Tornado Il and one or more board support packages. Consult the vxWorks documentation for details.

26 EPICS I0OC Application Developer's Guide

Chapter 4: EPICS Build Facility
Makefiles

4.2 Makefiles

4.2.1 Name

The name of the makefile in each directory must be Makefile.

4.2.2 Included Files

Makefiles normally include files from <top>/configure. Thus the makefile "inherits" rules and definitions from configure.
The files in <top>/configure may in turn include files from another <top>/configure. This technique makes it possible to
share make variables and even rules across <top> directories.

4.2.3 Contents of Makefiles

Makefiles in directories containing subdirectories

A Makefile in this type of directory must define where <top> is relative to this directory, include <top>/configure files,
and specify the subdirectories in the desired order of make execution. Running gnumake in a directory with the following
Makefile lines will cause gnumake to be executed in <dirl> first and then <dir2>.

TOP=../..

include $(TOP)/configure/CONFIG
DIRS += <dirl> <dir2>

include $(TOP)/configure/RULES_DIRS

Makefiles in directories where components are to be built

A Makefile in this type of directory must define where <top> is relative to this directory, include the configure files, and
specify the target component definitions. Optionally it may contain user defined rules. Running gnumake in a directory
with this type of Makefile will cause gnumake to create an O.<arch> subdirectory and then execute gnumake to build the
defined components in this subdirectory. It contains the following lines:

TOP=../..1..

include $(TOP)/configure/CONFIG
<component definition lines>

include $(TOP)/configure/RULES
<optional rules definitions>

4.2.4 Simple Makefile examples

Create an 10C library named asloc from the source file asDbLib.cand install it into the $(INSTALL_LOCATION)/lib/
<target arch> directory.

TOP=../..I..

include $(TOP)/configure/CONFIG
LIBRARY_IOC += asloc
asloc_SRCS += asDbLib.c
include $(TOP)/configure/RULES

EPICS Release: R3.14.0alphal
EPICS I0C Application Developer's Guide 27

Chapter 4: EPICS Build Facility
Make

For each Host type target architecture, create an executable named catest from the catestl.c and catest2.c source files
linking with the existing EPICS base ca and Com libraries, and then install the catest executable into the
$(INSTALL_LOCATION)/bin/<arch> directory.

TOP=../..I..

include $(TOP)/configure/CONFIG
PROD = catest

catest_ SRCS += catestl.c catest2.c
catest_LIBS = ca Com

include $(TOP)/configure/RULES

4.3 Make

4.3.1 Make vs. gnumake

EPICS provides an extensive set of make rules. These rules only work with the GNU version of make, gnumake, which is
supplied by the Free Software Foundation. Thus, on most Unix systems, the native make will not work. On some systems,
e.g. Linux, GNU make may be the default. This manual always uses gnumake in the examples.

4.3.2 Frequently used Make commands

NOTE: It is possible to invoke the following commands for a single architecture by appending .<arch> to the target in the
command.

The most frequently used make commands are:

gnumake
This rebuilds and installs everything that is not up to date.
NOTE: Executing gnumake without arguments is the same as gnumake install

gnumake <arch>
This rebuilds and installs everything that is not up to date for a single specified arch.
NOTE: This is the same as gnumake install.<arch>

gnumake clean
This can be used to save disk space by deleting the O.<arch> directories, but does not remove any installed files
from the bin, db, dbd etc. directories. .<arch> can be appended to invoke clean for a single architecture.

gnumake rebuild
This is the same as gnumake clean install. If you are unsure about the state of the generated files in an application,
just execute gnumake rebuild.

gnumake clean uninstall
This command can be executed from the <top> directory only. It will remove everything installed by gnumake in
the bin, db, dbd, etc. directories.

gnumake tar
This command makes a tar image of the entire <top> directory (excluding any CVS directories). This target is
available on Unix type hosts only.

28 EPICS I0OC Application Developer's Guide

Chapter 4: EPICS Build Facility
Makefile definitions

gnumake depends
This command creates a DEPENDS file in the O.<arc> subdirectory containing a list of header file dependencies
for each c or c++ source file. This target is not available on Win32 hosts.

4.3.3 Make targets

The following is a summary of targets that can be specified for gnumake:

 <action>

e <arch>
 <action>.<arch>

o <dir>

e <dir>.<action>
<dir>.<arch>
 <dir>.<action>.<arch>

where:

<arch> ia solaris-sparc, vxWorks-68040, win32-x86, etc. - builds named architecture only.
<action> is clean, inc, install, build, rebuild, buildinstall, depends, or uninstall

NOTE: uninstall can only be specified at <top>

<dir> is subdirectory name

4.4 Makefile definitions

The following components can be defined in a Makefile to be built when gnumake is invoked:

4.4.1 Breakpoint Tables

For each breakpoint table file, bpt<table name>.dbd, add the definition
BPTS += bpt<table name>.dbd

The following Makefile will create a bptTypeJdegC.dbd file from an existing bptTypeJdegC.data file and install the dbd
file into the $(INSTALL_LOCATION)/dbd directory.

TOP=../..I..

include $(TOP)/configure/CONFIG
BPTS = bptTypeJdegC.dbd
include $(TOP)/configure/RULES

4.4.2 Record Type Definitions

For each new record type, the following definition should be added to the makefile:
RECTYPES += <rectype>Record.h
The associated record definition file <rectype>Record.dbd must exist.

The following Makefile will create an xxxRecord.h header file from an existing xxxRecord.dbd file and install
xxxRecord.h into $(INSTALL_LOCATION)/include and xxxRecord.dbd into $(INSTALL_LOCATION)/dbd.

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’s Guide 29

Chapter 4: EPICS Build Facility
Makefile definitions

TOP=../..l..

include $(TOP)/configure/CONFIG
RECTYPES = xxxRecord.h
include $(TOP)/configure/RULES

4.4.3 Menus

If a menu menu<name>.dbd file is present, then add the following definition:
MENUS += menu<name>.h
The header file will be created from the menu dbd file and installed into <top>/include directory.

The following Makefile will create a menuConvert.h file from an existing menuConvert.dbd file and install
menuConvert.h to $(INSTALL_LOCATION)/include and menuConvert.dbd to $(INSTALL_LOCATION)/dbd.

TOP=../..I..

include $(TOP)/configure/CONFIG
MENU = menuConvert.h

include $(TOP)/configure/RULES

4.4.4 Expanded Database Definition File

Files containing database definition files are expanded by utility dbExpand and installed into <top>/dbd. The following
variables control the process:

DBDEXPAND += xxxInclude.dbd

DBDNAME = xxxApp.dbd

USER_DBDFLAGS += -l <include path>
USER_DBDFLAGS += -S <macro substitutions>

where the entries are:
DBDEXPAND

A list of files containing database definitions to be expanded. An example of a DBDEXPAND file is examplelnclude.dbd
containing the following lines

include "base.dbd"
include "xxxRecord.dbd"
device(xxx,CONSTANT,devXxxSoft,"SoftChannel")

DBDNAME
The name of the output file to contain the expanded definitions which will be installed into <top>/dbd.
USER_DBDFLAGS

Optional flags for dbExpand. Currently only an include path and macro substitution are supported.

The following Makefile will create an expanded dbd file named exampleApp.dbd from an existing examplelnclude.dbd
file and install exampleApp.dbd to the $(INSTALL_LOCATION)/dbd directory.

TOP=../..l.

include $(TOP)/configure/CONFIG
DBDEXPAND = examplelnclude.dbd
DBDNAME = exampleApp.dbd
include $(TOP)/configure/RULES

30 EPICS I0OC Application Developer's Guide

Chapter 4: EPICS Build Facility
Makefile definitions

4.4.5 Database Definition Files

The following line installs the named files into <top>/dbd without expansion.
DBDINSTALL += <name>.dbd

4.4.6 Database Files

For all these types of databases, the names of the database has to be specified. Make will figure out how to generate the
files:

DB += xxx.db

Generates xxx.db depending on which source files exist. If xxx.db is template generated, the inflated database will be
installed.

DB += xxx.template xxx.substitutions

Generates and installs these files. If one or more xxx.substitutions files are to be created by script, the script name must be
placed in the CREATESUBSTITUTIONS variable (e.g. CREATESUBSTITUTIONS=mySubst.pl). This script will be
executed by gnumake with the prefix of the substitution file name to be generated as its argument. If (and only if) there are
script generated substitutions files, the prefix of any inflated database's name may not equal the prefix of the name of any
template used within the directory.

In order to record dependency information correctly all template files that are needed but not installed (i.e. those not listed
in DB), must be added to the USES_TEMPLATE variable:

USES TEMPLATE += yyy.template
USES_TEMPLATE += $(SHARE)/installDb/zzz.template

If specified with a path (full or relative), the templates will be soft linked (UNIX) or copied (WIN) into the O.<arch>
directory. After the first make run, template dependencies will be generated automatically.

4.4.7 Libraries

A library is created and installed into <top>/lib/<arch> by specifying it's name and the name of either the object or source
files containing code for the library. An object or source file name can appear with or without a directory prefix. If the file
has a directory prefix e.g. $(EPICS_BASE_BIN), it is taken from the specified location. If a directory prefix is not
present, make will look in the source directory for a file with the speciffied name.

Definition of <osclass>The architecture not including the processor. A few examples are:

vxXWorks-68040 : The <osclass> is vxWorks. The <arch> is vxWorks-68040
solaris-sparc : The <osclass> is solaris. The <arch> is solaris-sparc.

vxWorks Note: For vxWorks, both an object module library, <name>.0, and a munched object module library,
<name>.munch, are created and both libraries are installed into <top>/bin/#ddhztop>/lib/<arch>

4.4.7.1 Specifying the library name.
Any of the following can be specified:

LIBRARY += <name>

A library will be created for every target arch and installed into the <top>/lib/<arch> directory.
LIBRARY_<osclass> += <name>

Library <name>.will be created for all archs of the specified osclass.
LIBRARY_DEFAULT += <name>

Library <name> will be created for any arch that does not have a LIBRARY_<osclass> definition

EPICS Release: R3.14.0alphal
EPICS I0C Application Developer's Guide 31

Chapter 4: EPICS Build Facility
Makefile definitions

LIBRARY_IOC += <name>
Library <name> will be created for 10C type archs.
LIBRARY_IOC_<osclass> += <name>
Library <name>.will be created for all IOC type archs of the specified osclass.
LIBRARY_IOC_DEFAULT += <name>
Library <name> will be created for any IOC type arch that does not have a LIBRARY_IOC_<osclass>
definition
LIBRARY_HOST += <name>
Library <name> will be created for HOST type archs.
LIBRARY_HOST_<osclass> += <name>
Library <name>.will be created for all HOST type archs of the specified osclass.
LIBRARY_HOST_DEFAULT += <name>
Library <name> will be created for any HOST type arch that does not have a LIBRARY_HOST_<osclass>
definition

4.4.7.2 Specifying Library object file names
Object file names, which doast need a suffix such as .o, are defined as follows:

<library name>_OBJS += <name>
Object files will be used for all builds of the named library)
<library name>_0OBJS_<osclass> += <name>
Object files will be used in builds of the library for archs with the specified osclass.
<library name>_OBJS_DEFAULT += <name>
Object files will be used in builds of the library for archs without a <library name>_OBJS_<osclass>
definition specified.

4.4.7.3 LIBOBJS definitions
Previous versions of epics (3.13 and before) accepted definitions like:
LIBOBJS += $(<support>_BIN)/xxx.0
These are gathered together in files such as baseLIBOBJS. To use such definitions include the definitions

-include ../baseLIBOBJS
<library name>_0OBJS += $(LIBOBJS)

4.4.7.4 Specifying Library Source file names
Source file names, which must have a suffix, are defined as follows:

SRCS += <name>
Source files will be used for all defined libraries and products.
SRCS_<osclass> += <name>
Source files will be used for all defined libraries and products for all archs of the specified osclass.
SRCS_DEFAULT += <name>
Source files will be used for all defined libraries and products for any osclass that does not have a
SRCS_<osclass> definition

LIBSRCS += <name>

Source files will be used for all libraries.
LIBSRCS_<osclass> += <name>

Source files will be used for all defined libraries for all archs of the specified osclass.
LIBSRCS_DEFAULT += <name>

32 EPICS I0OC Application Developer's Guide

Chapter 4: EPICS Build Facility
Makefile definitions

Source files will be used for all defined libraries for any osclass that does not have a LIBSRCS_<osclass>
definition

<library name>_SRCS += <name>
Source file will be used for the named library.
<library name>_SRCS_<osclass> += <name>
Source files will be used for named library for all archs of the specified osclass.
<library name>_SRCS_DEFAULT += <name>
Source files will be used for named library for any osclass that does not have a <library
name>_SRCS_<osclass> definition

4.4.7.5 Library example:

LIBRARY_vxWorks += vxWorksOnly
LIBRARY_IOC += iocOnly
LIBRARY_HOST += hostOnly
LIBRARY += all

vxXWorksOnly_OBJS += vxOnlyl
vxXWorksOnly_SRCS += vxOnly2.c
iocOnly_OBJS +=iocOnlyl
iocOnly_SRCS +=iocOnly2.cpp
hostOnly _OBJS += hostl
all_OBJS +=alll

all_SRCS += all2.cpp

If the architectures defined in <top>/configure are solaris-sparc and vxWorks-68040 then the following libraries will be
created:

» <top>/bin/vxWork-68040/vxWorksOnly.* : vxOnly1.o0 vxOnly2.0
* <top>/bin/vxWork-68040/iocOnly.* : iocOnlyl.0 iocOnly2.0
 <top>/lib/solaris-sparc/libiocOnly.a : iocOnlyl.0 iocOnly2.0

» <top>/lib/solaris-sparc/libhostOnly.a : hostl.0

» <top>/bin/vxWork-68040/all.* : all1.0 all2.0
 <top>/lib/solaris-sparc/liball.a : all1.0 all2.0

4.4.8 Generate and install object Files

Itis possible to generate and install object files not placed in LIBNAME by using definitions:

OBJS += <name>

OBJS_<osclass> += <name>
OBJS_DEFAULT += <name>
OBJS_IOC += <name>
OBJS_I0C_<osclass> += <name>
OBJS_IOC_DEFAULT += <name>
OBJS_HOST += <name>
OBJS_HOST_<osclass> += <name>
OBJS_HOST_DEFAULT += <name>

These will cause the specified file to be generated for the appropriate target arch and installed into <top>/bin/
<target_arch>.

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’s Guide 33

Chapter 4: EPICS Build Facility
Makefile definitions

The following Makefile will create the abc object file for all target architectures, the object file def for all target archs
except vxWorks, and the xyz object file for only the vxWorks target architecture and install them into the appropriate
$(INSTALL_LOCATION)/bin/<arch> directory.

TOP=../..l..

include $(TOP)/configure/CONFIG
OBJS +=abc

OBJS_vxWorks += xyz
OBJS_DEFAULT += def

include $(TOP)/configure/RULES

4.4.9 State Notation Programs

For each state notation program, add the definition:
<library_name>_ SRCS += <name>.c

An object file will be created and linked into the specified library. The state notation programs must be called <name>.st
or <name>.stt. The C preprocessor will be executed on <name>.st files before conversion. If a <name>.c source file
specified in a Makefile definition is not found in the source directory, Make will try to build it from <name>.st or
<name>.stt files in the source directory.

4.4.10 Scripts, etc.

A definition of the form:

SCRIPTS += <name>
results in file <name> being installed from the src directory to all the <top>/bin/<arch> directories.
Definitions of the form:

SCRIPTS _DEFAULT += <namel>.h
SCRIPTS <osclass> += <name2>.h

results in the files being installed from the src directory to the appropriate <top>/bin/<arch> directory.

4.4.11 Include files.

A definition of the form:

INC += <name>.h
results in file <name>.h being installed from the src directory to the <top>/include directory.
Definitions of the form:

INC_DEFAULT += <name>.h
INC_<osclass> += <name>.h

results in file <name>.h being installed from the src directory into the appropriate <top>/include/os/<osclass> directory..

4.4.12 Html and Doc files

A definition of the form:
HTMLS_DIR = <dirname>

34 EPICS I0OC Application Developer's Guide

Chapter 4: EPICS Build Facility
Makefile definitions

HTMLS += <name>
results in file <name> being installed from the src directory to the <top>/html/<dirname> directory.
A definition of the form:

DOCS += <name>

results in file <name> being installed from the src directory to the <top>/doc directory.

4.4.13 Templates

Adding definitions of the form

TEMPLATES_DIR = <dirname>
TEMPLATES += <name>

results in the file <name> being installed from the src directory to the <top>/templates/<dirname> directory. If a directory
structure of template files is to be installed, the template file names may include a directory prefix.

4.4.14 Lex and yac

If a <name>.c source file specified in a Makefile definition is not found in the source directory, Make will try to build it
from <name>.y and <name>_lex.| files in the source directory.

4.4.15 Products

A product executable is created for each HOST type <arch> and installed into <top>/bin/<arch> by specifying it's name
and the name of either the object or source files containing code for the product. An object or source file name can appear
with or without a directory prefix. If the file has a directory prefix e.g. $(EPICS_BASE_BIN), it is taken from the
specified location. If a directory prefix is not present, make will look in the source directory for a file with the specified
name.

PROD += <name>
<name>_SRC += <srcname>.c

results in file <name> being built for each HOST type <arch> from a <srcname>.c file and then <name> is installed into
the <top>/bin/<arch> directory.

PROD specifications in the Makefile are ignored for IOC only type arches unless PROD_<osclass> is specified for an IOC
only type arch.

4.4.15.1 Specifying the product name.
Any of the following can be specified:

PROD += <name>

A product will be created for every HOST type target arch and installed into the <top>/bin/<arch> directory.
PROD_<osclass> += <name>

Product <name>.will be created for all archs of the specified osclass.
PROD_DEFAULT += <name>

Product <name> will be created for any HOST type arch that does not have a PROD_<osclass> definition

4.4.15.2 Specifying product object file names

Object file names, which dwt need a suffix such as .0, are defined as follows:

EPICS Release: R3.14.0alphal
EPICS I0C Application Developer's Guide 35

Chapter 4: EPICS Build Facility
Makefile definitions

<prod name>_OBJS += <name>

Object files will be used for all builds of the named product
<prod name>_OBJS_<osclass> += <name>

Object files will be used in builds of the product for archs with the specified osclass.
<prod name>_OBJS_DEFAULT += <name>

Object files will be used in builds of the product for archs without a <prodname>_OBJS_<osclass>
definition specified.

4.4.15.3 Specifying product source file names
Source file names, which must have a suffix, are defined as follows:

SRCS += <name>

Source files will be used for all defined libraries and products.
SRCS <osclass> += <name>

Source files will be used for all defined libraries and products for all archs of the specified osclass.
SRCS_DEFAULT += <name>

Source files will be used for all defined libraries and products for any osclass that does not have a
SRCS_<osclass> definition

PROD_SRCS += <name>
Source files will be used for all products.
PROD_SRCS_<osclass> += <name>
Source files will be used for all defined products for all archs of the specified osclass.
PROD_SRCS_DEFAULT += <name>
Source files will be used for all defined products for any osclass that does not have a
PROD_SRCS_ <osclass> definition

<prod name>_SRCS += <name>
Source file will be used for the named product.
<prod name>_SRCS_<osclass> += <name>
Source files will be used for named product for all archs of the specified osclass.
<prod name> _SRCS_DEFAULT += <name>
Source files will be used for named product for any osclass that does not have a <prod
name>_ SRCS_<osclass> definition

4.4.15.4 Specifying libraries to be linked when creating the product

For each library name specified which is not a system library nor a library from EPICS_BASE, a <library_name>_DIR
definition must be present in the Makefile to specify the location of the library.

Library names, which must not have a directory prefix nor a suffix, are defined as follows:

PROD_LIBS += <name>
Libraries to be used when linking all defined products.
PROD_LIBS <osclass> += <name>
Libraries to be used or all archs of the specified osclasswhen linking all defined products f.
PROD_LIBS_DEFAULT += <name>
Libraries to be used for any osclass that does not have a PROD_LIBS_<osclass> definition when linking all
defined products.

USR_LIBS += <name>
Libraries to be used when linking all defined products.
USR_LIBS <osclass> += <name>
Libraries to be used or all archs of the specified osclasswhen linking all defined products f.

36 EPICS I0OC Application Developer's Guide

Chapter 4: EPICS Build Facility
Makefile definitions

USR_LIBS_DEFAULT += <name>
Libraries to be used for any osclass that does not have a USR_LIBS_<osclass> definition when linking all
defined products.

<prod name>_LIBS += <name>
Libraries to be used for linking the named product.
<prod name>_LIBS_<osclass> += <name>
Libraries will be used for all archs of the specified osclass for linking named product.
<prod name> _LIBS DEFAULT += <name>
Libraries to be used for any osclass that does not have a <prod name>_LIBS_<osclass> definition when
linking named product.

SYS_PROD_LIBS += <name>
System libraries to be used when linking all defined products.
SYS_PROD_LIBS_<osclass> += <name>
System libraries to be used for all archs of the specified osclass when linking all defined products.
SYS_PROD_LIBS_DEFAULT += <name>
System libraries to be used for any osclass that does not have a PROD_LIBS_<osclass> definition when
linking all defined products.

<prod name>_SYS_LIBS += <name>
System libraries to be used for linking the named product.
<prod name>_SYS_LIBS_<osclass> += <name>
System libraries will be used for all archs of the specified osclass for linking named product.
<prod name>_SYS_LIBS DEFAULT += <name>
System ibraries to be used for any osclass that does not have a <prod name>_LIBS_<osclass> definition
when linking named product.

4.4.16 Test Products

Test products libraries and source and object files are specified in exactly the same way a regular products.The difference
is that test products will not be installed into the <top>/bin/<arch> directories.

Any of the following can be specified:

TESTPROD += <name>
A test product will be created for every HOST type target arch.
TESTPROD_<osclass> += <name>
Test product <name>.will be created for all archs of the specified osclass.
TESTPROD_DEFAULT += <name>
Test product <name> will be created for any HOST type arch that does not have a PROD_<osclass>
definition

4.4.17 Target files

A definition of the form:
TARGETS += <name>

results in the file <name> being built in the O.<arch> directory from existing rules and files in the source directory.

EPICS Release: R3.14.0alphal
EPICS I0C Application Developer's Guide 37

Chapter 4: EPICS Build Facility
Table of Makefile definitions

4.4.18 Bin install files

Definitions of the form:

BIN_INSTALLS += <name>
BIN_INSTALLS_DEFAULT += <name>
BIN_INSTALLS_<osclass> += <name>

result in files being installed to the appropriate <top>/bin/<arch> directory. The file <name> can appear with or without a
directory prefix. If the file has a directory prefix e.g. $(EPICS_BASE_BIN), it is copied from the specified location. If a
directory prefix is not present, make will look in the source directory for the file.

4.4.19 TCL libraries

Definitions of the form:

TCLLIBNAME += <name>
TCLINDEX += <name>

result in the specified tcl files being installed to the <top>/lib/<arch> directory.

4.5 Table of Makefile definitions

Makefile.Host has many facilities for building host components. Definitions given below containing <osclass> can be
used to provide settings for use when building for a specific os class, and the <osclass> part of the name should be
replaced by the os class concerned, e.g. solaris, vxWorks, etc. If a _DEFAULT setting is given but a particular <osclass>
requires that the default not be used and the required setting is blank, the value "-nil-" should be assigned to the relevent <
osclass> variable definition.

Build Option Description

Products to be built (host type archs only)

PROD products to be built (host type archs only)
PROD_<osclass> os specific products to build and install for host type archs only
PROD_DEFAULT products to build and install for host type archs only systems with] no

PROD_<osclass> specified

Test products to be built (host type archs only)

TESTPROD test product names (without execution suffix) to build but not install
TESTPROD_<osclass> os class specific test product names to build but not install
TESTPROD_DEFAULT test products to build but not install for systems with no

TESTPROD_<osclass> specified

Libraries to be built

LIBRARY name of library to build and install. The name should NOT include &
prefix or extensione.g. specify Ca to build libCa.a on Unix,
Ca.lib,CaObij.li,b or Ca.dll on WIN32

38 EPICS I0OC Application Developer's Guide

Chapter 4: EPICS Build Facility
Table of Makefile definitions

Build Option

Description

LIBRARY_<osclass>

os specific libraries to build and install

LIBRARY_DEFAULT

libraries to build and install for systems with no LIBRARY _<osclasg
specified

LIBRARY_IOC

name of library to build and install for ioc type archs. The name sh
NOT include a prefix or extension e.g. specify Ca to build libCa.a o
Unix, Ca.lib,CaObj.lib or Ca.dll on WIN32

uld

LIBRARY_IOC_<osclass>

os specific libraries to build and install for ioc type archs

LIBRARY_IOC_DEFAULT

libraries to build and install for ioc type arch systems with no
LIBRARY_<osclass> specified

LIBRARY_HOST

name of library to build and install for host type archs. The name shq
NOT include a prefix or extension, e.g. specify Ca to build libCa.a ¢
Unix, Ca.lib, CaObj.lib or Ca.dll on WIN32

uld

LIBRARY_HOST_<osclass>

os class specific libraries to build and install for host type archs

LIBRARY_HOST_DEFAULT

libraries to build and install for host type arch systems with no
LIBRARY_<osclass> specified

SHARED_LIBRARIES

build shared libraries? Must be YES or NO

SHRLIB_VERSION

shared library version number

Product and library source files

SRCS

source files to build all PRODs and LIBRARY's

SRCS_<osclass>

osclass specific source files to build all PRODs and LIBRARYs

SRCS_DEFAULT

source file to build all PRODs and LIBRARYs for systems with no
SRCS_<osclass> specified

PROD_SRCS

source files to build all PRODs

PROD_SRCS_<osclass>

osclass specific source files to build all PRODs

PROD_SRCS_DEFAULT

source files needed to build PRODs for systems with no
SRCS_<osclass> specified

LIBSRCS

source files for building LIBRARY (e.g. LIBSRCS=la.c Ib.c Ic.c)

LIBSRCS_<osclass>

os-specific library source files

LIBSRCS_DEFAULT

library source files for systems with no LIBSRCS_<osclass> specif]

<name>_SRCS

source files to build a specific PROD or LIBRARY

<name>_SRCS_<osclass>

os specific source files to build a specific PROD or LI|BRARY

<name>_SRCS_DEFAULT

source files needed to build a specific PROD or LIBRARY for syste
with no <prod>_SRCS_<osclass> specified

ms

Compiler flags

USR_CFLAGS

C compiler flags for all systems

USR_CFLAGS_<osclass>

os-specific C compiler flags

EPICS Release: R3.14.0alphal

EPICS I0OC Application Developer’s Guide 39

Chapter 4: EPICS Build Facility
Table of Makefile definitions

Build Option

Description

USR_CFLAGS_DEFAULT

C compiler flages for systems with no USR_CFLAGS_<osclass>
specified

<name>_CFLAGS

<name>.c file specific C compiler flags (e.g. xxxRecord_CFLAGSH

-9)

USR_CXXFLAGS

C++ compiler flags for all systems

USR_CXXFLAGS_<osclass>

os-specific C++ compiler flags

USR_CXXFLAGS_DEFAULT

C++ compiler flags for systems with no USR_CXXFLAGS_<osclas]
specified

<name>_CXXFLAGS

<name>.cpp file specific C++ compiler flags

USR_CPPFLAGS

C pre-processor flags (for all makefile compiles)

USR_CPPFLAGS_<osclass>

os specific cpp flags

USR_CPPFLAGS_DEFAULT

cpp flags for systems with no USR_CPPFLAGS_<osclass> specifi

bd

<name>_CPPFLAGS

file specific C pre-processor flags
(e.g. xxxRecord_CPPFLAGS=-DDEBUG)

USR_INCLUDES

directories to search for include files with -1 prefix
(e.g. -I$(EPICS_EXTENSIONS_INCLUDE))

<name>_INCLUDES

directories to search for include files when building a specific object
(e.g. -I$(MOTIF_INC))

file

HOST_WARN Are compiler warning messages desired for host type builds? (YES or
NO) (default is NO)

HOST_OPT Is host build compiler optimization desired (default is NO optimization)

CROSS_WARN C cross-compiler warning messages desired (YES or NO) (default[NO)

CROSS_OPT Is cross-compiler optimization desired (YES or NO) (default is NO
optimization)

CMPLR C compiler selection, TRAD, ANSI or STRICT (default is STRICT)

Linker options

USR_LDFLAGS linker options (for all makefile links)

USR_LDFLAGS_<osclass> os specific linker options (for all makefile links)

USR_LDFLAGS DEFAULT linker options for systems with no USR_LDFLAGS_<osclass>
specified

<name>_LDFLAGS prod or library specific Id flags

<name>_OBJS object files (without file extension) needed for a specific prod or libfary

<name>_OBJS_<osclass>

os-specific object files needed for a specific prod or library

<name> OBJS_DEFAULT

object files needed to link a specific prod or library for systems with
<name>_OBJ_<osclass> specified

no

USR_LIBS

load libraries (e.g. -IXt -IX11) (for all makefile links)

USR_LIBS_<osclass>

os specific load libraries (for all makefile links)

40

EPICS IOC Application Developer’'s Guide

Chapter 4: EPICS Build Facility
Table of Makefile definitions

Build Option

Description

USR_LIBS_DEFAULT

load libraries for systems with no USR_LIBS_<osclass> specified

<name>_LIBS

prod or library specific Id libraries (e.g. probe_LIBS=X11 Xt)

<name>_LIBS_<osclass>

os-specific libs needed to link a specific prod or library

<name>_LIBS_DEFAULT

libs needed to link a specific prod or library for systems with no
<name>_LIBS_<osclass> specified

PROD_LIBS

libs needed to link every PROD for all systems

PROD_LIBS_<osclass>

os-specific libs needed to link every PROD

PROD_LIBS_DEFAULT

libs needed to link every PROD for systems with no
PROD_LIBS_<osclass> specified

<lib>_DIR

directory to search for the specified lib. (For libs listed in PROD_LIB
<prod>_LIBS and USR_LIBS)

SYS_PROD_LIBS

system libs needed to link every PROD for all systems

SYS_PROD_LIBS_<osclass>

os-specific system libs needed to link every PROD

SYS_PROD_LIBS_DEFAULT

system libs needed to link every PROD for systems with no
SYS_PROD_LIBS_<osclass> specified

<prod>_SYS_LIBS

prod specific system Id libraries (e.g. m)

<prod>_SYS_LIBS_<osclass>

os class specific system libs needed to link a specific prod

<prod> SYS_LIBS_DEFAULT

system libs needed to link a specific prod for systems with no
SYS_PROD_LIBS_<osclass> specified

STATIC_BUILD

Is static build desired (YES or NO) (default is NO)

Header files to be installed

INC

list of include files to install into $(INSTALL_DIR)/include

INC_<osclass>

os specific includes to installed under $(INSTALL_DIR)/include/os/
<osclass>

INC_DEFAULT

include files to install where no INC_<osclass> is specified

Perl, csh, tcl etc. script installation

SCRIPTS

scripts to install for all systems

SCRIPTS_<osclass>

os-specific scripts to install

SCRIPTS_DEFAULT

scripts to install for systems with no SCRIPTS_<osclass> specified

TCLLIBNAME list of tcl scripts to install into $(INSTALL_DIR)/lib/<osclass> (Unix
hosts only)
TCLINDEX name of tcl index file to create from TCLLIBNAME scripts
Object files
OBJS object files to install for all system. The name in the following

definitions should NOT include an extension.

EPICS Release: R3.14.0alphal

EPICS I0OC Application Developer’'s Guide 41

Chapter 4: EPICS Build Facility

Table of Makefile definitions

Build Option

Description

OBJS_<osclass>

os-specific object files to install.

OBJS_DEFAULT

object files to install for systems with no OBJS_<osclass> specified..

OBJS_IOC

names of object file to build and install for ioc type archs.

OBJS_IOC_<osclass>

os specific object files to build and install for ioc type archs

OBJS_IOC_DEFAULT

object files to build and install for ioc type arch systems with no
OBJS_<osclass> specified

OBJS_HOST

object files to build and install for host type archs. T

OBJS_HOST_<osclass>

os class specific object files to build and install for host type archs

OBJS_HOST_DEFAULT

object files to build and install for host type arch systems with no
OBJS_<osclass> specified

Documentation
DOCS list of text files to be installed into the $(INSTALL_DIR)/doc directory
HTMLS_DIR name install Hypertext directory name i.e. $(INSTALL_DIR)/html/
$(HTMLS_DIR)
HTMLS list of hypertext files to be installed into the $(INSTALL_DIR)/html/

$(HTMLS_DIR) directory

TEMPLATES_DIR

template directory to be created as $(INSTALL_DIR)/templates/
$(TEMPLATE_DIR)

TEMPLATES

list of template files to be installed into $(TEMPLATE_DIR)

Options for other programs

YACCOPT yacc options
LEXOPT lex options
SNCFLAGS state notation language, snc, options

<prod>_SNCFLAGS

product specific state notation language options

E2DB_FLAGS

e2db options

SCH2EDIF_FLAGS

sch2edif options

RANLIBFLAGS

ranlib options

Facilities for building Java programs

CLASSES names of Java classes to be built and installed
TESTCLASSES names of Java classes to be built
PACKAGE names of Java package to be installed
JAR name of Jar file to be built
JAR_INPUT names of files to be included in JAR
42 EPICS I0OC Application Developer's Guide

Chapter 4: EPICS Build Facility
Configuration Files

Build Option Description

MANIFEST name of manifest file for JAR

Facilities for Windows 95/NT resource (.rc) files

RCS resource files needed to build every PROD
<prod>_RCS resource files needed to build a specific PROD
<prod>_RCS_<osclass> os specific resource files to build a specific PROD

Other definitions:

USER_VPATH list of directories

BIN_INSTALLS files in any directory to install to $(INSTALL_BIN)
TARGETS files to create but not install
INSTALL_LOCATION installation directory (defaults to $(TOP))

4.6 Configuration Files

4.6.1 Base Configure Directory

The base/configure directory has the following directory structure:

base/
configure/
os/
tools/

4.6.2 Base Configure File Descriptions

The configure files contain definitions and make rules to be included in the various makefiles.

CONFIG.CrossCommon
This file contains definitions for all hosts and all targets for a cross build (host different than target).
CONFIG_ADDONS
This file contains definitions which setup the variables that have <osclass> and DEFAULT options.
CONFIG_BASE
This file contains EPICS base specific definitions.
CONFIG_BASE_VERSION
This file contains definitions for the version number of EPICS base. This file is used for creating epicsVersion.h
which is installed into base/include.
CONFIG_COMMON
This file contains definitions common to all builds.
CONFIG_ENV
This file contains default definitions of the EPICS environment variables. This file is used for creating envDefs.h
which is installed into base/include.

EPICS Release: R3.14.0alphal
EPICS I0C Application Developer’s Guide 43

Chapter 4: EPICS Build Facility
Configuration Files

CONFIG_SITE
This is the file in which you add to or modify make variables in EPICS base. A definition normally overridden is:
CROSS_COMPILER_TARGET_ARCHS =
CONFIG_SITE_ENV
This file contains defaults for site specific definitions of EPICS environment variables. This file is used for creating
envDefs.h which is installed into base/include.
CONFIG
This is the file which contains include statements for all the other configure files. You can override any definitions
by putting override definitions at the end of this file.
RELEASE
This file specifies the location of external products such as Tornado Il and external <tops> such as EPICS base.
RULES
This file just includes the appropriate rules configuration file.
RULES.Db
This file contains rules for building and installing database and database definition files. Databases generated from
templates and/or CapFast schematics are supported.
RULES_ARCHS
This file contains definitions and rules which allow building the make target for each target architecture.
RULES_BUILD
This is a file containing the build rules for the Makefiles
RULES_DIRS
This file contains definitions and rules which allow building the make targets in each subdirectory. This file is
included by Makefiles in directories with subdirectories to be built.
RULES_JAVA
This file contains definitions and rules which allow building java class files and java jar files.
RULES_TOP
This file contains the rules specific to a <top> level directory e.g. uninstall and tar. It also includes the
RULES_DIRS file.

4.6.3 Base configure/os File Descriptions

The configure/os directory contains os specific make definitions. The naming convention for the files in this directory is
CONFIG.<host>.<target> where <host> is either the arch for the host system or Common which means all arch
combinations and <target> is either the arch for the build target system or Common for all build target systems.

For example, the file CONFIG.Common.vxWorks-pentium will contain make definitions to be used for builds on all host
systems when building for a vxWorks-pentium target system.

Also, if a group of host or target files have the same make definitions these common definitions can be moved to a new file
which is then included in each host or target file. An example of this is all Unix hosts which have common definitions in a
CONFIG.UnixCommon.Common file and all vxWorks targets with definitions in CONFIG.Common.vxWorksCommon.

4.6.4 Base configure/tool File Descriptions
The configure/tools directory contains Perl script tools used for the build. The tools currently in this directory are:

cp.pl
This Perl script copies an existing file.
installEpics.pl
This is a Perl script that installs build created files into the install directories.
makeConfigAppinclude.pl
This Perl script generates include directory, bin directory, and library directory definitions from the external <top>
and product definitions in the RELEASE file. These definitions are included into the CONFIG file.

44 EPICS I0OC Application Developer's Guide

Chapter 4: EPICS Build Facility
Configuration Files

makeDbDepends.pl
This is a perl script that generates make dependencies from substitutions files.
makelocCdCommands.pl
This is a perl script that generates a cdCommands file for use by IOCs.
makeMakefile.pl
This is a perl script that creates a Makefile in the created O.<arch> directories.
makeMakefileInclude.pl
This perl script creates a file to be included by Makefiles. This file contains a build target's specific definitions and
dependencies.
mkdir.pl
This perl script creates a directory like the Unix mkdir command.
munch.pl
This is a perl script that creates a ctdt.c file for vxWorks target arch builds which lists the c++ static constructors
and destructors. See munching in the vxWorks documentation for more information.
mv.pl
This perl script moves an existing file.
replaceVAR.pl
This is a perl script that changes VAR(xxx) style macros in CapFast generated databases into the $(xxx) notation
used in EPICS databases.
rm.pl
This perl script quietly removes an existing file.

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 45

Chapter 4: EPICS Build Facility
Configuration Files

46 EPICS I0OC Application Developer's Guide

Chapter 5: Database Locking, Scanning, And
Processing

5.1 Overview

Before describing particular components of the IOC software, it is helpful to give an overview of three closely related
topics: Database locking, scanning, and processing. Locking is done to prevent two different tasks from simultaneously
modifying related database records. Database scanning is the mechanism for deciding when records should be processed.
The basics of record processing involves obtaining the current value of input fields and outputting the current value of
output fields. As records become more complex so does the record processing.

One powerful feature of the DATABASE is that records can contain links to other records. This feature also causes
considerable complication. Thus, before discussing locking, scanning, and processing, record links are described.

5.2 Record Links

A database record may contain links to other records. Each link is one of the following types:

* INLINK
OUTLINK
INLINKs and OUTLINKs can be one of the following:
« constant link
Not discussed in this chapter
 database link
A link to another record in the same IOC.
 channel access link
A link to a record in another IOC. It is accessed via a special IOC client task. It is also possible to force a
link to be a channel access link even it references a record in the same IOC.
 hardware link
Not discussed in this chapter
* FWDLINK
A forward link refers to a record that should be processed whenever the record containing the forward link is
processed. The following types are supported:
* constant link
Ignored.
 database link
A link to another record in the same IOC.
e channel access link
A link to a record in another IOC or a link forced to be a channel access link. Unless the link references the
PROC field it is ignored. If it does reference the PROC field a channel access put with a value of 1 is issued.

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 47

Chapter 5: Database Locking, Scanning, And Processing
Database Links

Links are defined in filénk.h

NOTE: This chapter discusses mainly database links.

5.3 Database Links

Database links are referenced by calling one of the following routines:

» dbGetLink: The value of the field referenced by the input link retrieved.
» dbPutLink : The value of the field referenced by the output link is changed.
» dbScanPassiveThe record referred to by the forward link is processed if it is passive.

A forward link only makes sense when it refers to a passive record that the should be processed when the record
containing the link is processed. For input and output links, however, two other attributes can be specified by the
application developer, process passive and maximize severity.

5.3.1 Process Passive

Process passivéPP or NPB), is eitherTRUEor FALSE It determines if the linked record should be processed before
getting a value from an input link or after writing a value to an output link. The linked record will be processed, via a call
to dbProcess , only if the record is a passive record and process pasSiRUE

NOTE: Three other options may also be specified: CA, CP, and CPP. These options force the link to be handled like a
Channel Access Link. See last section of this chapter for details.

5.3.2 Maximize Severity

Maximize severity 1Sor NM$, is TRUEor FALSE It determines if alarm severity is propagated across links. For input
links the alarm severity of the record referred to by the link is propagated to the record containing the link. For output
links the alarm severity of the record containing the link is propagated to the record referred to by the link. In either case,
if the severity is changed, the alarm status is sefiNE_ALARM

The method of determining if the alarm status and severity should be changed is called "maximize severity”. In addition

to its actual status and severity, each record also has a new status and severity. The new status and severity are initially 0,
which meansNO_ALARMEvery time a software component wants to modify the status and severity, it first checks the
new severity and only makes a change if the severity it wants to set is greater than the current new severity. If it does make
a change, it changes the new status and new severity, not the current status and severity. When database monitors are
checked, which is normally done by a record processing routine, the current status and severity are set equal to the new
values and the new values reset to zero. The end result is that the current alarm status and severity reflect the highest
severity outstanding alarm. If multiple alarms of the same severity are present the status reflects the first one detected.

5.4 Database Locking

The purpose of database locking is to prevent a record from being processed simultaneously by two different tasks. In
addition, it prevents "outside” tasks from changing any field while the record is being processed.

The following routines are provided for database locking.

dbScanLock(precord);

48 EPICS I0OC Application Developer's Guide

Chapter 5: Database Locking, Scanning, And Processing
Database Scanning

dbScanUnlock(precord);

The basic idea is to callbScanLock before accessing database records and catlb§canUnlock afterwords.
Because of database links (Input, Output, and Forward) a modification to one record can cause modification to other
records. Records linked together are placed in the same loadkSzanLock locks the entire lock set not just the record
requesteddbScanUnlock unlocks the entire set.

The following rules determine when the lock routines must be called:

1. The periodic, I/0O event, and event tasks lock before and unlock after processing:

2. dbPutField locks before modifying a record and unlocks afterwards.

3. dbGetField locks before reading and unlocks afterwards.

4. Any asynchronous record support completion routine must lock before modifying a record and unlock afterwards.

All records linked viaOUTLINKs and FWDLINKs are placed in the same lock set. Records linkedINiANK s with
process_passive or maximize_severity TRUE are also forced to be in the same lock set.

5.5 Database Scanning

Database scanning refers to requests that database records be processed. Four types of scanning are possible:

1. Periodic - Records are scanned at regular intervals.
2. 1/0 event - A record is scanned as the result of an 1/O interrupt.
3. Event - A record is scanned as the result of any task issuybogtaevent request.

4. Passive- A record is scanned as a result of a calldlaScanPassive . dbScanPassive will issue a record
processing request if and only if the record is passive and is not already being processed.

A dbScanPassive request results from a task calling one of the following routines:

» dbScanPassive Only record processing routinesjbGetLink , dbPutLink , and dbPutField call
dbScanPassive . Record processing routines call it for each forward link in the record.

» dbPutField: This routine changes the specified field and then, if the field has been dgulaceds_passive
callsdbScanPassive . Each field of each record type has the attribjoiecess _passive declaredTRUEor
FALSE n the definition file. This attribute is a global property, i.e. the application developer has no control of it.
This use ofprocess_passive is used only bydbPutField . If dbPutField finds the record already active
(this can happen to asynchronous records) and it is supposed to cause it to process, it arranges for it to be processed
again, when the current processing completes.

» dbGetLink: If the link specifies process passive, this routine calsScanPassive . Whether or not
dbScanPassive is called, it then obtains the specified value.

» dbPutLink: This routine changes the specified field. Then, if the link specifies process passive, it calls
dbScanPassive . dbPutLink is only called from record processing routines. Note that this usage of
process_passive is under the control of the application developerdibPutLink finds the record already
active because of dbPutField directed to this record then it arranges for the record to be processed again,
when the current processing completes.

All non-record processing tasks (Channel Access, Sequence Programs, etthiediffield to obtain database values.
dbGetField just reads values without asking that a record be processed.

EPICS Release: R3.14.0alphal
EPICS I0C Application Developer's Guide 49

Chapter 5: Database Locking, Scanning, And Processing
Record Processing

5.6 Record Processing

A record is processed as a result of a callib®rocess . Each record support module must supply a rougireeess .
This routine does most of the work related to record processing. Since the details of record processing are record type
specific this topic is discussed in greater detail in Chapter "Record Support" for details.

5.7 Guidelines for Creating Database Links

The ability to link records together is an extremely powerful feature of the IOC software. In order to use links properly it
is important that the Application Developer understand how they are processed. As an introduction consider the following
example :

InLink PP

A FwdLink B FwdLink C

Assume that A, B, and C are all passive records. The notation states that A has a forward link to B and B to C. C has an
input link obtaining a value from A. Assume, for some reason, A gets processed. The following sequence of events
occurs:

1. A begins processing. While processing a request is made to process B.

2. B starts processing. While processing a request is made to process C.

3. C starts processing. One of the first steps is to get a value from A via the input link.

4

. At this point a question occurs. Note that the input link specifies process passive (signified By #fier
InLink). But process passive states that A should be processed before the value is retrieved. Are we in an infinite
loop? The answer is no. Every record contains a figldt (processing active), which is seRUEwhen record
processing begins and is not &L SEuntil all processing completes. When C is processed A stilpaas TRUE
and will not be processed again.

5. C obtains the value from A and completes its processing. Control returns to B.
6. B completes returning control to A
7. A completes processing.

This brief example demonstrates that database links needs more discussion.

5.7.1 Rules Relating to Database Links

5.7.1.1 Processing Order
The processing order is guaranteed to follow the following rules:
1. Forward links are processed in order from left to right and top to bottom. For example the following records are

processed in the ordBLNK1, FLNK2, FLNK3, FLNK4 .

2. If a record has multiple input links (calculation and select records) the input is obtained in the natural order. For
example if the fields are namddPA, INPB, ..., INPL, then the links are read in the order A then B then C, etc.
Thus if obtaining an input results in a record being processed, the processing order is guaranteed.

50 EPICS I0OC Application Developer's Guide

Chapter 5: Database Locking, Scanning, And Processing
Guidelines for Creating Database Links

FLNK1 FLNK2

fanout

FLNK3 FLNK4

3. All input and output links are processed before the forward link.

5.7.1.2 Lock Sets

All records, except for the conditions listed in the next paragraph, linked together directly or indirectly are placed in the
same lock set. WhedbScanLock is called the entire set, not just the specified record, is locked. This prevents two
different tasks from simultaneously modifying records in the same lock set.

A linked record is not forced to be in the same lock set if all of the following conditions are true.

* The link is an INLINK (It is an input link)

e The link is NPP (It is no process passive)

» The link is NMS (It is no maximize severity)

* The number of elements is <-1 (The link references a scalar field)

QUESTION: Now that CA links exist why not force all records linked via DB links into the same lock set.

5.7.1.3 PACT - processing active

Each record contains a figfihct . This field is seTRUEat the beginning of record processing and is noF#etSE until

the record is completely processed. In particular no links are processechadthFALSE . This prevents infinite
processing loops. The example given at the beginning of this section gives an example. It will be seen in the next two
sections thapact has other uses.

5.7.1.4 Process Passive: Link option

Input and output links have an option called process passive. For each such link the application developer can specify
process passivVERUE(PP) or process passiFALSE (NPB. Consider the following example

InLink PP }
FwdLink
A fanout
FwdLink
InLink PP 4

Assume that all records except fanout are passive. When the fanout record is processed the following sequence of events
occur:

1. Fanout starts processing and asks that B be processed.

2. B begins processing. It catlbGetLink to obtain data from A.

3. Because the input link has process passive true, a request is made to process A.

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 51

Chapter 5: Database Locking, Scanning, And Processing
Guidelines for Synchronous Records

. A'is processed, the data value fetched, and control is returned to B

. B completes processing and control is returned to fanout. Fanout asks that C be processed.
. C begins processing. It catlbGetLink to obtain data from A.

. Because the input link has process pasERIGE a request is made to process A.

. A'is processed, the data value fetched, and control is returned to C.

. C completes processing and returns to fanout

10. The fanout completes

© 00 N O O b~

Note that A got processed twice. This is unnecessary. If the input link to C is declared no process passive then A will only
be processed once. Thus we should have .

InLink PP v
FwdLink
A fanout
FwdLink C
InLink NPP 4

5.7.1.5 Process Passive: Field attribute

Each field of each database record type has an attribute qatbedss passive . This attribute is specified in the
record definition file. It is not under the control of the application developer. This attribute is used aibfPbiField

It determines if a passive record will be processed aftdtutField changes a field in the record. Consult the record
specific information in the record reference manual for the setting of individual fields.

5.7.1.6 Maximize Severity: Link option

Input and output links have an option called maximize severity. For each such link the application developer can specify
maximize severitf RUE(MS or maximize severitfFALSE (NM$.

When database input or output links are defined, the application developer can specify if alarm severities should be
propagated across links. For input links the severity is propagated from the record referred to by the link to the record
containing the link. For output links the severity of the record containing the link is propagated to the record referenced by
the link. The alarm severity is transferred only if the new severity will be greater than the current severity. If the severity is
propagated the alarm status is set equbalN&_ALARM

5.8 Guidelines for Synchronous Records

A synchronous record is a record that can be completely processed without waiting. Thus the application developer never
needs to consider the possibility of delays when he defines a set of related records. The only consideration is deciding
when records should be processed and in what order a set of records should be processed.

The following reviews the methods available to the application programmer for deciding when to process a record and for
enforcing the order of record processing.

1. Arecord can be scanned periodically (at one of several rates), via I/O event, or via Event.

52 EPICS I0OC Application Developer's Guide

Chapter 5: Database Locking, Scanning, And Processing
Guidelines for Asynchronous Records

2. For each periodic group and for each Event group the phase field can be used to specify processing order.

. The application programmer has no control over the record processing order of records in different groups.

4. The disable fieldsSDIS, DISA, andDISV) can be used to disable records from being processed. By letting the
SDIS field of an entire set of records refer to the same input record, the entire set can be enabled or disabled
simultaneously. See the Record Reference Manual for details.

5. Arecord (periodic or other) can be the root of a set of passive records that will all be processed whenever the root
record is processed. The set is formed by input, output, and forward links.

6. Theprocess_passive option specified for each field of each record determines if a passive record is processed
when adbPutField is directed to the field. The application developer must be aware of the possibility of record
processing being triggered by external sources difPutFields are directed to fields that have
process_passive TRUE

7. Theprocess_passive option for input and output links provides the application developer control over how a
set of records are scanned.

8. General link structures can be defined. The application programmer should be wary, however, of defining arbitrary
structures without carefully analyzing the processing order.

w

5.9 Guidelines for Asynchronous Records

The previous discussion does not allow for asynchronous records. An example is a GPIB input record. When the record is
processed the GPIB request is started and the processing routine returns. Processing, however, is not really complete until
the GPIB request completes. This is handled via an asynchronous completion routine. Lets state a few attributes of
asynchronous record processing.

During the initial processing for all asynchronous records the following is done:

1. pact is setTRUE

2. Data is obtained for all input links

3. Record processing is started

4. The record processing routine returns

The asynchronous completion routine performs the following algorithm:

5. Record processing continues

6. Record specific alarm conditions are checked
7. Monitors are raised

8. Forward links are processed

9. pact is setFALSE

A few attributes of the above rules are:

10. Asynchronous record processing does not delay the scanners.

11. Between the time record processing begins and the asynchronous completion routine completes, no attempt will be
made to again process the record. This is becpase is TRUE The routinedbProcess checkspact and does
not call the record processing routine if itTRUE Note, however, that ilbProcess finds the record active 10
times in succession, it raiseS&AN_ALARM

12. Forward and output links are triggered only when the asynchronous completion routine completes record
processing.

With these rules the following works just fine:

EPICS Release: R3.14.0alphal
EPICS I0C Application Developer's Guide 53

Chapter 5: Database Locking, Scanning, And Processing
Guidelines for Asynchronous Records

ASYN dbScanPasive B

WhendbProcess is called for record ASYN, processing will be started dbhScanPassive will not be called. Until
the asynchronous completion routine executes any additional attempts to process ASYN are ignored. When the
asynchronous callback is invoked ttteScanPassive is performed.

Problems still remain. A few examples are:

5.9.1 Infinite Loop

Infinite processing loops are possible.

dbScanPasive

dbScanPasive

Assume both A and B are asynchronous passive records and a request is made to process A. The following sequence of
events occur.

1. A starts record processing and returns leapaw TRUE .

2. Sometime later the record completion for A occurs. During record completion a request is made to process B. B
starts processing and control returns to A which completes leaviparitsfield FALSE

3. Sometime later the record completion for B occurs. During record completion a request is made to process A. A
starts processing and control returns to B which completes leaviaritsfield FALSE

Thus an infinite loop of record processing has been set up. It is up to the application developer to prevent such loops.

5.9.2 Obtain Old Data

A dbGetLink to a passive asynchronous record can get old data.

A dbGetLink B

If A is a passive asynchronous record thendb&etLink request forcedbProcess to be called for AdbProcess
starts the processing and returdsGetLink then reads the desired value which is still old because processing will only
be completed at a later time.

5.9.3 Delays

Consider the following:

The second ASYN record will not begin processing until the first completes, etc. This is not really a problem except that
the application developer must be aware of delays caused by asynchronous records. Again, note that scanners are not
delayed, only records downstream of asynchronous records.

54 EPICS I0OC Application Developer's Guide

Chapter 5: Database Locking, Scanning, And Processing
Cached Puts

ASYN dbScanPasive ASYN dbScanPasive ——

5.9.4 Task Abort

If the processing task aborts and the watch dog task cleans up before the asynchronous processing routine completes what
happens? If the asynchronous routine completes before the watch dog task runs everything is okay. If it doesn’'t? This is a
more general question of the consequences of having the watchdog timer restart a scan task. EPICS currently does not
allow scanners to be automatically restarted.

5.10 Cached Puts

The rules followed bydbPutLink and dbPutField provide for "cached” puts. This is necessary because of
asynchronous records. Two cases arise.

The first results from d@bPutField , which is a put coming from outside the database, i.e. Channel Access puts. If this
is directed to a record that already @t TRUE because the record started processing but asynchronous completion
has not yet occurred, then a value is written to the record but nothing will be done with the value until the record is again
processed. In order to make this happiiaPutField arranges to have the record reprocessed when the record finally
completes processing.

The second case results frabPutLink finding a record already active because aftdutField directed to the

record. In this casdbPutLink arranges to have the record reprocessed when the record finally completes processing.
Note that it could already be active because it appears twice in a chain of record processing. In this case it is not
reprocessed because the chain of record processing would constitute an infinite loop.

Note that the term caching not queuing is used. If multiple requests are directed to a record while it is active, each new
value is placed in the record but it will still only be processed once, i.e. last value wins.

5.11 Channel Access Links

A channel access link is:

1. Arecord link that references a record in a different IOC.
2. Alink that the application developer forces to be a channel access link.

A channel access client task (dbCa) handles all I/O for channel access links. It does the following:
At IOC initialization dbCa issues channel access search requests for each channel access link.

For each input link it establishes a channel access monitor. Itaasdield _type andca_element_count when

it establishes the monitor. It also monitors the alarm status. Whenever the monitor is invoked the new data is stored in a
buffer belonging to dbCa. When iocCore or the record support module asks for data the data is taken from the buffer and
converted to the requested type.

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 55

Chapter 5: Database Locking, Scanning, And Processing
Channel Access Links

For each output link, a buffer is allocated the first time iocCore/record support issues a put and a channel access
connection has been made. This buffer is allocated accordiraatdield_type andca_element_count . Each

time iocCore/record support issues a put, the data is converted and placed in the buffer and a request is made to dbCa to
issue a new ca_put.

Even if a link references a record in the same 10C it can be useful to force it to act like a channel access link. In particular
the records will not be forced to be in the same lock set. As an example consider a scan record that links to a set of
unrelated records, each of which can cause a lot of records to be processed. It is often NOT desirable to force all these
records into the same lock set. Forcing the links to be handled as channel access links solves the problem.

Because channel access links imply network activity, they are fundamentally different than database links. For this reason
and because channel access does not understand process passive or maximize severity, the semantics of channel access
links are not the same as database links. Let's discuss the channel access semantics of INLINK, OUTLINK, and
FWDLINK separately.

5.11.1 INLINK

The options for process passive are:

* PPorNPP- This link is made a channel access link because the referenced record is not found in the local IOC. It
is not possible to honor PP, thus the link always acts like NPP.

* CA - Force the link to be a channel access link.

» CP - Force the link to be a channel access link and also request that the record containing the link be processed
whenever a monitor occurs.

» CPP- Force the link to be a channel access link and also request that the record containing the link, if it is passive,
be processed whenever a monitor occurs.

Maximize Severity is honored.

5.11.2 OUTLINK

The options for process passive are:

» PPorNPP- This link is made a channel access link because the referenced record is not found in the local IOC. It
is not possible to honor PP thus the link always acts like NPP.

» CA - Force the link to be a channel access link.

Maximize Severity is not honored.

5.11.3 FWDLINK

A channel access forward link is honored only if it references the PROC field of a record. In that case a ca_put with a
value of 1 is written each time a forward link request is issued.

The options for process passive are:

» PPorNPP- This link is made a channel access link because the referenced record is not found in the local IOC. It
is not possible to honor PP thus it always acts like NPP.

» CA - Force the link to be a channel access link.

Maximize Severity is not honored.

56 EPICS I0OC Application Developer's Guide

Chapter 6: Database Definition

6.1 Overview

This chapter describes database definitions. The following definitions are described:

* Menu

» Record Type

» Device

* Driver

» Breakpoint Table
» Record Instance

Record Instances are fundamentally different from the other definitions. A file containing record instances should never
contain any of the other definitions and vise-versa. Thus the following convention is followed:

» Database Definition File- A file that contains any type of definition except record instances.
» Record Instance File- A file that contains only record instance definitions.

This chapter also describes utility programs which operate on these definitions

Any combination of definitions can appear in a single file or in a set of files related to each other via include files.

6.2 Brief Summary of Database Definition Syntax

path "path"

addpath "path"

include "filename"

#comment

menu(name) {
include "filename"
choice(choice_name,"choice_value")

}

recordtype(record_type) {

include "filename"

field(field_name,field_type) {
asl(asl_level)
initial("init_value")
promptgroup(gui_group)
prompt(“"prompt_value™)
special(special_value)
pp(pp_value)

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 57

Chapter 6: Database Definition
General Rules for Database Definition

interest(interest_level)
base(base_type)
size(size_value)
extra("extra_info")
menu(name)

}

device(record_type,link_type,dset_name,”choice_string”)

driver(drvet_name)

breaktable(name) {
raw_value, eng_value,

}

#The Following defines a Record Instance

record(record_type,record_name) {
include “filename”
field(field_name,"value")

}
#NOTE: GDCT uses grecord instead of record

6.3 General Rules for Database Definition

6.3.1 Keywords

The following are keywords, i.e. they may not be used as values unless they are enclosed in quotes:

path
addpath
include
menu
choice
recordtype
field
device
driver
breaktable
record
grecord

58 EPICS I0OC Application Developer's Guide

Chapter 6: Database Definition
General Rules for Database Definition

6.3.2 Unquoted Strings

In the summary section, some values are shown as quoted strings and some unquoted. The actual rule is that any string
consisting of only the following characters does not have to be quoted:

a-zA-Z0-9_-:.[]<>;

These are also the legal characters for process variable names. Thus in many cases quotes are not needed.

6.3.3 Quoted Strings

A quoted string can contain any ascii character except the quote character ". The quote character itself can given by using
\ as an escape. For example "\"" is a quoted string containing the single character ".

6.3.4 Macro Substitution

Macro substitutions are permitted inside quoted strings. The macro has the form:

$(name)
or
${name}

6.3.5 Escape Sequences

Except for \" the database routines never translate standard C escape sequences, ttolvevstateEscape can
be used to translate the standard C escape sequences:

\a \b \f\n \r \t W WA? V' *\0OO \xhh

(\000 represenst an octal number of 1, 2, or 3 digits. \xhh represents a hexadecimal number of 1 or 2 digits) A typical use
is device support which expects escape sequences in the parm field:

The routine is:

int dbTranslateEscape(char *s,const char *ct);

/*

* copies ct to s while substituting escape sequences
* returns the length of the resultant string

* The result may contain O characters

*/

6.3.6 Define before referencing

No item can be referenced until it is defined. For examplecardtype = menu field can not reference a menu unless
that menu definition has already been defined. Another example is that a record instance can not appear until the
associated record type has been defined.

6.3.7 Multiple Definitions

If a particular menu, recordtype, device, driver, or breakpoint table is defined more than once, then only the first instance
is used. Record instance definitions are cumulative, i.e. each time a new field value is encountered it replaces the previous
value.

EPICS Release: R3.14.0alphal
EPICS I0C Application Developer’'s Guide 59

Chapter 6: Database Definition
General Rules for Database Definition

6.3.8 filename extension

By convention:

» Record instances files have the extensidh™.
» Database definition files have the extensidbd.".

6.3.9 path addpath

The path follows the standard Unix convention, i.e. it is a list of directory names separated by colons (Unix) or semicolons
(winXX).

Format:

path "dir:dir...:dir"
addpath "dir:dir...:dir

NOTE: In winXX the separator is ; instead of :

The path command specifies the current path. Euglpath appends directory names to the current path. The path is
used to locate the initial database file and included files. An eutliptyat the beginning, middle, or end of a non-empty
path string means the current directory. For example:

nnn::mmm # Current directory is between nnn and mmm
:nnn # Current directory is first
nnn; # Current directory is last

Utilities which load database fileslifExpand , dbLoadDatabase , etc.) allow the user to specify an initial path. The
path andaddpath commands can be used to change or extend the initial path.

The initial path is determined as follows:

If an initial path is specified, it is used. Else:
If the environment variablEPICS_DB_INCLUDE_PATHSs defined, it is used. Else:

the default path is ".", i.e. the current directory.

The path is used unless the filename contains a / or \. The first directory containing the specified file is used.

6.3.10 include

Format:
include "filename"

An include statement can appear at any place shown in the summary. It uses the path as specified above.

6.3.11 comment

The comment symbol is "#". Whenever the comment symbol appears, it and all characters through the end of the line are
ignored.

60 EPICS I0OC Application Developer's Guide

Chapter 6: Database Definition
Menu

6.3.12 dbTranslateEscape

6.3.13 dbTranslateEscape

6.4 Menu

Format:

menu(name) {
choice(choice_name,"choice_value")

}
Where:

name- Name for menu. This is the unique name identifying the menu. If duplicate definitions are specified, only
the first is used.

choice_name The name placed in tlemum generated bybToMenuH or dbToRecordtypeH

choice_value- The value associated with the choice.

Example:

menu(menuYesNo) {
choice(menuYesNoNO,"NO")
choice(menuYesNoYES,"YES")

6.5 Record Type

6.5.1 Format:

recordtype(record_type) {
field(field_name,field_type) {

asl(asl_level)
initial("init_value™)
promptgroup(gui_group)
prompt("prompt_value™)
special(special_value)
pp(pp_value)
interest(interest_level)
base(base_type)
size(size_value)
extra("extra_info")
menu("name")

EPICS Release: R3.14.0alphal
EPICS I0C Application Developer's Guide 61

Chapter 6: Database Definition
Record Type

6.5.2 rules

asl- Access Security Level. The defaultASL1. Access Security is discussed in a later chapter. Only two values
are permitted for this fieldXSLO and ASL1). Fields which operators normally change are assigk®d0. Other
fields are assignedASL1. For example, th&AL field of an analog output record is assign®8L0 and all other
fieldsASL1. This is because only théAL field should be modified during normal operations.

initial - Initial Value.

promptgroup - Prompt group to which field belongs. This is for use by Database Configuration Tools. This is
defined only for fields that can be given values by database configuration toolgukgteup .h contains all
possible definitions. The different groups allow database configuration tools to present the user with groups of
fields rather than all prompt fields. | don't know of any tool that currently uses groups.

prompt - A prompt string for database configuration tools. Optionaidmptgroup is not defined.
special- If specified, then special processing is required for this field at run time.

pp - Should a passive record be processed when Channel Access writes to this field? The M€fault is
interest - Only used by thdbpr shell command.

base- For integer fields, a base BECIMALor HEXcan be specified. The defaulDECIMAL

size- Must be specified fdDBF_STRINGfields.

extra - Must be specified fdDBF _NOACCESfelds.

menu - Must be specified fdDBF_MENUWelds. It is the name of the associated menu.

6.5.3 definitions

record_type - The unique name of the record type. If duplicates are specified, only the first definition is used.

field_name- The field name. Only alphanumeric characters are allowed. When include files are generated, the field
name is converted to lower case. Previous versions of EPICS required that field name be a maximum of four
characters. Although this restriction no longer exists, problems may arrise with some Channel Access clients if
longer field names are chosen.

field_type - This must be one of the following values:
* DBF_STRING
* DBF_CHAR
« DBF_UCHAR
* DBF_SHORT
* DBF_USHORT
« DBF_LONG
« DBF_ULONG
* DBF_FLOAT
- DBF_DOUBLE
« DBF_ENUM
* DBF_MENU
- DBF_DEVICE
« DBF_INLINK
e DBF_OUTLINK
« DBF_FWDLINK
* DBF_NOACCESS

62

EPICS IOC Application Developer’'s Guide

Chapter 6: Database Definition
Record Type

asl_level- This must be one of the following values:

* ASLO

ASL1 (default value)

* init_value - A legal value for data type.
» prompt_value - A prompt value for database configuration tools.
* gui_group - This must be one of the following:

* GUI_COMMON

* GUI_ALARMS

* GULBITS1

* GUL_BITS2

* GUI_CALC

* GUI_CLOCK

* GUI_COMPRESS

* GUI_CONVERT

* GUI_DISPLAY

e GUI_HIST

* GUL_INPUTS

* GUI_LINKS

* GUI_MBB

* GUI_MOTOR

* GUI_OUTPUT

* GUL_PID

* GUI_PULSE

* GUI_SELECT

* GUL_SEQ1

* GUI_SEQ2

* GUI_SEQ3

* GUL_SUB

* GUL_TIMER

* GUI_WAVE

* GUI_SCAN

NOTE: GUI types were invented with the intention of allowing database configuration tools to prompt for
groups of fields and when a user selects a group the fields within the group. This feature has never been used
and a result is that many record types have not assigned the correct GUI groups to each field.

* special_valuemust be one of the following:

An integer value greater than 103. In this case, the record support special routine is called whenever the field
is modified by database access. This feature is present only for compatibility. New support modules should
useSPC_MOD

The following value disallows access to field.

SPC_NOMODBThis means that field can not be modified at runtime except by the record/device support
modules for the record type.

The following values are used for database common. They must NOT be used for record specific fields.
SPC_SCAN Scan related field.

SPC_ALARMACKAIlarm acknowledgment field.

SPC_AS- Access security field.

EPICS Release: R3.14.0alphal

EPICS I0OC Application Developer’s Guide 63

Chapter 6: Database Definition

Record Type

The following value is used if record support wants to titaldameToAddr calls.

SPC_DBADDR This is set if the record suppoxvt dbaddr routine should be called whenever
dbNameToAddr is called, i.e. when code outside record/device support want to access the field.

The following values all result in the record support special routine being called whenever database access
modifies the field. The only reason for multiple values is that originally it seemed like a good idea. New
support modules should only uSBEC_MOD

SPC_MOB Notify when modified, i.e. call the record support special routine whenever the field is modified
by database access.

SPC_RESET a reset field is being modified.
SPC_LINCONV- A linear conversion field is being modified.
SPC_CALGC A calc field is being modified.

» pp_value - Should a passive record be processed when Channel Access writes to this field? The allowed values

are:

NO(default)

* YES
* interest_level -An interest level for thdbpr command.

* base-

For integer type fields, the default base. The legal values are:
DECIMAL (Default)

* HEX
* size_value- The number of characters fob8F STRINGfield.

 extra_info - For DBF_NOACCES#kelds, this is the C language definition for the field. The definition must end
with the fieldname in lower case.

6.5.4 Example

The following is the definition of the binary input record.

recordtype(bi) {

include "dbCommon.dbd"

field(INP,DBF_INLINK) {
prompt("Input Specification”)
promptgroup(GUI_INPUTS)
special(SPC_NOMOD)
interest(1)

}

field(VAL,DBF_ENUM) {
prompt("Current Value™)
asl(ASLO)
pPp(TRUE)

}

field(ZSV,DBF_MENU) {
prompt("Zero Error Severity")
promptgroup(GUI_ALARMS)
PP(TRUE)
interest(1)
menu(menuAlarmSevr)

}

field(OSV,DBF_MENU) {

64

EPICS IOC Application Developer’'s Guide

Chapter 6: Database Definition
Record Type

prompt("One Error Severity")
promptgroup(GUI_BITS1)
pp(TRUE)
interest(1)
menu(menuAlarmSevr)

}

field(COSV,DBF_MENU) {
prompt("Change of State Svr")
promptgroup(GUI_BITS2)
pp(TRUE)
interest(1)
menu(menuAlarmSevr)

}

field(ZNAM,DBF_STRING) {
prompt("Zero Name")
promptgroup(GUI_CALC)
pp(TRUE)
interest(1)
size(20)

}

field(ONAM,DBF_STRING) {
prompt("One Name")
promptgroup(GUI_CLOCK)
pp(TRUE)
interest(1)
size(20)

}

field(RVAL,DBF_ULONG) {
prompt("Raw Value™)
pp(TRUE)

}

field(ORAW,DBF_ULONG) {
prompt("prev Raw Value")
special(SPC_NOMOD)
interest(3)

}

field(MASK,DBF_ULONG) {
prompt("Hardware Mask")
special(SPC_NOMOD)
interest(1)

}

field(LALM,DBF_USHORT) {
prompt(‘"Last Value Alarmed")
special(SPC_NOMOD)
interest(3)

}

field(MLST,DBF_USHORT) {
prompt('"Last Value Monitored")
special(SPC_NOMOD)
interest(3)

}

field(SIOL,DBF_INLINK) {
prompt('Sim Input Specifctn™)

EPICS Release: R3.14.0alphal
EPICS I0C Application Developer's Guide 65

Chapter 6: Database Definition

Device
promptgroup(GUI_INPUTS)
special(SPC_NOMOD)
interest(1)
}

field(SVAL,DBF_USHORT) {
prompt('Simulation Value")

}

field(SIML,DBF_INLINK) {
prompt("Sim Mode Location")
promptgroup(GUI_INPUTS)
special(SPC_NOMOD)
interest(1)

}

field(SIMM,DBF_MENU) {
prompt("Simulation Mode")
interest(1)
menu(menuYesNo)

}

field(SIMS,DBF_MENU) {
prompt("Sim mode Alarm Svrty")
promptgroup(GUI_INPUTS)

interest(2)
menu(menuAlarmSevr)
}
}
6.6 Device
6.6.1 Format:

device(record_type,link_type,dset_name,”choice_string”)

6.6.2 definitions

* record_type - Record type. The combination ofcord_type

and choice_string

same combination appears multiple times, the first definition is used.

* link_type - Link type. This must be one of the following:

« CONSTANT
« PV_LINK

« VME_IO

« CAMAC_IO
«AB_IO

« GPIB_IO

« BITBUS_IO
«INST_IO

« BBGPIB_IO

must be unique. If the

66

EPICS IOC Application Developer’'s Guide

Chapter 6: Database Definition

Driver
*RF_IO
* VXI_IO
» dset_name - The exact name of the device support entry table without the traild®ET. Duplicates are not
allowed.

 choice_string Choice string for database configuration tools. Note that it must be enclosed in ™. Note that for a
given record type, eaathoice_string must be unique.

6.6.3 Examples

device(ai, CONSTANT,devAiSoft,"Soft Channel")
device(ai,VME_IO,devAiXy566Se,"XYCOM-566 SE Scanned")

6.7 Driver

6.7.1 Format:

driver(drvet_name)

6.7.2 Definitions

» drvet_name- If duplicates are defined, only the first is used.

6.7.3 Examples

driver(drvVxi)
driver(drvXy210)

6.8 Breakpoint Table

6.8.1 Format:

breaktable(name) {
raw_value, eng_value,

6.8.2 Definitions

* name- Name, which must be alpha-numeric, of the breakpoint table. If duplicates are specified the first is used.
» raw_value - The raw value, i.e. the actual ADC value associated with the beginning of the interval.
» eng_value- The engineering value associated with the beginning of the interval.

EPICS Release: R3.14.0alphal
EPICS I0C Application Developer’'s Guide 67

Chapter 6: Database Definition
Record Instance

6.8.3 Example

breaktable(typeJdegC) {

0.000000 0.000000
365.023224 67.000000
1000.046448 178.000000
3007.255859 524.000000
3543.383789 613.000000
4042.988281 692.000000
4101.488281 701.000000

6.9 Record Instance

6.9.1 Format:

record(record_type,record_name) {
field(field_name,"value")

6.9.2 definitions

 record_type- The record type.
» record_name- The record name. This must be composed of the following characters:

a-zA-Z0-9_-:[]<>;
NOTE: If macro substitutions are used the name must be quoted.

If duplicate definitions are given for the same record, then the last value given for each field is the value assigned to
the field.

+ field_name- The field name
« value - Depends on field type.

DBF_STRING
Any ASCII string. If it exceeds the field length, it will be truncated.
DBF_CHARDBF_UCHARDBF_SHORTDBF_USHORDBF_LONGDBF_ULONG
A string that represents a valid integer. The standard C conventions are applied, i.e. a leading O means the
value is given in octal and a leading Ox means that value is given in hex.
DBF_FLOATDBF_DOUBLE
The string must represent a valid floating point number.
DBF_MENU
The string must be one of the valid choices for the associated menu.
DBF_DEVICE
The string must be one of the valid device choice strings.
DBF_INLINK , DBF_OUTLINK
NOTES:
* In the field is INP or OUT then it is associated with field DTYP. Other DBF_INLINK and
DBF_OUTLINK fields can be either CONSTANT or PV_LINKs
» DTYPmust be defined before the associated INP or OUT field.

68

EPICS IOC Application Developer’'s Guide

Chapter 6: Database Definition
Record Instance

» Choosing the DTYP implicitly chooses a bus type.
 ADTYP of CONSTANT can be either a constant or a PV_LINK.

The allowed value depends on the bus type as follows:
 CONSTANT
A constant valid for the field associated
e PV_LINK
A value of the form:

record.field process maximize

field, process , andmaximize are optional.
The default value folield is VAL.
process can have one of the following values:
* NPP- No Process Passive (Default)
* PP- Process Passive
* CA- Force link to be a channel access link
¢ CP- CA and process on monitor
¢ CPP- CA and process on monitor if record is passive
NOTES:
CP and CPP are valid only for INLINKSs.
FWD_LINKs can be PP or CA. If a FWD_LINK is a channel access link it must reference the
PROC field.
maximize can have one of the following values
« NMS- No Maximize Severity (Default)
¢ MS- Maximize severity
* VME_IO
#Ccard Ssignal @parm
where:
card - the card number of associated hardware module.
signal - signal on card
parm - An arbitrary character string of up to 31 characters.
This field is optional and is device specific.
* CAMAC_IO
#Bbranch Ccrate Nstation Asubaddress Ffunction @parm
branch , crate , station , subaddress , andfunction should be obvious t@amac users.
Subaddress andfunction are optional (O if not given)Parm is also optional and is device
dependent (25 characters max).
* AB_IO
#Llink Aadapter Ccard Ssignal @parm
link - Scanner., i.e. vme scanner number
adapter - Adapter. Allen Bradley also calls this rack
card - Card within Allen Bradley Chassis
signal - signal on card
parm - An optional character string that is device dependent(27 char max)
* GPIB_IO
#Llink Aaddr @parm
link - gpib link, i.e. interface
addr - GPIB address
parm - device dependent character string (31 char max)
* BITBUS_IO
#Llink Nnode Pport Ssignal @parm

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’s Guide 69

Chapter 6: Database Definition
Record Instance

link - link, i.e. vme bitbus interface.

node - bitbus node

port - port on the node

signal - signal on port

parm - device specific character string(31 char max)
* INST_IO

@parm

parm - Device dependent character string(35 char max)

* BBGPIB_IO
#Llink Bbbaddr Ggpibaddr @parm
link - link, i.e. vme bitbus interface.
bbadddr - bitbus address
gpibaddr - gpib address

parm - optional device dependent character string(31 char max)

*RF_IO
#Rcryo Mmicro Ddataset Eelemen t
* VXL_IO
#Vframe Cslot Ssignal @parm (Dynamic addressing)
or
#Vla Signal @parm (Static Addressing)

frame - VXI frame number

slot - Slot within VXI frame

la - Logical Address

signal - Signal Number

parm - device specific character string(25 char max)

* DBF_FWDLINK

This is either not defined or else iP¥_LINK. See above for definitions.

6.9.3 Examples
record(ai,STS_AbAiMaSO0) {

}

field(SCAN,".1 second")
field(DTYP,"AB-1771IFE-4t020MA")
field(INP,"#L0 A2 CO SO FO @")
field(PREC,"4")
field(LINR,"LINEAR")
field(EGUF,"20")

field(EGUL,"4")
field(EGU,"MilliAmps")
field(HOPR,"20")

field(LOPR,"4")

record(ao,STS_AbAoMaC1S0) {

field(DTYP,"AB-17710FE")
field(OUT,"#L0 A2 C1 SO FO @")
field(LINR,"LINEAR")
field(EGUF,"20")

field EGUL,"4")
field[EGU,"MilliAmp")
field(DRVH,"20")

field(DRVL,"4")

field(HOPR,"20")

70

EPICS IOC Application Developer’'s Guide

Chapter 6: Database Definition
Record Attribute

field(LOPR,"4")

}

record(bi,STS_AbDIAOC0S0) {
field(SCAN,"I/O Intr")
field(DTYP,"AB-Binary Input")
field(INP,"#L0O A0 CO SO FO @")
field(ZNAM,"Off")
field(ONAM,"On")

6.10 Record Attribute

Each record type can have a set of record attributes. Each attribute is a “psuedo” field that can be accessed via database
and channel access. An attribute is given a name the acts like a field name which has the same value for every instance of
the record type. Two attributes are generated automatically for each record type: RTYP and VERS. The value for RTYP is
the record type name. The default value for VERS is "none specified", which can be changed by record support. Record
support can call the following routine to create new attributes or change existing attributes:

long dbPutAttribute(char *recordTypename,
char *name,char*value)

The arguments are:

recordTypename - The name of recordtype.
name - The attribute name, i.e. the psuedo field name.
value - The value assigned to the attribute.

6.11 Breakpoint Tables - Discussion

The menumenuConvert is used for fieldLINR of theai andao records. These records allow raw data to be converted
to/from engineering units via one of the following:

1. No Conversion.

2. Linear Conversion.

3. Breakpoint table.
Other record types can also use this feature. The first two choices specify no conversion and linear conversion. The
remaining choices are assumed to be the names of breakpoint tables. If a breakpoint table is chosen, the record support

modules callcvtRawToENngBpt or cvtEngToRawBpt . You can look at thei andao record support modules for
details.

If a user wants to add additional breakpoint tables, then the following should be done:

» Copy themenuConvert .dbd file from EPICSbhase /src/bpt
» Add definitions for new breakpoint tables to the end
» Make sure modifiedhenuConvert .dbd is loaded into the IOC instead of EPICS version.
It is only necessary to load a breakpoint file if a record instance actually chooses it. It should also be mentioned that the

Allen Bradley IXE device support misuses thiNR field. If you use this module, it is very important that you do not
change any of the EPICS supplied definitionsénuConvert .dbd. Just add your definitions at the end.

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 71

Chapter 6: Database Definition
Menu and Record Type Include File Generation.

If a breakpoint table is chosen, then the corresponding breakpoint file must be loaded into the |IOGobkfibre is
called.

Normally, it is desirable to directly create the breakpoint tables. However, sometimes it is desirable to create a breakpoint
table from a table of raw values representing equally spaced engineering units. A good example is the Thermocouple
tables in the OMEGA Engineering, INC Temperature Measurement Handbook. mad@Bpt is provided to convert

such data to a breakpoint table.

The format for generating a breakpoint table from a data table of raw values corresponding to equally spaced engineering
values is:

lcomment line
<header line>
<data table>

The header line contains the following information:

* Name An alphanumeric ascii string specifying the breakpoint table name
* Low Value Eng: Engineering Units Value for first breakpoint table entry

» Low Value Raw. Raw value for first breakpoint table entry

» High Value Eng: Engineering Units: Highest Value desired

* High Value Raw: Raw Value for High Value Eng

 Error : Allowed error (Engineering Units)

* First Table: Engineering units corresponding to first data table entry

* Last Table: Engineering units corresponding to last data table entry

» Delta Table Change in engineering units per data table entry

An example definition is:

"TypeKdegF” 32 0 1832 4095 1.0 -454 2500 1
<data table>

The breakpoint table can be generated by executing
makeBpt bptXXX.data

The input file must have the extension of data. The output filename is the same as the input filename with the extension of
dbd.

Another way to create the breakpoint table is to include the following definition in a Makefile.Vx:
BPTS += bptXXX.dbd

NOTE: This requires the naming convention that all data tables are of the form bpt<name>.data and a breakpoint table
bpt<name>.dbd.

6.12 Menu and Record Type Include File Generation.

6.12.1 Introduction

Given a file containing menuslbToMenuH generates an include file that can be used by any code which uses the
associated menus. Given a file containing any combination of menu definitions and record type definitions,
dbToRecordtypeH generates an include file that can be used by any code which uses the menus and record type.

72 EPICS I0OC Application Developer's Guide

Chapter 6: Database Definition
Menu and Record Type Include File Generation.

EPICS base uses the following conventions for managing menu and recordtype definitions. Users generating local record
types are encouraged to do likewise.

» Each menu that is either for fields in database common (for examgheiScan) or is of global use (for example
menuYesNo) is defined in a separate file. The name of the file is the same as the menu name with an extension of
dbd. The name of the generated include file is the menu name with an extengiofitmfismenuScan is defined
in a filemenuScan.dbd and the generated include file is nameehuScan.h

» Each record type definition is defined in a separate file. In addition, this file contains any menu definitions that are
used only by that record type. The name of the file is the same as the recordtype name folldResbitoly.dbd .

The name of the generated include file is the same name with an extengioiluisaoRecord is defined in a

file aoRecord .dbd and the generated include file is namasRecord .h. SinceaoRecord has a private menu
calledaoOIF, thedbd file and the generated include file have definitions for this menu. Thus for each record type,
there are two source filesxkRecord .dbd andxxxRecord .c) and one generated filexkRecord .h).

Before continuing, it should be mentioned that Application Developers don't have to exdblitMenuH or
dbToRecordtypeH . If a developer uses the proper naming conventions, it is only necessary to add definitions to their
Makefile . Consult the chapter on the EPICS Build Facility for details..

6.12.2 dbToMenuH

This tool is executed as follows:
dbToMenuH -Idir -Smacsub menuXXX.dbd

It generates a file which has the same name as the input file but with an extensioMatftiple -1 options can be
specified for an include path and multig options for macro substitution.

For examplenenuPriority .dbd, which contains the definitions for processing priority contains:

menu(menuPriority) {
choice(menuPriorityLOW,"LOW")
choice(menuPriorityMEDIUM,"MEDIUM")
choice(menuPriorityHIGH,"HIGH")

}

The include filemenuPriority .h, generated bgbToMenuH contains:

#ifndef INCmenuPriorityH

#define INCmenuPriorityH

typedef enum {
menuPriorityLOW,
menuPriorityMEDIUM,
menuPriorityHIGH,

}menuPriority;

#endif *INCmenuPriorityH*/

Any code that needs to use the priority menu values should use these definitions.

6.12.3 dbToRecordtypeH

This tool is executed as follows:
dbTorecordtypeH -Idir -Smacsub xxxRecord.dbd

It generates a file which has the same name as the input file but with an extensioMattiple -1 options can be
specified for an include path and multig® options for macro substitution.

EPICS Release: R3.14.0alphal
EPICS I0C Application Developer's Guide 73

Chapter 6: Database Definition
Menu and Record Type Include File Generation.

For exampleaoRecord .dbd, which contains the definitions for the analog output record contains:

menu(aoOIF) {
choice(aoOIF_Full,"Full™)
choice(aoOIF_Incremental,”"Incremental™)
}
recordtype(ao) {
include "dbCommon.dbd"
field(VAL,DBF_DOUBLE) {
prompt('Desired Output")
asl(ASLO)
pp(TRUE)
}
field(OVAL,DBF_DOUBLE) {
prompt("Output Value™)
}
... (Many more field definitions
}
}

The include fileaoRecord .h, generated bgbToRecordtypeH contains:

#include <vxWorks.h>
#include <semLib.h>
#include "ellLib.h"
#include "fast_lock.h"
#include "link.h"
#include "tsDefs.h"

#ifndef INCaoOIFH

#define INCaoOIFH

typedef enum {
aoOIF_Full,
aoOIF_Incremental,

}aoOlIF;

#endif /*INCaoOIFH*/

#ifndef INCaoH

#define INCaoH

typedef struct aoRecord {

char name[29]; /*Record Name*/
... Remaining fields in database common
double val; /*Desired Output*/
double oval; /*Output Value*/
... remaining record specific fields

} aoRecord;

#define aoRecordNAME 0

... defines for remaining fields in database common
#define aoRecordVAL 42

#define aoRecordOVAL 43

... defines for remaining record specific fields

#ifdef GEN_SIZE_OFFSET

int aoRecordSizeOffset(dbRecordType *pdbRecordType)
{

aoRecord *prec = 0;

74 EPICS I0OC Application Developer's Guide

Chapter 6: Database Definition
dbExpand

pdbRecordType->papFldDes|[0]->size=sizeof(prec->name);
pdbRecordType->papFldDes|[0]->offset=

(short)((char *)&prec->name - (char *)prec);
... code to compute size&offset for other fields in dbCommon
pdbRecordType->papFldDes[42]->size=sizeof(prec->val);
pdbRecordType->papFldDes[42]->offset=

(short)((char *)&prec->val - (char *)prec);
pdbRecordType->papFldDes[43]->size=sizeof(prec->oval);
pdbRecordType->papFldDes[43]->offset=

(short)((char *)&prec->oval - (char *)prec);
... code to compute size&offset for remaining fields
pdbRecordType->rec_size = sizeof(*prec);
return(0);

}
#endif *GEN_SIZE_OFFSET?*/

The analog output record support module and all associated device support modules should use this include file. No other

code should use it. Let’s discuss the various parts of the file.:

» Theenumgenerated from the menu definition should be used to reference the value of the field associated with the

menu.

» Thetypedef andstructure defining the record are used by record support and device support to access fields

in an analog output record.

» A #define is present for each field within the record. This is useful for the record support routines that are passed

a pointer to ©BADDRtructure. They can have code like the following:

switch (dbGetFieldIndex(pdbAddr)) {
case aoRecordVAL :

break;
case aoRecordXXX:

break;

default:
}
The C source routinaoRecordSizeOffset is automatically called when a record type file is loaded into an 10C.

Thus user code does not have to be aware of this routine except for the following convention: The associate record support

module MUST include the statements:

#tdefine GEN_SIZE_OFFSET
#include "xxxRecord.h"
#undef GEN_SIZE_OFFSET

This convention ensures that the routine is defined exactly once.

6.13 dbExpand

dbExpand -Idir -Smacsub filel file2 ...

EPICS Release: R3.14.0alphal

EPICS I0C Application Developer's Guide

75

Chapter 6: Database Definition
dbLoadDatabase

Multiple -1 options can be specified for an include path and multiSleoptions for macro substitution. Note that the
environment variabl&PICS_DB_INCLUDE_PATHan also be used in place of theoptions.

NOTE: This is supported only on the host.

This command reads the input files and then writestdout , a file containing ASCII definitions for all information
described by the input files. The difference is that comment lines do not appear and all include files are expanded.

This routine is extremely useful if an I0C is not using NFS for divkoadDatabase commands. It takes more than 2
minutes to load théase /rec /base .dbd file into an IOC if NFS is not used. dbExpand creates a locabase .dbd
file, it takes about 7 seconds to load (25 MHZ 68040 I10C).

6.14 dbLoadDatabase

dbLoadDatabase(char *db_file, char *path, char *substitutions)
NOTES:

* |OC Only
 Using a path on a vxWorks ioc does not work very well.
» Both path and substitutions can be null.

This command loads a database file containing any of the definitions given in the summary at the beginning of this
chapter.

dbfile must be a file containing onkgcord instance# standard ASCII format. Such files should have an extension of
“.db”.

As each line of dbfile is read, the substitutions specifiedsumbstitutions is performed The substitutions
are specified as follows:

“varl=subl,var2=subs,...”
Variables are specified in the dbfile as $(variable_name). If the substitution string
"a=1,b=2,c=\"this is a test\""

were used, any variabl&¢a), $(b), $(c) would be substituted with the appropriate data.

6.14.1 EXAMPLE

For example, letest .db be:

record(ai,"$(pre)testrecl”)

record(ai,"$(pre)testrec2")

record(stringout,"$(pre)testrec3") {
field(VAL,"$(STR)")
field(SCAN,"$(SCAN)")

}

Then issuing the command:
dbLoadDatabase("test.db",0,"pre=TEST,STR=test, SCAN=Passive")
gives the same results as loading:

record(ai,"TESTtestrecl")
record(ai,"TESTtestrec2")

76 EPICS I0OC Application Developer's Guide

Chapter 6: Database Definition
dbLoadRecords

record(stringout,"TESTtestrec3") {
field(VAL,"test")
field(SCAN,"Passive")

6.15 dbLoadRecords

dbLoadRecords(char* dbfile, char* substitutions)
NOTES:

* |OC Only.
« dbfile must contain only record instances.

- dbLoadRecords is no longer needed.It will probably go away in the future. At the present time
dbLoadRecords loads faster than dbLoadDatabase.

6.16 dbLoadTemplate

dbLoadTemplate(char* template_def)
NOTES:

* 10C Only.
* MSI can be used to expand templates on the host.

dbLoadTemplate reads a template definition file. This file contains rules about loading database instance files, which
contain$(xxx) macros, and performing substitutions.

template_def contains the rules for performing substitutions on the instance files. For convenience two formats are
provided. The format is:

file name.db {
put Version-1 or Version-2 here

}

Version-1

{ setlvarl=subl, setlvar2=sub2,...... }
{ set2varl=subl, set2var2=sub2,...... }
{ set3varl=subl, set3var2=sub2,...... }
- or -
Version-2
pattern{ varl,var2,var3,....... }
{subl_for_setl, sub2_for_setl, sub3_for_setl, ...}

{ subl_for_set2, sub2_for_set2, sub3_for_set2, ...}
{ subl_for_set3, sub2_for_set3, sub3_for_set3, ... }

The first line (filename.db) specifies the record instance input file.

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 77

Chapter 6: Database Definition
dbReadTest

Each set of definitions enclosed in {} is variable substitution for the input file. The input file has each set applied to it to
produce one composite file with all the completed substitutions in it. Version 1 should be obvious. In version 2, the
variables are listed in thepattern {}” line, which must precede the braced substitution lines. The braced substitution
lines contains sets which match up with piagtern {} line.

6.16.1 EXAMPLE

Two simple template file examples are shown below. The examples specify the same substitutions to perform:
this =subl andthat =sub2 for a first set, anthis =sub3 andthat =sub4 for a second set.

file test.db {
{ this=sub1,that=sub2 }
{ this=sub3,that=sub4 }
}

file test.db {
pattern{this,that}
{subl,sub2}
{sub3,sub4 }

Assume thatest .db is:
record(ai,"$(this)record") {
field(DESC,"this = $(this)")

record(ai,"$(that)record") {
field(DESC,"this = $(that)")
}

UsingdbLoadTemplate with either input is the same as defining the records:

record(ai,"sublrecord") {
field(DESC,"this = sub1")
}

record(ai,"sub2record") {
field(DESC,"this = sub2")
}

record(ai,"sub3record") {
field(DESC,"this = sub3")
}

record(ai,"sub4record") {
field(DESC,"this = sub4")
}

6.17 dbReadTest

dbReadTest -Idir -Smacsub file.dbd ... file.db ...

This utility can be used to check for correct syntax in database definition and database instance files. It just reads all the
specified files

78 EPICS I0OC Application Developer's Guide

Chapter 6: Database Definition
dbReadTest

Multiple -I, and-S options can be specified. An arbitrary number of database definition and database instance files can
be specified.

EPICS Release: R3.14.0alphal
EPICS I0C Application Developer’s Guide 79

Chapter 6: Database Definition
dbReadTest

80 EPICS I0OC Application Developer's Guide

Chapter 7: 10C Initialization

7.1 Overview - Environments requiring a main program

If a main program is required (most likely on all environments except vxWorks and RTEMS), then initialization is split
between statements in the main program and statements residing in startup scripts passed to ioccrf. An example main
program is:

int main(int argc,char *argv[])
{
ioccrfRegisterCommon();
registerRecordDeviceDriverRegister();
if(argc>=2) {
ioccrf(argv[1]);
threadSleep(.2);
}
ioccrf(NULL);
return(0);

}

ioccrfrRegisterCommon registers the commands described in the chapter on IOC test facilities so that they can be
called by ioccrf.registerRecordDeviceDriverRegister registers the record/device/driver support that is
linked together with the main program. The first calidocrf ~ executes the commands from the filename passed as an
argument to the program containing main. The second cédiderf putsioccrf into interactive mode. This allows

the user to issue the commands described in chapter "IOC Test Facilities” as well as some built in commands like show.

The file passed as the argument to the command contains statements like:

dbLoadDatabase("../../dbd/<appname>App.dbd",0,0)
registerRecordDeviceDriver(pdbbase)
dbLoadRecords("../../db/<file>.db")

ioclnit()

7.2 Overview - vxWorks

After vxWorks is loaded at IOC boot time, commands like the following, normally in the vxWorks startup command file,
are issued to load and initialize the control system software:

For many board support packages the following must be added

#cd <full path to target bin directory>

< cdCommands

#The following sets timezone properly on vxWorks

#YOU MUST enter correct values for

name,minutesWest,start daylight,end daylight
#putenv("TIMEZONE=<name>::<minutesWest>:<start daylight>:<end daylight>")

EPICS Release: R3.14.0alphal
EPICS I0C Application Developer's Guide 81

Chapter 7: 10C Initialization
Overview - RTEMS

#For example
#putenv("TIMEZONE=US/Central::360:040102:100102")

cd topbin

Ild < <appname>Library.munch

threadInit()

cd top
dbLoadDatabase("dbd/<appname>App.dbd”)
registerRecordDeviceDriver(pdbbase)
dbLoadRecords("db/<file>.db")

ioclnit()
cdCommands defines vxWorks global variables that allow vxWorks cd commands for convient locations. For example
in one of my test areas the followindCommandsfile appears:

startup = "/home/phoebus6/MRK/epics/example/R3-14/iocBoot/iocexample”
appbin = "/home/phoebus6/MRK/epics/example/R3-14//bin/vxWorks-68040"
top = "/home/phoebus6/MRK/epics/example/R3-14"

topbin = "/home/phoebus6/MRK/epics/example/R3-14/bin/vxWorks-68040"

NOTE: This file is automatically generated via make rules.

The Id command loads the core EPICS softwar, record/device,/driver support, and any other application specific
modules.

ThedbLoadDatabase command loads database definition files describing the record/device/driver support used by the
application..

ThedbLoadRecords commands load record instance definitions.

ioclnit initializes the various epics components.

7.3 Overview - RTEMS

RTEMS applications read commands from a startup script in <tftpbase>/epics/<target_hostname>/st.cmd. In many cases
this script can be the same as the one used with vxWorks. The RTEMS shell does not provide commands such as cd, Id,
or assignment to variables (e.g. startup, appbin, etc.) but this does not present a major problem since the db and dbd files
have been copied to standard locations and the entire application has been statically linked before execution begins.

7.4 iocInit

ioclnit performs the following functions:

7.4.1 coreRelease

Prints a messages showing which version of iocCore is being loaded.

82 EPICS I0OC Application Developer's Guide

Chapter 7: 10C Initialization
ioclnit

7.4.2 taskwdInit

start the task watchdog task. This task accepts requests to watch other tasks. It runs periodically and checks to see if any of
the tasks is suspended. If so it issues an error message. It can also optionally invoke a callback routine

7.4.3 callbacklinit

Start the general purpose callback tasks. Three tasks are started with the only difference being scheduling priority.

7.4.4 dbCaLinklnit

CallsdbCaLinkInit . The initializes the task that handles database channel access links.

7.4.5 initDrvSup

InitDrvSup locates each device driver entry table and calls the init routine of each driver.

7.4.6 initRecSup

InitRecSup locates each record support entry table and calls the init routine.

7.4.7 initDevSup

InitDevSup locates each device support entry table and calls the init routine with an argument specifying that this is the
initial call.

7.4.8 initDatabase

InitDatabase makes three passes over the database performing the following functions:

e Pass 1: |Initializes following fieldsset , dset , mlis . Calls record suppoitit_record (First pass)
e Pass 2: Convert eaéV_LINK toDB_LINK or CA_LINK
» Pass 3: Calls record suppimit_record (second pass)

After the database is initializetbhLockInitRecords is called. It creates the lock sets.

7.4.9 finishDevSup

InitDevSup locates each device support entry table and calls the init routine with an argument specifying that this is the
finish call.

7.4.10 scanlnit

The periodic, event, and io event scanners are initialized and started.

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’s Guide 83

Chapter 7: 10C Initialization
Changing iocCore fixed limits

7.4.11 interruptAccept

A global variable tnterruptAccept " is set TRUE Until this time no request should be made to process records and
all interrupts should be ignored.

7.4.12 initialProcess

dbProcess is called for all records that hai?NI TRUE.

7.4.13 rsrv_init

The Channel Access servers are started

7.5 Changing iocCore fixed limits

The following commands can be issued after iocCore is loaded to change iocCore fixed limits. The commands should be
given before any dbLoad commands.

callbackSetQueueSize(size)
dbPvdTableSize(size)
scanOnceSetQueueSize(size)
errloglinit(buffersize)

NOTE: If a main program is required, these routines should be called immediately after threadinit.

7.5.1 callbackSetQueueSize

Requests for the general putpose callback tasks are placed in a ring buffer. This command can be used to set the size for
the ring buffers. The default is 2000. A message is issued when a ring buffer overflows. It should rarely be necessary to
override this default. Normally the ring buffer overflow messages appear when a callback task fails.

7.5.2 dbPvdTableSize

Record instance names are stored in a process variable directory, which is a hash table. The default number of hash entries
is 512.dbPvdTableSize can be called to change the size. It must be called beforellailngad commands and must

be a power of 2 between 256 and 65536. If an IOC contains very large databases (several thousand) then a larger hash
table size speeds up searches for records.

7.5.3 scanOnceSetQueueSize

scanOnce requests are placed in a ring buffer. This command can be used to set the size for the ring buffer. The default is
1000. t should rarely be necessary to override this default. Normally the ring buffer overflow messages appear when the
scanOnce task fails.

84 EPICS I0OC Application Developer's Guide

Chapter 7: 10C Initialization
TSconfigure

7.5.4 errloglnit

Thus overrides the default buffer size for the errlog message queue. The default is1280 bytes.

7.6 TSconfigure

NOTE: This is only supported on vxWorks.

EPICS supports several methods for an IOC to obtain time so that accurate time stamps can be generated. The default is to
obtain NTP time stamps from another computer. The following can be used to change the defaults. If ant argument is
given the value 0 then the default is applied.

TSConfigure(master,sync_rate,clock_rate,master_port,slave_port)

* master. 1=master timing IOC, O=slave timing, default is slave.

e sync_rate The clock sync rate in seconds. This rate tells how often the synchronous time stamp support software
will confirm that an IOC clock is synchronized. The default is 10 seconds.

 clock_rate: The frequency in hertz of the clock, the default is 1000Hz for the event system. The value will be set
to the 10C’s internal clock rate when soft timing is used.

* master_port:. UDP port for master. The default is 18233

 slave_port UDP port for slave.

 time_out: UDP information request time out in milliseconds, if zero is entered here, the default will be used
which is 250ms.

* type: O=normal operation, 1=force soft timing type

See "Synchronous Time Stamp Support”, by Jim Kowalkowski for details. Note that the default is to be a slave. If no
master is found the slave will obtain a starting time from Unix.

7.7 initHooks

NOTE: starting with release 3.13.0betal2 initHooks was changed drastically (thanks to Benjamin Franksen at BESY).
Old initHooks.c functions will still work but users are encouraged to switch to the new method.

The inithooks facility allows application specific functions to be called at various states during ioc initialization. The
states are defined in initHooks.h, which contains the following definitions:

typedef enum {
initHookAtBeginning,
initHookAfterCallbackinit,
initHookAfterCaLinklnit,
initHookAfterInitDrvSup,
initHookAfterInitRecSup,
initHookAfterInitDevSup,
initHookAfterInitDatabase,
initHookAfterFinishDevSup,
initHookAfterScanlnit,
initHookAfterInterruptAccept,
initHookAfterInitialProcess,
initHookAtEnd

}initHookState;

EPICS Release: R3.14.0alphal
EPICS I0C Application Developer’s Guide 85

Chapter 7: 10C Initialization
Environment Variables

typedef void (*initHookFunction)(initHookState state);
int initHookRegister(initHookFunction func);

Any new functions that are registered before ioclnit reaches the desired state will be called when ioclnit reaches that state.
The following is skeleton code to use the facility:

static initHookFunction myHookFunction;

int myHookInit(void)
{

return(initHookRegister(myHookFunction));

}

static void myHookFunction(initHookState state)
{
switch(state) {
case initHookAfterInitRecSup:

break;
case initHookAfterInterruptAccept:

break;
default:
break;

}
}

An arbitrary number of functions can be registered.

7.8 Environment Variables

The following environment variables are used by iocCore:

EPICS_CA_ADDR_LIST
EPICS_CA_CONN_TMO
EPICS_CA_BEACON_PERIOD
EPICS_CA_AUTO_ADDR_LIST
EPICS_CA_REPEATER_PORT
EPICS_CA_SERVER_PORT
EPICS_TS_NTP_INET
EPICS_IOC_LOG_PORT
EPICS_IOC_LOG_INET

On vxWorks these variables can be overridden via the putenv function. For example:
putenv("EPICS_CA_CONN_TMO=10")

Any putenv commands should be issued after iocCore is loaded and before any dbLoad commands.

86 EPICS I0OC Application Developer's Guide

Chapter 7: 10C Initialization
Initialize Logging

7.9 Initialize Logging

Initialize the logging system. See chapter "IOC Error Logging" for details. For initiliization just realise that the following
can be used if you want to use a private host log file.

putenv("EPICS_IOC_LOG_PORT=<port>")
putenv("EPICS_10C_LOG_INET=<inet addr>")

These command must be given immediately after iocCore is loaded.
If you want to disable logging to the system wide log file just give the command.
iocLogDisable = 1

This must be given after iocCore is loaded and before any dbLoad commands.

EPICS Release: R3.14.0alphal
EPICS I0C Application Developer’'s Guide 87

Chapter 7: 10C Initialization
Initialize Logging

88 EPICS I0OC Application Developer's Guide

Chapter 8: Access Security

8.1 Overview

This chapter describes access security. i.e. the system that limits access to I0OC databases. It consists of the following
sections:
1. Overview - This section
. Quick start - A summary of the steps necessary to start access security.
. User’s Guide - This explains what access security is and how to use it.
. Design Summary - Functional Requirements and Design Overview.
. Application Programmer’s Interface
. Database Access Security - Access Security features for EPICS IOC databases.
. Channel Access Security - Access Security features in Channel Access
. Implementation Overview

0 N O Ul WDN

The requirements for access security were generated at ANL/APS in 1992. The requirements document is:
EPICS: Channel Access Security - Functional Requirements, Ned D. Arnold, 03/-9/92.

This document is available via the EPICS WWW documentation

8.2 Quick Start

In order to “turn on” access security for a particular I0C the following must be done:

» Create the access security file.
» |OC databases may have to be modified

« Record instances may have to have values assigned to field ASG. If ASG is null the record is in group
DEFAULT.
» Access security files can be reloaded after ioclnit via a subroutine record asBublnit and
asSubProcess as the associated subroutines. Writing the value 1 to this record will cause a reload.
» The vxWorks startup file must contain the following command before ioclnit.
asSetFilename(“accessSecurityFile”)
The following is an optional command.
asSetSubstitutions(“varl=subl,var2=sub2,...”))

The following rules decide if access security is turned on for an IOC:

« If asSetFilename is not executed before ioclnit, access security will NEVER be started..

« If asSetFile is given and any error occurs while first initializing access security, then ALL access to that ioc is
denied.

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’s Guide 89

Chapter 8: Access Security
User’s Guide

« If after successfully starting access security, an attempt is made to restart and an error occurs then the previous
access security configuration is maintained.

8.3 User’s Guide

8.3.1 Features

Access security protects IOC databases from unauthorized Channel Access Clients. Access security is based on the
following:

* Who: Userid of the channel access client.

» Where: Hostid where the user is logged on. This is the host on which the channel access client exists. Thus no
attempt is made to see if a user is local or is remotely logged on to the host.

» What: Individual fields of records are protected. Each record has a field containing the Access Security Group
(ASG) to which the record belongs. Each field has an access security level, which must be 0 or 1.The security level
is defined in the ascii record definition file. Thus the access security level for a field is the same for all record
instances of a record type.

» When: Access rules can contain input links and calculations similar to the calculation record.

8.3.2 Limitations

An |OC database can be accessed only via Channel Access or via the vxWorks shell. It is assumed that access to the local
IOC console is protected via physical security aalhet /rlogin access protected via normal Unix and physical
security.

No attempt has been made to protect against the sophisticated saboteur. Unix security must be used to limit access to the
subnet on which the iocs reside.

8.3.3 Definitions

This document uses the following terms:

» ASL: Access Security Level (Called access level in Req Doc)
» ASG: Access Security Group (Called PV Group in Req Doc)
* UAG: User Access Group

* HAG: Host Access Group

8.3.4 Access Security Configuration File

This section describes the format of a file containing definitions of the user access groups, host access groups, and access
security groups. An IOC creates an access configuration database by reading an access configuration file (the extension
.acf is recommended). Lets first give a simple example and then a complete description of the syntax.

8.3.4.1 Simple Example

UAG(uag) {userl,user2}
HAG(hag) {host1,host2}

90 EPICS I0OC Application Developer's Guide

Chapter 8: Access Security
User’s Guide

ASG(DEFAULT) {
RULE(1,READ)
RULE(1,WRITE) {

UAG(uag)
HAG(hag)

}

These rules provide read access to anyone located anywhere and write acses$ t@nduser2 if they are located at
hostl orhost2 .

8.3.4.2 Syntax Definition
In the following description:

[JLists optional elements

|Separator for alternatives

...Means that an arbitrary number of definitions may be given.
Any line beginning with # is a comment

UAG(<name>) [{ <user> [, <user>...] }]
HAG(<name>) [{ <host> [, <host> ..] }]

ASG(<name>) [{
[INP<index>(<pvname>)
]

RULE(<level>,NONE | READ | WRITE) {
[UAG(<name> [,<name> ...])]
[HAG(<name> [,<name> ...])]
CALC("<calculation>")

1]

8.3.4.3 Discussion

* UAG: User Access Group. This is a list of userids. The list may be empty. The same userid can appear in multiple
UAGs. For iocs the userid is taken from the user field of the boot parameters.

* HAG: Host Access Group. This is a list of host names. It may be empty. The same host name can appear in
multiple HAGs. For iocs the host name is taken from the target name of the boot parameters.

» ASG: An access security group. The groupEFAULT is a special case. If a member specifies a null group or a
group which has no ASG definition then the member is assigned to the BEAULT.

* INP<index> Index must have one of the valueg’to “L". These are just like théNP fields of a
calculation record. It is necessary to defidP fields if aCALCfield is defined in aniRULEfor the ASG.

« RULE This defines access permissiontevel > must be 0 or 1. Permission for a level 1 field implies
permission for level 0 fields. The permissions &@®NEREAD and WRITE WRITE permission implies
READpermission. The standard EPICS record types have all fields set to level 1 excéfilfo€CMD
(command), anRRES(reset).

» UAG specifies a list of user access groups that can have the access privilege. If UAG is not defined
then all users are allowed.

EPICS Release: R3.14.0alphal
EPICS I0C Application Developer’s Guide 91

Chapter 8: Access Security
User’s Guide

* HAG specifies a list of host access groups that have the access privilege. If HAG is not defined then

all hosts are allowed.
» CALC isjust like theCALCfield of a calculation record except that the result must evaluate to TRUE

or FALSE If the calculation results in (0,1) meaningALSETRUB then the rule (doesn’t apply,
does apply) . The actual test is .98sult < 1.01.

Each 10C record contains a fiekSG which specifies the name of the ASG to which the record belongs. If this field is
null or specifies a group which is not defined in the access security file then the record is placed DEfFALLT.

The access privilege for a channel access client is determined as follows:

1. The ASG associated with the record is searched.

2. Each RULE is checked for the following:
a. The field’s level must be less than or equal to the level for this RULE.
b. If UAG is defined, the user must belong to one of the specified UAGs. If UAG is not defined all users are

accepted.
c. If HAG is defined, the user’s host must belong to one one of the HAGs. If HAG is not defined all hosts are

accepted.
d. If CALC is specified, the calculation must yield the value 1, i.e. TRUE. If any of the INP fields associated
with this calculation are in INVALID alarm severity the calculation is considered false. The actual test for

TRUE is .99 < result < 1.01.
3. The maximum access allowed by step 2 is the access chosen.

Multiple RULESs can be defined for a given ASG, even RULEs with identical levels and access permission.

8.3.5 ascheck - Check Syntax of Access Configuration File

After creating or modifying an access configuration file it can be checked for syntax errors by issuing the command:

ascheck -S “xxx=yyy,..."” < "filename"

This is a Unix command. It displays errors stalout . If no errors are detected it prints nothing. Only syntax errors not
logic errors are detected. Thus it is still possible to get your self in trouble. TheSlagneans a set of macro substitutions
may appear. This is just like the macro substitutions for dbLoadDatabase.

8.3.6 IOC Access Security Initialization

In order to have access security turned on during 10C initialization the following command must appear in the startup file
beforeioclnit is called:

asSetFilename("<access security file>")

If this command does not appear then access security will not be starieditiy . If an error occurs when ioclnit calls
aslnit than all access to the ioc is disabled, i.e. no channel access client will be able to access the ioc.

Access security also supports macro substitution justdikeoadDatabase . The following command specifies the
desired substitutions:

asSetSubstitutions(“varl=subl,var2=sub2,...”)
This command must be issued befanit

After an IOC is initialized the access security database can be changed. The preferred way is via the subroutine record
described in the next section. It can also be changed by issuing the following command to the vxWorks shell:

aslnit

92 EPICS I0OC Application Developer's Guide

Chapter 8: Access Security
User’s Guide

It is also possible to reissussSetFilename and/orasSetSubstitutions beforeaslnit . If any error occurs
during aslnit the old access security configuration is maintained. IN@T permissable to calasinit before
ioclnit is called.

Restarting access security after ioc initialization is an expensive operation and should not be used as a regular procedure.

8.3.7 Database Configuration

8.3.7.1 Access Security Group

Each database record has a fialBGwhich holds a character string. Any database configuration tool can be used to give
a value to this field. If the ASG of a record is not defined or is not equal to a ASG in the configuration file then the record
is placed irDEFAULT

8.3.7.2 Subroutine Record Support
Two subroutines, which can be attached to a subroutine record, are available (providecOCorth):

asSublnit
asSubProcess

If a record is created that attaches to these routines, it can be used to force the IOC to load a new access configuration
database. To change the access configuration:

1. Modify the file specified by the last calldeSetFilename so that it contains the new configuration desired.

2. Write a 1 to the subroutine recorfdL field. Note that this can be done via channel access.

The following action is taken:

3. When the value is found to beak|nit is called and the value set back to 0.

4. The record is treated as an asynchronous record. Completion occurs when the new access configuration has been
initialized or a time-out occurs. If initialization fails the record is placed into alarm with a severity determined by
BRSV

8.3.7.3 Record Type Description

Each field of each record type has an associated access security |&A8L@for ASL1. See the chapter “Database
Definition” for details.

8.3.8 Example:

Lets design a set of rules for a Linac. Assume the following:

1. Anyone can have read access to all fields at anytime.

2. Linac engineers, located in the injection control or control room, can have write access to most level O fields only if
the Linac is not in operational mode.

3. Operators, located in the injection control or control room, can have write access to most level O fields anytime.

4. The operations supervisor, linac supervisor, and the application developers can have write access to all fields but
must have some way of not changing something inadvertently.

5. Most records use the above rules but a few (high voltage power supplies, etc.) are placed under tighter control.
These will follow rules 1 and 4 but not 2 or 3.

6. 10C channel access clients always have level 1 write privilege.

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’s Guide 93

Chapter 8: Access Security
User’s Guide

Most Linac 10C records will not have th&SGfield defined and will thus be placed in AS®EFAULT. The following
records will have aASGdefined:

» LI:OPSTATE and any other records that need tighter control H&8&="critical ". One such record could be
a subroutine record used to cause a new access configuration file to be lda@dSTATE has the value (0,1)
if the Linac is (not operational, operational).

* Ll:ilevipermit has ASG="permit ". In order for theopSup, linacSup , or anappDev to have write
privilege to everything this record must be set to the value 1.

The following access configuration satisfies the above rules.

UAG(op) {opl,0p2,superguy}

UAG(opSup) {superguy}

UAG(linac) {waw,nassiri,grelick,berg,fuja,gsm}
UAG(linacSup) {gsm}

UAG(appDev) {nda,kko}

HAG(icr) {silver,phebos,gaea}

HAG(cr) {mars,hera,gold}

HAG(ioc) {ioclicl,ioclic2,ioclid1,ioclid2,ioclid3,ioclid4,ioclid5}
ASG(DEFAULT) {

INPA(LI:OPSTATE)

INPB(LI:levipermit)

RULE(O,WRITE) {

UAG(op)
HAG(icr,cr)
CALC("A=1")

}

RULE(O,WRITE) {
UAG(op,linac,appdev)
HAG(icr,cr)

CALC("A=0")

}

RULE(1,WRITE) {
UAG(opSup,linacSup,appdev)
CALC("B=1")

}

RULE(1,READ)

RULE(1,WRITE) {

HAG(ioc)
}
}
ASG(permit) {
RULE(O,WRITE) {
UAG(opSup,linacSup,appDev)
}

RULE(1,READ)

RULE(1,WRITE) {
HAG(ioc)

}

}
ASG(critical) {

INPB(LI:levlpermit)

RULE(1,WRITE) {
UAG(opSup,linacSup,appdev)

94 EPICS I0OC Application Developer's Guide

Chapter 8: Access Security
Desigh Summary

CALC('B=1")

}
RULE(1,READ)

RULE(1,WRITE) {
HAG(ioc)
}

8.4 Design Summary

8.4.1 Summary of Functional Requirements

A brief summary of the Functional Requirements is:

1. Each field of each record type is assigned an access security level.
2. Each record instance is assigned to a unique access security group.
3. Each user is assigned to one or more user access groups.

4. Each node is assigned to a host access group.

5. For each access security group a set of access rules can be defined. Each rule specifies:
a. Access security level
b. READ or READ/WRITE access.
c. An optional list of User Access Groups or * meaning anyone.
d. An optional list of Host Access Groups or * meaning anywhere.
e. Conditions based on values of process variables

8.4.2 Additional Requirements

8.4.2.1 Performance

Although the functional requirements doesn’t mention it, a fundamental goal is performance. The design provides almost
no overhead during normal database access and moderate overhead for the following: channel access client/server
connection, ioc initialization, a change in value of a process variable referenced by an access calculation, and dynamically
changing a records access control group. Dynamically changing the user access groups, host access groups, or the rules,
however, can be a time consuming operation. This is done, however, by a low priority IOC task and thus does not impact
normal ioc operation.

8.4.2.2 Generic Implementation

Access security should be implemented as a stand alone system, i.e. it should not be imbedded tightly in database or
channel access.

8.4.2.3 No Access Security within an I0C

Within an 10C no access security is invoked. This means that database links and local channel access clients calls are not
subject to access control. Also test routines such as dbgf should not be subject to access control.

8.4.2.4 Defaults

It must be possible to easily define default access rules.

EPICS Release: R3.14.0alphal
EPICS I0C Application Developer’s Guide 95

Chapter 8: Access Security
Design Summary

8.4.2.5 Access Security is Optional

When an I0C is initialized, access security is optional.

8.4.3 Design Overview

The implementation provides a library of routines for accessing the security system. This library has no knowledge of
channel access or IOC databases, i.e. it is generic. Database access, which is responsible for protecting an IOC database,
calls library routines to add each IOC record to one of the access control groups.

Lets briefly discuss the access security system and how database access and channel access interact with it.

8.4.3.1 Configuration File

User access groups, host access groups, and access security groups are configured via an ASCII file.

8.4.3.2 Access Security Library

The access security library consists of the following groups of routines: initialization, group manipulation, client
manipulation, access computation, and diagnostic. The initialization routine reads a configuration file and creates a
memory resident access control database. The group manipulation routines allow members to be added and removed from
access groups. The client routines provide services for clients attached to members.

8.4.3.3 10C Database Access Security

The interface between an I0C database and the access security system.

8.4.3.4 Channel Access Security

Whenever the Channel Access broadcast server receigassaarch request and finds the process variable, it calls
asAddClient . Whenever it disconnects it caBsRemoveClient . Whenever it issues a get or put to the database it
must callasCheckGet orasCheckPut .

Channel access is responsible for implementing the requirement of allowing the user to be changed dynamically.

8.4.4 Comments

It is likely that the access rules will be defined such that many I0Cs will attach to a common process variable. As a result
the IOC containing the PV will have many CA clients.

What about password protection and encryption? | maintain that this is a problem to be solved in a level above the access
security described in this document. This is the issue of protecting against the sophisticated saboteur.

8.4.5 Performance and Memory Requirements

Performance has not yet been measured but during the tests to measure memory usage no noticeable change in
performance during ioc initialization or during Channel Access clients connection was noticed. Unless access privilege is
violated the overhead during channel access gets and puts is only an extra comparison.

In order to measure memory usage, the following test was performed:

1. A database consisting of 5000 soft analog records was created.

2. A channel access clientgput) was created that perfornts_put s on each of the 5000 channels. Each time it
begins a new set of puts the value increments by 1.

96 EPICS I0OC Application Developer's Guide

Chapter 8: Access Security
Access Security Application Programmer’s Interface

3. A channel access clierdaget) was created that has monitors on each of the 5000 channels.

The memory consumption was measured befoctit , afterioclnit , aftercaput connected to all channels, and
aftercaget connected to all 5000 channels. This was done for APS release 3.11.5 (before access security) and the first
version which included access security. The results were:

R3.11.5 After
Before ioclnit 4,244,520 4,860,840
After ioclnit 4,995,416 5,964,904
After caput 5,449,780 6,658,868
After caget 8,372,444 9,751,796

Before the database was loaded the memory used was 1,249,692 bytes. Thus most of the memory usage before ioclnit
resulted from storage for records. The increase since R3.11.5 results from added fil@sitamon Fields were added

for access security, synchronous time support and for the new caching put support. The other increases in memory usage
result from the control blocks needed to support access control. The entire design was based on maximum performance.
This resulted in increased memory usage.

8.5 Access Security Application Programmer’s Interface

8.5.1 Definitions

typedef struct asgMember *ASMEMBERPVT;
typedef struct asgClient *ASCLIENTPVT;
typedef int (*ASINPUTFUNCPTR)(char *buf,int max_size);
typedef enum{
asClientCOAR/*Change of access rights*/
[*For now this is all*/
} asClientStatus;
typedef void (*ASCLIENTCALLBACK)(ASCLIENTPVT,asClientStatus);

8.5.2 Initialization

long aslnitialize(ASINPUTFUNPTR inputFunction)
long aslnitFile(const char *filename,const char *substitutions)
long asInitFP(FILE *fp,const char *substitutions)

These routines read an access definition file and perform all initialization necessary. The caller must provide a routine to
provide input lines foaslinitialize. aslinitFile andaslInitFP do their own input and also perform macro
substitutions.

The initilization routines can be called multiple times. If an access system already exists the old definitions are removed
and the new one initialized. Existing members are placed in th&8&y

EPICS Release: R3.14.0alphal
EPICS I0C Application Developer’s Guide 97

Chapter 8: Access Security
Access Security Application Programmer’s Interface

8.5.3 Group manipulation

8.5.3.1 add Member
long asAddMember(ASMEMBERPVT *ppvt, char *asgName);

This routine adds a new member to A@&gName. The calling routine must provide storage ASMEMBERPYUpon
successful returnppvt will be equal to the address of storage used by the access control system. The access system
keeps an orphan list for @lsgNames not defined in the access configuration.

The caller must provide permanent storageagName.

This routine return§$_asLib_asNotActive without doing anything if access control is not active.

8.5.3.2 remove Member
long asRemoveMember(ASMEMBERPVT *ppvt);

This routine removes a member from an access control group. If any clients are still present it returns an error status of
S_asLib_clientExists without removing the member.

This routine returns S_asLib_asNotActive without doing anything if access control is not active.

8.5.3.3 get Member Pvt
void *asGetMemberPvi(ASMEMBERPVT pvt);

For each member, the access system keeps a pointer that can be used by the caller. This routine returns the value of the
pointer.

This routine returns NULL if access security is not active

8.5.3.4 put Member Pvt
long asPutMemberPvt(ASMEMBERPVT pvt,void *userPwt);
This routine is used to set the pointer returned by asGetMemberPuvt.

This routine return$_asLib_asNotActive without doing anything if access control is not active.

8.5.3.5 change Group

long asChangeGroup(ASMEMBERPVT *ppvt, char *newAsgName);
This routine changes the group for an existing member. The access rights of all clients of the member are recomputed.
The caller must provide permanent storagenawAsgName

This routine return$_asLib_asNotActive without doing anything if access control is not active.

8.5.4 Client Manipulation

8.5.4.1 add Client

long asAddClient(ASCLIENTPVT *ppvt, ASMEMBERPVT pvt,int asl,
char *user,char*host);

This routine adds a client to an ASG member. The calling routine must provide storag&SOrIENTPVT
ASMEMBERPMS the value that was set by calliagAddMember. asl is the access security level.

The caller must provide permanent storageufar andhost .

98 EPICS I0OC Application Developer's Guide

Chapter 8: Access Security
Access Security Application Programmer’s Interface

This routine return§$_asLib_asNotActive without doing anything if access control is not active.

8.5.4.2 change Client

long asChangeClient(ASCLIENTPVT ppvt,int asl,
char *user,char*host);

This routine changes one or more of the valasls, user , andhost for an existing client. Again the caller must provide
permanent storage fouser and host . It is permissible to use the sameser and host used in the call to
asAddClient with different values.

This routine return$_asLib_asNotActive without doing anything if access control is not active.

8.5.4.3 remove Client
long asRemoveClient(ASCLIENTPVT *pvt);
This call removes a client.

This routine return$_asLib_asNotActive without doing anything if access control is not active.

8.5.4.4 get Client Pvt
void *asGetClientPvt(ASCLIENTPVT pvt);

For each client, the access system keeps a pointer that can be used by the caller. This routine returns the value of the
pointer.

This routine returndlULL if access security is not active.

8.5.4.5 put Client Pvt
void asPutClientPvt(ASCLIENTPVT pvt, void *userPvt);

This routine is used to set the pointer returneddsyetClientPvt

8.5.4.6 register Callback

long asRegisterClientCallback(ASCLIENTPVT pvt,
ASCLIENTCALLBACK pcallback);

This routine registers a callback that will be called whenever the access privilege of the client changes.

This routine return$_asLib_asNotActive without doing anything if access control is not active.

8.5.4.7 check Get
long asCheckGet(ASCLIENTPVT pwt);

This routine, actually a macro, returfRUEFALSE if the client (has, doesn’t have) get access rights.

8.5.4.8 check Put
long asCheckPut(ASCLIENTPVT pvt);

This routine, actually a macro, returf&RUEFALSE) if the client (has, doesn’t have) put access rights

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’s Guide 99

Chapter 8: Access Security
Access Security Application Programmer’s Interface

8.5.5 Access Computation

8.5.5.1 compute all Asg
long asComputeAllAsg(void);
This routine callesComputeAsg for each access security group.

This routine return§$_asLib_asNotActive without doing anything if access control is not active.

8.5.5.2 compute Asg
long asComputeAsg(ASG *pasg);

This routine calculates alALCentries for theASGand callsasCompute for each client of each member of the specified
access security group.

This routine return$_asLib_asNotActive without doing anything if access control is not active.

8.5.5.3 compute access
rights

long asCompute(ASCLIENTPVT pwt);

This routine computes the access rights of a client. This routine is normally called by the access library itself rather than
use code.

This routine return$_asLib_asNotActive without doing anything if access control is not active.

8.5.6 Diagnostic

8.5.6.1 dump

int asDump(void (*member)(ASMEMBERPVT),
void (*client)(ASCLIENTPVT),int verbose);

This routine prints the current access security database. If verbosEAd SK), then only the information obtained from
the access security file is printed.

If verbose isTRUEthen additional information is printed. The value of edblP is displayed. The list of members
belonging to each ASG and the clients belonging to each member are displayed. If member callback is specified as an
argument, then it is called for each member. If client callback is specified, it is called for each access security client.

8.5.6.2 dump UAG
int asDumpUag(char *uagname)

This routine displays the specifield\Gor if uagname is NULL eachUAGdefined in the access security database.

8.5.6.3 dump HAG
int asDumpHag(char *hagname)

This routine displays the specifiel\Gor if uagname is NULL eachUAGdefined in the access security database.

8.5.6.4 dump Rules

int asDumpRules(char *asgname)

100 EPICS I0OC Application Developer's Guide

Chapter 8: Access Security
Database Access Security

This routine displays the rules for the specifie8Gor if asgname is NULLthe rules for each ASG defined in the access
security database.
8.5.6.5 dump member

int asDumpMem(char *asgnhame,
void (*memcallback)(ASMEMBERPVT),int clients)

This routine displays the member and, if client¥ BUE client information for the specifiedSGor if asgname is NULL
the member and client information for ea8BGdefined in the access security database. It also wedlacallback for
each member if this argument is NAWLL
8.5.6.6 dump hash table

int asDumpHash(void)
This shows the contents of the hash table used to loggEandHAG,

8.6 Database Access Security

8.6.1 Access Level definition

The definition of access level means that a level is defined for each field of each record type.

1. StructurefldDes (dbBase .h), which describes the attributes of each field, contains a field access_security
_level . In addition definitions exist for the symbofsSLO andASL1.

2. Each field description in a record description contains a field with theAGlue
The meanings of the Access Security Level definitions are as follows:

» ASLOAssigned to fields used during normal operation

» ASL1Assigned to fields that may be sensitive to change. Permission to access this level implies permission for
ASLO.

Most record types assign ASL as follows: The fieldsl, RES(Reset), andCMDuse the valuéSLO. All other fields use
ASL1.

8.6.2 Access Security Group definition

dbCommoncontains the fieldASGand ASP ASG (Access Security Group) is a character string. The value can be
assigned via a database configuration tool or else a utility could be provided to assign values during ioc initialization. ASP
is an access security private field. It contains the addressAS@WEMBER

8.6.3 Access Client Definition

StructdbAddr contains a fielcasPvt , which contains the address of ASGCLIENT This definition is also added to
structdb_addr so that old database access also supports access security.

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 101

Chapter 8: Access Security
Database Access Security

8.6.4 Database Access Library

Two files asDbLib .c andasCa.c implement the interface between I0OC databases and access control. It contains the
following routines:
8.6.4.1 Initialization

int asSetFilename(char *acf)

Calling this routine sets the filename of an access configuration file. The next ealhto uses this file. This routine
must be called beforieclnit otherwise access configuration is disabled. Is access security is disabled during ioclnit it
will never be turned on.

int asSetSubstitutions(char *substitutions)

This routine specifies macro substitutions.

int aslnit()

int asinitAsyn(ASDBCALLBACK *pcallback)
This routines calbslinitialize . If the current access configuration file, as specified&§etFilename , is NULL
then the routine just returns, otherwise the configuration file is used to create the access configuration database.
This routine is called byioclnit . aslnit can also be called at any time to change the access configuration
information.

aslnitAsyn spawns a tasksInitTask to perform the initialization. This allowaslInitAsyn to be called from a
subroutine called by the process entry of a subroutine reesiditTask callstaskwdInsert so that if it suspends

for some reasoraskwd can detect the failure. After initialization all records in the database are made members of the
appropriate access control group.

If the caller provides a\SDBCALLBACHkKhen when either initialization completestaskwd detects a failure the users
callback routine is called via one of the standard callback tasks.

aslnitAsyn will return a value of-1 if access initialization is already active. It returns OaInitTask is
successfully spawned.
8.6.4.2 Routines used by Channel Access Server

int asDbGetAsl(void *paddr)

Get Access Security level for the field referenced by a database access structure. The argument is defoied aDa
that both old and new database access can be used.

void * asDbGetMemberPvt(void *paddr)

Get ASMEMBERPM®or the field referenced by a database access structure. The argument is defineitla¥ so that
both old and new database access can be used.

8.6.4.3 Routine to test asAddClient
int astac(char *pname,char *user,char *host)

This is a routine to testsAddClient . It simulates the calls that are made by Channel Access.

8.6.4.4 Subroutines attached to a subroutine record

These routines are provided so that a channel access client can force an ioc to load a new access configuration database.

102 EPICS I0OC Application Developer's Guide

Chapter 8: Access Security
Channel Access Security

long asSublnit(struct subRecord *prec,int pass)
long asSubProcess(struct subRecord *prec)

These are routines that can be attached to a subroutine record. Whenever a 1 is written to thas8uabRipcess
callsaslnit . If aslnit returns success, it returns with asynchronously. WasnitTask calls the completion
routine supplied bysSubProcess , the return status is used to place the record in alarm.

8.6.4.5 Diagnostic Routines

These routines provide interfaces to gbump routines described in the previous chapter. They do NOT lock before
calling the associated routine. Thus they may fail if the access security configuration is changing while they are running.
However the danger of the user accidently aborting a command and leaving the access security system locked is
considered a risk that should be avoided.

asdbdump(void)

This routine callasDumpwith a member callback and with verbdsRUE

aspuag(char *uagname)

This routine call@asDumpUag

asphag(char *hagname)

This routine call@asDumpHag

asprules(char *asgname)

This routine call@asDumpRules .

aspmem(char *asgname,int clients)

This routine call@sDumpMem

8.7 Channel Access Security

EPICS Access Security is designed to protect Input Output Controllers (IOCs) from unauthorized access via the Channel

Access (CA) network transparent communication software system. This chapter describes the interaction between the CA
server and the Access Security system. It also briefly describes how the current access rights state is communicated to
clients of the EPICS control system via the CA communication system and the CA client interface.

8.7.1 CA Server Interfaces to the Access Security System

The CA server callasAddClient() andasRegisterClientCallback() for each of the channels that a client
connects to the server. The routiasRemoveClient() is called whenever the client clears (removes) a channel or
when the client disconnects.

The server maintains storage for the clients host and user names. The initial value of these strings are supplied to the
server when the client connects and can be updated at any time by the client. When these strings change then
asChangeClient() is called for each of the channels maintained by the server for the client.

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’s Guide 103

Chapter 8: Access Security
Access Control: Implementation Overview

The server checks for read access when processing gets and for write access when processing puts. If access is denied
then an exception message is sent to the client.

The server checks for read access when processing requests to register an event callback (monitor) for the client. If there
is read access the server always sends an initial update indicating the current value. If there isn’t read access the server
sends one update indicating no read access and disables subsequent updates.

The server receives asynchronous notification of access rights change via the callback registered with
asRegisterClientCallback() . When a channel’s access rights change the server communicates the current state

to the client library. If read access to a channel is lost and there are events (monitors) registered on the channel then the
server sends an update to the client for each of them indicating no access and disables future updates for each event. If
read access is reestablished to a channel and there are events (monitors) registered on the channel then the server re-
enables updates and sends an initial update message to the client for each of them.

8.7.2 Client Interfaces

Additional details on the channel access client side callable interfaces to access security can be obtained from the
“Channel Access Reference Manual”.

The client library stores and maintains the current state of the access rights for each channel that it has established. The
client library receives asynchronous updates of the current access rights state from the server. It uses this state to check for
read access when processing gets and for write access when processing puts. If a program issues a channel access request
that is inconsistent with the client library’s current knowledge of the access rights state then access is denied and an error
code is returned to the application. The current access rights state as known by the client library can be tested by an
applications program with the C mackss read_access() andca_write_access()

An application program can also receive asynchronous natification of changes to the access rights state by registering a
function to be called back when the client library updates its storage of the access rights state. The application’s call back
function is installed for this purpose by calliog _replace_access_rights_event()

If the access rights state changes in the server after a request is queued in the client library but before the request is
processed by the server then it is possible that the request will fail in the server. Under these circumstances then an
exception will be raised in the client.

The server always sends one update to the client when the event (monitor) is initially registered. If there isn't read access
then the status in the arguments to the application program’s event call back function indicates no read access and the
value in the arguments to the clients event call back is set to zero. If the read access right changes after the event is initially
registered then another update is supplied to the application programs call back function.

8.8 Access Control: Implementation Overview

This chapter provides a few aids for reading the access security code. Incluale file.h describes the control blocks
used by the access security library.

8.8.1 Implementation Overview

The following files form the access security system:

 asLib.h Definitions for the portion of access security that is independent of IOC databases.
» asDbLib.h Definitions for access routines that interface to an IOC database.

» asLib_lex.I Lex andYacc (actually EPICSlex andantelope) are used to parse the access configuration file.
This is thelex input file.

104 EPICS I0OC Application Developer's Guide

Chapter 8: Access Security
Access Control: Implementation Overview

» aslLib.y This is theyacc input file. Note that it includessLibRoutines .c, which do most of the work.

» asLibRoutines.c These are the routines that implement access security. This code has no knowledge of the
database or channel access. It is a general purpose access security implementation.

» asDbLib.c This contains the code for interfacing access security to the |IOC database.

» asCa.c This code contains the channel access client code that implemertdRhaend CALCdefinitions in an
access security database.

» ascheck.c The Unix program which performs a syntax check on a configuration file.

8.8.2 Locking

Because it is possible for multiple tasks to simultaneously modify the access security database it is necessary to provide
locking. Rather than try to provide low level locking, the entire access security database is locked during critical
operations. The only things this should hold up are access initialization, CA searches, CA clears, and diagnostic routines.
It should NEVER cause record processing to wait. In addition CA gets and puts should never be delayed. One exception
exists. If the ASG field of a record is changed the@GhangeGroup is called which locks.

All operations invoked from outside the access security library that cause changes to the internal structures of the access
security database.routines lock.

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 105

Chapter 8: Access Security
Structures

8.9 Structures

UAG
node UAGNAME
name node
list Lser
HAG
node HAGNAME
ASBASE name node
uagList list host
hagList > ASGINP
asgList ASG node
phash node inp
name capvt
inpList pasg
ruleList inpinde
memberLigtT - -
pavalue ASGRULE ASGUAG
inpBad node node
inpChangegd access puag
level
inpUsed > ASGHAG
result node
calc ha
rpcl phag
uaglist
hagList
> ASGCLIENT
ASGMEMBER node
node pasgMember
pasg user
clientList host
asgName userPvt
userPvt pcallback
level
access
106 EPICS I0OC Application Developer's Guide

Chapter 9: 10C Test Facilities

9.1 Overview

This chapter describes a number of IOC test routines that are of interest to both application developers and system
developers. All routines can be executed from the vxWorks shell. The parentheses are optional, but the arguments must be
separated by commas. All character string arguments must be enclosed in *”.

The user should also be aware of the figldIRQ which is present in every database record. If it is HeRUEthen a
message is printed each time its record is processed and a message is printed for each record processed as a result of i
being processed.

9.2 Database List, Get, Put

9.2.1dbl

Database List:
dbl(“<record type>","<filename>","<field list>")
Examples

dbl
dbl(“ai”,0,0)

This command prints the names of records in the run time databagectird type> is not specified, all records are
listed. If <record type> is specified, then only the names of the records of that type are listed.

If <filename> is specified the output is written to the specified file (if the file already exists it is overwritten). If this
argument is 0 then the output is senstdout

If <field list> is given then the values of the fields specified are also printed.

9.2.2 dbgrep

List Record Names That Match a Pattern:
dbgrep(“<pattern>")
Examples

dbgrep(“S0*")
dbgrep(“*gpibAi*")

Lists all record names that match a pattern. The pattern can contain any characters that are legal in record names as well as
“*” which matches 0 or more characters.

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 107

Chapter 9: IOC Test Facilities
Database List, Get, Put

9.2.3 dba

Database Address:
dba(“<record_name.field_name>")
Example

dba(“aitest”)
dba(“aitest.VAL")

This command calldbNameToAddr and then prints the value of each field in th®Addr structure describing the field.
If the field name is not specified th#AL is assumed (the two examples above are equivalent).

9.2.4 dbgf
Get Field:

dbgf(“<record_name.field_name>")
Example:

dbgf(“aitest”)
dbgf)“aitest.VAL")

This performs albNameToAddr and then adbGetField . It prints the field type and value. If the field name is not
specified thetVAL is assumed (the two examples above are equivalent).

9.2.5 dbpf
Put Field:

dbpf(“<record_name.field_name>","<value>")
Example:
dbpf(“aitest”,”5.0")

This command performs@NameToAddr followed by adbPutField anddbgf . If <field_name> is not specified
VAL is assumed.

9.2.6 dbpr

Print Record:

dbpr(“<record_name>" <interest level>)
Example

dbpr(“aitest”,2)

This command prints all fields of the specified record up to and including those with the indicated interest level. Interest
level has one of the following values:

» 0: Fields of interest to an Application developer and that can be changed as a result of record processing.
» 1. Fields of interest to an Application developer and that do not change during record processing.

 2: Fields of major interest to a System developer.

 3: Fields of minor interest to a System developer.

108 EPICS I0OC Application Developer's Guide

Chapter 9: IOC Test Facilities
Breakpoints

* 4: Fields of no interest.

9.2.7 dbtr

Test Record:
dbtr(“<record_name>")

This callsdbNameToAddr, thendbProcess and finallydbpr (interest level 3). Its purpose is to test record processing.

9.2.8 dbnr

Print number of records:
dbnr(<all_recordtypes>)

This command displays the number of records of each type and the total number of recaltdeedbrd_types is
0 then only record types with record instances are displayed otherwise all record types are displayed.

9.3 Breakpoints

A breakpoint facility that allows the user to step through database processing on a per lockset basis. This facility has been
constructed in such a way that the execution of all locksets other than ones with breakpoints will not be interrupted. This
was done by executing the records in the context of a separate task.

The breakpoint facility records all attempts to process records in a lockset containing breakpoints. A record that is
processed through external means, e.g.: a scan task, is called an entrypoint into that lockdbstathe command
described below will list all detected entrypoints to a lockset, and at what rate they have been detected.

9.3.1dbb

Set Breakpoint:
dbb(“<record_name>")

Sets a breakpoint in a record. Automatically spawnshk@Cont , or breakpoint continuation task (one per lockset).
Further record execution in this lockset is run within this task’s context. This task will automatically quit if two conditions
are met, all breakpoints have been removed from records within the lockset, and all breakpoints within the lockset have
been continued.

9.3.2 dbd

Remove Breakpoint:
dbd("<record_name>")

Removes a breakpoint from a record.

9.3.3 dbs
Single Step:

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’s Guide 109

Chapter 9: IOC Test Facilities
Breakpoints

dbs(“<record_name>")

Steps through execution of records within a lockset. If this command is called without an argument, it will automatically
step starting with the last detected breakpoint.

9.3.4 dbc

Continue:
dbc(“<record_name>")

Continues execution until another breakpoint is found. This command may also be called without an argument.

9.3.5 dbp
Print Fields Of Suspended Record:

dbp("<record_name> <interest_level>)

Prints out the fields of the last record whose execution was suspended.

9.3.6 dbap

Auto Print:
dbap(“<record_name>")

Toggles the automatic record printing feature. If this feature is enabled for a given record, it will automatically be printed
after the record is processed.

9.3.7 dbstat

Status:
dbstat

Prints out the status of all locksets that are suspended or contain breakpoints. This lists all the records with breakpoints
set, what records have the autoprint feature sedfi@p), and what entrypoints have been detected. It also displays the
vxWorks task ID of the breakpoint continuation task for the lockset. Here is an example output from this call:

LSet: 00009 Stopped at: so#B: 00001 T: Ox23cafac
Entrypoint: so#C: 00001 C/S: 0.1
Breakpoint: so(ap)

LSet: 00008#B: 00001 T: Ox22fee4dc
Breakpoint: output

The above indicates that two locksets contain breakpoints. One lockset is stopped at secbithé other is not
currently stopped, but contains a breakpoint at recordgut .” “LSet :” is the lockset number that is being considered.
“#B: " is the number of breakpoints set in records within that locksgt."‘is the vxWorks task ID of the continuation
task. ‘C: " is the total number of calls to the entrypoint that have been deted®8: “ is the number of those calls that

have been detected per secdag) indicates that the autoprint feature has been turned on for resmofd “

110 EPICS I0OC Application Developer's Guide

Chapter 9: IOC Test Facilities
Error Logging

9.4 Error Logging

9.4.1 eltc

Display error log messages on console:
eltc(int noYes)

This determines if error messages are displayed on vxWorks console. A value of 0 means no and any other value means
yes.

9.5 Hardware Reports

9.5.1 dbior
I/O Report;

dbior (“<driver_name>" <interest level>)

This command calls the report entry of the indicated drivexdifiver name> is not specified then the report for all
drivers is generated. It also calls the report entry of all device support modules. Interest level is one of the following:

« 0: Print a short report for each module.
» 1. Print additional information.
» 2. Print even more info. The user may be prompted for options.

9.5.2 dbhcr

Hardware Configuration Report:
dbhcr("filename")
This command produces a report of all hardware links. To use it on the 10C, issue the command:

dbhcr > report
or
dbhcr("report™)

The report will probably not be in the sort order desired. The Unix command:
sort report > report.sort

should produce the sort order you desire.

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 111

Chapter 9: IOC Test Facilities
Scan Reports

9.6 Scan Reports

9.6.1 scanppl
Print Periodic Lists:
scanppl(double rate)

This routine prints a list of all records in the periodic scan list of the specified rate. If rate is 0.0 all period lhsisrare s

9.6.2 scanpel

Print Event Lists:
scanpel(int event_number)

This routine prints a list of all records in the event scan list for the specified event nunber. If event_number is 0 all event
scan lists are shown.

9.6.3 scanpiol
Print I/0O Event Lists:
scanpiol

This routine prints a list of all records in the 1/O event scan lists.

9.7 Time Server Report

NOTE: TSreport is implemented bt drvTS.c. It is only available on vxWorks

9.7.1 TSreport

Format:
TSreport
This routine prints out information about the Time server. This includes:

 Slave or Master

 Soft or Hardware synchronized
* Clock and Sync rates

* etc.

112 EPICS I0OC Application Developer's Guide

Chapter 9: IOC Test Facilities
Access Security Commands

9.8 Access Security Commands

9.8.1 asSetSubstitutions

Format:
asSetSubstitutions("substitutions")

Specifies macro substitutions used when access security is initialized.

9.8.2 asSetFilename

Format:
asSetFilename(“<filename>")

This command defines a new access security file.

9.8.3 aslnit

Format:
aslnit

This command reinitializes the access security system. It rereads the access security file in order to create the new access
security database. This command is useful either becauss8stFilename command was used to change the file or
because the file itself was modified. Note that it is also possible to reinitialize the access security via a subroutine record.
See the access security document for details.

9.8.4 asdbdump

Format:
asdbdump

This provides a complete dump of the access security database.

9.8.5 aspuag
Format:
aspuag(“<user access group>")

Print the members of the user access group. If no user access group is specified then the members of all user access
groups are displayed.

9.8.6 asphag

Format:

asphag(“<host access group>")

EPICS Release: R3.14.0alphal
EPICS IOC Application Developer’'s Guide 113

Chapter 9: IOC Test Facilities
Channel Access Reports

Print the members of the host access group. If no host access group is specified then the members of all host access
groups are displayed.

9.8.7 asprules

Format:
asprules(“<access security group>")

Print the rules for the specified access security group or if no group is specified for all groups.

9.8.8 aspmem

Format:
aspmem(“<access security group>", <print clients>)

Print the members (records) that belong to the specified access security group, for all groups if no group is specified. If
<print clients> is (0, 1) then Channel Access clients attached to each member (are not, are) shown.

9.9 Channel Access Reports

9.9.1 ca_channel_status

Format:
ca_channel_status(taskid)

Prints status for each channel in use by specialized vxWorks task.

9.9.2 casr

Channel Access Server Report
casr(<level>)
Level can have one of the following values:

0
Prints server’s protocol version level and a one line summary for each client attached. The summary lines
contain the client’s login name, client’'s host name, client’'s protocol version number, and the number of
channel created within the server by the client.

Level one provides all information in level 0 and adds the task id used by the server for each client, the
client’s IP protocol type, the file number used by the server for the client, the number of seconds elapsed
since the last request was received from the client, the number of seconds elapsed since the last response was
sent to the client, the number of unprocessed request bytes from the client, the number of response bytes
which have not been flushed to the client, the client’'s IP address, the client’s port number, and the client’s
state.

114 EPICS I0OC Application Developer's Guide

Chapter 9: IOC Test Facilities
Interrupt Vectors

Level two provides all information in levels 0 and 1 and adds the number of bytes allocated by each client

and a list of channel names used by each client. Level 2 also provides information about the number of bytes

in the server’s free memory pool, the distribution of entries in the server’s resource hash table, and the list of

IP addresses to which the server is sending beacons. The channel names are shown in the form:
<name>(nrw)

where

n is number of ca_add_events the client has on this channel

ris (-,R) if client (does not, does) have read access to the channel.
w is(-, W) if client (does not, does) have write access to the channel.

9.9.3 dbel

Format:
dbel(“<record_name>")

This routine prints the Channel Access event list for the specified record.

9.9.4 dbcar

Database to Channel Access Report - See “Record Link Reports”

9.10 Interrupt Vectors

9.10.1 veclist

Format:
veclist
NOTE: Only available on vxWorks

Print Interrupt Vector List

9.11 EPICS

9.11.1 epicsPrtEnvParams

Format:
epicsPrtEnvParams

Print Environment Variables

EPICS Release: R3.14.0alphal
EPICS IOC Application Developer’'s Guide 115

Chapter 9: IOC Test Facilities
Database System Test Routines

9.11.2 epicsRelease

Format:
coreRelease

Print release of iocCore.

9.12 Database System Test Routines

These routines are normally only of interest to EPICS system developers NOT to Application Developers.

9.12.1 dbt

Measure Time To Process A Record:
dbt(“<record_name”)

Times the execution of 100 successive processings of reeoodd _name . Note that process passive and forward links
within this record may incur the processing of other records in its lockset. This function is a wrapper around the VxWorks
timexN() function, and directly displays its output. Therefore one must divide the result by 100 to get the execution
time for one processing oécord name .

9.12.2 dbtgf

Test Get Field:
dbtgf(“<record_name.field_name>")
Example:

dbtgf(“aitest”)
dbtgf)“aitest.VAL")

This performs albNameToAddr and then callslbGetField with all possible request types and options. It prints the
results of each call. This routine is of most interest to system developers for testing database access.

9.12.3 dbtpf
Test Put Field:

dbtpf(“<record_name.field_name>","<value>")
Example:
dbtpf(“aitest”,”5.0")

This command performs@NameToAddr, then calldbPutField, followed bydbgf for each possible request type.
This routine is of interest to system developers for testing database access.

9.12.4 dbtpn
Test Put Notify:

116 EPICS I0OC Application Developer's Guide

Chapter 9: IOC Test Facilities
Record Link Reports

dbtpn(“<record_name.field_name>","<value>")
Example:
dbtpn(“aitest”,”5.0")

This command performs @NameToAddr, then callsdbPutNotify ~ and has a callback routine that prints a message
when it is called. This routine is of interest to system developers for testing database access.

9.13 Record Link Reports

9.13.1 dblsr

Lock Set Report:
dblsr(<recordname>,<level>)

This command generates a report showing the lock set to which each record beloagmsidhame is 0 all records are
shown, otherwise only records in the same lock set@sdname are shown.

level can have the following values:

0 - Show lock set information only.
1 - Show each record in the lock set.
2 - Show each record and all database links in the lock set.

9.13.2 dbcar

Database to channel access report
dbcar(<recordname>,<level>)

This command generates a report showing database channel access tedardiame is 0 then information about all
records is shown otherwise only information about the specified record.

level can have the following values:

0 - Show summary information only.
1 - Show summary and each CA link that is not connected.
2 - Show summary and status of each CA link.

9.13.3 dbhcr

Report hardware links. See “Hardware Reports”.

9.14 Old Database Access Testing

These routines are of interest to EPICS system developers. They are used to test the old database access interface, whick
is still used by Channel Access.

EPICS Release: R3.14.0alphal
EPICS IOC Application Developer’'s Guide 117

Chapter 9: IOC Test Facilities
Routines to dump database information

9.14.1 gft
Get Field Test:

oft(“<record_name.field_name>")
Example:

gft(“aitest”)
gft(“aitest.VAL")

This performs alb_name_to_addr and then callslb_get field with all possible request types. It prints the results
of each call. This routine is of interest to system developers for testing database access.

9.14.2 pft

Put Field Test:
pft(“<record_name.field_name>","<value>")
Example:
pft(“aitest”,”5.0")

This command performs db_name_to_addr , db_put_field , db_get field and prints the result for each
possible request type. This routine is of interest to system developers for testing database access.

9.14.3 tpn
Test Put Notify:

tpn(“<record_name.field_name>","<value>")
Example:
tpn(“aitest”,”5.0")

This routine testdbPutNotify via the old database access interface.

9.15 Routines to dump database information

9.15.1 dbDumpPath

Dump Path:
dbDumpPath(pdbbase)

dbDumpPath(pdbbase)

The current path for database includes is displayed.

118 EPICS I0OC Application Developer's Guide

Chapter 9: IOC Test Facilities
Routines to dump database information

9.15.2 dbDumpMenu

Dump Menu:

dbDumpMenu(pdbbase,”<menu>")

dbDumpMenu(pdbbase,’"menuScan”)

If the second argument is 0 then all menus are displayed.

9.15.3 dbDumpRecordType

Dump Record Description:

dbDumpRecordType(pdbbase,"<record type>")

dbDumpRecordType(pdbbase,ai”)

If the second argument is 0 then all descriptions of all records are displayed.

9.15.4 dbDumpFldDes

Dump Field Description:

dbDumpFldDes(pdbbase, ’<record type>","<field name>")

dbDumpFldDes(pdbbase,”ai”,”"VAL”")

If the second argument is O then the field descriptions of all records are displayed. If the third argument is O then the
description of all fields are displayed.

9.15.5 dbDumpDevice

Dump Device Support:
dbDumpDevice(pdbbase,”<record type>")

dbDumpDevice(pdbbase,"ai")

If the second argument is 0 then the device support for all record types is displayed.

9.15.6 dbDumpDriver

Dump Driver Support:
dbDumpDriver(pdbbase)

dbDumpDriver(pdbbase)

EPICS Release: R3.14.0alphal
EPICS IOC Application Developer’'s Guide 119

Chapter 9: IOC Test Facilities
Routines to dump database information

9.15.7 dbDumpRecord

Dump Record Instances:

dbDumpRecord(pdbbase,”<record type>",level)

dbDumpRecords(pdbbase,”ai”)

If the second argument is O then the record instances for all record types is displayed. The third argument determines
which fields are displayed just like for the commabgr.

9.15.8 dbDumpBreaktable

Dump breakpoint table
dbDumpBreaktable(pdbbase,name)

dbDumpBreaktable(pdbbase,"typeKdegF”")

This command dumps a breakpoint table. If the second argument is 0 all breakpoint tables are dumped.

9.15.9 dbPvdDump

Dump the Process variable Directory:

dbPvdDump(pdbbase,verbose)

dbPvdDump(pdbbase,0)

This command shows how many records are mapped to each hash table entry of the process variable directory. If verbose
is not 0 then the command also displays the names which hash to each hash table entry.

120 EPICS I0OC Application Developer's Guide

Chapter 10: I0OC Error Logging

10.1 Overview

Errors detected by an IOC can be divided into classes: Errors related to a particular client and errors not attributable to a
particular client. An example of the first type of error is an illegal Channel Access request. For this type of error, a status
value should be passed back to the client. An example of the second type of error is a device driver detecting a hardware
error. This type of error should be reported to a system wide error handler.

Dividing errors into these two classes is complicated by a number of factors.

* In many cases it is not possible for the routine detecting an error to decide which type of error occurred.

» Normally, only the routine detecting the error knows how to generate a fully descriptive error message. Thus, if a
routine decides that the error belongs to a particular client and merely returns an error status value, the ability to
generate a fully descriptive error message is lost.

« If a routine always generates fully descriptive error messages then a particular client could cause error message
storms.

» While developing a new application the programmer normally prefers fully descriptive error messages. For a
production system, however, the system wide error handler should not normally receive error messages cause by a
particular client.

If used properly, the error handling facilities described in this chapter can process both types of errors.
This chapter describes the following:

» Error Message Generation Routines - Routines which pass messages to the errlog Task.

 errlog Task - A task that displays error messages on the target console and also passes the messages to all
registered system wide error logger.

* status codes - EPICS status codes.
* iocLog- A system wide error logger supplied with base. It writes all messages to a system wide file.

NOTE:recGbl error routines are also provided. They in turn call one of the error message routines.

10.2 Error Message Routines

10.2.1 Basic Routines

int errlogPrintf(const char *pformat, ...);
int errlogVprintf(const char *pformat,va_list pvar);

int errlogMessage(const char *message);

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 121

Chapter 10: IOC Error Logging
Error Message Routines

errlogPrintf and errlogVprintf are likeprintf andvprintf provided by the standard C library, except
that the output is sent to the errlog task. Consult any book that describes the standard C library such as "The C
Programming Language ANSI C Edition" by Kernighan and Ritchie.

errflogMessage sends message to the errlog task

10.2.2 Log with Severity

typedef enum {
errloginfo,errlogMinor,errlogMajor,errlogFatal
lerrlogSevEnum;

int errlogSevPrintf(const errlogSevEnum severity,
const char *pformat, ...);

int errlogSevVprintf(const errlogSevEnum severity,
const char *pformat,va_list pvar);

char *errlogGetSevEnumsString(const errlogSevEnum severity);
void errlogSetSevTolLog(const errlogSevEnum severity);

errlogSevEnum errlogGetSevTolLog(void);

errlogSevPrintf anderrlogSevVprintf are likeerrlogPrintf and errlogVprintf except that they
add the severity to the beginning of the message in the form "sevr=<value>" where value is on of "info, minor, major,
fatal". Also the message is suppressed if severity is less than the current severity to suppress.

errlogGetSevEnumsString gets the string value of severity.

errlogSetSevTolLog sets the severity to logrrlogGetSevToLog gets the current severity to log.

10.2.3 Status Routines

void errMessage(long status, char *message);
void errPrintf(long status, const char *pFileName,
int lineno, const char *pformat, ...);
RoutineerrMessage (actually a macro that caksrPrintf) has the following format:
void errMessage(long status, char *message);
Where status is defined as:

» 0: Find latest vxWorks or Unix error.
» -1: Don't report status.
» Other: See “Return Status Values” above.
errMessage , via a call toerrPrintf , prints the message, the status symbol and string values, and the name of the task

which invokederrMessage . It also prints the name of the source file and the line number from which the call was
issued.

The calling routine is expected to pass a descriptive message to this routine. Many subsystems provide routines built on
top oferrMessage which generate descriptive messages.

122 EPICS I0OC Application Developer's Guide

Chapter 10: I0C Error Logging
errlog Task

An IOC global variableerrVerbose , defined as arexternal in errMdef.h |, specifies verbose messages. If
errVerbose is TRUEthenerrMessage should be called whenever an error is detected even if it is known that the
error belongs to a specific client.éfrVerbose is FALSEthenerrMessage should be called only for errors that are
not caused by a specific client.

RoutineerrPrintf has the following format:

void errPrintf(long status, FILE__, LINE__,
char *fmtstring <argl>, ...);

Where status is defined as:

* 0: Find latest vxWorks or Unix error.
» -1: Don't report status.
e Other: See “Return Status Values”, above.

FILE and LINE are defined as:

e FILE__ As shown ao/ULLf the file name and line number should not be printed.
e LINE__ Asshown

The remaining arguments are just like the arguments to then® routine.errVerbose determines if the filename
and line number are shown.

10.2.4 Obsolete Routines

int epicsPrintf(const char *pformat, ...);
int epicsVprintf(const char *pformat,va_list pvar);

These are macros that call errlogPrintf and errlogVprintf. They are provided for compatibility.

10.3 errlog Task

The error message routines can be called by any non-interrupt level code. These routines merely pass the message to the

errlog Task.

Task errlog manages the messages. Messages are placed in a message queue, which is read by the errlog task. The
message queue uses a fixed block of memory to hold all messages. When the message queue is full additional messages
are rejected but a count of missed messages is kept. The next time the message queue empties an extra message about th

missed messages is generated.

The maximum message size is 256 characters. If a message is longer, the message is truncated and a message explainin
that it was truncated is appended. There is a chance that long messages corrupt memory. This only happens if client code

is defective. Long messages most likely result from "%s" formats with a bad string argument.

The error message routines are partially implemented on the host. The host version just calls fprintf or vfprintf instead of

using a separate task and a message queue. Thus host messages are NOT sent to a system wide error logger.

10.3.1 Add and Remove Log Listener

typedef void(*errlogListener) (const char *message);
void errlogAddListener(errlogListener listener,void *pPrivate);
void errlogRemovelListener(errlogListener listener);

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’s Guide 123

Chapter 10: IOC Error Logging
Status Codes

These routines add/remove a callback that receives each error message. These routines are the interface to the actual
system wide error handlers.

10.3.2 target console routines

int eltc(int yesno); /* error log to console (0 or 1) */
int errloglnit(int bufsize);

eltc determines if errlog task writes message to the console. During error messages storms this command can be used to
suppress console messages. A argument of 0 suppresses the messages and any other value lets the message go to the
console.

errloglnit can be used to initialize the error logging system with a larger buffer. The default is 1280 bytes. An extra
MAX_MESSAGE_SIZE (currently 256) bytes are allocated but never used. This is a small extra protection against long
error messages.

10.4 Status Codes

EPICS defined status values provide the following features:

» Whenever possible, IOC routines return a status value: (0, non-0) niQERKROR

» The include files for each 10C subsystem contain macros defining error status symbols and strings.
* Routines are provided for run time access of the error status symbols and strings.

» A global variableerrVerbose helps code decide if error messages should be generated.

WARNING: During the fall of 1995 a series of tech-talk messages were generated concerning EPICS status values. No
consensus was reached.

Whenever it makes sense, I0C routines return a long word status value encoded similar to the vxWorks error status
encoding. The most significant short word indicates the subsystem module within which the error occurred. The low order
short word is a subsystem status value. In order that status values do not conflict with the vxWorks error status values all
subsystem numbers are greater than 500.

A file epics/share/epicsH/errMdef.h defines each subsystem number. For exampldefise for the database
access routines is:

#define M_dbAccess (501 << 16) \
[*Database Access Routines*/

Directory "epics/share/epicsH " contains aninclude library for every I0C subsystem that returns standard status
values. The status values are encoded with lines of the following format:

#define S_xxxxxxx value /*string value*/
For example:

#define S_dbAccessBadDBR (M_dbAccess|3) \
/*Invalid Database Request*/

For example, whedbGetField detects a bad database request type, it executes the statement;
return(S_dbAccessBadDBR);
The calling routine checks the return status as follows:

status = dbGetField(...);
if(status) {/* Call was not successful */ }

124 EPICS I0OC Application Developer's Guide

Chapter 10: I0C Error Logging
iocLog

10.5 iocLog

This consists of two modules: iocLogServer and iocLogClient. The client code runs on each ioc and listens for the
messages generated by the errlog system. It also reports the messages from vxWorks logMsg.

10.5.1 iocLogServer

This runs on a host. It receives messages for all enabled iocLogClients in the local area network. The messages are written
to a file. Epics base provides a startup file "base/src/util/rc2.logServer”, which is a shell script to start the server. Consult
this script for details.

10.5.2 iocLogClient

This runs on each ioc. It is started by default when ioclnit runs. The global variable iocLogDisable can be used to enable/
disable the messages from being sent to the server. Setting this variable to (0,1) (enables,disables) the messages
generation. If iocLogDisable is set to 1 immediately after iocCore is loaded then iocLogClient will not even initialize
itself.

10.5.3 Initialize Logging

Initialize the logging system. This system trapslajiMsg calls and sends a copy to a Unix file. Note that this can be
disabled by issuing the commaiodLogDisable =1 before issuingoclnit

The following description was supplied by Jeff Hill:

It is possible to configure EPICS so that a log of IOC error messages is stored in a circular ASCII file on a PC or UNIX
workstation. Each entry in the log contains the IOC's DNS name, the date and time when the message was received by the
log server, and the text of the message generated on the 10C.

All messages generated by the EPICS functions epicsPrintf() and errMessage() are placed in the log. Messages generated
by the vxWorks function logMsg() are also placed in the log (logMsg() can be safely called from interrupt level).
Messages generated by printf() do not end up in the log and are instead used primarily by diagnostic functions called from
the vxWorks shell.

To start a log server on a UNIX or PC workstation you must first set the following environment variables and then run the
executable "iocLogServer" on your PC or UNIX workstation.

EPICS_IOC_LOG_FILE_NAME
The name and path to the log file.

EPICS_IOC_LOG_FILE_LIMIT
The maximum size in characters for the log file (after which it becomes a circular file and writes new
messages over old messages at the beginning of the file). If the value is zero then there is no limit on the size
of the log file.

EPICS_IOC_LOG_FILE_COMMAND
A shell command string used to obtain the log file path name during initialization and in response to
SIGHUP. The new path name will replace any path name supplied in EPICS_IOC_LOG_FILE_NAME.
Thus, if EPICS_IOC_LOG_FILE_NAME is
"a/b/c.log" and EPICS_IOC_LOG_FILE_COMMAND returns "A/B" or "A/B/" the log server will be stored
at "A/B/c.log"
If EPICS_IOC_LOG_FILE_COMMAND is empty then this behavior is disabled. This feature was donated
to the collaboration by KECK, and itis used by them for switching to a new directory at a fixed time each
day. This variable is currently used only by the UNIX version of the log server.

EPICS_IOC_LOG_PORT

EPICS Release: R3.14.0alphal
EPICS IOC Application Developer’'s Guide 125

Chapter 10: IOC Error Logging
iocLog

THE TCP/IP port used by the log server.

To configure an IOC so that its messages are placed in the log you must set the environment variable
EPICS_IOC_LOG_INET to the IP address of the host that is running the log server and EPICS_IOC_LOG_PORT to the
TCP/IP port used by the log server.

Defaults for all of the above parameters are specified in the files $(EPICS_BASE)/config/CONFIG_SITE_ENV and
$(EPICS_BASE)/config/CONFIG_ENV.

In base/src/util there is a solaris script for starting the log server. This can be adapted for use on other host architectures

10.5.4 Configuring a Private Log Server

In a testing environment it is desirable to use a private log server. This can be done as follows:

» Add a putenv command to your I0C startup file. For example
Id < iocCore
putenv("EPICS_10C_LOG_INET=XXX.XXX.XXX.XXX")

The inet address is for your host workstation.

» On you host start a version of the log server.

126 EPICS I0OC Application Developer's Guide

Chapter 11: Record Support

11.1 Overview

The purpose of this chapter is to describe record support in sufficient detail such that a C programmer can write new
record support modules. Before attempting to write new support modules, you should carefully study a few of the existing
support modules. If an existing support module is similar to the desired module most of the work will already be done.

From previous chapters, it should be clear that many things happen as a result of record processing. The details of what
happens are dependent on the record type. In order to allow new record types and new device types without impacting the
core 10C system, the concept of record support and device support has been created. For each record type, a record
support module exists. It is responsible for all record specific details. In order to allow a record support module to be
independent of device specific details, the concept of device support has been created.

A record support module consists of a standard set of routines that can be called by database access routines. This set of
routines implements record specific code. Each record type can define a standard set of device support routines specific to
that record type.

By far the most important record support routinepimcess , which dbProcess calls when it wants to process a
record. This routine is responsible for the details of record processing. In many cases it calls a device support I/O routine.
The next section gives an overview of what must be done in order to process a record. Next is a description of the entry
tables that must be provided by record and device support modules. The remaining sections give example record and
device support modules and describe some global routines useful to record support modules.

The record and device support modules are the only modules that are allowed to include the record specific include files as
defined inbase/rec . Thus they are the only routines that access record specific fields without going through database
access.

11.2 Overview of Record Processing

The most important record support routingpiecess . This routine determines what record processing means. Before
the record specificgrocess " routine is called, the following has already been done:

 Decision to process a record.

» Check that record is not active, ipact must be FALSE.
» Check that the record is not disabled.

Theprocess routine, together with its associated device support, is responsible for the following tasks:

» Set record active while it is being processed
Perform I/O (with aid of device support)
Check for record specific alarm conditions
Raise database monitors

» Request processing of forward links

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 127

Chapter 11: Record Support
Record Support and Device Support Entry Tables

A complication of record processing is that some devices are intrinsically asynchronolEWER permissible to wait
for a slow device to complete. Asynchronous records perform the following steps:

1. Initiate the 1/O operation and gect TRUE

2. Determine a method for again calling process when the operation completes
3. Return immediately without completing record processing

4. When process is called after the 1/0 operation complete record processing
5. Setpact FALSE and return

The examples given below show how this can be done.

11.3 Record Support and Device Support Entry Tables

Each record type has an associated set of record support routines. These routines are located via the data structures
defined inepics/share/epicsH/recSup.h . The concept of record support routines isolatesab€ore software

from the details of each record type. Thus new records can be defined and supported without affecting the 10C core
software.

Each record type also has zero or more sets of device support routines. Record types without associated hardware, e.g.
calculation records, normally do not have any associated device support. Record types with associated hardware normally
have a device support module for each device type. The concept of device support isolates IOC core software and even
record support from device specific details.

Corresponding to each record type is a set of record support routines. The set of routines is the same for every record type.
These routines are located via a Record Support Entry Table (RSET), which has the following structure

struct rset { /* record support entry table */
long number; /* number of support routine */
RECSUPFUN report; [* print report */
RECSUPFUN init; /* init support */
RECSUPFUN init_record; /* init record */
RECSUPFUN process; /* process record */
RECSUPFUN special; /* special processing */
RECSUPFUN get_value; /* OBSOLETE: Just leave NULL */
RECSUPFUN cvt_dbaddr; /* cvt dbAddr */
RECSUPFUN get_array_info;
RECSUPFUN put_array_info;
RECSUPFUN get_units;
RECSUPFUN get_precision;
RECSUPFUN get_enum_str; /* get string from enum */
RECSUPFUN get_enum_strs; /* get all enum strings */
RECSUPFUN put_enum_str; /* put enum from string */
RECSUPFUN get_graphic_double;
RECSUPFUN get_control_double;
RECSUPFUN get_alarm_double;

2

Each record support module must define its RSET. The external name must be of the form:
<record_type>RSET

Any routines not needed for the particular record type should be initialized to theN&luie Look at the example below
for details.

128 EPICS I0OC Application Developer's Guide

Chapter 11: Record Support
Example Record Support Module

Device support routines are located via a Device Support Entry Table (DSET), which has the following structure:

struct dset{ /* device support entry table */
long number; /* number of support routines */
DEVSUPFUN report; /* print report */
DEVSUPFUN init; /* init support */
DEVSUPFUN init_record;/* init record instance*/
DEVSUPFUN get_ioint_info; /* get io interrupt info*/
/* other functions are record dependent*/

h

Each device support module must define its associated DSET. The external name must be the same as the name which

appears irdevSup.ascii

Any record support module which has associated device support must also include definitions for accessing its associated
device support modules. The fiettbet ”, which is located irdbCommon contains the address of the DSET. It is given a

value byioclInit

11.4 Example Record Support Module

This section contains the skeleton of a record support package. The record xygedsd the record has the following
fields in addition to thelbCommonfields: VAL, PREC EGUY HOPRLOPR HIHI , LOLQ HIGH, LOWHHSYLLSV, HSVY
LSV, HYST ADEL, MDEL LALM ALST, MLST These fields will have the same meaning as they have faaithecord.
Consult the Record Reference manual for a description.

11.4.1 Declarations

/* Create RSET - Record Support Entry Table*/

#define report NULL

#define initialize NULL

static long init_record();

static long process();

#define special NULL

#define get_value NULL
#define cvt_dbaddr NULL
#define get_array_info NULL
#define put_array_info NULL
static long get_units();

static long get_precision();
#define get_enum_str NULL
#define get_enum_strs NULL
#define put_enum_str NULL
static long get_graphic_double();
static long get_control_double();
static long get_alarm_double();

struct rset xxxRSET={
RSETNUMBER,
report,
initialize,
init_record,

EPICS Release: R3.14.0alphal

EPICS I0C Application Developer’s Guide

129

Chapter 11: Record Support
Example Record Support Module

process,
special,

get_value,
cvt_dbaddr,
get_array_info,
put_array_info,
get_units,
get_precision,
get_enum_str,
get_enum_strs,
put_enum_str,
get_graphic_double,
get_control_double,
get_alarm_double};

/* declarations for associated DSET */
typedef struct xxxdset { /* analog input dset */
long number;
DEVSUPFUN dev_report;
DEVSUPFUN init;
DEVSUPFUN init_record; /* returns: (1,0)=> (failure, success)*/
DEVSUPFUN get _ioint_info;
DEVSUPFUN read_xxx;
Ixxxdset;

/* forward declaration for internal routines*/
static void checkAlarams(xxxRecord *pxxx);
static void monitor(xxxRecord *pxxx);

The above declarations define the Record Support Entry Table (RSET), a template for the associated Device Support
Entry Table (DSET), and forward declarations to private routines.

The RSET must be declared with an external namex®RSET. It defines the record support routines supplied for this
record type. Note that forward declarations are given for all routines supported\id aleclaration for any routine not
supported.

The template for the DSET is declared for use by this module.

11.4.2 init_record

static long init_record(void *precord, int pass)
{
xxxXRecord*pxxx = (xxxRecord *)precord,;
xxxdset *pdset;
long status;

if(pass==0) return(0);

if((pdset = (xxxdset *)(pxxx->dset)) == NULL) {
recGbIRecordError(S_dev_noDSET,pxxx,"xxX: init_record”);
return(S_dev_noDSET);

}

/* must have read_xxx function defined */

if((pdset->number < 5) || (pdset->read_xxx == NULL)) {

130 EPICS I0OC Application Developer's Guide

Chapter 11: Record Support
Example Record Support Module

recGbIRecordError(S_dev_missingSup,pxxx,
"XxX: init_record”);
return(S_dev_missingSup);
}
if(pdset->init_record) {
if((status=(*pdset->init_record)(pxxx))) return(status);

}

return(0);

}

This routine, which is called bipclnit twice for each record of typexx , checks to see if it has a proper set of device
support routines and, if present, callsithie record entry of the DSET.

During the first call tanit_record (pass=0) only initializations relating to this record can be performed. During the
second call (pass=1) initializations that may refer to other records can be performed. Note also that during the second
pass, other records may refer to fields within this record. A good example of where these rules are important is a
waveform record. Th&AL field of a waveform record actually refers to an array. The waveform record support module
must allocate storage for the array. If another record has a database link referring to the walgkdfieid then the

storage must be allocated before the link is resolved. This is accomplished by having the waveform record support
allocate the array during the first pass (pass=0) and having the link reference resolved during the second pass (pass=1).

11.4.3 process

static long process(void *precord)
{
xxxXRecord*pxxx = (xxxRecord *)precord,;
xxxdset *pdset = (xxxdset *)pxxx->dset;
long status;
unsigned char pact=pxxx->pact;

if((pdset==NULL) || (pdset->read_xxx==NULL)) {
[* leave pact true so that dbProcess doesnt call again*/
pxxx->pact=TRUE;
recGblRecordError(S_dev_missingSup,pxxx,”read_xxx");
return(S_dev_missingSup);

}

[* pact must not be set true until read_xxx completes*/
status=(*pdset->read_xxx)(pxxx); /* read the new value */
[* return if beginning of asynch processing*/

if(lpact && pxxx->pact) return(0);

pxxx->pact = TRUE;

recGblGetTimeStamp(pxxx);

/* check for alarms */

alarm(pxxx);

/* check event list */

monitor(pxxx);

[* process the forward scan link record */
recGbIFwdLink(pxxx);

pxxx->pact=FALSE;
return(status);

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 131

Chapter 11: Record Support
Example Record Support Module

}

The record processing routines are the heart of the IOC software. The record specific process routine is called by
dbProcess whenever it decides that a record should be processed. Process decides what record processing really means.
The above is a good example of what should be done. In addition to being calt#iPlycess the process routine may

also be called by asynchronous record completion routines.

The above model supports both synchronous and asynchronous device support routines. For exaatplexx is an
asynchronous routine, the following sequence of events will occur:

» process is called withpact FALSE

» read_xxx is called. Sincpact is FALSEit starts I/O, arranges callback, and gsist TRUE
e read_xxx returns

* becausgact went fromFALSEto TRUEprocess just returns

» Any new call todbProcess is ignored because it finggct TRUE

» Sometime later the callback occurs amodcess is called again.

» read_xxx is called. Sincg@act is TRUEit knows that it is a completion request.
* read_xxx returns

» process completes record processing

* pact is setFALSE

* process returns

At this point the record has been completely processed. The nexptiooess is called everything starts all over from
the beginning.

11.4.4 Miscellaneous Utility Routines
static long get_units(DBADDR *paddr, char *units)

{
xxxRecord *pxxx=(xxxRecord *)paddr->precord;
strncpy(units,pxxx->egu,sizeof(pxxx->egu));
return(0);

}

static long get_graphic_double(DBADDR *paddr,
struct dbr_grDouble *pgd)
{

xxxRecord *pxxx=(xxxRecord *)paddr->precord;
int fieldindex = dbGetFieldIndex(paddr);

if(fieldindex == xxxRecordVAL) {
pgd->upper_disp_limit = pxxx->hopr;
pgd->lower_disp_limit = pxxx->lopr;
} else recGblGetGraphicDouble(paddr,pgd);
return(0);
}
/* similar routines would be provided for */
/* get_control_double and get_alarm_double*/

These are a few examples of various routines supplied by a typical record support package. The functions that must be
performed by the remaining routines are described in the next section.

132 EPICS I0OC Application Developer's Guide

Chapter 11: Record Support
Example Record Support Module

11.4.5 Alarm Processing

static void checkAlarms(xxxRecord *pxxx)
{
double val;
float hyst,lalm,hihi,high,low,lolo;
unsigned short hhsv,llsv,hsv,lIsv;

if(pxxx->udf == TRUE){
recGblSetSevr(pxxx,UDF_ALARM,VALID_ALARM);
return;

}

hihi=pxxx->hihi; lolo=pxxx->lolo;
high=pxxx->high; low=pxxx->low;
hhsv=pxxx->hhsv; llsv=pxxx->lIsv;
hsv=pxxx->hsv; Isv=pxxx->Isv;

val=pxxx->val; hyst=pxxx->hyst; lalm=pxxx->lalm;

/* alarm condition hihi */
if (hhsv && (val >= hihi
[| (lalm==hihi) && (val >= hihi-hyst)))) {
if(recGblSetSevr(pxxx,HIHI_ALARM,pxxx->hhsv)
pxxx->lalm = hihi;
return;
}
/* alarm condition lolo */
if (Ilsv && (val <= lolo
[| ((lalm==lolo) && (val <= lolo+hyst)))) {
if(recGblSetSevr(pxxx,LOLO_ALARM,pxxx->lIsv))
pxxx->lalm = lolo;
return;
}
/* alarm condition high */
if (hsv && (val >= high
[| ((lalm==high) && (val >= high-hyst)))) {
if(recGblSetSevr(pxxx,HIGH_ALARM,pxxx->hsv))
pxxx->lalm = high;
return;
}
/* alarm condition low */
if (Isv && (val <= low
[| (lalm==low) && (val <= low+hyst)))) {
if(recGblSetSevr(pxxx,LOW_ALARM,pxxx->Isv))
pxxx->lalm = low;
return;
}
[*we get here only if val is out of alarm by at least hyst*/
pxxx->lalm=val,
return;

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’s Guide 133

Chapter 11: Record Support
Example Record Support Module

This is a typical set of code for checking alarms conditions for an analog type record. The actual set of code can be very
record specific. Note also that other parts of the system can raise alarms. The algorithm is to always maximize alarm
severity, i.e. the highest severity outstanding alarm will be reported.

The above algorithm also honors a hysteresis factor for the alarm. This is to prevent alarm storms from occurring in the
event that the current value is very near an alarm limit and noise makes it continually cross the limit. It honors the
hysteresis only when the value is going to a lower alarm severity.

11.4.6 Raising Monitors

static void monitor(xxxRecord *pxxx)
{
unsigned short monitor_mask;
float delta;

monitor_mask = recGblResetAlarms(pxxx);
/* check for value change */
delta = pxxx->mlst - pxxx->val;
if(delta<0.0) delta = -delta;
if (delta > pxxx->mdel) {
[* post events for value change */
monitor_mask |= DBE_VALUE;
/* update last value monitored */
pXxx->mlst = pxxx->val;
}
/* check for archive change */
delta = pxxx->alst - pxxx->val;
if(delta<0.0) delta = 0.0;
if (delta > pxxx->adel) {
/* post events on value field for archive change */
monitor_mask |= DBE_LOG;
/* update last archive value monitored */
pxxx->alst = pxxx->val;
}
/* send out monitors connected to the value field */
if (monitor_mask){
db_post_events(pxxx,&pxxx->val,monitor_mask);
}

return;

}

All record types should catecGblResetAlarms as shown. Note thaista andnsev will have the value O after this

routine completes. This is necessary to ensure that alarm checking starts fresh after processing completes. The code also
takes care of raising alarm monitors when a record changes from an alarm state to the no alarm state. It is essential that
record support routines follow the above model or else alarm processing will not follow the rules.

Analog type records should also provide monitor and archive hysteresis fields as shown by this example.
db_post_events results in channel access issuing monitors for clients attached to the record and field. The call is

int db_post_events(void *precord, void *pfield,
unsigned int monitor_mask)

where:

134 EPICS I0OC Application Developer's Guide

Chapter 11: Record Support
Record Support Routines

precord - The address of the record

pfield - The address of the field

monitor_mask - A bit mask that can be any combinations of the following:
DBE_ALARM - A change of alarm state has occured. This is setdfyblResetAlarms
DBE_LOG - Archive change of state.
DBE_VAL - Value change of state

IMPORTANT : The record support module is responsible for callitg post_event for any fields that change as a
result of record processing. Also it shol@T calldb_post_event for fields that do not change.

11.5 Record Support Routines

This section describes the routines defined in the RSET. Any routine that does not apply to a specific record type must be
declaredNULL

11.5.1 Generate Report of Each Field in Record

report(void *precord); /* addr of record*/

This routine is not used by most record types. Any action is record type specific.

11.5.2 Initialize Record Processing
initialize(void);

This routine is called once at I0C initialization time. Any action is record type specific. Most record types do not need
this routine.

11.5.3 Initialize Specific Record

init_record(
void *precord, /* addr of record*/
int pass);

ioclnit calls this routine twice (pass=0 and pass=1) for each database record of the type handled by this routine. It
must perform the following functions:

» Check and/or issue initialization calls for the associated device support routines.

» Perform any record type specific initialization.

 During the first pass it can only perform initializations that affect the record referenced by precord.
 During the second pass it can perform initializations that affect other records.

11.5.4 Process Record

process(void *precord); /* addr of record*/

This routine must follow the guidelines specified previously.

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 135

Chapter 11: Record Support
Record Support Routines

11.5.5 Special Processing

special(
struct dbAddr *paddr,
int after);/*(FALSE,TRUE)=>(Before,After)Processing*/

This routine implements the record type specific special processing for the field referrediibddyr . Note that it is
called twice. Once before any changes are made to the associated field and once afieeckaldn defines special
types. This routine is only called for user special fields, i.e. fields 8RC_xxx >= 100. A field is declared special in the
ASCII record definition file. New values should not by addespeial.h , instead usSPC_MOD

The database access routidieGGetFieldindex can be used to determine which field is being modified.

11.5.6 Get Value

This routine is no longer used. It should be left as a NULL procedure in the record support entry table.

11.5.7 Convert dbAddr Definitions

cvt_dbaddr(struct dbAddr *paddr);

This routine is called bgbNameToAddr if the field has special set equal & C_DBADDRA typical use is when a field
refers to an array. This routine can change any combination ofit#eldr fields: no_elements , field type
field_size , special, and dbr_type . For example if theVAL field of a waveform record is passed to
dbNameToAddr, cvt_dbaddr would changelbAddr so that it refers to the actual array rather ¥MAh.

The database access routidieGGetFieldindex can be used to determine which field is being modified.
NOTES:

e Channel access calls db_name_to_addr, which is part of old database access. Db _name_to addr calls
dbNameToAddr. This is done when a client connects to the record.

* no_elements must be set to the maximum number of elements that will ever be stored in the array.

11.5.8 Get Array Information

get_array_info(
struct dbAddr *paddr,
long *no_elements,
long *offset);

This routine returns the current number of elements and the offset of the first value of the specified array. The offset field
is meaningful if the array is actually a circular buffer.

The database access routidieGGetFieldindex can be used to determine which field is being modified.

11.5.9 Put Array Information

put_array_info(
struct dbAddr *paddr,
long nNew);

This routine is called after new values have been placed in the specified array.

The database access routidieGGetFieldindex can be used to determine which field is being modified.

136 EPICS I0OC Application Developer's Guide

Chapter 11: Record Support
Record Support Routines

11.5.10 Get Units

get_units(
struct dbAddr *paddr,
char *punits);

This routine sets units equal to the engineering units for the field.

The database access routidieGGetFieldindex can be used to determine which field is being modified.

11.5.11 Get Precision

get_precision(
struct dbAddr *paddr,
long *precision);

This routine gets the precision, i.e. number of decimal places, which should be used to convert the field value to an ASCII
string.recGblGetPrec should be called for fields not directly related to the value field.

The database access routidieGGetFieldindex can be used to determine which field is being modified.

11.5.12 Get Enumerated String

get_enum_str(
struct dbAddr *paddr,
char *p);

This routine set¥p equal to the ASCII string for the field value. The field must haveldgie ENUM
Look at the code for thiei ormbbi records for examples.

The database access routidieGGetFieldindex can be used to determine which field is being modified.

11.5.13 Get Strings for Enumerated Field

get_enum_strs(
struct dbAddr *paddr,
struct dbr_enumStrs *p);

This routine gives values to all fields of structdbe_enumStrs
Look at the code for thisi ormbbi records for examples.

The database access routidieGGetFieldindex can be used to determine which field is being modified.

11.5.14 Put Enumerated String

put_enum_str(
struct dbAddr *paddr,
char *p);

Given an ASCII string, this routine updates the database field. It compares the string with the string values associated with
each enumerated value and if it finds a match sets the database field equal to the index of the string which matched.

Look at the code for thiei ormbbi records for examples.

The database access routidieGGetFieldindex can be used to determine which field is being modified.

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 137

Chapter 11: Record Support
Global Record Support Routines

11.5.15 Get Graphic Double Information

get_graphic_double(
struct dbAddr *paddr,
struct dbr_grDouble *p); /* addr of return info*/

This routine fills in the graphics related fields of structde_grDouble . recGblGetGraphicDouble should be
called for fields not directly related to the value field.

The database access routidieGGetFieldindex can be used to determine which field is being modified.

11.5.16 Get Control Double Information

get_control_double(
struct dbAddr *paddr,
struct dbr_ctriDouble *p); /* addr of return info*/

This routine gives values to all fields of structufier _ctriDouble . recGblGetControlDouble should be called
for fields not directly related to the value field.

The database access routidieGGetFieldindex can be used to determine which field is being modified.

11.5.17 Get Alarm Double Information

get_alarm_double(
struct dbAddr *paddr,
struct dbr_alDouble *p); /* addr of return info*/

This routine gives values to all fields of structdbe alDouble

The database access routidieGGetFieldindex can be used to determine which field is being modified.

11.6 Global Record Support Routines

A number of global record support routines are available. These routines are intended for use by the record specific
processing routines but can be called by any routine that wishes to use their services.

The name of each of these routines begins wébGbl .

11.6.1 Alarm Status and Severity

Alarms may be raised in many different places during the course of record processing. The algorithm is to maximize the
alarm severity, i.e. the highest severity outstanding alarm is raised. If more than one alarm of the same severity is found
then the first one is reported. This means that whenever a code fragment wants to raise an alarm, it does so only if the
alarm severity it will declare is greater then that already existing. Four fields (in database common) are used to implement
alarms:sevr , stat , nsev, andnsta . The first two are the status and severity after the record is completely processed.
The last two fieldsrfsta andnsev) are the status and severity values to set during record processing. Two routines are
used for handling alarms. Whenever a routine wants to raise an alarm iteaBblSetSevr . This routine will only
changensta andnsev if it will result in the alarm severity being increased. At the end of processing, the record support
module must caliecGblResetAlarms . This routine setstat =nsta , sevr =nsev, nsta =0, andnsev =0. If stat

or sevr has changed value since the last call it cdlts post_ event for stat andsevr and returns a value of

138 EPICS I0OC Application Developer's Guide

Chapter 11: Record Support
Global Record Support Routines

DBE_ALARMI no change occured it returns 0. Thus after calliegGblResetAlarms everything is ready for raising
alarms the next time the record is processed. The example record support module presented above shows how these
macros are used.

recGblSetSevr(
void *precord,
short nsta,
short nsevr);

Returns: TRUE FALSE) if (did, did not) changasta andnsev .
unsigned short recGblResetAlarms(void *precord);

Returns: Initial value fomonitor_mask

11.6.2 Alarm Acknowledgment

Database common contains two additional alarm related fielckss (Highest severity unacknowledged alarm) and
ackt (does transient alarm need to be acknowledged). These field are handbe@Cbse andrecGblResetAlarms
and are not the responsibility of record support. These fields are intended for use by the alarm handler.

11.6.3 Generate Error: Process Variable Name, Caller, Message

SUGGESTION: usepicsPrintf instead of this for new code.

recGbIDbaddrError(
long status,
struct dbAddr *paddr,
char *pcaller_name); /* calling routine name */

This routine interfaces with the system wide error handling system to display the following information: Status
information, process variable name, calling routine.

11.6.4 Generate Error: Status String, Record Name, Caller

SUGGESTION: usepicsPrintf instead of this for new code.
recGbIRecordError(
long status,
void *precord, /* addr of record */
char *pcaller_name); /* calling routine name */

This routine interfaces with the system wide error handling system to display the following information: Status
information, record name, calling routine.

11.6.5 Generate Error: Record Name, Caller, Record Support Message

SUGGESTION: usepicsPrintf instead of this for new code.
recGbIRecsupError(
long status,
struct dbAddr *paddr,
char *pcaller_name, /* calling routine name */
char *psupport_name); /* support routine name*/

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’s Guide 139

Chapter 11: Record Support
Global Record Support Routines

This routine interfaces with the system wide error handling system to display the following information: Status
information, record name, calling routine, record support entry name.

11.6.6 Get Graphics Double

recGblGetGraphicDouble(
struct dbAddr *paddr,
struct dbr_grDouble *pgd);

This routine can be used by tiget_graphic_double record support routine to obtain graphics values for fields that it
doesn’t know how to set.

11.6.7 Get Control Double

recGblGetControlDouble(
struct dbAddr *paddr,
struct dbr_ctriDouble *pcd);

This routine can be used by tlget_control_double record support routine to obtain control values for fields that it
doesn’t know how to set.

11.6.8 Get Alarm Double

recGblGetAlarmDouble(
struct dbAddr *paddr,
struct dbr_alDouble *pcd);

This routine can be used by tiget_alarm_double record support routine to obtain control values for fields that it
doesn’t know how to set.

11.6.9 Get Precision

recGblGetPrec(
struct dbAddr *paddr,
long *pprecision);

This routine can be used by tiget_precision record support routine to obtain the precision for fields that it doesn’t
know how to set the precision.

11.6.10 Get Time Stamp
recGblGetTimeStamp(void *precord)

This routine gets the current time stamp and puts it in the record

11.6.11 Forward link

recGblFwdLink(
void *precord);

This routine can be used by process to request processing of forward links.

140 EPICS I0OC Application Developer's Guide

Chapter 11: Record Support
Global Record Support Routines

11.6.12 Initialize Constant Link

int recGblInitConstantLink(
struct link *plink,
short dbfType,
void *pdest);

Initialize a constant link. This routine is usually called ibjt_record (or by associated device support) to initialize
the field associated with a constant link. It returns(FALSE, TRUE) if it (did not, did) modify the destination.

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 141

Chapter 11: Record Support
Global Record Support Routines

142 EPICS I0OC Application Developer's Guide

Chapter 12: Device Support

12.1 Overview

In addition to a record support module, each record type can have an arbitrary number of device support modules. The
purpose of device support is to hide hardware specific details from record processing routines. Thus support can be
developed for a new device without changing the record support routines.

A device support routine has knowledge of the record definition. It also knows how to talk to the hardware directly or how
to call a device driver which interfaces to the hardware. Thus device support routines are the interface between hardware
specific fields in a database record and device drivers or the hardware itself.

Database common contains two device related fields:

 dtyp: Device Type.
» dset Address of Device Support Entry Table.

The fielddtyp contains the index of the menu choice as defined by the device ASCII definibolmt ~ uses this field
and the device support structures definedéwSup.h to initialize the fielddset . Thus record support can locate its
associated device support via theet field.

Device support modules can be divided into two basic classes: synchronous and asynchronous. Synchronous device
support is used for hardware that can be accessed without delays for 1/0. Many register based devices are synchronous
devices. Other devices, for example all GPIB devices, can only be accessed via I/O requests that may take large amounts
of time to complete. Such devices must have associated asynchronous device support. Asynchronous device support
makes it more difficult to create databases that have linked records.

If a device can be accessed with a delay of less then a few microseconds then synchronous device support is appropriate.

If a device causes delays of greater than 100 microseconds then asynchronous device support is appropriate. If the delay is

between these values your guess about what to do is as good as mine. Perhaps you should ask the hardware designer why
such a device was created.

If a device takes a long time to accept requests there is another option than asynchronous device support. A driver can be
created that periodically polls all its attached input devices. The device support just returns the latest polled value. For
outputs, device support just notifies the driver that a new value must be written. the driver, during one of its polling phases,
writes the new value. The EPICS Allen Bradley device/driver support is a good example.

12.2 Example Synchronous Device Support Module

[* Create the dset for devAiSoft */
long init_record();
long read_ai();
struct {
long number;
DEVSUPFUN report;
DEVSUPFUN init;

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 143

Chapter 12: Device Support
Example Synchronous Device Support Module

DEVSUPFUN init_record;

DEVSUPFUN get _ioint_info;

DEVSUPFUN read_ai;

DEVSUPFUN special_linconv;
}devAiSoft={

6,

NULL,

NULL,

init_record,

NULL,

read_ai,

NULL};

static long init_record(void *precord)

{
aiRecord *pai = (aiRecord *)precord;
long status;

/* ai.inp must be a CONSTANT, PV_LINK, DB_LINK or CA_LINK*/
switch (pai->inp.type) {
case (CONSTANT) :
recGblInitConstantLink(&pai->inp,
DBF_DOUBLE,&pai->val);
break;
case (PV_LINK):
case (DB_LINK) :
case (CA_LINK):
break;
default :
recGblRecordError(S_db_badField, (void *)pai,
"devAiSoft (init_record) lllegal INP field”);
return(S_db_badField);
}
/* Make sure record processing routine does not perform any conversion*/
pai->linr=0;
return(0);

}

static long read_ai(void *precord)

{
aiRecord*pai =(aiRecord *)precord;
long status;

status=dbGetGetLink(&(pai->inp.value.db_link),
(void *)pai,DBR_DOUBLE,&(pai->val),0,1);

if(status) return(status);

return(2); /*don’t convert*/

144 EPICS I0OC Application Developer's Guide

Chapter 12: Device Support
Example Asynchronous Device Support Module

The example iglevAiSoft , which supports soft analog inputs. TINP field can be a constant or a database link or a
channel access link. Only two routines are provided (the rest are debdleMdd. Theinit_record routine first checks
that the link type is valid. If the link is a constant it initializ&8AL If the link is a Process Variable link it calls
dbCaGetLink to turnitinto a Channel Access link. Thead_ai routine obtains an input value if the link is a database
or Channel Access link, otherwise it doesn’t have to do anything.

12.3 Example Asynchronous Device Support Module

This example shows how to write an asynchronous device support routine. It does the following sequence of operations:

1. When first calleghact is FALSE It arranges for a callbackriyCallback) routine to be called after a number of
seconds specified by théAL field. callbackRequest is an EPICS supplied routine. The watchdog timer
routines are supplied by vxWorks.

2. It prints a message stating that processing has starteghaatfBRUE , and returns. The record processing routine
returns without completing processing.

3. When the specified time elapsewyCallback is called. It locks the record, caljsrocess , and unlocks the
record. It calls the process entry of the record support module, which it locates viethefield in dbCommon
directly rather thabProcess . dbProcess would not callprocess becausgact is TRUE

4. Whenprocess executes, it again caltead_ai . This timepact is TRUE

5. read_ai prints a message stating that record processing is complete and returns a status of 2. Normally a value of
0 would be returned. The value 2 tells the record support routine not to attempt any conversions. This is a

convention (a bad convention!) used by the analog input record.
6. Whenread_ai returns the record processing routine completes record processing.

At this point the record has been completely processed. The next time process is called everything starts all over.

/* Create the dset for devAiTestAsyn */
long init_record();
long read_ai();
struct {
long number;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;
DEVSUPFUN get ioint_info;
DEVSUPFUN read_ai;
DEVSUPFUN special_linconv;
} devAiTestAsyn={
6,
NULL,
NULL,
init_record,
NULL,
read_ai,
NULL};

/* control block for callback*/

typedef struct myCallback {
CALLBACK callback;
sruct dboCommon *precord;
WDOG_ID wd_id;

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 145

Chapter 12: Device Support
Example Asynchronous Device Support Module

}myCallback;

static void myCallback(CALLBACK *pcallback)
{

dbCommon *precord;

struct rset*prset;

callbackGetUser(precord,pcallback);
prset = (struct rset *)precord->rset;
dbScanLock(precord);
*(prset->process)(precord);
dbScanUnlock(precord);

static long init_record(void *precord)

{
aiRecord *pai = (aiRecord *)precord;
myCallback *pcallback;

/* ai.inp must be a CONSTANT*/

switch (pai->inp.type) {

case (CONSTANT) :
pcallback = (myCallback *)(calloc(1,sizeof(myCallback)));
pai->dpvt = (void *)pcallback;
callbackSetCallback(myCallback, &pcallback->callback);
callbackSetUser(precord, &pcallback->callback);
pcallback->precord = (struct dbCommon *)pai;
pcallback->wd_id = wdCreate();
pai->val = pai->inp.value.value;
pai->udf = FALSE;
break;

default :
recGblRecordError(S_db_badField, (void *)pai,

"devAiTestAsyn (init_record) lllegal INP field”);

return(S_db_badField);

}

return(0);

}

static long read_ai(void *precord)

{
aiRecord *pai = (aiRecord *)precord;;
struct callback *pcallback=(struct callback *)(pai->dpvt);
int wait_time;

[* ai.inp must be a CONSTANT*/
switch (pai->inp.type) {
case (CONSTANT) :
if(pai->pact) {
printf("%s Completed\n”,pai->name);
return(2); /* don‘t convert*/
}else {

146 EPICS I0OC Application Developer's Guide

Chapter 12: Device Support
Device Support Routines

wait_time = (int)(pai->val * vxTicksPerSecond);

if(wait_time<=0) return(0);

callbackSetPriority(pai->prio,&pcallback->callback);

printf("%s Starting asynchronous processing\n”,
pai->name);

wdStart(pcallback->wd_id,wait_time,
(FUNCPTR)callbackRequest,
(int)&pcallback->callback);

pai->pact = TRUE;

return(0);

default :
if(recGblSetSevr(pai,SOFT_ALARM,VALID_ALARM)) {
if(pai->stat'=SOFT_ALARM) {
recGblRecordError(S_db_badField, (void *)pai,
"devAiTestAsyn (read_ai) lllegal INP field”);

}
}

return(0);

12.4 Device Support Routines

This section describes the routines defined in the DSET. Any routine that does not apply to a specific record type must be
declaredNULL

12.4.1 Generate Device Report

report(
int interest);

This routine is responsible for reporting all I/O cards it has foundhtHrest is (0,1) then generate a (short, long)
report. If a device support module is using a driver, it normally does not have to implement this routine because the driver
generates the report.

12.4.2 Initialize Record Processing
init(
int after);

This routine is called twice at IOC initialization time. Any action is device specific. This routine is called twice: once
before any database records are initialized and once after all records are initialized but before the scan tasks are started.
after has the value (0,1) (before, after) record initialization.

12.4.3 Initialize Specific Record

init_record(
void *precord); /* addr of record*/

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 147

Chapter 12: Device Support
Device Support Routines

The record supponit_record routine calls this routine.

12.4.4 Get I/O Interrupt Information

get_ioint_info(
int cmd,
struct dbCommon *precord,
IOSCANPVT *ppvt);

This is called by the I/O interrupt scan taskcthdis (0,1) then this routine is being called when the associated record is
being (placed in, taken out of) an I/O scan list. See the chapter on scanning for details.

It should be noted that a previous type of I/O event scanning is still supported. It is not described in this document

because, hopefully, it will go away in the near future. When it calls this routine the arguments have completely different
meanings.

12.4.5 Other Device Support Routines

All other device support routines are record type specific.

148 EPICS I0OC Application Developer's Guide

Chapter 13: Driver Support

13.1 Overview

It is not necessary to create a driver support module in order to interface EPICS to hardware. For simple hardware device
support is sufficient. At the present time most hardware support has both. The reason for this is historical. Before EPICS
there was GTACS. During the change from GTACS to EPICS, record support was changed drastically. In order to
preserve all existing hardware support the GTACS drivers were used without change. The device support layer was
created just to shield the existing drivers form the record support changes.

Since EPICS now has both device and driver support the question arises: When do | need driver support and when don'’t 1?
Lets give a few reasons why drivers should be created.

» The hardware is actually a subnet, e.g. GPIB. In this case a driver should be provided for accessing the subnet.
There is no reason to make the driver aware of EPICS except possibly for issuing error messages.

» The hardware is complicated. In this case supplying driver support helps modularized the software. The Allen
Bradley driver, which is also an example of supporting a subnet, is a good example.

« An existing driver, maintained by others, is available. | don't know of any examples.

» The driver should be general purpose, i.e. not tied to EPICS. The CAMAC driver is a good example. It is used by
other systems, such as CODA.

The only thing needed to interface a driver to EPICS is to provide a driver support module, which can be layered on top of
an existing driver, and provide a database definition for the driver. The driver support module is described in the next
section. The database definition is described in chapter “Database Definition”.

13.2 Device Drivers

Device drivers are modules that interface directly with the hardware. They are provided to isolate device support routines
from details of how to interface to the hardware. Device drivers have no knowledge of the internals of database records.
Thus there is no necessary correspondence between record types and device drivers. For example the Allen Bradley driver
provides support for many different types of signals including analog inputs, analog outputs, binary inputs, and binary
outputs.

In general only device support routines know how to call device drivers. Since device support varies widely from device to
device, the set of routines provided by a device driver is almost completely driver dependent. The only requirement is that
routinesreport andinit must be provided. Device support routines must, of course, know what routines are provided
by a driver.

File drvSup.h describes the format of a driver support entry table. The driver support module must supply a driver entry
table. An example definition is:

LOCAL long report();
LOCAL long init();
struct {

long number;

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 149

Chapter 13: Driver Support
Device Drivers

DRVSUPFUN report;
DRVSUPFUN init;
} drvAb={
21
report,
init
h
The above example is for the Allen Bradley driver. It has an associated ascii definition of:
driver(drvAb)

Thus it is seen that the driver support module should supply two EPICS callable rontinesidreport

13.2.0.1 init

This routine, which has no arguments, is calledibginit . The driver is expected to look for and initialize the
hardware it supports. As an example the init routine for Allen Bradley is:

LOCAL long init()
return(ab_driver_init());
}
13.2.0.2 report

The report routine is called by thabior , an 10C test routine. It is responsible for producing a report describing the
hardware it found at init time. It is passed one argument, level, which is a hint about how much information to display. An
example, taken from Allen Bradley, is:

LOCAL long report(int level)

{
return(ab_io_report(level));
}
Guidelines for level are as follows:
Level=0 Display a one line summary for each device
Level=1 Display more information
Level=2 Display a lot of information. It is even permissible to

prompt for what is wanted.

13.2.0.3 Hardware Configuration
Hardware configuration includes the following:

* VME/VXI address space
* VME Interrupt Vectors and levels
» Device Specific Information
The information contained in hardware links supplies some but not all configuration information. In particular it does not

define the VME/VXI addresses and interrupt vectors. This additional information is what is meant by hardware
configuration in this chapter.

The problem of defining hardware configuration information is an unsolved problem for EPICS. At one time
configuration information was defined imodule_types .h Many existing device/driver support modules still uses this
method. It shouldNOT be used for any new support for the following reasons:

» There is no way to manage this file for the entire EPICS community.

150 EPICS I0OC Application Developer's Guide

Chapter 13: Driver Support
Device Drivers

« It does not allow arbitrary configuration information.
* Itis hard for users to determine what the configuration information is.

The fact that it is now easy to include ASCII definitions for only the device/driver support used in each IOC makes the
configuration problem much more manageable than previously. Previously if you wanted to support a new VME modules
it was necessary to pick addresses that nothingadule_types .h was using. Now you only have to check modules

you are actually using.

Since there are no EPICS defined rules for hardware configuration, the following minimal guidelines should be used:

* Never use define to specify things like VME addresses. Instead use variables and assign default values. Allow
the default values to be changed before ioclnit is executed. The best way is to supply a global routine that can be
invoked from the 10C startup file. Note that all arguments to such routines should be one of the following:

int

char *
double

« Call the routines described in chapter “Device Support Library” whenever possible.

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 151

Chapter 13: Driver Support
Device Drivers

152 EPICS I0OC Application Developer's Guide

Chapter 14: Static Database Access

14.1 Overview

An 10C database is created on a Unix system via a Database Configuration Tool and stored in a Unix file. EPICS provides
two sets of database access routines: Static Database Access and Runtime Database Access. Static database access can
used on Unix or IOC database files. Runtime database requires an initialized IOC databases. Static database access is
described in this chapter and runtime database access in the next chapter.

Static database access provides a simplified interface to a database, i.e. much of the complexity iBREdAENANd
DBF_DEVICEfields are accessed via a common type calléd MENLA set of routines are provided to simplify access

to link fields. All fields can be accessed as character strings. This interface is called static database access because it can
be used to access an uninitialized, as well as an initialized database.

Before accessing database records, the files describing menus, record types, and devices must be read via
dbReadDatabase or dbReadDatabaseFP . These routines, which are also used to load record instances, can be
called multiple times.

Database Configuration Tools (DCTs) should manipulate an EPICS database only via the static database access interface.
An I0C database is created on a Unix system via a database configuration tool and stored in a Unix file with a file
extension of "db”. Three routinesdbReadDatabase, dbReadDatabaseFP anddbWriteRecord) access a Unix
database file. These routines read/write a database file to/from a memory resident EPICS database. All other access
routines manipulate the memory resident database.

An include file dbStaticLib.h contains all the definitions needed to use the static database access library. Two
structures DPBBASEand DBENTRY are used to access a database. The fields in these structures should not be accessed
directly. They are used by the static database access library to keep state information for the caller.

14.2 Definitions

14.2.1 DBBASE

Multiple memory resident databases can be accessed simultaneously. The user must provide definitions in the form:
DBBASE *pdbbase;

14.2.2 DBENTRY

A typical declaration for a database entry structure is:

DBENTRY *pdbentry;
pdbentry=dbAllocEntry(pdbbase);

Most static access to a database is WBENTRYtructure. As manlPBENTRYsas desired can be allocated.

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 153

Chapter 14: Static Database Access
Allocating and Freeing DBBASE

The user should NEVER access the fieldD&ENTRMirectly. They are meant to be used by the static database access
library.

Most static access routines accept an argument which contains the addr&8EN&RYEach routine uses this structure
to locate the information it needs and gives values to as many fields in this structure as possible. All other fields are set to
NULL

14.2.3 Field Types

Each database field has a type as defined in the next chapter. For static database access a new and simpler set of field types
are defined. In addition, at runtime, a database field can be an array. With static database access, however, all fields are
scalars. Static database access field types are called DCT field types.

The DCT field types are:

* DCT_STRING: Character string.
* DCT_INTEGER: Integer value
* DCT_REAL : Floating point number
 DCT_MENU: A set of choice strings
« DCT_MENUFORM : A set of choice strings with associated form.
* DCT_INLINK : Input Link
 DCT_OUTLINK : Output Link
 DCT_FWDLINK : Forward Link
» DCT_NOACCESS A private field for use by record access routines
A DCT_STRINGHeld contains the address oNULL terminated string. The field typ&CT_INTEGERandDCT_REAL

are used for numeric fields. A field that has any of these types can be accessedii@¢t@tring , dbPutString
dbVerify , anddbGetRange routines.

The field typeDCT_MENUWas an associated set of strings defining the choices. Routines are available for accessing menu
fields. A menu field can also be accessed via db&etString , dbPutString , dbVerify , and dbGetRange
routines.

The field typeDCT_MENUFORBMIike DCT_MENWut in addition the field has an associated link field. The information
for the link field can be entered via a set of form manipulation fields.

DCT_INLINK (input), DCT_OUTLINK(output), anddCT_FWDLINKforward) specify that the field is a link, which has
an associated set of static access routines described in the next subsection. A field that has any of these types can also be
accessed via th#bGetString , dbPutString , dbVerify , anddbGetRange routines.

14.3 Allocating and Freeing DBBASE

14.3.1 dbAllocBase
DBBASE *dbAllocBase(void);
This routine allocates and initializes a DBBASE structure. It does not return if it is unable to allocate storage.

dbAllocBase allocates and initializes a DBBASE structure. Normally an application does not need to call
dbAllocBase because a call talbReadDatabase or dbReadDatabaseFP automatically calls this routine if
pdbbase is null. Thus the user only has to supply code like the following:

154 EPICS I0OC Application Developer's Guide

Chapter 14: Static Database Access
DBENTRY Routines

DBBASE *pdbbase=0;

status = dbReadDatabase(&pdbbase,"sample.db",

"<path>","<macro substitutions>");

The static database access library allows applications to work with multiple databases, each referenced via a different
(DBBASE *) pointer. Such applications may find it necessary tadbdlllocBase directly.

dbAllocBase does not return if it is unable to allocate storage.

14.3.2 dbFreeBase
void dbFreeBase(DBBASE *pdbbase);

dbFreeBase frees the entire database referencediypase including the DBBASE structure itself.

14.4 DBENTRY Routines

14.4.1 Alloc/Free DBENTRY

DBENTRY *dbAllocEntry(DBBASE *pdbbase);
void dbFreeEntry(DBENTRY *pdbentry);

These routines allocate, initialize, and flBBENTRYstructures. The user can allocate and BBENTRYstructures as
necessary. EadbBENTRYs, however, tied to a particular database.

dbAllocEntry anddbFreeEntry act as a pair, i.e. the user catlbAllocEntry to create a new DBENTRY and
callsdbFreeEntry when done.

14.4.2 dbinitEntry dbFinishEntry

void dblinitEntry(DBBASE *pdbbase,DBENTRY *pdbentry);
void dbFinishEntry(DBENTRY *pdbentry);

The routinegblnitEntry anddbFinishEntry are provided in case the user wants to allocddB&NTRstructure
on the stack. Note that the caller MUST calbFinishEntry before returning from the routine that calls
dbinitEntry . An example of how to use these routines is:

int xxx(DBBASE *pdbbase)

{
DBENTRY dbentry;

DBENTRY *pdbentry = &dbentry;
dblinitEntry(pdbbase,pdbentry);

dbFinishEntry(pdbentry);

14.4.3 dbCopyEntry

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 155

Chapter 14: Static Database Access
Read and Write Database

dbCopyEntry
Contents

DBENTRY *dbCopyEntry(DBENTRY *pdbentry);
void dbCopyEntryContents(DBENTRY *pfrom,DBENTRY *pto);

The routine $CopyEntry allocates a new entry, via a call divAllocEntry , copies the information from the original
entry, and returns the result. The caller must free the entrgbii@eEntry when finished with the DBENTRY.

The routinedbCopyEntryContents copies the contents of pfrom to pto. Code should never perform structure copies.

14.5 Read and Write Database

14.5.1 Read Database File

long dbReadDatabase(DBBASE **ppdbbase,const char *filename,
char *path, char *substitutions);

long dbReadDatabaseFP(DBBASE **ppdbbase,FILE *fp,
char *path, char *substitutions);

long dbPath(DBBASE *pdbbase,const char *path);

long dbAddPath(DBBASE *pdbbase,const char *path);

dbReadDatabase anddbReadDatabaseFP both read a file containing database definitions as described in chapter
“Database Definitions”. If ppdbbase is NULL, dbAllocBase is automatically invoked and the return address
assigned to pdbbase . The only difference between the two routines is that one accepts a file name and the other a "FILE
*"'_Any combination of these routines can be called multiple times. Each adds definitions with the rules described in
chapter “Database Definitions”.

The routineglbPath anddbAddPath specify paths for use by include statements in database definition files. These are
not normally called by user code.

14.5.2 Write Database Definitons

long dbWriteMenu(DBBASE *pdbbase,char *filename,
char *menuName);
long dbWriteMenuFP(DBBASE *pdbbase,FILE *fp,char *menuName);
long dbWriteRecordType(DBBASE *pdbbase,char *filename,
char *recordTypeName);
long dbWriteRecordTypeFP(DBBASE *pdbbase,FILE *fp,
char *recordTypeName);
long dbWriteDevice(DBBASE *pdbbase,char *filename);
long dbWriteDeviceFP(DBBASE *pdbbase,FILE *fp)
long dbWriteDriver(DBBASE *pdbbase,char *filename);
long dbWriteDriverFP(DBBASE *pdbbase,FILE *fp);
long dbWriteBreaktable(DBBASE *pdbbase,
const char *filename);
long dbWriteBreaktableFP(DBBASE *pdbbase,FILE *fp);

156 EPICS I0OC Application Developer's Guide

Chapter 14: Static Database Access
Manipulating Record Types

Each of these routines writes files in the same format accepteltRgadDatabase anddbReadDatabaseFP . Two
versions of each type are provided. The only difference is that one accepts a flename and theFdtler-a Thus only
one of each type has to be described.

dbWriteMenu writes the description of the specified menu ameéhuNameis NULL, the descriptions of all menus.

dbWriteRecordType writes the description of the specified record type omeifordTypeName is NULL, the
descriptions of all record types.

dbWriteDevice writes the description of all devices to stdout.

dbWriteDriver writes the description of all drivers to stdout.

14.5.3 Write Record Instances

long dbWriteRecord(DBBASE *pdbbase,char * file,
char *precordTypeName,int level);

long dbWriteRecordFP(DBBASE *pdbbase,FILE *fp,
char *precordTypeName,int level);

Each of these routines writes files in the same format accepteltRgadDatabase anddbReadDatabaseFP . Two
versions of each type are provided. The only difference is that one accepts a filename and theFittera Thus only
one of each type has to be described.

dbWriteRecord writes record instances. frecordTypeName is NULL, then the record instances for all record
types are written, otherwise only the records for the specified type are weitedn. has the following meaning:

» 0 - Write only prompt fields that are different than the default value.
« 1 - Write only the fields which are prompt fields.
» 2 - Write the values of all fields.

14.6 Manipulating Record Types

14.6.1 Get Number of Record Types
int dbGetNRecordTypes(DBENTRY *pdbentry);

This routine returns the number of record types in the database.

14.6.2 Locate Record Type

long dbFindRecordType(DBENTRY *pdbentry,
char *recordTypeName);

long dbFirstRecordType(DBENTRY *pdbentry);

long dbNextRecordType(DBENTRY *pdbentry);

dbFindRecordType locates a particular record typabFirstRecordType locates the first, in alphabetical order,
record type. Given that DBENTRY points to a particular record tyis®extRecordType locates the next record type.
Each routine returns 0 for success and a non zero status value for failure. A typical code segment using these routines is:

status = dbFirstRecordType(pdbentry);
while(!status) {

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 157

Chapter 14: Static Database Access
Manipulating Field Descriptions

/*Do something*/
status = dbNextRecordType(pdbentry)
}

14.6.3 Get Record Type Name
char *dbGetRecordTypeName(DBENTRY *pdbentry);

This routine returns the name of the record type that DBENTRY currently references. This routine should only be called
after a successful call tdbFindRecordType , dbFirstRecordType , or dbNextRecordType . It returns NULL if
DBENTRY does not point to a record description.

14.7 Manipulating Field Descriptions

The routines described in this section all assume that DBENTRY references a record type, i.e. that
dbFindRecordType , dbFirstRecordType , ordbNextRecordType has returned success or that a record instance
has been successfully located.

14.7.1 Get Number of Fields
int dbGetNFields(DBENTRY *pdbentry,int dctonly);

Returns the number of fields for the record instance that DBENTRY currently references.

14.7.2 Locate Field

long dbFirstField(DBENTRY *pdbentry,int dctonly);
long dbNextField(DBENTRY *pdbentry,int dctonly);

These routines are used to locate fields. If any of these routines returns success, then DBENTRY references that field
description.

14.7.3 Get Field Type
int dbGetFieldType(DBENTRY *pdbentry);

This routine returns the integer value for a DCT field type, see Section 14.2.3 on page 154, for a description of the field
types.

14.7.4 Get Field Name
char *dbGetFieldName(DBENTRY *pdbentry);

This routine returns the name of the field that DBENTRY currently references. It returns NULL if DBENTRY does not
point to a field.

158 EPICS I0OC Application Developer's Guide

Chapter 14: Static Database Access
Manipulating Record Attributes

14.7.5 Get Default Value

char *dbGetDefault(DBENTRY *pdbentry);

This routine returns the default value for the field that DBENTRY currently references. It returns NULL if DBENTRY
does not point to a field or if the default value is NULL.

14.7.6 Get Field Prompt

char *dbGetPrompt(DBENTRY *pdbentry);
int dbGetPromptGroup(DBENTRY *pdbentry);

ThedbGetPrompt routine returns the character string prompt value, which describes thedildtPromptGroup
returns the field group as described in guigroup.h.

14.8 Manipulating Record Attributes

A record attribute is a "psuedo” field definition attached to a record type. If a attribute value is assigned to a psuedo field
name then all record instances of that record type appear to have that field with the defined value. All attribute fields are
DCT_STRING fields.

Two field attributes are automatically created: RTYP and VERS. RTYP is set equal to ,the record type name. VERS is
initialized to the value "none specified" but can be changed by record support.

14.8.1 dbPutRecord
Attribute

long dbPutRecordAttribute(DBENTRY *pdbentry,
char *name,char*value)

This creates or modifies attributame with value .

14.8.2 dbGetRecord
Attribute

long dbGetRecordAttribute(DBENTRY *pdbentry,char *name);

14.9 Manipulating Record Instances

With the exception of dbFindRecord, each of the routines described in this section require that DBENTRY references a
valid record type, i.e. thadbFindRecordType , dbFirstRecordType , or dbNextRecordType has been called
and returned success.

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 159

Chapter 14: Static Database Access
Manipulating Record Instances

14.9.1 Get Number of Records
int dbGetNRecords(DBENTRY *pdbentry);

Returns the number of record instances for the record type that DBENTRY currently references.

14.9.2 Locate Record

long dbFindRecord(DBENTRY *pdbentry,char *precordName);
long dbFirstRecord(DBENTRY *pdbentry);
long dbNextRecord(DBENTRY *pdbentry);

These routines are used to locate record instances. If any of these routines returns success, then DBENTRY references the
record.dbFindRecord can be called without DBENTRY referencing a valid record tygleFirstRecord only

works if DBENTRY references a record type. THeDumpRecords example given at the beginning of this chapter

shows how these routines can be used.

dbFindRecord also callsdbFindField if the record name includes a field name, i.e. it ends ¥XKX. The routine
dbFoundField returns TRUE FALSE) if the field (was, was not) found. If it was not found, théioFindField must
be called before individual fields can be used.

14.9.3 Get Record Name
char *dbGetRecordName(DBENTRY *pdbentry);

This routine only works properly if called aftelbbFindRecord , dbFirstRecord , or dobNextRecord has returned
success.

14.9.4 Create/Delete/Free Record

long dbCreateRecord(DBENTRY *pdbentry,char *precordName);
long dbDeleteRecord(DBENTRY *pdbentry);
long dbFreeRecords(DBBASE *pdbbase);

dbCreateRecord , which assumes thddBENTRYreferences a valid record type, creates a new record instance and
initializes it as specified by the record description. If it returns successDBENTRYeferences the record just created.
dbDeleteRecord deletes a single record instanai#dFreeRecords deletes all record instances.

14.9.5 Copy Record

long dbCopyRecord(DBENTRY *pdbentry, char *newRecordName
int overWriteOK)

This routine copies the record instance currently referencddBENTRYThus it creates and new record with the name
newRecordName that is of the same type as the original record and copies the original records field values to the new
record. IfnewRecordName already exists andverWriteOK is true, then the originaltewRecordName is deleted

and recreated. HbCopyRecord completes successfully, DBENTRY references the new record.

14.9.6 Rename Record
long dbRenameRecord(DBENTRY *pdbentry, char *newname)

160 EPICS I0OC Application Developer's Guide

Chapter 14: Static Database Access
Manipulating Menu Fields

This routine renames the record instance currently reference@ByNTRY If dbRenameRecord completes
successfully, DBENTRY references the renamed record.

14.9.7 Record Visibility

These routines are for use by graphical configuration tools.

long dbVisibleRecord(DBENTRY *pdbentry);
long dblinvisibleRecord(DBENTRY *pdbentry);
int dblsVisibleRecord(DBENTRY *pdbentry);

dbVisibleRecord sets a record to be Vvisible.dblnvisibleRecord sets a record invisible.
dblsVisibleRecord returns TRUE if a record is visible and FALSE otherwise.

14.9.8 Find Field

long dbFindField(DBENTRY *pdbentry,char *pfieldName);
int dbFoundField(DBENTRY *pdbentry);

Given that a record instance has been locatikindField finds the specified field. If it returns success, then
DBENTRYeferences that fielddbFoundField returns EFALSE TRURB if (no field instance is currently available, a
field instance is available).

14.9.9 Get/Put Field Values

char *dbGetString(DBENTRY *pdbentry);

long dbPutString(DBENTRY *pdbentry,char *pstring);
char *dbVerify(DBENTRY *pdbentry,char *pstring);
char *dbGetRange(DBENTRY *pdbentry);

int dblsDefaultValue(DBENTRY *pdbentry);

These routines are used to get or change field values. They work on all the database field typd3@KcR@ACCESS

but shouldNOT be used to prompt the user for information RET_MENIDCT MENUFORBF DCT_LINK_xxx fields.
dbVerify returns NULL, a message) if the string is (valid, invalid). Please note that the strings returned are volatile, i.e.
the next call to a routines that returns a string will overwrite the value returned by a previous call. Thus it is the caller’s
responsibility to copy the strings if the value must be kept.

DCT_MENUDCT_MENUFORMADCT_LINK xxx fields can be manipulated via routines described in the following
sections. If, howevedbGetString and dbPutString are used, they do work correctly. For these field types
dbGetString anddbPutString are intended to be used only for creating and restoring versions of a database.

14.10 Manipulating Menu Fields

These routines should only be used €T _MENUWNnd DCT_MENUFORfi#lds. Thus they should only be called if
dbFindField , dbFirstField , or dbNextField has returned success and the field typeDIST_MENUor
DCT_MENUFORM

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 161

Chapter 14: Static Database Access
Manipulating Link Fields

14.10.1 Get Number of Menu Choices
int dbGetNMenuChoices(DBENTRY *pdbentry);

This routine returns the number of menu choices for menu.

14.10.2 Get Menu Choice
char *dbGetMenuChoices(DBENTRY *pdbentry);

This routine returns the address of an array of pointers to strings which contain the menu choices.

14.10.3 Get/Put Menu

int dbGetMenulndex(DBENTRY *pdbentry);
long dbPutMenulndex(DBENTRY *pdbentry,int index);
char *dbGetMenuStringFromindex(DBENTRY *pdbentry,int index);
int dbGetMenulndexFromString(DBENTRY *pdbentry,
char *choice);

NOTE: These routines do not work if the current field value contains a macro definition.

dbGetMenuindex returns the index of the menu choice for the current field, i.e. it specifies which choice to which the
field is currently setdbPutMenulndex sets the field to the choice specified by the index.

dbGetMenuStringFromindex returns the string value for a menu index. If the index value is invalid NULL is
returned dbGetMenulndexFromString returns the index for the given string. If the string is not a valid choice a -1
is returned.

14.10.4 Locate Menu
dbMenu *dbFindMenu(DBBASE *pdbbase,char *name);

dbFindMenu is most useful for runtime use but is a static database access routine. This routine just finds a menu with the
given name.

14.11 Manipulating Link Fields

14.11.1 Link Types

Links are the most complicated types of fields. A link can be a constant, reference a field in another record, or can refer to
a hardware device. Two additional complications arise for hardware links. The first is thaDTi¥ll which is a menu

field, determines if thédNP or OUTfield is a device link. The second is that the information that must be specified for a
device link is bus dependent. In order to shelter database configuration tools from these complications the following is
done for static database access.

« Static database access will trédtYPas aDCT_MENUFORMI.

» The information for the link field related to tHeCT_MENUFORMN be entered via a set of form manipulation
routines associated with tHeCT_MENUFORIMId. Thus the link information can be entered via €Y Pfield
rather than the link field.

162 EPICS I0OC Application Developer's Guide

Chapter 14: Static Database Access
Manipulating MenuForm Fields

» The Form routines described in the next section can also be used with any link field.
Each link is one of the following types:

e DCT_LINK_CONSTANT : Constant value.
» DCT_LINK_PV: A process variable link.
» DCT_LINK_FORM : A link that can only be processed via the form routines described in the next chapter.

Database configuration tools can change any link between being a constant and a process variable link. Routines are
provided to accomplish these tasks.

The routinedbGetString , dbPutString , anddbVerify can be used for link fields but the form routines can be
used to provide a friendlier user interface.

14.11.2 All Link Fields

int dbGetNLinks(DBENTRY *pdbentry);
long dbGetLinkField(DBENTRY *pdbentry,int index)
int dbGetLinkType(DBENTRY *pdbentry);

These are routines for manipulatiCT xxxLINK fields. dbGetNLinks and dbGetLinkField are used to walk
through all the link fields of a recorddbGetLinkType returns one of the valuesDCT_LINK_CONSTANT
DCT_LINK_PV, DCT_LINK_FORMor the value -1 if it is called for an illegal field.

14.11.3 Constant and Process Variable Links

long dbCvtLinkToConstant(DBENTRY *pdbentry);
long dbCvtLinkToPvlink(DBENTRY *pdbentry);

These routines should be used for modifyDGT_LINK_CONSTANDr DCT_LINK _PVlinks. They should not be used
for DCT_LINK_FORMinks, which should be processed via the assocat&t MENUFORiId described above.

14.12 Manipulating MenuForm Fields

These routines are used withXCT_MENUFORIiéld (a DTYPfield) to manipulate the associat€CT_INLINK or
DCT_OUTLINKfield. They can also be used on &§T_INLINK, DCT_OUTLINK or DCT_FWDLINHKield.

14.12.1 Alloc/Free Form

int dbAllocForm(DBENTRY *pdbentry)
long dbFreeForm(DBENTRY *pdbentry)

dbAllocForm allocates storage needed to manipulate forms. The return value is the number of elements in the form. If
the current field value contains a macro definition, the number of lines returned is 0.

14.12.2 Get/Put Form

char *dbGetFormPrompt(DBENTRY *pdbentry)
char *dbGetFormValue(DBENTRY *pdbentry)
long dbPutForm(DBENTRY *pdbentry, char **value)

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’s Guide 163

Chapter 14: Static Database Access
Manipulating MenuForm Fields

dbGetFormPrompt returns a pointer to an array of pointers to character strings specifying the prompt string.
dbGetFormValue returns the current valueslbPutForm , which can use the same array of values returned by
dbGetForm , sets new values.

14.12.3 Verify Form
char *dbVerifyForm(DBENTRY *pdbentry,char **value)

dbVerifyForm can be called to verify user input. It returN&JLLif no errors are present. If errors are present, it returns
a pointer to an array of character strings containing error messages. Lines in error have a message and correct lines have a
NULL string.

14.12.4 Get Related Field
char *dbGetRelatedField(DBENTRY *pdbentry)

This routine returns the field name of the related field for a DCT_MENUFORM field. If it is called for any other type of
field it returns NULL.

14.12.5 Example

The following is code showing use of these routines:

char **value;
char **prompt;
char **error;
int n;

n = dbAllocForm(pdbentry);
if(n<=0) {<Error>}
prompt = dbGetFormPrompt(pdbentry);
value = dbGetFormValue(pdbentry);
for(i=0; i<n; i++) {
printf("%s (%s) : \n",prompt[i],valueli]);
/*The follwing accepts input from stdin*/
scanf("%s",valueli]);
}
error = dbVerifyForm(pdbentry,value);
if(error) {
for(i=0; i<n; i++) {
if(error[i]) printf("Error: %s (%s) %s\n”, prompt[i],
valueli],error[i]);
}
lelse {
dbPutForm(pdbentry,value)
}

dbFreeForm(pdbentry);
All value strings aréMAX_STRING_SIZEin length.

164 EPICS I0OC Application Developer's Guide

Chapter 14: Static Database Access
Find Breakpoint Table

A set of form calls for a particulabDBENTRYMUST begin with a call todbAllocForm and end with a call to
dbFreeForm . The values returned bybGetFormPrompt , dbGetFormValue , anddbVerifyForm are valid only
between the calls wbAllocForm anddbFreeForm .

14.13 Find Breakpoint Table

brkTable *dbFindBrkTable(DBBASE *pdbbase,char *name)

This routine returns the address of the specified breakpoint table. It is normally used by the runtime breakpoint conversion
routines so will not be discussed further.

14.14 Dump Routines

void dbDumpPath(DBBASE *pdbbase)

void dbDumpRecord(DBBASE *pdbbase,char *precordTypeName,
int level);

void dbDumpMenu(DBBASE *pdbbase,char *menuName);

void dbDumpRecordType(DBBASE *pdbbase,char *recordTypeName);

void dbDumpFldDes(DBBASE *pdbbase,char *recordTypeName,
char *fname);

void dbDumpDevice(DBBASE *pdbbase,char *recordTypeName);

void dbDumpDriver(DBBASE *pdbbase);

void dbDumpBreaktable(DBBASE *pdbbase,char *name);

void dbPvdDump(DBBASE *pdbbase,int verbose);

void dbReportDeviceConfig(DBBASE *pdbbase,FILE *report);

These routines are used to dump information about the datakld#tseumpRecord, dbDumpMeny and
dbDumpDriver just call the corresponding dbWritexxxFP routine specifying stdout for thedd®umpRecDes,
dbDumpFldDes , anddbDumpDevice give internal information useful on an ioc. Note that all of these commands can
be executed on an ioc. Just specify pdbbase as the first argument.

14.15 Examples

14.15.1 Expand Include

This example is like thebExpand utility, except that it doesn't allow path or macro substitution options, It reads a set of
database definition files and writes all definitions to stdout. All include statements appearing in the input files are
expanded.

/* dbExpand.c */
#include <stdlib.h>
#include <stddef.h>
#include <stdio.h>
#include <epicsPrint.h>

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 165

Chapter 14: Static Database Access
Examples

#include <dbStaticLib.h>

DBBASE *pdbbase = NULL;

int main(int argc,char **argv)
{

long status;

int i;

int arg;

if(argc<2) {
printf("usage: expandinclude filel.db file2.db...\n");
exit(0);
}
for(i=1; i<argc; i++) {
status = dbReadDatabase(&pdbbase,argv[i], NULL,NULL);
if(!status) continue;
fprintf(stderr,"For input file %s",argv]i]);
errMessage(status,"from dbReadDatabase");
}
dbWriteMenuFP(pdbbase,stdout,0);
dbWriteRecordTypeFP(pdbbase,stdout,0);
dbWriteDeviceFP(pdbbase.stdout);
dbWriteDriverFP(pdbbase.stdout);
dbWriteRecordFP(pdbbase,stdout,0,0);
return(0);

14.15.2 dbDumpRecords

NOTE: This example is similar but not identical to the aatib@umpRecords routine.

The following example demonstrates how to use the database access routines. The example shows how to locate each
record and display each field.

void dbDumpRecords(DBBASE *pdbbase)
{

DBENTRY *pdbentry;

long status;

pdbentry = dbAllocEntry(pdbbase);
status = dbFirstRecordType(pdbentry);
if(status) {printf("No record descriptions\n”);return;}
while(!status) {
printf("record type: %s”,dbGetRecordTypeName(pdbentry));
status = dbFirstRecord(pdbentry);
if(status) printf("” No Records\n”);
else printf("\n Record:%s\n”,dbGetRecordName(pdbentry));
while(!status) {
status = dbFirstField(pdbentry, TRUE);
if(status) printf("” No Fields\n”);

166 EPICS I0OC Application Developer's Guide

Chapter 14: Static Database Access
Examples

while(!status) {
printf(” %s:%s",dbGetFieldName(pdbentry),
dbGetString(pdbentry));
status=dbNextField(pdbentry, TRUE);

}
status = dbNextRecord(pdbentry);

}
status = dbNextRecordType(pdbentry);

}
printf("End of all Records\n”);

dbFreeEntry(pdbentry);

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 167

Chapter 14: Static Database Access
Examples

168 EPICS I0OC Application Developer's Guide

Chapter 15: Runtime Database Access

15.1 Overview

This chapter describes routines for manipulating and accessing an initialized I0C database.
This chapter is divided into the following sections:

» Database related include files. All of interest are listed and those of general interest are discussed briefly.

* Runtime database access overview.

« Description of each runtime database access routine.

* Runtime modification of link fields.

* Lock Set Routines

» Database to Channel Access Routines

» Old Database Access. This is the interface still used by Channel Access and thus by Channel Access clients.

15.2 Database Include Files

Directorybase/include contains a number of database related include files. Of interest to this chapter are:

» dbDefs.n Miscellaneous database related definitions
» dbFIdTypes.h: Field type definitions

» dbAccess.h Runtime database access definitions.

* link.h: Definitions for link fields.

15.2.1 dbDefs.h

This file contains a number of database related definitions. The most important are:

« PVNAME_SZ: The number of characters allowed in the record name.

* FLDNAME_SZ: The number of characters formerly allowed in a field name. This restriction no longer applies in
any base software excegbCalink .c. THIS SHOULD BE FIXED. It is unknown what effect removing this
restriction will have on Channel Access Clients.

* MAX_STRING_SIZE : The maximum string size for string fields or menu choices.

« DB_MAX_CHOICES: The maximum number of choices for a choice field.

15.2.2 dbFIdTypes.h

This file defines the possible field types. A field’s type is perhaps its most important attribute. Changing the possible field
types is a fundamental change to the I0C software, because many I0C software components are aware of the field types.

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’s Guide 169

Chapter 15: Runtime Database Access
Database Include Files

The field types are:

 DBF_STRING: ASCII character string
 DBF_CHAR: Signed character
 DBF_UCHAR: Unsigned character
 DBF_SHORT: Short integer

» DBF_USHORT: Unsigned short integer
 DBF_LONG: Long integer

« DBF_ULONG: Unsigned long integer

» DBF_FLOAT: Floating point number
 DBF_DOUBLE: Double precision float
« DBF_ENUM: An enumerated field
 DBF_MENU: A menu choice field

» DBF_DEVICE: A device choice field

* DBF_INLINK : Input Link

* DBF_OUTLINK : Output Link
 DBF_FWDLINK : Forward Link

» DBF_NOACCESS A private field for use by record access routines

A field of type DBF_STRING ..., DBF_DOUBLEan be a scalar or an array. BBF_STRINGfield contains aNULL
terminated ascii string. The field typeBF_CHAR...,DBF_DOUBLIEorrespond to the standard C data types.

DBF_ENUN used for enumerated items, which is analogous to the C language enumeration. An example of an enum
field is fieldVAL of a multi bit binary record.

The field typesDBF_ENUMDBF_MENUand DBF_DEVICEall have an associated set of ASCII strings defining the
choices. For ®BF_ENUIMhe record support module supplies values and thus are not available for static database access.
The database access routines locate the choice strings for the other types.

DBF_INLINK andDBF_OUTLINKspecify link fields. A link field can refer to a signal located in a hardware module, to a
field located in a database record in the same IOC, or to a field located in a record in anotherDBE. RNVDLINKcan
only refer to a record in the same IOC. Link fields are described in a later chapter.

DBF_INLINK (input), DBF_OUTLINK(output), andDBF_FWDLINK{forward) specify that the field is a link structure as
defined inlink.n . There are three classes of links:

1. Constant - The value associated with the field is a floating point value initialized with a constant value. This is
somewhat of a misnomer because constant link fields can be modifésPuitrield or dbPutLink

2. Hardware links - The link contains a data structure which describes a signal connected to a particular hardware bus.
Seelink.h for a description of the bus types currently supported.

3. Process Variable Links - This is one of three types:
a. PV_LINK: The process variable name.
b. DB_LINK: A reference to a process variable in the same 10C.
c. CA_LINK: A reference to a variable located in another I0C.

DCT always creates BRV_LINK. When the 10C is initialized eacRV_LINK is converted either to ®B_LINK or a
CA_LINK.

DBF_NOACCESH®Ids are for private use by record processing routines.

15.2.3 dbAccess.h

This file is the interface definition for the run time database access library, i.e. for the routines described in this chapter.

170 EPICS I0OC Application Developer's Guide

Chapter 15: Runtime Database Access
Runtime Database Access Overview

An important structure defined in this header filIBBADDR

typedef struct dbAddr{
struct dbCommon *precord;/* address of record*/
void *pfield; [* address of field*/
void *pfldDes; [* address of struct fldDes*/
void *asPwt; [* Access Security Private*/
long no_elements; /* number of elements (arrays)*/

short field_type; /* type of database field*/
short field_size; /* size (bytes) of the field*/

short special; [* special processing*/
short dbr_field_type; /*optimal database request type*/
}DBADDR,;

 precord: Address of record. Note that its type is a pointer to a structure defining the fields common to all record
types. The common fields appear at the beginning of each record. A record support module pegtoast to
point to the specific record type.

« pfield: Address of the field within the record. Note tpfi¢ld provides direct access to the data value.

» pfldDes This points to a structure containing all details concerning the field. See Chapter “Database Structures”
for details.

» asPvt A field used by access security.

* no_elementsA string or numeric field can be either a scalar or an array. For scalar fielddements has the
value 1. For array fields it is the maximum number of elements that can be stored in the array.

« field_type: Field type.

« field_size Size of one element of the field.

 special Some fields require special processing. This specifies the type. Special processing is described later in this
manual.

« dbr_field_type: This specifies the optimal database request type for this field, i.e. the request type that will require
the least CPU overhead.

NOTE: pfield , no_elements , field_type , field_size , special , anddbr_field_type can all be set by
record supportdvt_dbaddr). Thusfield_type , field_size , andspecial can differ from that specified by
pfldDes

15.2.4 link.h
This header file describes the various types of link fields supported by EPICS.

15.3 Runtime Database Access Overview

With the exception of record and device support, all access to the database is via the channel or database access routines.
Even record support routines access other records only via database or channel access. Channel Access, in turn, accesse
the database via database access.

Perhaps the easiest way to describe the database access layer is to list and briefly describe the set of routines that
constitute database access. This provides a good look at the facilities provided by the database.

Before describing database access, one caution must be mentioned. The only way to communicate with an I0C database
from outside the 10C is via Channel Access. In addition, any special purpose software, i.e. any software not described in
this document, should communicate with the database via Channel Access, not database access, even if it resides in the

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 171

Chapter 15: Runtime Database Access
Runtime Database Access Overview

same IOC as the database. Since Channel Access provides network independent access to a database, it must ultimately
call database access routines. The database access interface was changed in 1991, but Channel Access was never changed.
Instead a module was written which translates old style database access calls to new. This interface between the old and
new style database access calls is discussed in the last section of this chapter.

The database access routines are:

+ dbNameToAddr: Locate a database variable.

» dbGetField: Get values associated with a database variable.

» dbGetLink: Get value of field referenced by database link (Macro)

» dbGetLinkValue: Get value of field referenced by database link (Subroutine)
» dbGet: Routine called byibGetLinkValue anddbGetField

» dbPutField: Change the value of a database variable.

» dbPutLink : Change value referenced by database link (Macro)

» dbPutLinkValue : Change value referenced by database link (Subroutine)
» dbPut: Routine called bylbPutxxx functions.

» dbPutNotify: A database put with notification on completion

» dbNotifyCancel: CanceldbPutNotify

» dbNotifyAdd: Add a new record for to notify set.

» dbNotifyCompletion: Announce that put notify is complete.

» dbBufferSize: Determine number of bytes in request buffer.
» dbValueSize Number of bytes for a value field.

» dbGetRset Get pointer to Record Support Entry Table
 dblsValueField: Is this field the VAL field.

» dbGetFieldindex: Get field index. The first field in a record has index 0.
» dbGetNelement:Get number of elements in the field
 dblisLinkConnected: Is the link field connected.

» dbGetPdbAddrFromLink : Get address of DBADDR.

» dbGetLinkDBFtype: Get field type of link.

» dbGetControlLimits : Get Control Limits.

» dbGetGraphicLimits : Get Graphic Limits.

» dbGetAlarmLimits : Get Alarm Limits

» dbGetPrecision Get Precision

» dbGetUnits: Get Units

» dbGetNelements Get Number of Elements

» dbGetSevr. Get Severity

» dbGetTimeStamp Get Time Stamp

« dbPutAttribute Give a value to a record attribute.

» dbScanPassiveProcess record if it is passive.

» dbScanLink: Process record referenced by link if it is passive.
» dbProcess Process Record

» dbScanFwdLink: Scan a forward link.

172 EPICS I0OC Application Developer's Guide

Chapter 15: Runtime Database Access
Runtime Database Access Overview

15.3.1 Database Request Types and Options

Before describing database access structures, it is necessary to describe database request types and request options. Whe
dbPutField ordbGetField are called one of the arguments is a database request type. This argument has one of the
following values:

* DBR_STRING: Value is aNULLterminated string

* DBR_CHAR: Value is a signed char

* DBR_UCHAR: Value is an unsigned char

 DBR_SHORT: Value is a short integer

 DBR_USHORT: Value is an unsigned short integer

 DBR_LONG: Value is a long integer

 DBR_ULONG: Value is an unsigned long integer

* DBR_FLOAT: Value is an IEEE floating point value

 DBR_DOUBLE: Value is an IEEE double precision floating point value
 DBR_ENUM: Value is a short which is the enum item

* DBR_PUT_ACKT: Value is an unsigned short for setting A@€KT

* DBR_PUT_ACKS: Value is an unsigned short for global alarm acknowledgment.

The request typeBBR_STRING..., DBR_DOUBLEorrespond exactly to valid data types for database fiBlBR _ENUM
corresponds to database fields that represent a set of choices or options. In particular it corresponds to the fields types
DBF_ENUMDBF_DEVICE andDBF_MENUThe complete set of database field types are definelthftdTypes.h
DBR_PUT_ACKENndDBR_PUT_ACKSre used to perform global alarm acknowledgment.

dbGetField also accepts argument options which is a mask containing a bit for each additional type of information the
caller desires. The complete set of options is:

* DBR_STATUS: returns the alarm status and severity
 DBR_UNITS: returns a string specifying the engineering units
 DBR_PRECISION: returns a long integer specifying floating point precision.
* DBR_TIME : returns the time

e DBR_ENUM_STRS returns an array of strings
 DBR_GR_LONG: returns graphics info as long values
 DBR_GR_DOUBLE: returns graphics info as double values

e DBR_CTRL_LONG: returns control info as long values

« DBR_CTRL_DOUBLE: returns control info as double values
* DBR_AL_LONG: returns alarm info as long values

« DBR_AL_DOUBLE: returns alarm info as double values

15.3.2 Options
Example

The filedbAccess.h contains macros for using options. A brief example should show how they are used. The following
example defines a buffer to accept an array of up to ten float values. In addition it contains fields for options
DBR_STATUSndDBR_TIME

struct buffer {
DBRstatus
DBRtime
float value[10];
} buffer;

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 173

Chapter 15: Runtime Database Access
Database Access Routines

The associatedbGetField call is:
long options,number_elements,status;
options = DBR_STATUS | DBR_TIME;

number_elements = 10;
status = dbGetField(paddr,DBR_FLOAT,&buffer,&options,&number_elements);

ConsultdbAccess.h for a complete list of macros.

StructuredbAddr contains a fieldlbr_field_type . This field is the database request type that most closely matches
the database field type. Using this request type will put the smallest load on the IOC.

Channel Access provides routines similar dbGetField , and dbPutField . It provides remote access to
dbGetField , dbPutField , and to the database monitors described below.

15.3.3 ACKT and ACKS

The request typeBBR_PUT_ACK&ndDBR_PUT_ACK&re used for global alarm acknowledgment. The alarm handler
uses these requests. For each of these types the user (normally channel access) passes an unsigned short value. This value
represents:

DBR_PUT_ACKT - Do transient alarms have to be acknowledged? (0,1) means (no, yes).

DBR_PUT_ACKS The highest alarm severity to acknowledge. If the current alarm severity is less then or equal to this
value the alarm is acknowledged.

15.4 Database Access Routines

15.4.1 dbNameToAddr

Locate a process variable, format:

long dbNameToAddr(
char *pname, /*ptr to process variable name */
struct dbAddr *paddr);

The most important goal of database access can be stated simply: Provide quick access to database records and fields
within records. The basic rules are:

« CalldbNameToAddr once and only once for each field to be accessed.
* Read field values vidbGetField and write values vidbPutField

The routines described in this subsection are used by channel access, sequence programs, etc. Record processing routines,
however, use the routines described in the next section rathethiBetField anddbPutField

Given a process variable name, this routine locates the process variable and fills in the fields of sthctdre The
format for a process variable name is:

“<record_name>.<field_name> K
For example the value field of a record with record neaneple_name is:
“sample_name.VAL ".

The record name is case sensitive. Field names always consist of all upper case letters.

174 EPICS I0OC Application Developer's Guide

Chapter 15: Runtime Database Access
Database Access Routines

dbNameToAddr locates a record via a process variable directory (PVD). It fills in a structiiwéddr) describing the

field. dbAddr contains the address of the record and also the field. Thus other routines can locate the record and field
without a search. Although the PVD allows the record to be located via a hash algorithm and the field within a record via
a binary search, it still takes about 80 microseconds (25MHz 68040) to located a process variable. Once located the
dbAddr structure allows the process variable to be accessed directly.

15.4.2 Get Routines

15.4.2.1 dbGetField
Get values associated with a process variable, format:

long dbGetField(
struct dbAddr *paddr,
short dbrType, /* DBR_xxx */
void *pbuffer, /*addr of returned data */
long *options, /*addr of options */
long *nRequest, /*addr of number of elements */
void *pfl); /*used by monitor routines */

Thus routine locks, caldbGet , and unlocks.

15.4.2.2 dbGetLink and dbGetLinkValue
Get value from the field referenced by a database link, format:

long dbGetLink(
struct db_link *pdbLink,/*addr of database link*/
short dbrType,/* DBR_xxx*/
void *pbuffer,/*addr of returned data*/
long *options,/*addr of options*/
long *nRequest);/*addr of number of elements desired*/

NOTES:
1) options can be NULL if no options are desired.
2) nRequest can be NULL for a scalar.

dbGetLink is actually a macro that caldbGetLinkValue . The macro skips the call for constant links. User code
should never calibGetLinkValue

This routine is called by database access itself and by record support and/or device support routines in order to get values
for input links. The value can be obtained directly from other records or via a channel access client. This routine honors
the link options (process and maximize severity). In addition it has code that optimizes the case of no options and scalar.

15.4.2.3 dbGet
Get values associated with a process variable, format:

long dbGet(
struct dbAddr*paddr,
short dbrType, /* DBR_xxx*/
void *pbuffer,/*addr of returned data
long *options,/*addr of options*/
long *nRequest,/*addr of number of elements*/
void *pfl); /*used by monitor routines*/

EPICS Release: R3.14.0alphal
EPICS IOC Application Developer’'s Guide 175

Chapter 15: Runtime Database Access
Database Access Routines

Thus routine retrieves the data referencegdmydr and converts it to the format specifieddiy Type .

"options " is a read/write field. Upon entry tdbGet , options specifies the desired options. WhebGetField
returns,options specifies the options actually honored. If an option is not honored, the corresponding fields in buffer
are filled with zeros.

"nRequest " is also a read/write field. Upon entry tihGet it specifies the maximum number of data elements the caller
is willing to receive. WherdbGet returns it equals the actual number of elements returned. It is permissible to request
zero elements. This is useful when only option data is desired.

pfl " is a field used by the Channel Access monitor routines. All other users mpfst s&tULL

dbGet calls one of a number of conversion routines in order to convert data froDBR#ypes to theDBRtypes. It calls

record support routines for special cases such as arrays. For example, if the number of field elements is greater then 1 and
record support routinget_array_info exists, then it is called. It returns two values: the current number of valid field
elements and an offset. The number of valid elements may not nditétidr .no_elements , which is really the
maximum number of elements allowed. The offset is for use by records which implement circular buffers.

15.4.3 Put Routines

15.4.3.1 dbPutField
Change the value of a process variable, format:

long dbPutField(
structdbAddr *paddr,
short dbrType, /* DBR_xxx*/
void *pbuffer,/*addr of data*/
long nRequest);/*number of elements to write*/

This routine is responsible for accepting data in one oMB&_xxx formats, converting it as necessary, and modifying
the database. Similar tdbGetField , this routine calls one of a number of conversion routines to do the actual
conversion and relies on record support routines to handle arrays and other special cases.

It should be noted that routimdPut does most of the work. The actual algorithmdbPutField is:

1. If theDISP field isTRUEthen, unless it is thBISP field itself which is being modified, the field is not written.
2. The record is locked.

3. dbPut is called.
4

. If thedbPut is successful then:
If this is thePROCield or if both of the following areTRUE 1) the field is a process passive field, 2) the record is
passive.
a. If the record is already active ask for the record to be reprocessed when it completes.
b. CalldbScanPassive after settingoutf TRUE to show the process request came fdirAutField

5. The record is unlocked.

15.4.3.2 dbPutLink and dbPutLinkValue
Change the value referenced by a database link, format:

long dbPutLink(
structdb_link *pdbLink,/*addr of database link*/
short dbrType, /* DBR_xxx*/
void *pbuffer,/*addr of data to write*/
long nRequest);/*number of elements to write*/

176 EPICS I0OC Application Developer's Guide

Chapter 15: Runtime Database Access
Database Access Routines

dbPutLink is actually a macro that calgbPutLinkValue . The macro skips the call for constant links. User code
should never catiibPutLinkValue

This routine is called by database access itself and by record support and/or device support routines in order to put values
into other database records via output links.

For Channel Access links it cati®CaPutLink
For database links it performs the following functions:

1. CallsdbPut .
2. Implements maximize severity.

3. If the field being referenced BROGor if both of the following are true: 1process_passive is TRUEand 2)
the record is passive then:
a. If the record is already active because ab®utField request then ask for the record to be reprocessed
when it completes.
b. otherwise callbScanPassive

15.4.3.3 dbPut
Put a value to a database field, format:

long dbPut(
struct dbAddr *paddr,
short dbrType, /* DBR_xxx*/
void *pbuffer,/*addr of data*/
long nRequest);/*number of elements to write*/

This routine is responsible for accepting data in one oB&_xxx formats, converting it as necessary, and modifying
the database. Similar @hGet , this routine calls one of a number of conversion routines to do the actual conversion and
relies on record support routines to handle arrays and other special cases.

15.4.4 Put Notify Routines

dbPutNotify is a request to notify the caller when all records that are processed as a result of a put complete
processing. The complication occurs because of record linking and asynchronous records. A put can cause an entire chain
of records to process. If any record is an asynchronous record then record completion means asynchronous completion.

The following rules are implemented:

1. If a putNotify is already active on the record to which the put is directzRutNotify just returns
S _db_Blocked without calling the callback routine.

In all other cases, i.e. the cases for the following rules, the callback routine will be always be called unless
dbNotifyCancel is called.

2. The user supplied callback is called when all processing is complete or when an error is detected. If everything
completes synchronously the callback routine will be called BEF@#®&EtNotify returns.

3. The user supplied callback routine must not issue any calls that block such as Unix I/O requests.

4. In general a set of records may need to be processed as a result of adbipgidotify . If database access
detects that anothelbPutNotify ~ request is active on any record in the set, other then the record referenced by
thedbPutNotify |, then thedbPutNotify request will restarted

5. If arecord in the set is found to be active becausedifRutField request then when that record completes the
dbPutNotify will be restarted.

EPICS Release: R3.14.0alphal
EPICS IOC Application Developer’'s Guide 177

Chapter 15: Runtime Database Access
Database Access Routines

6. If a record is found to already be active because of the origioRUtNotify ~ request then nothing is done. This
is what is done now and any attempt to do otherwise could easily cause existing databases to go into an infinite
processing loop.

It is expected that the caller will arrange a timeout in casedttfeutNotify ~ takes too long. In this case the caller can
call dbNotifyCancel

15.4.4.1 dbPutNotify

Perform a database put and notify when record processing is complete.
Format:
long dbPutNotify(PUTNOTIFY *pputnotify);

where PUTNOTIFY is

typedef struct putNotify{

void (*userCallback)(struct putNotify *);

DBADDR *paddr; /*dbAddr set by dobNameToAddr*/
void *pbuffer; /*address of data*/

long nRequest; /*number of elements to be written*/
short dbrType; [*database request type*/

void *usrPvt; [*for private use of user*/

[*The following is status of request.Set by dbPutNotify*/

long status;

[*fields private to database access*/

}PUTNOTIFY;
The caller must allocateRUTNOTIFY structure and set the fields:

userCallback - Routine that is called upon completion
paddr - address of a DBADDR

pbuffer - address of data

nRequest - number of data elements

dbrType - database request type

usrPvt - a void * field that caller can use as needed.

The status value returned digPutNotify is either:

» S_db_Pending Success: Callback may already have been called or will be called later.

» S_db_Blocked The request failed becausedaPutNotify is already active in the record to which the put is
directed.

When the user supplied callback is called, the status value stdPedI MOTIFYis one of the following:

» 0: Success
* S_xxxx The request failed due to some other error.

The user callback is always called unlefffPutNotify returns S_db_Blocked atbNotifyCancel is called before
the put notify competes.

15.4.4.2 dbNotifyCancel
Cancel an outstandirdbPutNotify

Format:

178 EPICS I0OC Application Developer's Guide

Chapter 15: Runtime Database Access
Database Access Routines

void dbNotifyCancel(PUTNOTIFY *pputnotify);
This cancels an activdbPutNotify

15.4.4.3 dbNotifyAdd

This routine is called by database access itself. It should never be called by user code.

15.4.4.4 dbNotifyCompletion

This routine is called by database access itself. It should never be called by user code.

15.4.5 Utility Routines

15.4.5.1 dbBufferSize
Determine the buffer size fordbGetField request, format:

long dbBufferSize(
short dbrType, /* DBR_xxx*/
long options, /* options mask*/
long nRequest);/* number of elements*/

This routine returns the number of bytes that will be returnedbt@etField if the request type, options, and number of
elements are specified as giverdb®ufferSize . Thus it can be used to allocate storage for buffers.

NOTE: This should become a Channel Access routine

15.4.5.2 dbValueSize
Determine the size a value field, format:
dbValueSize(short dbrType);/* DBR_xxx*/
This routine returns the number of bytes for each element ofityfigpe .

NOTE: This should become a Channel Access routine

15.4.5.3 dbGetRest
Get address of a record support entry table.
Format:

struct rset *dbGetRset(DBADDR *paddr);

This routine returns the address of the record support entry table for the record referenc&BBWDR

15.4.5.4 dblsValueField
Is this field the VAL field of the record?
Format:
int dblsValueField(struct dbFldDes *pdbFldDes);

This is the routine that makes thet value record support routine obsolete.

EPICS Release: R3.14.0alphal
EPICS IOC Application Developer’'s Guide 179

Chapter 15: Runtime Database Access
Database Access Routines

15.4.5.5 dbGetFieldIndex
Get field index.
Format:
int dbGetFieldindex(DBADDR *paddr);
Record support routines such sgecial andcvt _dbaddr need to know which field th®BADDReferences. The
include file describing the record contains define statements for eachdixbetFieldindex returns the index that
can be matched against the define statements (normally via a switch statement).
15.4.5.6 dbGetNelements
Get number of elements in a field.
Format:
long dbGetNelements(struct link *plink,long *nelements);

This sets helements to the number of elements in the field referenced by plink.

15.4.5.7 dblsLinkConnected
Is the link connected.
Format:
int dbisLinkConnected(struct link *plink);
This routine returns (TRUE, FALSE) if the link (is, is not) connected.

15.4.5.8 dbGetPdbAddrFromLink
Get address of DBADDR from link.
Format:
DBADDR *dbGetPdbAddrFromLink(struct link *plink);
This macro returns the address of the DBADDR for a database link and NULL for all other link types.

15.4.5.9 dbGetLinkDBFtype
Get field type of a link.
Format:
int dbGetLinkDBFtype(struct link *plink);

15.4.5.10 dbGetControlLimits
Get Control Limits for link.
Format:

long dbGetControlLimits(struct link *plink,double *low, double *high);

15.4.5.11 dbGetGraphicLimits
Get Graphic Limits for link.

Format:

180 EPICS I0OC Application Developer's Guide

Chapter 15: Runtime Database Access
Database Access Routines

long dbGetGraphicLimits(struct link *plink,double *low, double *high);

15.4.5.12 dbGetAlarmLimits
Get Alarm Limits for link.
Format:

long dbGetAlarmLimits(struct link *plink,

double lolo,double *low, double *high,double hihi);

15.4.5.13 dbGetPrecision
Get Precision for link.
Format:

long dbGetPrecision(struct link *plink,short *precision);

15.4.5.14 dbGetUnits
Get Units for link.
Format:

long dbGetUnits(struct link *plink,char *units,int unitsSize);

15.4.5.15 dbGetSevr
Get Severity for link.
Format:

long dbGetSevr(struct link *plink,short *sevr);

15.4.5.16 dbGetTimeStamp
Get Time Stamp for record containing link.
Format:
long dbGetTimeStamp(struct link *plink, TS_STAMP *pstamp);

15.4.6 Attribute Routine

15.4.6.1 dbPutAttribute
Give a value to a record attribute.

long dbPutAttribute(char *recordTypename,
char *name,char*value);

This sets the record attributeme for record typeecordTypename tovalue. For example the following would set
the version for the ai record.

dbPutAttribute("ai","VERS","V800.6.95")

EPICS Release: R3.14.0alphal
EPICS IOC Application Developer’'s Guide 181

Chapter 15: Runtime Database Access
Runtime Link Modification

15.4.7 Process Routines

15.4.7.1 dbScanPassive
dbScanLink
dbScanFwdLink

Process record if it is passive, format:

long dbScanPassive(

struct dbCommon *pfrom,

struct dbCommon *pto); /* addr of record*/
long dbScanLink(

struct dbCommon *pfrom,

struct dbCommon *pto);
void dbScanFwdLink(struct link *plink);

dbScanPassive anddbScanLink are given the record requesting the scan, which mael, and the record to
be processed. If the record is passive padt =FALSEthendbProcess is called. Note that these routine are called by
dbGetLink , dbPutField , and byrecGblFwdLink.

dbScanFwdLink is given a link that must be a forward link field. It follows the rules for scanning a forward link. That
is for DB_LINKs it calls dbScanPassive and for CA_LINKS it does a dbCaPutLink if the PROC field of record is being
addressed.
15.4.7.2 dbProcess
Request that a database record be processed, format:

long dbProcess(struct dbCommom *precord);

Request that record be processed. Record processing is described in detail below.

15.5 Runtime Link Modification

Database links can be changed at run time but only via a channel access client, i.e. viadizifistiéeld but not to
dbPutLink . The following restrictions apply:
» Only DBR_STRINGS allowed.

« If alink is being changed to a different hardware link type thenfi&yPfield must be modified before the link
field.

» The syntax for the string field is exactly the same as described for link fields in chapter “Database Definition”

NOTE: For this release modification to/from hardware links has not been tested. In addition modification to record/device
support will be needed in order to properly support dynamic modification of hardware links.

182 EPICS I0OC Application Developer's Guide

Chapter 15: Runtime Database Access
Channel Access Monitors

15.6 Channel Access Monitors

There are facilities within the Channel Access communication infrastructure which allow the value of a process variable

to be monitored by a channel access client. It is a responsibility of record support (and db common) to notify the channel
access server when the internal state of a process variable has been modified. State changes can include changes in the
value of a process variable and also changes in the alarm state of a process variable. The routine “db_post_events()” is
called to inform the channel access server that a process variable state change event has occurred.

#include <caeventmask.h>

int db_post_events(void *precord, void *pfield,
unsigned intselect);

The first argument, “precord”, should be passed a pointer to the record which is posting the event(s). The second
argument, “pfield”, should be passed a pointer to the field in the record that contains the process variable that has been
modified. The third argument, “select”, should be passed an event select mask. This mask can be any logical or
combination of {DBE_VALUE, DBE_LOG, DBE_ALARM}. A description of the purpose of each flag in the event select
mask follows.

» DBE_VALUE This indicates that a significant change in the process variable’s value has occurred. A significant
change is often determined by the magnitude of the monitor “dead band” field in the record.

 DBE_LOG This indicates that a change in the process variable’s value significant to archival clients has occurred.
A significant change to archival clients is often determined by the magnitude of the archive “dead band” field in the
record.

» DBE_ALARM This indicates that a change in the process variable’s alarm state has occurred.

The function “db_post_events()” returns O if it is successful and -1 if it fails. It appears to be common practice within
EPICS record support to ignore the status from “db_post_events()”. At this time “db_post_events()” always returns 0
(success). because so many records at this time depend on this behavior it is unlikely that it will be changed in the future.

The function “db_post_events()” is written so that record support will never be blocked attempting to post an event
because a slow client is not able to process events fast enough. Each call to “db_post_events()” causes the current value,
alarm status, and time stamp for the field to be copied into a ring buffer. The thread calling “db_post_events()” will not be
delayed by any network or memory allocation overhead. A lower priority thread in the server is responsible for
transferring the events in the event queue to the channel access clients that may be monitoring the process variable.

Currently, when an event is posted for a DBF_STRING field or a field containing array data the value is NOT saved in the
ring buffer and the client will receive whatever value happens to be in the field when the lower priority thread transfers the
event to the client. This behavior may be improved in the future.

15.7 Lock Set Routines

User code only calldbScanLock anddbScanUnlock . All other routines are called liycCore

15.7.0.1 dbScanLock
Lock a lock set:
long void dbScanLock(struct dbCommon *precord);

Lock the lock set to which the specified record belongs.

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’s Guide 183

Chapter 15: Runtime Database Access
Lock Set Routines

15.7.0.2 dbScanUnlock
Unlock a lock set:
long void dbScanUnlock(struct dbCommon *precord);

Lock the lock set to which the specified record belongs

15.7.0.3 dbLockGetLockld
Get lock set id:
long dbLockGetLockld(struct dbCommon *precord);

Each lock set is assigned a unique ID. This routine retrieves it. This is most useful to determine if two records are in the
same lock set.

15.7.0.4 dbLockInitRecords

Determine lock sets for each record in database.
void dbLockInitRecords(dbBase *pdbbase);

Called byioclnit

15.7.0.5 dbLockSetMerge

Merge records into same lock set.

void dbLockSetMerge(struct dbCommon *pfirst,
struct dbCommon *psecond);

If specified records are not in same lock set the lock sets are merged. Called by dbLockInitRecords and also when links
are modified bylbPutField

15.7.0.6 dbLockSetSplitSI

Recompute lock sets for given lock set

void dbLockSetSplit(struct dbCommon *psource);

This is called whedbPutField modifys links.

15.7.0.7 dbLockSetGblLock
Global lock for modifying links.
void dbLockSetGblLock(void);

Only one task at a time can modify link fields. This routine provides a global lock to prevent conflicts.

15.7.0.8 dbLockSetGblUnlock
Unlock the global lock.
void dbLockSetGblUnlock(void);

15.7.0.9 dbLockSetRecordLock
If record is not already scan locked lock it.

void dbLockSetRecordLock(struct dbCommon *precord);

184 EPICS I0OC Application Developer's Guide

Chapter 15: Runtime Database Access
Channel Access Database Links

15.8 Channel Access Database Links

The routines described here are used to create and manipulate Channel Access connections from database input or output
links. At 10C initialization an attempt is made to convert all process variable links to database links. For any link that
fails, it is assumed that the link is a Channel Access link, i.e. a link to a process variable defined in another I0C. The
routines described here are used to manage these links. User code never needs to call these routines. They are
automatically called by ioclnit and database access.

Atioclnit time a taskdbCalLink is spawned. This task is a channel access client that issues channel access requests
for all channel access links in the database. For each link a channel access search request is issued. When the searct
succeeds a channel access monitor is established. The monitor is issued specifyfisdd_type and
ca_element_count . A buffer is also allocated to hold monitor return data as well as severity. \h€aGetLink is

called data is taken from the buffer, converted if necessary, and placed in the location specifiedpbufiie

argument.

When the firstdbCaPutLink is called for a link an output buffer is allocated, again usaag field_type and
ca_element_count . The data specified by the pbuffer argument is converted and stored in the buffer. A request is then
made tadbCalink task to issue ea_put . Subsequent calls tthCaPutLink reuse the same buffer.

15.8.1 Basic Routines

These routines are normally only called by database access, i.e. they are not called by record support modules.

15.8.1.1 dbCaLinklnit
Called byioclnit to initialize thedbCa library
void dbCaLinkInit(void);

15.8.1.2 dbCaAddLink
Add a new channel access link
void dbCaAddLink(struct link *plink);

15.8.1.3 dbCaRemovelLink
Remove channel access link.

void dbCaRemoveLink(struct link *plink);

15.8.1.4 dbCaGetLink
Get link value
long dbCaGetLink(struct link *plink,short dbrType,
void *pbuffer,unsigned short *psevr,long *nRequest);
15.8.1.5 dbCaPutLink

Put link value

long dbCaPutLink(struct link *plink,short dbrType,
void *buffering nRequest);

EPICS Release: R3.14.0alphal
EPICS IOC Application Developer’'s Guide 185

Chapter 15: Runtime Database Access
Channel Access Database Links

15.8.1.6 dbCaGetAttributes
Get Attributes
long dbCaGetAttributes(struct link *plink,
void (*callback)(void *usrPvt),void *usrPwvt);
15.8.1.7 dbCaGetControlLimits
Get Control Limits

long dbCaGetControlLimits(struct link *plink,double *low, double *high);

15.8.1.8 dbCaGetGraphicLimits
Get graphic Limits
long dbCaGetGraphicLimits(struct link *plink,double *low, double *high);

15.8.1.9 dbCaGetAlarmLimits
Get Alarm Limits
long dbCaGetAlarmLimits(struct link *plink,
double *lolo, double *low, double *high, double *hihi);
15.8.1.10 dbCaGetPrecision
Get Precision

long dbCaGetPrecision(struct link *plink,short *precision);

15.8.1.11 dbCaGetUnits
Get Units

long dbCaGetUnits(struct link *plink,char *units,int unitsSize);

15.8.1.12 dbCaGetNelements
Get Number of Elements
long dbCaGetNelements(struct link *plink,long *nelements);

This call, which returns an error if link is not connected, sets the native number of elements.

15.8.1.13 dbCaGetSevr
Get Alarm Severity
long dbCaGetSevr(struct link *plink,short *severity);

This call, which returns an error if link is not connected, sets the alarm severity.

15.8.1.14 dbCaGetTimeStamp

Get Time Stamp
long dbCaGetTimeStamp(struct link *plink, TS_STAMP *pstamp));

186 EPICS I0OC Application Developer's Guide

Chapter 15: Runtime Database Access
Channel Access Database Links

15.8.1.15 dbCalsLinkConnected
Is Channel Connected
int dbCalsLinkConnected(struct link *plink)
This routine returns (TRUE, FALSE) if the link (is, is not) connected.

15.8.1.16 dbCaGetLinkDBFtype

Get link type
int dbCaGetLinkDBFtype(struct link *plink);

EPICS Release: R3.14.0alphal
EPICS IOC Application Developer’'s Guide 187

Chapter 15: Runtime Database Access
Channel Access Database Links

188 EPICS I0OC Application Developer's Guide

Chapter 16: Device Support Library

NOTE: For 3.14 this is only available on vxWorks

16.1 Overview

Include filedevLib.h provides definitions for a library of routines useful for device and driver modules. These are a new
addition to EPICS and are not yet used by all device/driver support modules. Until they are, the registration routines will
not prevent addressing conflicts caused by multiple device/drivers trying to use the same VME addresses.

16.2 Registering VME Addresses

16.2.1 Definitions of Address Types

typedef enum {
atVMEA16,
atVMEA24,
atVMEA32,
atLast /* atLast must be the last enum in this list */
} epicsAddressType;

char *epicsAddressTypeName][]
={
"VME A16",
"VME A24",

"VME A32"

3

int EPICStovxWorksAddrType[]
={
VME_AM_SUP_SHORT IO,
VME_AM_STD_SUP_DATA,
VME_AM_EXT_SUP_DATA

16.2.2 Register Address

long devRegisterAddress(

const char *pOwnerName,
epicsAddressType addrType,
void *baseAddress,

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’s Guide 189

Chapter 16: Device Support Library
Interrupt Connect Routines

unsigned size,
void **pLocalAddress);

This routine is called to register a VME address. This routine keeps a list of all VME addresses requested and returns an
error message if an attempt is made to register any addresses that are already beingl asalhddress is set equal
to the address as seen by the caller.

16.2.3 Unregister Address

long devUnregisterAddress(
epicsAddressType addrType,
void *baseAddress,
const char *pOwnerName);

This routine releases addresses previously registered by adalRegisterAddress

16.3 Interrupt Connect Routines

16.3.1 Definitions of Interrupt Types
typedef enum {intCPU, intVME, intVXI} epicsinterruptType;

16.3.2 Connect

long devConnectinterrupt(
epicsinterruptType intType,
unsigned vectorNumber,
void (*pFunction)(),
void *parameter);

16.3.3 Disconnect

long devDisconnectinterrupt(
epicsinterruptType intType,
unsigned vectorNumber);

16.3.4 Enable Level

long devEnablelnterruptLevel(
epicsinterruptType intType,
unsigned level);

16.3.5 Disable Level

long devDisablelnterruptLevel(
epicsinterruptType intType,

190 EPICS I0OC Application Developer's Guide

Chapter 16: Device Support Library
Macros and Routines for Normalized Analog Values

unsigned level);

16.4 Macros and Routines for Normalized Analog Values

16.4.1 Normalized GetField

long devNormalizedGblGetField(
long rawValue,
unsigned nbits,
DBREQUEST *pdbrequest,
int pass,
CALLBACK *pcallback);

This routine is just likerecGblGetField , except that if the request type BBR_FLOATor DBR_DOUBLEthe
normalized value ofawValue is obtained, i.ecawValue is converted to a value in the range 0.0<=value<.1.0

16.4.2 Convert Digital Value to a Normalized Double Value

#define devCreateMask(NBITS)((1<<(NBITS))-1)
#define devDigToNmI(DIGITAL,NBITS) \
(((double)(DIGITAL))/devCreateMask(NBITS))

16.4.3 Convert Normalized Double Value to a Digital Value

#define devNmIToDig(NORMAL,NBITS) \
(((long)(NORMAL)) * devCreateMask(NBITS))

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 191

Chapter 16: Device Support Library
Macros and Routines for Normalized Analog Values

192 EPICS I0OC Application Developer's Guide

Chapter 17: EPICS General Purpose Tasks

17.1 Overview

This chapter describes two sets of EPICS supplied general purpose tasks: 1) Callback, and 2) Task Watchdog.

Often when writing code for an 10C there is no obvious task under which to execute. A good example is completion code
for an asynchronous device support module. EPICS supplies the callback tasks for such code.

If an IOC tasks "crashes" there is normally no one monitoring the vxWorks shell to detect the problem. EPICS provides a
task watchdog task which periodically checks the state of other tasks. If it finds that a monitored task has terminated or
suspended it issues an error message and can also call other routines which can take additional actions. For example a
subroutine record can arrange to be put into alarm if a monitored task crashes.

Since IOCs normally run autonomously, i.e. no one is monitoring the vxWorks shell, IOC code thatpissties calls
generates errors messages that are never seen. In addition the vxWorks implementation of fprintf requires much more
stack space theprintf calls. Another problem with vxWorks is tHegMsg facility. logMsg generates messages at

higher priority then all other tasks except the shell. EPICS solves all of these problems via an error message handling
facility. Code can call any of the routinesrMessage , errPrintf , or epicsPrintf . Any of these result in the error
message being generated by a separate low priority task. The calling task has to wait until the message is handled but
other tasks are not delayed. In addition the message can be sent to a system wide error message file.

17.2 General Purpose Callback Tasks

17.2.1 Overview

EPICS provides three general purpose 10C callback tasks. The only difference between the tasks is scheduling priority:
Low, Medium, and High. The low priority task runs at a priority just higher than Channel Access, the medium at a priority
about equal to the median of the periodic scan tasks, and the high at a priority higher than the event scan task.The callback
tasks provide a service for any software component that needs a task under which to run. The callback tasks use the task
watchdog (described below). They use a rather generous stack and can thus be used for invoking record processing. For
example the 1/0 event scanner uses the general purpose callback tasks.

The following steps must be taken in order to use the general purpose callback tasks:

1. Include callback definitions:

#include <callback.h>

2. Provide storage for a structure that is a private structure for the callback tasks:

CALLBACK mycallback;

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’s Guide 193

Chapter 17: EPICS General Purpose Tasks
General Purpose Callback Tasks

It is permissible for this to be part of a larger structure, e.g.
struct {

CALLBACK mycallback;

.

. Call routines (actually macros) to initialize fieldSJALLBACK

callbackSetCallback(VOIDFUNCPTR, CALLBACK *);

This defines the callers callback routine. The first argument is the address of a function rex(@ihgThe
second argument is the address ofGA¢ L BACKstructure.

callbackSetPriority(int, CALLBACK *);

The first argument is the priority, which can have one of the valpderityLow , priorityMedium , or
priorityHigh . These values are defined d¢allback.h . The second argument is again the address of the
CALLBACKstructure.

callbackSetUser(VOID *, CALLBACK *);
This call is used to save a value that can be retrieved via a call to:

callbackGetUser(VOID *,CALLBACK *);

. Whenever a callback request is desired just call one of the following:

callbackRequest(CALLBACK *);
callbackRequestProcessCallback(CALLBACK *);

Either can be called from interrupt level code. The callback routine is passed a single argument, which is the same
argument that was passecctilbackRequest |, i.e., the address of ti@ALLBACKSstructure.

17.2.2 Syntax

The following calls are provided:

void callbackInit(void);

void callbackSetCallback(void *pcallbackFunction,

CALLBACK *pcallback);

void callbackSetPriority(int priority, CALLBACK *pcallback);
void callbackSetUser(void *user, CALLBACK *pcallback);

void callbackRequest(CALLBACK *);
void callbackRequestProcessCallback(CALLBACK *pCallback,

int Priority, void *pRec);

void callbackGetUser(void *user, CALLBACK *pcallback);

Notes:

194

EPICS IOC Application Developer’'s Guide

Chapter 17: EPICS General Purpose Tasks
General Purpose Callback Tasks

« callbackinit is performed automatically when EPICS initializes and I0C. Thus user code never calls this
function.

« callbackSetCallback , callbackSetPriority , callbackSetUser , and callbackGetUser are
actually macros.

« callbackRequest andcallbackRequestProcessCallback can both be called at interrupt level.

» callbackRequestProcessCallback is designed for the completion phase of asynchronous record
processing. It issues the calls:

callbackSetCallback(ProcessCallback, pCallback);
callbackSetPriority(Priority, pCallback);
callbackSetUser(pRec, pCallback);
callbackRequest(pCallback);

ProcessCallback , which is designed for asynchronous device completion applications, consists of the
following code:

static void ProcessCallback(CALLBACK *pCallback)
{

dbCommon *pRec;

struct rset *prset;

callbackGetUser(pRec, pCallback);
prset = (struct rset *)pRec->rset;
dbScanLock(pRec);
(*prset->process)(pRec);
dbScanUnlock(pRec);

17.2.3 Example

An example use of the callback tasks.

#include <callback.h>

static structure {
char begid[80];
CALLBACK callback;
char endid[80];

tmyStruct;

void myCallback(CALLBACK *pcallback)

{
struct myStruct *pmyStruct;
callbackGetUser(pmyStruct,pcallback)
printf("begid=%s endid=%s\n",&pmyStruct->begid[0],

&pmStruct->endid[0]);

}

example(char *pbegid, char*pendid)

{

strcpy(&myStruct.begid[0],pbegid);
strcpy(&myStruct.endid[0],pendid);
callbackSetCallback(myCallback,&myStruct.callback);

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 195

Chapter 17: EPICS General Purpose Tasks
Task Watchdog

callbackSetPriority(priorityLow,&myStruct.callback);
callbackSetUser(&myStruct,&myStruct.callback);
callbackRequest(&myStruct.callback);

}

The example can be tested by issuing the following command to the vxWorks shell:
example("begin”,"end”)

This simple example shows how to use the callback tasks with your own structure that cont&ad HBACKStructure
at an arbitrary location.

17.2.4 Callback Queue

The callback requests put the requests on a vxWorks ring buffer. Thus buffer is set by default to hold 2000 requests. This
value can bechanged by callicgllbackSetQueueSize beforeincinit in the startup file. The syntax is:

int callbackSetQueueSize(int size)

17.3 Task Watchdog

EPICS provides an IOC task that is a watchdog for other tasks. Any task can make a request to be watched. The task
watchdog runs periodically and checks each task in its task list. If any task is suspended, an error message is issued and,
optionally, a callback task is invoked. The task watchdog provides the following features:

1. Include module:

#include <taskwd.h>

2. Insert request:

taskwdlnsert (int tid, TASKWDFUNCPRR callback,
VOID *userarg);

This is the request to include the task with the specifigéd in the list of tasks to be watched. If callback is not
NULL then if the task becomes suspended, the callback routine will be called with a single auyenaegt .

3. Remove request:
taskwdRemove(int tid);

This routine would typically be called from the callback routine invoked when the original task goes into the
suspended state.

4. Insert request to be notified if any task suspends:

taskwdAnylnsert(void *userpvt, TASKWDFUNCPRR callback,
VOID *userarg);

The callback routine will be called whenever any of the tasks being monitored by the task watchdog task suspends.
userpvt must have a nohULL unique valudaskwdAnylnsert |, because the task watchdog system uses this
value to determine who to removdagkwdAnyRemove is called.

5. Remove request feaskwdAnylnsert:

196 EPICS I0OC Application Developer's Guide

Chapter 17: EPICS General Purpose Tasks
Task Watchdog

taskwdAnyRemove(void *userpvt);

userpvt is the value that was passedaskwdAnylnsert

EPICS Release: R3.14.0alphal
EPICS IOC Application Developer’'s Guide 197

Chapter 17: EPICS General Purpose Tasks
Task Watchdog

198 EPICS I0OC Application Developer's Guide

Chapter 18: Database Scanning

18.1 Overview

Database scanning is the mechanism for deciding when to process a record. Five types of scanning are possible:

Periodic: A record can be processed periodically. A number of time intervals are supported.

Event: Event scanning is based on the posting of an event by another component of the software via a call to the
routinepost_event

I/O Event: The original meaning of this scan type is a request for record processing as a result of a hardware
interrupt. The mechanism supports hardware interrupts as well as software generated events.

Passive Passive records are processed only via requestisSoanPassive . This happens when database links
(Forward, Input, or Output), which have been declared "Process Passive” are accessed during record processing. It
can also happen as a resultdfPutField being called (This normally results from a Channel Access put
request).

Scan Once In order to provide for caching puts, The scanning system provides a radamOnce which
arranges for a record to be processed one time.

This chapter explains database scanning in increasing order of detail. It first explains database fields involved with
scanning. It next discusses the interface to the scanning system. The last section gives a brief overview of how the
scanners are implemented.

18.2 Scan Related Database Fields

The following fields are normally defined via DCT. It should be noted, however, that it is quite permissible to change any
of the scan related fields of a record dynamically. For example, a display manager screen could tie a menu control to the
SCANfield of a record and allow the operator to dynamically change the scan mechanism.

18.2.1 SCAN

This field, which specifies the scan mechanism, has an associated menu of the following form:

Passive Passively scanned.

Event: Event Scanned. The fielt/NTspecifies event number
I/O Event scanned

10 Second Periodically scanned - Every 10 seconds

.1 Second Periodically scanned - Every .1 seconds

EPICS Release: R3.14.0alphal

EPICS I0OC Application Developer’s Guide 199

Chapter 18: Database Scanning
Scan Related Software Components

18.2.2 PHAS

This field determines processing order for records that are in the same scan set. For example all records periodically
scanned at a 2 second rate are in the same scan set. All Event scanned records with EM\SEene in the same scan

set, etc. For records in the same scan set, all recordsRM&S-0 are processed before records WRHAS:=1, which are
processed before all records WRRHAS-2, etc.

In general it is not a good idea to relyPHASto enforce processing order. It is better to use database links.

18.2.3 EVNT - Event Number

This field only has meaning wh&CANs set toEvent scanning, in which case it specifies the event number. In order for
a record to be event scanndgyNT must be in the range 0,...255. It should also be noted that some EPICS software
components will not request event scanning for event 0. One exampledggahtkecord record support module. Thus

the application developer will normally want to define events in the range 1,...,255.

18.2.4 PRIO - Scheduling Priority

This field can be used by any software component that needs to specify scheduling priority, e.g. the event and I/O event
scan facility uses this field.

18.3 Scan Related Software Components

18.3.1 menuScan.dbd

This file contains definitions for a menu related to fi&@AN The definitions are of the form:

menu(menuScan) {
choice(menuScanPassive,”Passive”)
choice(menuScanEvent,”"Event”)
choice(menuScanl_O_Intr,”l/O Intr”)
choice(menuScanl10_second,”10 second”)
choice(menuScan5_second,”5 second”)
choice(menuScan2_second,”2 second”)
choice(menuScanl_second,”l second”)
choice(menuScan_5_second,”.5 second”)
choice(menuScan_2_second,”.2 second”)
choice(menuScan_1_second,”.1 second”)

}

The first three choices must appear first and in the order shown. The remaining definitions are for the periodic scan rates,
which must appear in order of decreasing rate. At IOC initialization, the menu values are read by scan initialization. The
number of periodic scan rates and the value of each rate is determined from the menu values. Thus periodic scan rates can
be changed by changimgenuScan.dbd and loading this version vidbLoadDatabase . The only requirement is that

each periodic definition must begin with the value and the value must be in units of seconds.

200 EPICS I0OC Application Developer's Guide

Chapter 18: Database Scanning
Scan Related Software Components

18.3.2 dbScan.h

All software components that interact with the scanning system must include this file.
The most important definitions in this file are:

/* Note that these must match the first four definitions*/
/* in choiceGbl.dbd*/

#define SCAN_PASSIVE 0

#define SCAN_EVENT 1

#define SCAN_IO_EVENT 2

#define SCAN_1ST PERIODIC 3

/*definitions for SCAN_IO_EVENT */
typedef void * IOSCANPVT;
extern int interruptAccept;

long scanlnit(void);

void post_event(int event);

void scanAdd(struct dbCommon *);
void scanDelete(struct dbCommon *);
void scanOnce(void *precord);

int scanOnceSetQueueSize(int size);
int scanppl(void); /*print periodic lists*/
int scanpel(void); /*print event lists*/
int scanpiol(void); /*printio_event list*/
void scanlolnit(IOSCANPVT *);

void scanloRequest(IOSCANPVT);

The first set of definitions defines the various scan types. The next two definiti@SCANPVT and
interruptAccept) are for interfacing with the 1/0O event scanner. The remaining definitions define the public scan
access routines. These are described in the following subsections.

18.3.3 Initializing Database Scanners
scanlnit(void);

The routinescaninit is called byioclnit . It initializes the scanning system.

18.3.4 Adding And Deleting Records From Scan List

The following routines are called each time a record is added or deleted from a scan list.

scanAdd(struct dbCommon *);
scanDelete(struct doCommon *);

These routines are called kganinit at IOC initialization time in order to enter all records created via DCT into the
correct scan list. The routingbPut callsscanDelete andscanAdd each time a scan related field is changed (each
scan related field is declared to 82C_SCANn dbCommon.dbd). scanDelete is called before the field is modified
andscanAdd after the field is modified.

18.3.5 Declaring Database Event

Whenever any software component wants to declare a database event, it just calls:

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’s Guide 201

Chapter 18: Database Scanning
Scan Related Software Components

post_event(event)

This can be called by virtually any 10C software component. For example sequence programs can call it. The record
support module foeventRecord calls it.

18.3.6 Interfacing to
I/O Event Scanning

Interfacing to the I/O event scanner is done via some combination of device and driver support.

1. Include<dbScan.h>

2. For each separate event source the following must be done:
a. Declare ahOSCANPVTvariable, e.g.
static IOSCANPVT ioscanpvt;
b. Callscanlolnit , e.g.
scanlolnit(&ioscanpvt);

3. Provide the device suppaet_ioint_info routine. This routine has the format:
long get_ioint_info(
int cmd,
struct dbCommon *precord,
IOSCANPVT *ppvt);

This routine is called each time the record pointed tgtacord is added or deleted from an 1/O event scan list.
cmd has the value (0,1) if the record is being (added to, deleted from) an 1/O event list. This routine must give a
value to ppvt .

4. Whenever an 1/O event is detected sadnloRequest , e.qg.
scanloRequest(ioscanpvt)
This routine can be called from interrupt level. The request is actually directed to one of the standard callback
tasks. The actual one is determined byRR¢O field of dbCommon

The following code fragment shows an event record device support module that supports 1/O event scanning:

#include <vxWorks.h>
#include <types.h>
#include <stdioLib.h>
#include <intLib.h>
#include <dbDefs.h>
#include <dbAccess.h>
#include <dbScan.h>
#include <recSup.h>
#include <devSup.h>
#include <eventRecord.h>
/* Create the dset for devEventXXX */
long init();
long get_ioint_info();
struct {
long number;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_event;
}devEventTestloEvent={
5,

202 EPICS I0OC Application Developer's Guide

Chapter 18: Database Scanning
Implementation Overview

NULL,

init,

NULL,

get_ioint_info,

NULL};
static IOSCANPVT ioscanpvt;
static void int_service(IOSCANPVT ioscanpvt)
{

scanloRequest(ioscanpvt);

}

static long init()
{
scanlolnit(&ioscanpvt);
intConnect(<vector>,(FUNCPTR)int_service,ioscanpvt);
return(0);
}
static long get_ioint_info(
int cmd,
struct eventRecord *pr,
IOSCANPVT *ppvt)
{
*ppvt = ioscanpvt;
return(0);

}

18.4 Implementation Overview

The code for the entire scanning system residegbican.c , i.e. periodic, event, and I/O event. This section gives an
overview of how the code idbScan.c is organized. The listing oflbScan.c must be studied for a complete
understanding of how the scanning system works.

18.4.1 Definitions And Routines Common To All Scan Types

Everything is built around two basic structures:

struct scan_list {
FAST_LOCK lock;
ELLLIST list;
short modified,;
long ticks; /*used only for periodic scan sets*/

h

struct scan_element{
ELLNODE node;
struct scan_list *pscan_list;
struct dbCommon *precord;

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’s Guide 203

Chapter 18: Database Scanning
Implementation Overview

pevent_list[] ——
——| event_scan_list

list ——=| scan_element
node —| scan_element
node —_—
precord cen
precord

Figure 18-1: Scan List Memory Layout

Later we will see hovscan_lists are determined. For now just realize tkaan_list.list is the head of a list of
records that belong to the same scan set (for example, all records that are periodically staringekcand rate are in the
same scan set). The node fieldstan_element contain the list links. The normal vxWorkstLib routines are used
to access the list. Each record that appears in some scan list has an assoeiatettment . The SPVTfield which
appears imlbCommonholds the address of the associatesh _element

Thelock , modified , andpscan_list fields allowscan_elements , i.e. records, to be dynamically removed and
added to scan lists. HcanList , the routine which actually processes a scan list, is studied it can be seen that these fields
allow the list to be scanned very efficiently if no modifications are made to the list while it is being scanned. This is, of
course, the normal case.

ThedbScan.c module contains several private routines. The following access a single scan set:

* printList : Prints the names of all records in a scan set.
» scanList This routine is the heart of the scanning system. For each record in a scan set it does the following:
dbScanLock(precord);
dbProcess(precord);
dbScanUnlock(precord);
It also has code to recognize when a scan list is modified while the scan set is being processed.
» addTolList: This routine adds a new element to a scan list.
 deleteFromList: This routine deletes an element from a scan list.

18.4.2 Event Scanning

Event scanning is built around the following definitions:

#define MAX_EVENTS 256
typedef struct event_scan_list {
CALLBACK callback;
scan_list scan_list;
}event_scan_list;
static event_scan_list
*pevent_listfNUM_CALLBACK_PRIORITIES][MAX_EVENTS];

pevent_list is a 2d array of pointers tecan_lists . Note that the array allows for 256 events, i.e. one for each
possible event number. In other words, each event number and priority has its own scandisanN@st is actually

created until the first request to add an element for that event number. The event scan lists have the memory layout
illustrated in Figure 18-1.

204 EPICS I0OC Application Developer's Guide

Chapter 18: Database Scanning
Implementation Overview

18.4.2.1 post_event
post_event(int event)

This routine is called to request event scanning. It can be called from interrupt level. It looks at each
event_scan_list referenced byevent list [*][event] (one for each callback priority) and if any elements are
present in thescan_list a callbackRequest is issued. The appropriate callback task calls routine
eventCallback , which just callscanList

18.4.3 1/0 Event Scanning

I/O event scanning is built around the following definitions:

struct io_scan_list {
CALLBACK callback;
struct scan_list scan_list;
struct io_scan_list *next;

}

static struct io_scan_list
*josl_head[NUM_CALLBACK_PRIORITIES]
= {NULL,NULL,NULL};

The arrayios| head and the fielchext are only kept so thacanpiol can be implemented and will not be discussed
further. I/O event scanning uses the general purpose callback tasks to perform record processing, i.e. no task is spawned
for 1/0 event. The callback field @f_scan_list is used to communicate with the callback tasks.

The following routines implement I/O event scanning:

18.4.3.1 scanlolnit
scanlolnit (IOSCANPVT *ppioscanpvt)

This routine is called by device or driver support. It is called once for each interrupt ssuaceolnit allocates and
initializes an array ofo_scan_list structures; one for each callback priority and puts the addresi®scanpvt

Remember that three callback priorities are supported (low, medium, and high). Thus for each interrupt source the
structures are illustrated in Figure 18-1.:

WhenscanAdd or scanDelete are called, they call the device support routes _ioint_info which returns
pioscanpvt . Thescan_element is added or deleted from the correct scan list.

18.4.3.2 scanloRequest
scanloRequest (IOSCANPVT pioscanpvt)

pioscanpvt —=

io_scan_list
.callback
scan_list
— | scan_list |~ | scan_element
. node
list ce
C precord

Figure 18-1: Interrupt Source Structure

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’s Guide 205

Chapter 18: Database Scanning
Implementation Overview

papPeriodic ——

scan_list

list

— s R ———
> | scan_element scan_element
node node
precord precord

Figure 18-1: Structure after ioclnit

This routine is called to request I/O event scanning. It can be called from interrupt level. It looks & esmeim_list
referenced bypioscanpvt (one for each callback priority) and if any elements are present irs¢ha_list a
callbackRequest is issued. The appropriate callback task calls rouimeventCallback , Which just calls
scanList

18.4.4 Periodic Scanning

Periodic scanning is built around the following definitions:

static int nPeriodic;
static struct scan_list **papPeriodic;
static int *periodicTaskld;

nPeriodic , which is determined abclnit time, is the number of periodic ratgzapPeriodic is a pointer to an
array of pointers toscan_lists . There is an array element for each scan rate. Thus the structure illustrated in
Figure 18-1 exists afteoclnit

A periodic scan task is created for each scan rate. The following routines implement periodic scanning:

18.4.4.1 initPeriodic

initPeriodic()
This routine first determines the scan rates. It does this by accessiBg#idfield of the first record it finds. It issues a
call todbGetField with aDBR_ENUNEquest. This returns the menu choicesS@AN From this the periodic rates are
determined. The array of pointers referencedpapPeriodic is allocated. For each scan ratesean_list is
allocated and periodicTask is spawned.
18.4.4.2 periodicTask

periodicTask (struct scan_list *psl)

This task just performs an infinite loop of callisganList and then callingaskDelay to wait until the beginning of
the next time interval.

18.4.5 Scan Once

18.4.5.1 scanOnce
void scanOnce (void *precord)

A task onceTask waits for requests to issuedbProcess request. The routinecanOnce puts the address of the
record to be processed in a ring buffer and wakesuoeTask .

206 EPICS I0OC Application Developer's Guide

Chapter 18: Database Scanning
Implementation Overview

This routine can be called from interrupt level.

18.4.5.2 SetQueueSize

scanOnce places its request on a vxWorks ring buffer.This is set by default to 1000 entries. It can be changed by
executing the following command in the vxWorks startup file.

int scanOnceSetQueueSize(int size);

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’s Guide 207

Chapter 18: Database Scanning
Implementation Overview

208 EPICS I0OC Application Developer's Guide

Chapter 19: libCom
bucketLib.h

Chapter 19: libCom

This chapter and the next describe the facilities provided in <base>/src/libCom. This chapter describes facilities which are
platform independent. The next chapter describes facilities which have different implementations on different platforms.

19.1 bucketLib.h

This is a hash facility for integers, pointers, and strings. It is used by the Channel Access Server. It is currently
undocumented.

19.2 calc

postfix.h defines routines used by calcRecord, access security, and other code. Read the description of the calcRecord in
the Record Reference Manual to see a description of what is supported.

long postfix (char *pinfix, char *ppostfix, short *perror);
long calcPerform(double *parg, double *presult, char *ppostfix);

The caller calls postfix to convert the CALC expression from infix to postfix notation. It is the callers’s responsibility to
make sure that ppostfix points to sufficient storage to hold the postfix expression. The calcRecord uses an array of size
200.

The arguments to calcPerform are:

parg - The address on a array of doubles containing that arguments A,...L that can appear in the CALC expression.
presult - The address of the result of calling calcPerform.
ppostfix - The postfix expression created by postfix.

sCalcPostfix.h contains definitions for code that adds string manipulation facilities in addition to the facilities supported
by postfix.h

19.3 cvtFast.h

This provoides routines for converting various numeric types to ascii string. They offer a combination of speed and
convenience not available with sprintf.

/*
* each of these functions return the number of characters "transmitted”
* (as in ANSI-C/POSIX.1/XPG3 sprintf() functions)
*
int cvtFloatToString(
float value, char *pstring, unsigned short precision);
int cvtDoubleToString(
double value, char *pstring, unsigned short precision);
int cvtFloatToExpString(
float value, char *pstring, unsigned short precision);

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’s Guide 209

Chapter 19: libCom
cxxTemplates.h

int cvtDoubleToExpString(
double value, char *pstring, unsigned short precision);
int cvtFloatToCompactString(
float value, char *pstring,unsigned short precision);
int cvtDoubleToCompactString(
double value, char *pstring, unsigned short precision);
int cvtCharToString(char value, char *pstring);
int cvtUcharToString(unsigned char value, char *pstring);
int cvtShortToString(short value, char *pstring);
int cvtUshortToString(unsigned short value, char *pstring);
int cvtLongToString(long value, char *pstring);
int cvtUlongToString(unsigned long value, char *pstring);
int cvtLongToHexString(long value, char *pstring);
int cvtLongToOctalString(long value, char *pstring);
unsigned long cvtBitsToUlong(
unsigned long src,
unsigned bitFieldOffset,
unsigned bitFieldLength);
unsigned long cvtUlongToBits(
unsigned long src,
unsigned long dest,
unsigned bitFieldOffset,
unsigned bitFieldLength);

19.4 cxxTemplates.h

This contains the following C++ templates:

 resourcelib - A C++ hash facility that implements the same functionality as bucketLib
 tsBTree - Binary tree.

* tsDLList - Double Linked List

* tsFreelList - Free List for efficient new/delete

* tsMinMax - min and max.

 tsSLList - Single Linked List

Currently these are only being used by Channel Access Clients and the portable Channel Access Server. It has not been
decided if any of these will remain in libCom.

19.5 dbmf.h

Routines like dbLoadDatabase have the following attribute:

» They issue many calls to malloc followed a short time later by a call to free the memory.

» Between a call to malloc and the associated free, an additional call to malloc is issued that does NOT have an
associated free.

In some envirinments, e.g. vxWorks,such behaviorcauses severe memory fragmentation.

210 EPICS I0OC Application Developer's Guide

Chapter 19: libCom
ellLib.h

Dmbf(Database Macro/Free) prevents the memory fragmentation. It should NOT be used by code that allocates storage
and then keeps it for a considerable period of time before releasing. Such code can use the freeList library described
below. If domfMalloc is called with a request greater than size, the regular malloc is called.

int domflnit(size_t size, int chunkltems);

void *dbmfMalloc(size_t bytes);

void dbmfFree(void* bytes);

void dbmfFreeChunks(void);

int domfShow(int level);

/* Rules:

* 1) Size is always made a multiple of 8.

* 2) if domflnit is not called before one of the other routines then it
* s automatically called with size=64 and chuckltems=10

* 3) These routines should only be used to allocate storage that will
* shortly thereafter be freed.

* 4) dbmfFreeChunks can only free chunks that contain only free items
*/

19.6 ellLib.h

This is a double linked list library. It provides finctionality similar to the vxWorks IstLib library. See the vxWorks
documantation for details. In most cases there is an ellXXX routine to replace each vxWorks IstXXX routine.

typedef struct ELLNODE {
struct ELLNODE *next;
struct ELLNODE *previous;
}ELLNODE;

typedef struct ELLLIST {
ELLNODE node;
int count;
void elllnit (ELLLIST *pList);
int ellCount (ELLLIST *pList);
ELLNODE *ellFirst (ELLLIST *pList);
ELLNODE *ellLast (ELLLIST *pList);
ELLNODE *ellNext (ELLNODE *pNode);
ELLNODE *ellPrevious (ELLNODE *pNode);
void ellAdd (ELLLIST *pList, ELLNODE *pNode);
void ellConcat (ELLLIST *pDstList, ELLLIST *pAddList);
void ellDelete (ELLLIST *pList, ELLNODE *pNode);
void ellExtract (ELLLIST *pSrcList, ELLNODE *pStartNode,
ELLNODE *pEndNode, ELLLIST *pDstList);
ELLNODE *ellGet (ELLLIST *pList);
void ellinsert (ELLLIST *plist, ELLNODE *pPrev, ELLNODE *pNode);
ELLNODE *ellNth (ELLLIST *pList, int nodeNum);
ELLNODE *ellNStep (ELLNODE *pNode, int nStep);
int ellFind (ELLLIST *pList, ELLNODE *pNode);
void ellFree (ELLLIST *pList);
void ellVerify (ELLLIST *pList);

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 211

Chapter 19: libCom
fdmgr.h

19.7 fdmgr.h

File Descriptor Manager. A C and a C++ implementation is provided. Not currently documented.

19.8 freeList.h

This library can be used to allocate and free fixed size memory elements. Free elements are maintained on a free list
rather then being returned to the heap via calls to free. When it is necessary to call malloc, memory is allocated in
multiples of the element size.

void freeListlnitPvt(void **ppvt,int size,int nmalloc);
void *freeListCalloc(void *pvt);

void *freeListMalloc(void *pvt);

void freeListFree(void *pvt,void*pmem);

void freeListCleanup(void *pvt);

size_t freeListitemsAvail(void *pvt);

where

pvt - For private use by library. Caller must provide a "void *pvt"
size - Size in bytes of each element. Note that all elements must be same size
nmalloc - Number of elements to allocate when regular malloc must be called.

19.9 gpHash.h

This library provides a general purpose hash table for character strings. The hash table contains tableSize entries. Each
entry is a list of members that hash to the same value. The user can maintain separate directories which share the same
table by having a different pvtid for each directory.

typedef struct{
ELLNODE node;
const char *name; [*address of name placed in directory*/
void *pvtid,; [*private name for subsystem user*/
void *userPvt; [*private for user*/
} GPHENTRY;

[*tableSize must be power of 2 in range 256 to 65536*/

void gphlnitPvt(void **ppvt,int tableSize);

GPHENTRY *gphFind(void *pvt,const char *name,void *pvtid);
GPHENTRY *gphAdd(void *pvt,const char *name,void *pvtid);
void gphDelete(void *pvt,const char *name,void *pvtid);

void gphFreeMem(void *pvt);

void gphDump(void *pvt);

where

pvt - For private use by library. Caller must provide a "void *pvt"
name - The character string that will be hashed and added to table.
pvtid - The name plus value of this pointer constitute a unique entry.

212 EPICS I0OC Application Developer's Guide

Chapter 19: libCom
logClient

19.10 logClient

The iocLog client. Thus does not really belong in libCom.

19.11 macLib.h

This is a general purpose macro substitution library. It is used for all macro substitution in base.

long macCreateHandle(
MAC_HANDLE **handle, [* address of variable to receive pointer */
/* to new macro substitution context */
char *pairs[] /* pointer to NULL-terminated array of */
[* {name,value} pair strings; a NULL */
[* value implies undefined; a NULL */
[* argument implies no macros */

);

void macSuppressWarning(
MAC_HANDLE *handle, [* opaque handle */
int falseTrue /*0 means ussue, 1 means suppress*/

);

[*following returns #chars copied, <0 if any macros are undefined*/
long macExpandString(
MAC_HANDLE *handle, [* opaque handle */

char *src, [* source string */
char *dest, /* destination string */
long maxlen /* maximum number of characters to copy */

[* to destination string */

[*following returns length of value */

long macPutValue(
MAC_HANDLE *handle, [* opaque handle */
char *name, /* macro name */
char *value /* macro value */

);

[*following returns #chars copied (<0 if undefined) */
long macGetValue(
MAC_HANDLE *handle, [* opaque handle */

char *name, /* macro name or reference */
char *value, [* string to receive macro value or name */
[* argument if macro is undefined */
long maxlen /* maximum number of characters to copy */

[* to value */

);

long macDeleteHandle(MAC_HANDLE *handle);
long macPushScope(MAC_HANDLE *handle);

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’s Guide 213

Chapter 19: libCom
misc

long macPopScope(MAC_HANDLE *handle);
long macReportMacros(MAC_HANDLE *handle);

/* Function prototypes (utility library) */

[*following returns #defns encountered; <O = ERROR */
long macParseDefns(
MAC_HANDLE *handle, [* opaque handle; can be NULL if default */
[* special characters are to be used */
char *defns, /* macro definitions in "a=xxx,b=yyy" */
[* format */
char **pairs] /* address of variable to receive pointer */
/* to NULL-terminated array of {name, */
[* value} pair strings; all storage is */
[* allocated contiguously */

):

[*following returns #macros defined; <O = ERROR */
long macinstallMacros(MAC_HANDLE *handle,
char *pairs[] /* pointer to NULL-terminated array of */
/* {name,value} pair strings; a NULL */
/* value implies undefined; a NULL */
[* argument implies no macros */

):

NOTE: The directory <base>/src/libCom/macLib contains two files macLibNOTES and macLibREADME that explain
this library.

19.12 misc

19.12.1 aTolPAddr

The function prototype appears in osiSock.h

aTolPAddr fills in the structure pointed to by the plp argument with the Internet address and portnumber specified by the
pAddrString argument.

Three forms of pAddrString are accepted:

1. n.n.n.n:p
The Internet address of the host, specified as four numbers separated by periods.

2. XXXXXXXX:P
The Internet address number of the host, specified as a single number.

3. hostname:p
The Internet host name of the host.

In all cases the ‘:p’ may be omitted in which case the port number is set to the value of the defaultPort argument. All
numbers are read in base 16 if they begin with ‘0x’ or ‘0X’, in base 8 if they begin with ‘0’, and in base 10 otherwise.

214 EPICS I0OC Application Developer's Guide

Chapter 19: libCom
misc

19.12.2 adjustment.h

size_t adjustToWorstCaseAlignment(size_t size);

adjustToWorstCaseAlignment returns a value >= size that an exact multiple of the worst case alignment for the
architecture on which the routine is executed.

19.12.3 cantProceed.h

void cantProceed(const char *errorMessage);
void *callocMustSucceed(size_t count, size_t size,const char *errorMessage);
void *mallocMustSucceed(size_t size, const char *errorMessage);

These routines are provided for code that can’t proceed when an error czantBroceed issues the error message
and does not returrcallocMustSucceed and mallocMustSucceed can be used in place afalloc and
malloc . If they fail they just caltantProceed

19.12.4 dbDefs.h

This contains definitions that are still used in base but should not be. Hopefully these all go away some day. This has been
the hope for about ten years.

19.12.5 epicsString.h

int dbTranslateEscape(char *s,const char *ct);

dbTranslateEscape copiesct to s while substituting escape sequences. It returns the length of the resultant string
(may contain nulls).

19.12.6 epicsTypes.h

typedef char epicsints;
typedef unsigned char epicsUInt8;
typedef short epicsintl6;

typedef unsigned short epicsUInt16;
typedef epicsUInt16 epicSEnumle;

typedef int epicsint32;
typedef unsigned epicsUInt32;
typedef float epicsFloat32;
typedef double epicsFloat64;

typedef unsigned long epicsindex;
typedef epicsint32 epicsStatus;

epicsTypes.h contains a number of definitions that provide architecture independent data types. So far the definitions
provided in this header file have worked on all architectures. In addition to the above definitions epicsTypes.h has a
number of definitions for displaying the types and other usefull definitions. See the header file for details.

19.12.7 gsd_sync_defs.h

Not documented.

EPICS Release: R3.14.0alphal
EPICS IOC Application Developer’'s Guide 215

Chapter 19: libCom
timer.h

19.12.8 locationException.h

A C++ template. Not documented. This should be in cxxTemplates.

19.12.9 sharelLib.

This is the header file for the "decorated names" that appear in header files, e.g.
epicsShareFunc int epicsShareAPI a_func (int arg)

This is used for creating DLLs for windows. Hopefully a way can be found to generated win32 DLLs which does not
require decorated names.

19.12.10 truncateFile.h

enum TF_RETURN {TF_OK=0, TF_ERROR=1};
TF_RETURN truncateFile

const char *pFileName, /*name (and optionally path) of file*/
unsigned size);

where
pFileName - name (and optionally path) of file

truncateFile truncates the file to the specified sizeuncate is not used because it is not portable. It returns
TF_OK if the file is less than size bytes or if it was successfully truncated. It returns TF_ERROR if the file could not be
truncated.

19.12.11 unixFileName.h
Specifies OSI_PATH_LIST_SEPARATOR and OS|_PATH_SEPARATOR

19.13 timer.h

This defines and implements osiTimer, which implements the timers used by base. For example the database callback
facility uses osiTimer. Not documented except in the header file.

216 EPICS I0OC Application Developer's Guide

Chapter 20: libCom OSI libraries

20.1 Overview

Directory <base>/src/libCom/osi contains code for implementing operating system independent code. The structure of
this directory is:
osi/
osi*.h
*.cpp - A few generic c++ implementations
os/
Linux/
RTEMS/
WIN32/
cygwin32/
default/
posix/
solaris/
vxWorks/
NOTE: Other systems also have a directory but only these are currently supported.

The osi directory contains header files that start with "osi". These contain the definitions used by user code. Each of the
directories under osi/os contain architecture dependent code. Such code has names like osd*.h and osd*.c. These files
contain operating system dependent headers and sources.

The rules for installing header files residing under libCom/osi are:

* Files in osi are installed into <top>/include

* Files in osi/os/* are installed into <top>/include/os/<arch>.The search order for locating a file is:
* libCom/osi/os/<arch>
» libCom/osi/os/posix
 libCom/osi/os/default

When compiling the search order for locating header files is:
e . -the current directory
» <top>/os/<arch>
» <top>/include
* libCom/*
The search order for locating source files is:

* libCom/osi/os/<arch>
* libCom/osi/os/posix
* libCom/osi/os/default
* libCom/*

NOTE: libCom/osi/os/* contains files osiFileName.h and osiSock.h | dont think these belong!!

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’'s Guide 217

Chapter 20: libCom OSiI libraries
epicsAssert.h

20.2 epicsAssert.h

This is a replacement dor ANSI C’s assert. ,Id assert fails, it calls errlog indicating the program’s author, file name, and
line number. Under each OS there are specialized instructions assisting the user to diagnose the problem and generate a
good bug report. For instance, under vxWorks, there are instructions concerning how to generate a stack trace, and on
posix there are instructions about saving the core file. After printing the message the calling thread is suspended.

20.3 osiEvent.h

class osiEvent {
public:
osiEvent ();
~osiEvent ();
void signal ();
void wait (); /* blocks until full */
bool wait (double timeOut); /* false if empty at time out */
bool tryWait (); /* false if empty */
void show (unsigned level) const;
class invalidSemaphore {}; /* exception */
class noMemory {}; /* exception */
private:

This is a C++ wrapper for semBinary, which is defined in osiSem.h

20.4 osiFindGlobalSymbol.h

void * osiFindGlobalSymbol(const char *name);

Method Meaning

osiFindGlobalSymbol| Return the address of the global variable name

vxWorks provides a function symFindByName, which finds and returns the address of global variables. The registry,
described in the next chapter, provides an alternative but also requires extra work by iocCore and/or user code. If the
registry is asked for a name that has not been registered, it calls osiFindGlobalSymbol. If osiFindGlobalSymbol can locate
the global symbol it returns the address, otherwise it returns null.

On vxWorks osiFindGlobalSymbol calls symFindByName.

A default version just returns null, i.e. it always fails.

20.5 osilnterrupt.h

int interruptLock();

218 EPICS I0OC Application Developer's Guide

Chapter 20: libCom OSiI libraries
osiMutex.h

void interruptUnlock(int key);
int interruptlsinterruptContext();
void interruptContextMessage(const char *message);

Method Meaning
interruptLock Lock interrupts and return a key to be passed to interruptUnlock
To lock the following is done.
int key;

key = interruptLock();

interruptUnlock(key);

interruptUnlock Unlock interrupts.

interruptlisinterruptContex{ Return (true, false) if current context is interrupt context.

interruptContextMessage Generate a message while interrupt context is true.

A vxWorks specific version is provided. It maps directly to intLib calls.
An RTEMS version is provided that maps to rtems_ calls.

A default version is provided that uses a global semaphore to lock. This version is intended for operating systems in which
iocCore will run as a multithreaded process. The global semaphore is thus only global within the process.

NOTES:
The generic version is intended for use on all except real time operating systems.

» The vxWorks type implementation will not produce the desired result on symetric multiprocessing systems.
* The reason this is needed is:

« callbackRequest and scanOnce can be issued from interrupt level.

» The errlog routines can be called while at interrupt level.

20.6 osiMutex.h

class epicsShareClass osiMutex {
public:
osiMutex ();
~osiMutex ();
void lock () const; /* blocks until success */
bool lock (double timeOut) const; /* true if successful */
bool tryLock () const; /* true if successful */
void unlock () const;
void show (unsigned level) const;

class invalidSemaphore {}; /* exception */

class noMemory {}; /* exception */
private:

mutable semMutexId id;

h

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’s Guide 219

Chapter 20: libCom OSiI libraries
osiPoolStatus.h

This is a wrapper c++ class for semMutex described in osiSem.

20.7 osiPoolStatus.h

int osiSufficentSpacelnPool(void);

Method Meaning

osiSufficentSpacelnPool Return (true,false) if there is sufficient free memory.

This determines if enough free memory exists to continue.
A vxWorks version returns (true,false) if memFindMax returns (>100000, <=100000) bytes.

The defualt version always returns true.

20.8 osiProcess.h

typedef enum osiGetUserNameReturn {
osiGetUserNameFalil,
osiGetUserNameSuccess

}osiGetUserNameReturn;

osiGetUserNameReturn osiGetUserName (char *pBuf, unsigned bufSize);

/*

* Spawn detached process with named executable, but return

* osiSpawnDetachedProcessNoSupport if the local OS does not

* support heavy weight processes.

*/

typedef enum osiSpawnDetachedProcessReturn {
osiSpawnDetachedProcessFail,
osiSpawnDetachedProcessSuccess,
osiSpawnDetachedProcessNoSupport

}osiSpawnDetachedProcessReturn;

osiSpawnDetachedProcessReturn osiSpawnDetachedProcess(
const char *pProcessName, const char *pBaseExecutableName);

Not documented.

220 EPICS I0OC Application Developer's Guide

Chapter 20: libCom OSiI libraries
osiRing.h

20.9 osiRing.h

ringld ringCreate(int nbytes);

void ringDelete(ringld id);

int ringGet(ringld id, char *value,int nbytes);
int ringPut(ringld id, char *value,int nbytes);
void ringFlush(ringld id);

int ringFreeBytes(ringld id);

int ringUsedBytes(ringld id);

int ringSize(ringld id);

int ringlsSEmpty(ringld id);

int ringlsFull(ringld id);

Method Meaning

ringCreate Create a new ring buffer of size nbytes. The returned ringld is passed to the other ring methods.

ringDelete Delete the ring buffer and free any associated memory.

ringGet Move up to nbytes from the ring buffer to value. The number of bytes actually moved is returned.

ringPut Move up to nbytes from value to the ring buffer. The number of bytes actually moved is returned.

ringFlush Make the ring buffer empty.

ringFreeBytes | Return the number of free bytes in the ring buffer.

ringUsedBytes| Return the number of bytes currently stored in the ring buffer.

ringSize Return the size of the ring buffer, i.e., nbytes specified in the call to ringCreate.
ringlsEmpty Return (true, false) if the ring buffer is currently empty.
ringlsFull Return (true, false) if the ring buffer is currently empty.

osiRing has the following properties.

 For a single writer it is not necessary to lock puts.
» For a single reader it is not necessary to lock gets.
« ringFlush should only be used if both gets and puts are locked.

A vxWorks specific version is provided that maps directly to rngLib calls. The vxWorks implementation guarantees the
above properties.

A default version is provided that works on all platforms and also guarantees the above properties.

20.10 osiSem.h

typedef void *semBinaryld;
typedef enum {semTakeOK,semTakeTimeout,semTakeError} semTakeStatus;
typedef enum {semEmpty,semFull} seminitialState;

semBinaryld semBinaryCreate(semlnitialState initialState);

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’s Guide 221

Chapter 20: libCom OSiI libraries

osiSem.h

semBinaryld semBinaryMustCreate (seminitialState initialState);

void semBinaryDestroy(semBinaryld id);

void semBinaryGive(semBinaryld id);

semTakeStatus semBinaryTake(semBinaryld id);

void semBinaryMustTake(ID);

semTakeStatus semBinaryTakeTimeout(semBinaryld id, double timeOut);
semTakeStatus semBinaryTakeNoWait(semBinaryld id);

void semBinaryShow(semBinaryld id, unsigned int level);

typedef void *semMutexId;

semMutexld semMutexCreate(void);

semMutexld semMutexMustCreate (void);

void semMutexDestroy(semMutexld id);

void semMutexGive(semMutexId id);

semTakeStatus semMutexTake(semMutexld id);

void semMutexMustTake(semMutexld id);

semTakeStatus semMutexTakeTimeout(semMutexld id, double timeOut);
semTakeStatus semMutexTakeNoWait(semMutexId id);

void epicsShareAPI semMutexShow(semMutexId id,unsigned int level

):

Method

Meaning

semBinaryCreate
semBinaryMustCreate

Creates a binary semaphore. It can be created empty or full. If it is created empty then a semTake
issued before a semGive will block. If created full then the first semTake will always succeed.
Multiple semGives may be issued between semTakes but have the same effect as a single
semGive.

If semBinaryCreate is called the return value must be checked. A return value of 0 indicates
failure. semBinaryMustCreate does not return if it fails.

semBinaryDestroy

Remove the semaphore and any resources it uses. Any further use of the semaphore result in
unknown (most certainly bad) behavior. No outstanding take can be active when this call is made.

semBinaryGive

Set the semaphore full, i.e. ensures that the next or current call to semBinaryTake completes.

semBinaryTake
semBinaryMustTake

Wait until the semaphore is full.
If semBinaryTake is issued then the return value must be checked. It will be either semTakeOK
or semTakeError. semBinaryMustTake will not return if an error is detected.

semBinaryTakeTimeou
semBinaryTakeNoWait

Similar to semBinaryTake except that if the semaphore is empty the call completes after the
specified timeout (semBinaryTakeTimeout) or immediately (semBinaryTakeNoWait). If the
return value is semTakeOK the semaphore was full. If the semaphore was never full during the
timeout period, the return value is semTakeTimeout.

semBinaryShow

Display information about the semaphore. The information displayed is architecture dependent.

semMutexCreate Creates a mutual exclusion semaphore.

semMutexMustCreate | If semMutexCreate is called the return value must be checked. A return value of 0 indicates
failure. semMutexMustCreate does not return is it fails.

semMutexDestroy Remove the semaphore and any resources it uses. Any further use of the semaphore result in
unknown (most certainly bad) results. No outstanding takes can be active when this call is made.

semMutexGive Called when the owner thread is done with a resource . If a thread issues recursive takes, there
must be a semMutexGive for each take.

222 EPICS I0OC Application Developer's Guide

Chapter 20: libCom OSiI libraries
osiSem.h

Method Meaning

semMutexTake Wait until the resource is free. After a successful take additional , i.e. recursive, takes of any type
semMutexMustTake can be issued but each must have an associated semMutexGive.

If semMutexTake is issued then the return value must be checked. It will be either semTakeOK or
semTakeError. semMutexMustTake will not return if an error is detected.

semMutexTakeTimeouf] Similar to semMutexTake except that, if the resource is owned by another thread, the call
semMutexTakeNoWait| completes after the specified timeout (semMutexTakeTimeout) or immediately
(semMutexTakeNoWait). If the return value is semTakeOK the caller owns the resource. If the
resource is never free during the timeout period, the return value is semTakeTimeout.

semMutexShow Display information about the semaphore. The results are architecture dependent.

Two types of semaphores are provided: Binary and Mutex.

The primary use of binary semaphores is for synchronization. They could also be used for mutual exclusion but this usage
is discouraged. A example of using a binary semaphore is a consumer thread that processes requests from one or more
producer threads. For example:

» Create the consumer thread:
semBinaryld id;

id = semBinaryMustCreate(semEmpty);
threadCreate("consumer"...

e The consumer thread has code containing:
while(1) {
semBinaryMustTake(id);
while(/*more work*/) {
[*process work*/

}
}

» Producers create requests and issue the statement:
semGive(id);

Mutual exclusion semaphores are for situations requiring mutually exclusive access to resources. A mutual exclusion
semaphore may be taken recursively, i.e. can be taken more than once by the owner thread before releasing it. Recursive
takes are useful for a set of routines that call each other while working on a mutually exclusive resource.

The typical use of a mutual exclusion semaphore is:

semMutexlId id;
id = semMutexMustCreate();

semMutexMustTake(id);
/* process resource */
semMutexGive(id);

NOTES: Mutual exclusion semaphores

* MUST implement recursive locking
» SHOULD implement priority inheritance and be deletion safe

A posix version is implemented via pthreads.

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’s Guide 223

Chapter 20: libCom OSiI libraries
osiSigPipelgnore.h

20.11 osiSigPipelgnore.h

void installSigPipelgnore (void);

Not documented.

20.12 osiSock.h

See the header file in <base>/src/libCom/osi.

20.13 osiThread.h

typedef void (*THREADFUNC)(void *parm);

static const unsigned threadPriorityMax = 99;
static const unsigned threadPriorityMin = O;

/*some generic values */

static const unsigned threadPriorityLow = 10;
static const unsigned threadPriorityMedium = 50;
static const unsigned threadPriorityHigh = 90;

/*some iocCore specific values */

static const unsigned threadPriorityChannelAccessServer = 30;
static const unsigned threadPriorityScanLow = 60;

static const unsigned threadPriorityScanHigh = 70;

[* stack sizes for each stackSizeClass are implementation and CPU dependent */
typedef enum {

threadStackSmall, threadStackMedium, threadStackBig
} threadStackSizeClass;

typedef enum {tbsFail, tbsSuccess} threadBoolStatus;
unsigned int threadGetStackSize(threadStackSizeClass size);

typedef int threadOnceld;
#define OSITHREAD_ONCE_INIT 0
void threadOnce(threadOnceld *id, THREADFUNC func, void *arg);

void threadlnit(void);
void threadExitMain(void);

/* (threadld)0 is guaranteed to be an invalid thread id */
typedef void *threadld;
threadld threadCreate(const char *name,
unsigned int priority, unsigned int stackSize,
THREADFUNC funptr,void *parm);

224 EPICS I0OC Application Developer's Guide

Chapter 20: libCom OSiI libraries
osiThread.h

void threadSuspendSelf(void);

void threadResume(threadld id);

unsigned int threadGetPriority(threadld id);

unsigned int threadGetPrioritySelf();

void threadSetPriority(threadld id,unsigned int priority);

threadBoolStatus threadHighestPriorityLevelBelow(
unsigned int priority, unsigned *pPriorityJustBelow);

threadBoolStatus threadLowestPriorityLevelAbove(
unsigned int priority, unsigned *pPriorityJustAbove);

int threadlsEqual(threadld id1, threadld id2);

int threadlsSuspended(threadld id);

void threadSleep(double seconds);

threadld threadGetldSelf(void);

threadld threadGetld(const char *name);

const char *threadGetNameSelf(void);

/* For threadGetName name is guaranteed to be null terminated */
[* size is size of buffer to hold name (including terminator */

/* Failure results in a null string stored in name */

void threadGetName(threadld id, char *name,size_t size);

void threadShowAll(unsigned int level);
void threadShow(threadld id,unsigned int level);

typedef void * threadVarld;

threadVarld threadPrivateCreate (void);
void threadPrivateDelete (threadVarld id);
void threadPrivateSet (threadVarld, void *);
void * threadPrivateGet (threadVarld);

Method Meaning
threadGetStackSize Get a stack size value that can be given to threadCreate. Three sizes can be requested: small,
medium, and large.
threadOnce This is used as follows:
void mylnitFunc(void * arg)
{
}
threadOnceld onceFlag = OSITHREAD_ONCE_INIT;
threadOnce(&onceFlag,mylnitFunc,(void *)myParm)
For each unique threadOnceld, threadOnce gurantees
1) mylnitFunc is called only once.
2) mylnitFunc completes before any threadOnce call completes.
threadInit This is called automatically by the thread implementation. NOTE: This should not appear in
osiThread.h
threadExitMain If the main routine is done but wants to let other threads run it can call this routine. This should

be the last call in main, except the final return. On most systems threadExitMain never returns.
This must only be called by the main thread.

EPICS Release: R3.14.0alphal

EPICS I0OC Application Developer’s Guide 225

Chapter 20: libCom OSiI libraries

osiThread.h
Method Meaning

threadCreate Create a new thread. The use made of the name, priority, and stacksize arguments is
implementation dependent. Some implementation may ignore one or more of these. The funptr
argument specifies a function that implements the thread and parm is the single argument passed
to funptr. A thread terminates when funptr returns.

threadSuspendSelf This causes the calling thread to suspend. The only way it can resume is for another thread to
call threadResume.

threadResume Resume a suspended thread. Only do this if you know that it is safe to resume a suspended
thread.threadGetPriority

threadGetPriority Get the priority of the specified thread.

threadGetPrioritySelff Get the priority of this thread.

threadSetPriority Set a new priority for the specified thread. Note that the result is implementation dependent. See

comments about priorities above.

threadHighestPriority
LevelBelow

Get a priority that just lower than the specified priority.

threadLowestPriority
LevelAbove

Get a priority that is just above the specified priority.

threadlsEqual

Compares two threadlds and returns (0,1) if they (are not, are) the same.

threadlsSuspended

BAD NAME. taskwd needs this call. It really means: Is there something wrong with this thread?
This could mean suspended or no longer exists or etc. It is a problem because it is
implementation dependent.

threadSleep Sleep for the specified period of time, i.e. sleep without using the cpu.

threadGetldSelf Get the threadld of the calling thread.

threadGetld Get the threadld if the specified thread. A return of 0 means that no thread was found with the
specified hame.

threadGetNameSelf Get the name of the calling thread.

threadGetName Get the name of the specified thread. The value is copied to a caller specified buffer so that if the
thread terminates the caller is not left with a pointer to something that may no longer exist.

threadShowAll Display info about all threads.

threadShow Display info about the specified thread.

threadPrivateCreate Thread private variables are intended for use by legacy libraries written for a single threaded

environment and which uses a global variable to store private data. The only code in base that
currently needs this facility is channel access. A library that needs a private variable should
make exactly one call to threadPrivateCreate. Each thread should call threadPrivateSet when the
thread is created. Each library routine can call threadPrivateGet each time it is called.

threadPrivateDelete

Delete a thread private variable.

threadPrivateSet Set the value for a thread private variable.
threadPrivateGet Get the value of a thread private variable, the value is the value set by the call to threadPrivateSet
that was made by the same thread. If called before threadPrivateSet it returns 0.
226 EPICS I0OC Application Developer's Guide

Chapter 20: libCom OSiI libraries
osiTime.h

osiThread is meant as a somewhat minimal interface for multithread applications. It can be implemented on a wide variety
of systems with the restriction that the system MUST support a multithreaded environment. A POSIX pthreads version is
provided

The interface provides the following thread facilities, with restrictions as noted:

20.

Life cycle - A thread starts life as a result of a call to threadCreate. It terminates when the thread function returns. It
should not return until it has released all resources it uses. If a thread is expected to terminate as a natural part of
it’s life cycle then the thread function must return.

threadOnce - This provides the ability to have an initialization function that is guranteed to be called exactly once.
main - On systems requiring a main routine, threadInit MUST be called before any thread or semaphore routines.
Since the errlog facility, which is used by many components of libCom, calls threadCreate, threadinit should be
called before any other routines supplied with epics base. If a main routine finishes it's work but wants to leave
other threads running it can call threadExitMain, which should be the last statement in main.

Priorities - Priorities range between 0 and 99 with a higher number meaning higher priority. A number of constants
are defined for iocCore specific threads. The underlying implementation may collapse the range 0 to 99 into a
smaller range; even a single priority. User code should never use priorities to guarantee correct behavior.

Stack Size - threadCreate accepts a stack size parameter. Three generic sizes are available: small, medium, and
large. Portable code should always use one of the generic sizes. Some implementation may ignore the stack size
request and use a system default instead. Virtual memory systems providing generous stack sizes can be expected
to use the system default.

threadld - This is given a value as a result of a call to threadInit or threadCreate. A value of 0 always means no
thread. If a threadld is used for a thread that has terminated the result is not defined (but will normally lead to bad
things happening). Thus code that looks after other threads MUST be aware of threads terminating.

14 osiTime.h

This is a replacement for tsLib.h. Currently only documented in the header file.

20.

15 tsStamp.h

This is a set of C functions to access osiTime. Currently only documented via the header file.

EPICS Release: R3.14.0alphal

EPICS I0OC Application Developer’s Guide 227

Chapter 20: libCom OSiI libraries
tsStamp.h

228 EPICS I0OC Application Developer's Guide

Chapter 21: Reqistry

Under vxWorks osiFindGlobalSymbol can be used to dynamically bind to record, device, and driver support. Since on
some systems this always returns failure, a registry facility is provided to implement the binding. The basic idea is that
any storage meant to be "globally" accessable must be registered before it can be accessed by other code.

A perl script is provided that reads the xxxApp.dbd file and produege c file containing a routine
registerRecordDeviceDriver, which registers all record/device/driver support defined in the xxxApp.dbd file.

21.1 Registry.h

int registryAdd(void *registrylD,const char *name,void *data);
void *registryFind(void *registrylD,const char *name);

int registrySetTableSize(int size);

void registryFree();

int registryDump(void);

This is the code which does the work. Each different set of things to register must have it's own unique ID. Everything to
be registered is stored in the same gpHash table.

Routine registrySetTableSize is provided in case the default hash table size (1024 entries) is not sufficient.

21.2 registryRecordType.h

typedef int (*computeSizeOffset)(dbRecordType *pdbRecordType);

typedef struct recordTypelLocation {
struct rset *prset;
computeSizeOffset sizeOffset;
}recordTypeLocation;

int registryRecordTypeAdd(const char *name,recordTypeLocation *prtl);
recordTypeLocation *registryRecordTypeFind(const char *name);

Some features:

» Access to both the record support entry table and to the routine which computes the size and offset of each field are
provided

» Type safe access is provided.

EPICS Release: R3.14.0alphal
EPICS I0OC Application Developer’s Guide 229

Chapter 21: Registry
registryDeviceSupport.h

21.3 registryDeviceSupport.h

int registryDeviceSupportAdd(const char *name,struct dset *pdset)
struct dset *registryDeviceSupportFind(const char *name);

This provides access to the device support entry table.

21.4 registryDriverSupport.h

int registryDriverSupportAdd(const char *name,struct drvet *pdrvet);
struct drvet *registryDriverSupportFind(const char *name);

/* The following function is generated by registerRecordDeviceDriver/pl */
int registerRecordDeviceDriver(DBBASE *pdbbase);

This provides access to the driver support table.

21.5 registryFunction.h

typedef void (*REGISTRYFUNCTION)(void);

[* ¢ interface definitions */

int registryFunctionAdd(const char *name,REGISTRYFUNCTION func);
REGISTRYFUNCTION registryFunctionFind(const char *name);

This registers a function. This is used for subroutine like records.

21.6 registerRecordDeviceDriver.c

A version of this is provided for vxWorks. This version makes it unnecessary to use registerRecordDeviceDriver.pl or
register other external names. Thus for vxWorks everything can work almost exactly like it did in release 3.13.x

21.7 registerRecordDeviceDriver.pl

This is the perl script which creates a ¢ source file that registers record/device/driver support. Make rules:

 execute this script using the dbd file created by dbExpand
» compile the resulting C file
» Make the object file part of the xxxLib file

230 EPICS I0OC Application Developer's Guide

Chapter 22: Database Structures

22.1 Overview

This chapter describes the internal structures describing an IOC database. It is of interest to EPICS system developers but
serious application developers may also find it useful. This chapter is intended to make it easier to understand the 10C

source listings. It also gives a list of the header files used by I0C Code.

22.2 Include Files

This section lists the files in base/include that are of most interest to IOC Application Developers:
alarm.h alarmString.h - These files contain definitions for all alarm status and severity values.
cadef.h caerr.h caeventmask.h These files are of interest to anyone writing channel access clients.
callback.h - The definitions for the General Purpose callback system.

dbAccess.h Definitions for the runtime database access routines.

dbBase.h- Definitions for the structures used to store an EPICS database.

dbDefs.h- A catchall file for definitions that have no other reasonable place to appear.
dbFIdTypes.h- Definitions forDBF_xxx andDBR_xxx types.

dbScan.h- Definitions for the scanning system.

dbStaticLib.h - The static databases access system.

db_access.h db_addr.h Old database access.

devLib.h - The device support library

devSup.h- Device Support Modules

drvSup.h - Driver Support Modules

ellLib.h - A library that is provides the same functions as the vxWdskisb . All routines start withell
Ist . TheellLib routines work on both I0OCs and on UNIX.

epicsPrint.h errMdef.h - EPICS error handling system
fast_lock.h- The FASTLOCK routines.

freeList.h - A general purpose free list facility
gpHash.h- A general purpose hash library.
guigroup.h - The guigroup definitions.

initHooks.h - Definitions used binitHooks .c routines.

instead of

EPICS Release: R3.14.0alphal
EPICS I0C Application Developer's Guide

231

Chapter 22: Database Structures
Include Files

link.h - Link definitions

module_types.h- VME hardware configuratiotSHOULD NOT BE USED BY NEW SUPPORT.
recSup.h- The record global routines.

special.h- Definitions for special fields, i.8&PC_xxx.

task_params.h- Definitions for task priorities, stack space, etc.

taskwd.h - Task Watchdog System

tsDefs.h- Time stamp routines. Will also have to loolbase /src /libCom /tsSubr .c

232 EPICS I0OC Application Developer's Guide

Chapter 22: Database Structures

Structures

22.3 Structures

dbBase

recordTypeList

menulList —

drvList
bptList
pathPvt

ppvd
pgpHash

ignoreMissingMenus

,[dbMenu
node
name
nChoice
papChoiceName
papChoiceValue p-[dDRecordNode
node
precord
recordname
visible
™ dbRecordType
node devsup
attributeList R
recList name
devList pdset
name link_type
zg_gfc')‘::pt »bFidDes
link_ind promt
papsortFldName name
sortFldind extra
ovalFldDes pdbRecordType
: indRecordType
indvalFlddes .
special
papFidDes field_type
process_passive
base
*drvr?oljjpe promptgroup
interest
name as_level
pdrvet initial
|y [prkTable
node brkint
name raw
number slope
papBrkint eng

EPICS Release: R3.14.0alphal

EPICS I0C Application Developer’s Guide

233

Chapter 22: Database Structures
Structures

234 EPICS I0OC Application Developer's Guide

INDEX
A

AB 1O, ... 69
Access Security. 89
addpath i 58, 60
adjustToWorstCaseAlignment 215
Alloc/Free DBENTRY 155
ANSI. .. 40
asAddClient. i 98
asAddMember. L L 98
asChangeClient. 99
asChangeGroup.cvvi i 98
ascheck 92
asCheckGet(............ 99
asCheckPut 99
asCompute. 100
asComputeAllAsg.o 100
asComputeAsg 100
asdbdump L 103, 113
asDbGetAsl.o 102
asDbGetMemberPvt 102
asbump(.. ..o 100
asDumpHag. i 100
asDumpHash. 101
asDumpMem. 101
asDumpRules 100
asDumpuag. 100
ASG. .. 91

.................................... 90
asGetClientPvt 99
asGetMemberPvt. L 98
aslnit 92,102, 113
asInitAsyn. 102
ashnitFile L 97
asinitFP 97
aslnitialize. o L 97
ASL. . 90
asl - field definitionrules. 62
asl_level - field definition 63
asphag.......... L. 103, 113
2] 0] .= 0 103, 114
asprules. 103, 114
ASPUAYT - « v 103, 113
asPutClientPvt. 99
asPutMemberPvt. 98
asPvtinDBADDR 171
asRegisterClientCallback 99

asRemoveClient 99

asRemoveMember 98
asSetFilename. 92,102, 113
asSetSubstitutions. 92, 102
asSublnit. 93, 103
asSubProcess. 93, 103
astacC. 102
asynchronous device support example 145
B
base - field definition. 64
base - field definitionrules 62
BBGPIB IO i 70
Bininstallfiles 38
BIN_INSTALLS. 38, 43
BITBUS IO 69
BPTS. . 29
breakpoint table - database definition. 67
Breakpoint Tables.................... 29,71
Breakpoints. 109
breaktable 58
Build Facility 25
C

ca_channel_status...................... 114
CachedPuts. 55
CALC .. 92
calcPerform. 209
CALLBACK. it 193
callbackGetUser 194
callbacklnit 194
callbackRequest 194
callbackRequestProcessCallback 194
callbackSetCallback 194
callbackSetPriority 194
callbackSetQueueSize................ 84, 196
callbackSetUser. 194
callocMustSucceed 215
CAMAC IO 69
cantProceed. 215
CaASE © e 114
CFLAGS . .. o s 40
Channel Access. it 17
channelaccesslink 47
Channel Access Monitors. 183
checkAlarms. 133
choice 58
choice_string - device definition. 67
CLASSES e 42
clean 28
CMPLR. .. 40
comment - Database Definitions. 60
computeSizeOffset 229
CONFIG e 44
CONFIG.CrossCommon. 43
CONFIG_ADDONS. ..., 43
CONFIGBASE, 43
CONFIG_BASE_VERSION 43

235 EPICS IOC Application Developer's Guide

CONFIG_COMMON. ..., 43
CONFIG_ENVo 43
CONFIG_SITE. ... 44
CONFIG_SITE_ENV.................... 44
Configure. 43
configurefosFile 44
configure/tool File. 44
CONSTANT . ..t 69
constantlink 47
coreRelease. 116
CPPl e 44
CROSS OP. .. i 40
CROSS WARN i, 40
cvt_dbaddr - Record Support Routine 136
cviBitsToUlong. ot 210
cvtCharToString 210
cvtDoubleToCompactString 210
cvtDoubleToExpString 210
cvtDoubleToString 209
cvtFloatToCompactString. 210
cvtFloatToEXpString.ot 209
cvtFloatToString L. 209
cvtLongToHexString. 210
cvtLongToOctalString. 210
cvtLongToString. 210
cvtShortToString. i 210
cvtUcharToStringt 210
cvtUlongToBits.o 210
cvtUlongToStringot 210
cvtUshortToString. on s 210
D

database access routines - Listof 172
Database Definition. 30-31
Database Definition File 57
database definitions. 57
Database Files. 31
Database Format - Summary 57
databaselink a7
Database Link Guidelines. 50
Database Links 47
Database Locking 48
Database Scanning 49
DB. . 31
DB_MAX CHOICES. 169
db_post events 183
dba. 108
dbAccess.h 169
dbAdd 171
dbAddPath. 156
DBADDRo 171
dbAllocBase 154
dbAllocEntry. o 155
dbAllocForm. 163
dbap...... ... 110
dbAsciiToMenuH 73
dbAsciiToRecordtypeH. 73
dbb. 109
dbBufferSize............... 179
dbc. ... 110
dbCaAddLink 185

dbCaGetAlarmLimits 186

dbCaGetAttributes 186
dbCaGetControlLimits 186
dbCaGetGraphicLimits. 186
dbCaGetLink. 185
dbCaGetPrecision. 186
dbCaGetSevr. i 186
dbCaGetTimeStamp 186
dbCaGetUnitscout. 186
dbCaLinklnit. 83, 185
dbCaPutLink. 185
dbcar......... 115, 117
dbCaRemoveLink. 185
dbCopyEntry. 156
dbCopyEntryContents. 156
dbCopyRecord, 160
dbCreateRecord. 160
dbCvtLinkToConstant. 163
dbCvtLinkToPvlink. 163
dbd. 109
doDefs.h 169
dbDeleteRecord. 160
DBDEXPAND i, 30
DBDINSTALL ..o 31
DBDNAME 30
dbDumpBreaktable. 165
dbDumpDevice.................... 119, 165
dbDumpDriver, 119, 165
dbDumpFldDes. 119, 165
dbDumpMenu. 118-119, 165
dbDumpPath. 165
dbDumpRecord. 165
dbDumpRecords 120, 166
dbDumpRecordType. 119, 165
DBE ALARM, 135
DBE_ LOG ...t 135
DBE VAL....... 135
dbel........ . 115
dbExpand 75, 165
DBF CHAR it 170
DBF DEVICE 170
DBF DOUBLE........................ 170
DBF ENUM. 170
DBF_FLOAT ... e 170
DBF FWDLINK 70, 170
DBF_INLINK
................................... 170
DBF LONG ... 170
DBF MENU............... ... 170
DBF_ NOACCESS 170
DBF OUTLINK. 170
DBF SHORT 170
DBF UCHAR.............. 170
DBF ULONG..........coiiiiiin 170
DBF USHORT............. ... 170
DBF_xxx Definitions of Field types........ 170
dbFindBrkTable 165
dbFindField. 161
dbFindMenu 162
dbFindRecord 160
dbFindRecordType 157
dbFinishEntry 155
dbFirstField. 158
dbFirstRecord 160

236 EPICS IOC Application Developer's Guide

dbFirstRecordType 157
dbFldTypes.h. 169
dbFoundField 158, 161
dbFreeBase 155
dbFreeEntry. 155
dbFreeForm. 163
dbGet. 175
dbGetDefaultName 159
dbGetField. 175
dbGetFieldindex 180
dbGetFieldName. 158
dbGetFieldType. L. 158
dbGetFormPrompt 163
dbGetFormValue. 163
dbGetLink. 175
dbGetLinkDBFtype. 180
dbGetLinkField. 163
dbGetLinkType 163
dbGetMenuChoices. 162
dbGetMenulndex 162
dbGetMenulndexFromString 162
dbGetMenuStringFromindex 162
dbGetNelements 180
dbGetNFields 158
dbGetNLinks. 163
dbGetNMenuChoices 162
dbGetNRecords. 160
dbGetNRecordTypes. 157
dbGetPdbAddrFromLink 180
dbGetPrompt. 159
dbGetPromptGroup. 159
dbGetRange., 161
dbGetRecordAttribute., 159
dbGetRecordName 160
dbGetRecordTypeName 158
dbGetRset 179
dbGetString. 161
dbgf. 108
dbgrep. ... 107
dbher........ 111, 117
dblnitEntry 155
dblnvisibleRecord. 161
dbior 111
dblsDefaultValue. 161
dblsLinkConnected. 180
dblsValueField 179
dblsVisibleRecord. 161
dbl. .o 107
dbLoadDatabase 76
dbLoadRecords. 77
dbLoadTemplate 77
dbLockGetLockld. 184
dbLockInitRecords 184
dbLockSetGblLock. 184
dbLockSetGblUnlock 184
dbLockSetMerge. 184
dbLockSetRecordLock 184
dbLockSetSplitSI L. 184
dblsr. 117
domfFree........ 211
domfFreeChunks. 211
domflnit. L 211
domfMalloc. 211
domfShow. 211

dobNameToAddr. 174

dbNextField. 158
dbNextRecord. 160
dbNextRecordType 157
dbNotifyAdd 179
dbNotifyCancel. 179
dbNotifyCompletion. 179
donr. ... 109
dbp. 110
dbPath.......... 156
dopf. 108
dbpr. ... 108
dbProcess 182
dbPut. 177
dbPutAttribute. 71, 181
dbPutField. 176
dbPutForm. 163
dbPutLink 176
dbPutMenulndex. 162
dbPutNotify. 177-178
dbPutRecordAttribute.. 159
dbPutString. 161
dbPvdDump 120, 165
dbPvdTableSize. 84
DBR_AL DOUBLE.................... 173
DBR AL LONG 173
DBR CHAR.......... 173
DBR_CTRL DOUBLE 173
DBR_CTRL LONG.................... 173
DBR DOUBLE 173
DBR ENUM. 173
DBR_ENUM _STRS.................... 173
dbr_field_type in DBADDR 171
DBR FLOAT i 173
DBR_GR DOUBLE.................... 173
DBR GR IONG...........coviinin.. 173
DBR LONG............ . i 173
DBR_PRECISION 173
DBR_PUT_ACKS 173-174
DBR _PUT ACKT 173-174
DBR_ SHORT........... 173
DBR STATUS i 173
DBR.TIME.......... ..., 173
DBR_UCHAR, 173
DBR_ULONG ..., 173
DBR UNITS. 173
DBR_USHORT............. ... 173
DBR_xxx Database Request Types and Options173
dbReadDatabase 156
dbReadDatabaseFP..................... 156
dbReadTest 78
dbRenameRecord 160-161
dbReportDeviceConfig.................. 165
dbs. .o 109
dbScan.h 201
dbScanFwdLink 182
dbScanLink. 182
dbScanLock. 183
dbScanPassive. 182
dbScanUnlock. 184
dbstat. 110
dbt. 116
dbtgf 116
doToMenuH 72

237 EPICS IOC Application Developer's Guide

dbtpf 116
dbtpn. 116
dbtr 109
dbTranslateEscape 59, 61, 215
dbValueSize............... 179
dbVerify. 161
dbVerifyForm 164
dbVisibleRecord 161
dbWriteBreaktable 156
dbWriteBreaktableFP 156
dbWriteDevice 156
dbWriteDeviceFP 156
dbWriteDriver. e 156
dbWriteDriverFP. 156
dbWriteMenu oL 156
dbWriteMenuFP 156
dbWriteRecord, 157
dbWriteRecordFP 157
dbWriteRecordType 156
dbWriteRecordTypeFP 156
DCT_FWDLINK 154
DCT_INLINK. 154
DCT_INTEGER....................... 154
DCT_LINK_CONSTANT 163
DCT_LINK_DEVICE 163
DCT LINK FORM.................... 163
DCT_LINK PV 163
DCT_MENU. 154
DCT_MENUFORM.................... 154
DCT_NOACCESS ..., 154
DCT_OUTLINK. oo 154
DCT REAL ... 154
DCT_STRINGo 154
depends.......... 29
devConnectinterrupt 190
devCreateMask 191
devDisableinterruptLevel 190
devDisconnectinterrupt. 190
devEnablelnterruptLevel. 190
device ... 58
device - database definition. 66
Device Support Entry Table 129
devNmIToDig, 191
devNormalizedGblGetField 191
devRegisterAddress 189
devUnregisterAddress. 190
DIR .. 41
Directory structure 25
Docfile.........iii 34
DOCS ... 35, 42
driver. 58
driver - database definition 67
Driver Support Entry Table Example 150
drvet_name - driver definition. 67
DSET. ..t 129
dset-dbCommon 143
dset_name - device definition. 67
dtyp-dbCommon...................... 143

E

E2DB_ FLAGS i 42
ellAdd 211
eliConcat. 211
elliCount. 211
elDelete 211
ellExtract. 211
ellFind. 211
ellFirst. 211
ellFree. 211
ellGet. ... 211
ellinit. 211
ellinsert. 211
elllast. ... 211
ELLLIST. ..ot 211
eliNext. 211
ELLNODE 211
eliNStep. 211
eliNth. 211
ellPrevious. 211
eliVerify. 211
eltc. 111, 124
Environment Prerequisites 26
Environment Variables 86
EPICS 7,17

Basic Attributes. L 17

Hardware/Software Platforms. 18

OVEIVIEW. . . oot 7
EPICS_CA ADDR_LIST 86
EPICS_CA AUTO_ADDR_LIST.......... 86
EPICS_CA BEACON_PERIOD........... 86
EPICS_CA CONN_TMO 86
EPICS_CA REPEATER_PORT 86
EPICS_CA SERVER_PORT.............. 86
EPICS_ HOST ARCH 26
EPICS_IOC_LOG_FILE_COMMAND. 125
EPICS_IOC_LOG_FILE_LIMIT.......... 125
EPICS_IOC_LOG_FILE_NAME 125
EPICS_IOC LOG_INET................. 86
EPICS_IOC_LOG_PORT............. 86, 125
EPICS_TS MIN.WEST 86
EPICS_TS NTP_INET 86
epicsAddressType. 189
epicsAddressTypeName 189
epicsinterruptType 190
epicsPrintf. 123, 139
epicsPrtEnvParams 115
epicsRelease, 116
EPICStovxWorksAddrType 189
epicsTypes.h L. 215
epicsVprintf. 123
errflogTask i, 123
errlogAddListener. 123
errlogFatal. 122
errflogGetSevEnumString 122
errlogGetSevToLog. 122
errfloginfo 122
errloglnit., 84,124
errlogListener 123
errlogMajor. 122
errflogMessage. 121
errlogMinor. 122

238 EPICS IOC Application Developer's Guide

errflogPrintf 121

errlogRemovelistener. 123
errlogSetSevToLog.t 122
errlogSevEnum oL 122
errlogSevPrintf 122
errlogSevVprintf. o Ll 122
errflogVprintf. 121
errMessage 122
errPrintf. 122-123
Escape Sequence. 59
Event......... 199
Event-ScanType...................... 199
EventScanning........................ 204
EVNT - Scan Related Field 200
extra - field definitonrules. 62
extra_info - field definition. 64
F
field. ... 58
field_name - field definition 62
field_name - record instance definition. 68
field_sizeinDBADDR 171
field_type in DBADDR. 171
filed_type - field definition 62
filename extension conventions 60
FLDNAME_SZ........... i, 169
freeListCalloc 212
freeListCleanup. 212
freeListFree. 212
freeListlnitPvt. 212
freeListitemsAvail. 212
freeListMalloc. 212
FWDLINK ... e 47
G

get_alarm_double Record Support Routine . . 138
get_array_info - Record Support Routine. . . . 136
get_control_double - Record Support Routine 138

get_enum_str - record Support Routine 137
get_enum_strs - record Support Routine 137
get_graphic_double - example 132
get_graphic_double - Record Support Routine138
get_ioint_info 203

get_ioint_info - device support routine. 148

get_precision - Record Support Routine. 137
get_units-.example 132
get_units - Record Support Routine 137
oft .. 118
GNUmake 26
gnumake 28
gphAdd 212
gphDelete i 212
gphDump. 212
GPHENTRY 212

gphFind. 212
gphFreeMem. 212
gphinitPvt 212
GPIB_IO. .. 69

grecord 58
gui_group - field definition. 63
Guidelines for Asynchronous Records. 53
Guidelines for Synchronous Records 52
H
HAG ... 90-92
HOST_OPT. 40
HOST WARN, 40
Html .o 34
HTMLS. 35,42
HTMLS DIR 42
I/OEvent-ScanType................... 199
I/OEventscanned...................... 199
/O Event Scanning. 202, 205
INC ... 34,41
include. 58
include - Database Definitions 60
Include File Generation. 72
Includefiles. 34
init - device support routine 147
init - Record Support Routine. 135
init_record - device support routine 147
init_record -example 130
init_record - Record Support Routine. 135
init_value - field definition 63
InitDatabase 83
INtDEVSUP oo 83
INDIVSUp. . .o 83
initHookFunction 86
initHookRegister. 86
initHooks. 85
initHookState 85
initial - field definitionrules 62
Initialize Logging 87
initPeriodic 206
InitRecSup. 83
INLINK. .. 47
INP . 91
Input/Output Controller 7
Hardware/Software Platforms. 18
Software Components. 19
INST IO . ..o e 70
install objectFiles. 33
INSTALL_LOCATION 25, 43
installEpics.pl 44
interest - field definitonrules. 62
interest_level - field definition 64
interruptAccept. 84
interruptContextMessage 219
interruptisinterruptContext. 219
interruptLock. 218
interruptUnlock. 219
IOC . . 17
See Input/Out Controller
IOCErrorLogging, 121

239 EPICS IOC Application Developer's Guide

jocknit 82

iocLogClient. 125
iocLogDisable. 125
iocLogServer. 125
J
JAR .. 42
JAR_INPUT 42
Javaclasses.............. 42
K
Keywords 58
L
LAN .. 17
LDFLAGS. .. e 40
Lexandyac.............. i, 35
LEXOPT . .ot 42
LIBOBJS. 32
Libraries e 31
LIBRARY 31, 38
Library example
.................................... 33
libraryname L 31
Library objectfile 32
Library Sourcefile 32
LIBRARY HOST.................... 32,39
LIBRARY_IOC 32,39
LIBS ... 37,41
LIBSRCS i 32,39
linkh. 169
LINK ALARM. o 48
link_type - device definition. 66
Local Area Network
Hardware/Software Platforms. 18
logMsg . ..o 125
M
macCreateHandle 213
macDeleteHandle 213
macExpandString L 213
macGetValue. 213
macinstallMacros 214
macParseDefns 214
macPopScope 214
macPushScope 213
macPutValue.......................... 213
macReportMacros. 214
Macro Substitution, 59
macSuppressWarning 213
Make 28
Makecommands. 28

Maketargets 29
makeConfigAppinclude.pl 44
makeDbDepends.pl., 45
Makefiles. 27
makelocCdCommands.pl 45
makeMakefile.pl L 45
makeMakefilelnclude.pl 45
mallocMustSucceed 215
MANIFEST.o 43
MAX_STRING_SIZE 169
Maximize Severity 48
MENU . .ottt e e e 58
menu - Database Definition 61
menu - field definitionrules 62
MENUS. 30
Menus......... 30
menuScan.dbd. o 200
mkdirpl. 45
monitor -example. L. 134
M. 48
Multiple Definitions 59
munch.pl 45
mv.pl. . . 45
N
name - breakpointtable. 67
NMS 48
no_elementsin DBADDR 171
NPP . 48
nstall Directories. 25
O

OBJS.... ... 32-33, 4041
OBJS HOST.ot 42
OBJS IOC ... i 42
Operator Interface

Hardware/Software Platforms. 18
OPI . 17
osiEventh......... 218
osiFindGlobalSymbol 218
osiFindGlobalSymbol.h 218
osilnterrupt.h. o L. 218
osiMutex.h 219
osiPoolStatus.h 220
osiProcess.h. 220
osiRing.h........... 221
osiSemh....... L. 221
osiSigPipelgnore.h L L. 224
osiSock.h....... 224
osiSufficentSpacelnPool 220
osiThread.h............. 224
OSITHREAD_ONCE_INIT. 224
osiTime.h. 227
OUTLINK. . ..o 47
Overview of Record Processing 127

240 EPICS I0OC Application Developer's Guide

P

PACKAGE i 42
Passive. 199
Passive-ScanType. 199
path 58
path - Database Definitions. 60
Periodic-ScanType. 199
Periodic Scanning. 206
periodicTask 206
Perl ... 26
pfieldinDBADDR 171
pfldDes inDBADDR 171
Pt . 118
PHAS - Scan Related Field. 200
post_ event................ 202, 205
POSHiX 209
PP 48
pp - field definitionrules. 62
pp_value - field definition. 64
precord -DBADDR 171
PRIO - Scan Related Field 200
process-example 131
process - Record Support Routine 135
process - record supportroutine 50
ProcessPassive 48
PROD e 35, 38
PROD LIBS..........coiiiiin 36, 41
PROD_SRCS 39
product libraries 36
productname. it 35
product objectfile....................... 35
product sourcefile. 36
Products. i 35
prompt - field definitionrules. 62
prompt_value - field definition 63
...................................... 62
PsuedoField 71

put_array_info - Record Support Routine. . .. 136
put_enum_str - Record Support Routine 137

PUENV . .. 86
PUTNOTIFY ... 178
PV LINK i 69
PYNAME_SZ............. ..., 169
Q
Quoted String 59
R
RANLIBFLAGS. oo 42
RCS. . 43
rebuild. 28
recGblDbaddrError. 139
recGblIFwdLink. 140
recGblGetAlarmDouble 140
recGblGetControlDouble 140
recGblGetGraphicDouble 140

recGblGetPrec. 140

recGblGetTimeStamp 140
recGblInitConstantLink 141
recGblRecordError 139
recGbIRecsupEror. 139
recGblResetAlarms. 139
recGblSetSevr. 139
reCOrd . ..o 58
record attribute L 71
record instance - database definition. 68
Record Instance File 57
Record Processing. 50
Record Support Entry Table 128
record type - Database Definition........... 61
Record Type Definitions 29
record_name - record instance definition 68
record_type - device definition. 66
record_type - record instance definition. 68
record_type - record type definition 62
recordtype 58
RECTYPES i 29
registerRecordDeviceDriver 230
registerRecordDeviceDriver.c. 230
registerRecordDeviceDriver.pl 230
Registry.h 229
registryAdd 229
registryDeviceSupport.h. 230
registryDeviceSupportAdd 230
registryDeviceSupportFind. 230
registryDriverSupporth 230
registryDriverSupportAdd. 230
registryDriverSupportFind 230
registryDump 229
registryFind. o 229
registryFree. 229
registryFunction.h. L 230
registryFunctionAdd L. 230
registryFunctionFind. 230
registryRecordTypeAdd 229
registrySetTableSize 229
RELEASE. i 44
replaceVAR.pl. 45
report - device support routine 147
report - Record Support Routine. 135
RFE IO . . 70
ringCreate 221
ringDelete 221
ringFlush. 221
ringFreeBytes 221
nngGet ... 221
MNGISEMpPty. 221
ringlsFull. 221
fngPut. 221
MNGSIZe. . .. 221
ringUsedBytes. 221
mapl . 45
RSET. ..o 128
RSET -example 129
RULE 91
RULES e 44
rules

field definition., 62
RULESDbo 44
RULES_ARCHS. i, 44

EPICS Release: R3.13.0betal2

EPICS I0C Application Developer's Guide

241

RULES BUILD ..., 44
RULES DIRS. it 44
RULES JAVA. 44
RULES TOP. i 44
S

S db Blocked. 178
S db_Pending............. 178
SCAN - Scan Related Field 199
ScanOnce-ScanType.................. 199
Scan Related Database Fields. 199
SCAN_1ST PERIODIC. 201
scanAdd. 201
scanDelete. 201
scaninit 201
scanlolnit. 205
scanloRequest. 205
SCANONCE. . . . oottt 206
scanOnceSetQueueSize. 84, 207
scanpel. 112
scanpiol. 112
scanppl ... 112
SCH2EDIF_FLAGS..................... 42
SCRIPTS. 34,41
SCrPtS . o v 34
semBinaryCreate. 221
semBinaryDestroy. 222
semBinaryGive 222
semBinaryld L 221
semBinaryMustCreate. 222
semBinaryMustTake 222
semBinaryShow 222
semBinaryTake 222
semBinaryTakeNoWait. 222
semBinaryTakeTimeout 222
seminitialState. 221
semMutexCreate.o.... 222
semMutexDestroy. 222
semMutexGive 222
semMutexld 222
semMutexMustCreate. 222
semMutexMustTake 222
semMutexShow. 222
semMutexTake 222
semMutexTakeNoWait 222
semMutexTakeTimeout. 222
semTakeStatus. 221
SHARED _LIBRARIES 39
SHRLIB_VERSION. 39
size - field definitionrules. 62
size_value - field definition. 64
SNCFLAGS 42
SPC_ ALARMACK.o 63
SPC AS ... 63
SPC CALC. ... e 64
SPC DBADDR. ...t 64
SPC LINCONV........ ... i, 64
SPC_MOD ... 64
SPC NOMODciiii i 63
SPC RESET.. ...t 64
SPC SCAN. ... 63

special - field definitionrules 62

special - Record Support Routine. 136
specialinDBADDR, 171
special_value - field definition 63
Specifying libraries. 36
SRCS. .. 32,39
State Notation Programs. 34
STATIC BUILD. 41
statuscodes. 124
STRICT. . .o e 40
structdbAddr L 171
struct putNotify. 178
synchronous device support example 143
SYS LIBS ... 37,41
SYS PROD LIBS 37,41
T

far .. 28
Targetfiles. 37
TARGETS. i 37,43
taskwd.h L 196
taskwdAnylnsert. 196
taskwdAnyRemove. 197
taskwdlnsert 196
taskwdRemove, 196
TCLIlibraries. 38
TCLINDEX. . . .o 38,41
TCLLIBNAME.o 38,41
TEMPLATES 35, 42
Templates 35
TEMPLATES DIR. 35, 42
TestProducts.o 37
TESTCLASSES e 42
TESTPRODot 37-38
threadBoolStatus. 224
threadCreate 224
threadExitMain 224
THREADFUNC 224
threadGetld 225
threadGetldSelf. 225
threadGetName. 225
threadGetNameSelf. 225
threadGetPriority. 225
threadGetPrioritySelf 225
threadGetStackSize. 224
threadHighestPriorityLevelBelow. 225
threadld. 224
threadlnit., 224
threadIsEqual 225
threadlsSuspended 225
threadLowestPriorityLevelAbove. 225
threadOnce 224
threadOnceld. 224
threadPriority 224
threadPrivateCreate. 225
threadPrivateDelete. 225
threadPrivateGet 225
threadPrivateSet 225
threadResume 225
threadSetPriority. 225
threadShow 225

242 EPICS I0OC Application Developer's Guide

threadShowAll 225

threadSleep i 225
threadStackSizeClass 224
threadSuspendSelf. 225
threadVarld 225
timexN. 116
oD . 25
Tornado Il 26
PN . 118
TRAD .. 40
truncateFile 216
TSConfigure 85
TSconfigure. 85
TSreport 112
tsStamp.h. 227
u
UAG .. 90-91
uninstall. 28
Unquoted String 59
USER_DBDFLAGScoiinn... 30
USER_VPATH i 43
USES_TEMPLATEcoo... 31
USR_CFLAGS 39
USR_CPPFLAGS.t 40
USR_CXXFLAGS 40
USR_INCLUDE. 40
USR_LDFLAGS. i 40
USR_LIBS i 36, 40
\Y
value - record instance definition 68
veclist ... 115
VME_AM_EXT_SUP_DATA 189
VME_AM_STD_SUP_DATA 189
VME_AM_SUP_SHORT_IO............. 189
VME_IO 69
VXIIO. o 70
VXWOIKS © .o 26
vxWorks startup command file............. 81
Y
YACCOPT . it 42

EPICS Release: R3.13.0betal2

EPICS I0C Application Developer's Guide

243

244 EPICS I0OC Application Developer's Guide

	EPICS Input / Output Controller (IOC) Application Developer’s Guide
	Martin R. Kraimer
	Table of Contents
	Chapter 1: Introduction
	1.1 Overview
	1.2 Acknowledgments

	Chapter 2: New Features for 3.14
	2.1 Introduction
	2.2 Example Application
	2.2.1 Check that EPICS_HOST_ARCH is defined
	2.2.2 Create the example application
	2.2.3 Inspect files
	2.2.4 Build
	2.2.5 Inspect files
	2.2.6 Run the example
	2.2.7 vxWorks boot parameters

	2.3 Shell for non vxWorks environment
	2.4 Some Unresolved Items

	Chapter 3: EPICS Overview
	3.1 What is EPICS?
	3.2 Basic Attributes
	3.3 Hardware - Software Platforms (Vendor Supplied)
	3.3.1 OPI
	3.3.2 LAN
	3.3.3 IOC

	3.4 IOC Software Components
	3.4.1 IOC Database
	3.4.2 Database Access
	3.4.3 Database Scanning
	3.4.4 Record Support, Device Support and Device Drivers
	3.4.5 Channel Access
	3.4.6 Database Monitors

	3.5 Channel Access
	3.5.1 Client Services
	3.5.2 Search Server
	3.5.3 Connection Request Server
	3.5.4 Connection Management

	3.6 OPI Tools
	3.6.1 Examples of channel Access Tools
	3.6.2 Examples of other OPI Tools

	3.7 EPICS Core Software

	Chapter 4: EPICS Build Facility
	4.1 Overview
	4.1.1 <top> Directory structure
	4.1.2 Install Directories
	4.1.3 Elements of build system
	4.1.4 Features
	4.1.5 Environment Prerequisites
	4.1.6 System Prerequisites

	4.2 Makefiles
	4.2.1 Name
	4.2.2 Included Files
	4.2.3 Contents of Makefiles
	4.2.4 Simple Makefile examples

	4.3 Make
	4.3.1 Make vs. gnumake
	4.3.2 Frequently used Make commands
	4.3.3 Make targets

	4.4 Makefile definitions
	4.4.1 Breakpoint Tables
	4.4.2 Record Type Definitions
	4.4.3 Menus
	4.4.4 Expanded Database Definition File
	4.4.5 Database Definition Files
	4.4.6 Database Files
	4.4.7 Libraries
	4.4.7.1 Specifying the library name.
	4.4.7.2 Specifying Library object file names
	4.4.7.3 LIBOBJS definitions
	4.4.7.4 Specifying Library Source file names
	4.4.7.5 Library example:

	4.4.8 Generate and install object Files
	4.4.9 State Notation Programs
	4.4.10 Scripts, etc.
	4.4.11 Include files.
	4.4.12 Html and Doc files
	4.4.13 Templates
	4.4.14 Lex and yac
	4.4.15 Products
	4.4.15.1 Specifying the product name.
	4.4.15.2 Specifying product object file names
	4.4.15.3 Specifying product source file names
	4.4.15.4 Specifying libraries to be linked when creating the product

	4.4.16 Test Products
	4.4.17 Target files
	4.4.18 Bin install files
	4.4.19 TCL libraries

	4.5 Table of Makefile definitions
	4.6 Configuration Files
	4.6.1 Base Configure Directory
	4.6.2 Base Configure File Descriptions
	4.6.3 Base configure/os File Descriptions
	4.6.4 Base configure/tool File Descriptions

	Chapter 5: Database Locking, Scanning, And Processing
	5.1 Overview
	5.2 Record Links
	5.3 Database Links
	5.3.1 Process Passive
	5.3.2 Maximize Severity

	5.4 Database Locking
	1. The periodic, I/O event, and event tasks lock before and unlock after processing:
	2. dbPutField locks before modifying a record and unlocks afterwards.
	3. dbGetField locks before reading and unlocks afterwards.
	4. Any asynchronous record support completion routine must lock before modifying a record and unl...

	5.5 Database Scanning
	1. Periodic - Records are scanned at regular intervals.
	2. I/O event - A record is scanned as the result of an I/O interrupt.
	3. Event - A record is scanned as the result of any task issuing a post_event request.
	4. Passive - A record is scanned as a result of a call to dbScanPassive. dbScanPassive will issue...

	5.6 Record Processing
	5.7 Guidelines for Creating Database Links
	1. A begins processing. While processing a request is made to process B.
	2. B starts processing. While processing a request is made to process C.
	3. C starts processing. One of the first steps is to get a value from A via the input link.
	4. At this point a question occurs. Note that the input link specifies process passive (signified...
	5. C obtains the value from A and completes its processing. Control returns to B.
	6. B completes returning control to A
	7. A completes processing.
	5.7.1 Rules Relating to Database Links
	5.7.1.1 Processing Order
	1. Forward links are processed in order from left to right and top to bottom. For example the fol...
	2. If a record has multiple input links (calculation and select records) the input is obtained in...
	3. All input and output links are processed before the forward link.

	5.7.1.2 Lock Sets
	5.7.1.3 PACT - processing active
	5.7.1.4 Process Passive: Link option
	1. Fanout starts processing and asks that B be processed.
	2. B begins processing. It calls dbGetLink to obtain data from A.
	3. Because the input link has process passive true, a request is made to process A.
	4. A is processed, the data value fetched, and control is returned to B
	5. B completes processing and control is returned to fanout. Fanout asks that C be processed.
	6. C begins processing. It calls dbGetLink to obtain data from A.
	7. Because the input link has process passive TRUE, a request is made to process A.
	8. A is processed, the data value fetched, and control is returned to C.
	9. C completes processing and returns to fanout
	10. The fanout completes

	5.7.1.5 Process Passive: Field attribute
	5.7.1.6 Maximize Severity: Link option

	5.8 Guidelines for Synchronous Records
	1. A record can be scanned periodically (at one of several rates), via I/O event, or via Event.
	2. For each periodic group and for each Event group the phase field can be used to specify proces...
	3. The application programmer has no control over the record processing order of records in diffe...
	4. The disable fields (SDIS, DISA, and DISV) can be used to disable records from being processed....
	5. A record (periodic or other) can be the root of a set of passive records that will all be proc...
	6. The process_passive option specified for each field of each record determines if a passive rec...
	7. The process_passive option for input and output links provides the application developer contr...
	8. General link structures can be defined. The application programmer should be wary, however, of...

	5.9 Guidelines for Asynchronous Records
	1. pact is set TRUE
	2. Data is obtained for all input links
	3. Record processing is started
	4. The record processing routine returns
	5. Record processing continues
	6. Record specific alarm conditions are checked
	7. Monitors are raised
	8. Forward links are processed
	9. pact is set FALSE.
	10. Asynchronous record processing does not delay the scanners.
	11. Between the time record processing begins and the asynchronous completion routine completes, ...
	12. Forward and output links are triggered only when the asynchronous completion routine complete...
	5.9.1 Infinite Loop
	1. A starts record processing and returns leaving pact TRUE.
	2. Sometime later the record completion for A occurs. During record completion a request is made ...
	3. Sometime later the record completion for B occurs. During record completion a request is made ...

	5.9.2 Obtain Old Data
	5.9.3 Delays
	5.9.4 Task Abort

	5.10 Cached Puts
	5.11 Channel Access Links
	1. A record link that references a record in a different IOC.
	2. A link that the application developer forces to be a channel access link.
	5.11.1 INLINK
	5.11.2 OUTLINK
	5.11.3 FWDLINK

	Chapter 6: Database Definition
	6.1 Overview
	6.2 Brief Summary of Database Definition Syntax
	6.3 General Rules for Database Definition
	6.3.1 Keywords
	6.3.2 Unquoted Strings
	6.3.3 Quoted Strings
	6.3.4 Macro Substitution
	6.3.5 Escape Sequences
	6.3.6 Define before referencing
	6.3.7 Multiple Definitions
	6.3.8 filename extension
	6.3.9 path addpath
	6.3.10 include
	6.3.11 comment
	6.3.12 dbTranslateEscape
	6.3.13 dbTranslateEscape

	6.4 Menu
	6.5 Record Type
	6.5.1 Format:
	6.5.2 rules
	6.5.3 definitions
	6.5.4 Example

	6.6 Device
	6.6.1 Format:
	6.6.2 definitions
	6.6.3 Examples

	6.7 Driver
	6.7.1 Format:
	6.7.2 Definitions
	6.7.3 Examples

	6.8 Breakpoint Table
	6.8.1 Format:
	6.8.2 Definitions
	6.8.3 Example

	6.9 Record Instance
	6.9.1 Format:
	6.9.2 definitions
	6.9.3 Examples

	6.10 Record Attribute
	6.11 Breakpoint Tables - Discussion
	1. No Conversion.
	2. Linear Conversion.
	3. Breakpoint table.

	6.12 Menu and Record Type Include File Generation.
	6.12.1 Introduction
	6.12.2 dbToMenuH
	6.12.3 dbToRecordtypeH

	6.13 dbExpand
	6.14 dbLoadDatabase
	6.14.1 EXAMPLE

	6.15 dbLoadRecords
	6.16 dbLoadTemplate
	6.16.1 EXAMPLE

	6.17 dbReadTest

	Chapter 7: IOC Initialization
	7.1 Overview - Environments requiring a main program
	7.2 Overview - vxWorks
	7.3 Overview - RTEMS
	7.4 iocInit
	7.4.1 coreRelease
	7.4.2 taskwdInit
	7.4.3 callbackInit
	7.4.4 dbCaLinkInit
	7.4.5 initDrvSup
	7.4.6 initRecSup
	7.4.7 initDevSup
	7.4.8 initDatabase
	7.4.9 finishDevSup
	7.4.10 scanInit
	7.4.11 interruptAccept
	7.4.12 initialProcess
	7.4.13 rsrv_init

	7.5 Changing iocCore fixed limits
	7.5.1 callbackSetQueueSize
	7.5.2 dbPvdTableSize
	7.5.3 scanOnceSetQueueSize
	7.5.4 errlogInit

	7.6 TSconfigure
	7.7 initHooks
	7.8 Environment Variables
	7.9 Initialize Logging

	Chapter 8: Access Security
	8.1 Overview
	1. Overview - This section
	2. Quick start - A summary of the steps necessary to start access security.
	3. User’s Guide - This explains what access security is and how to use it.
	4. Design Summary - Functional Requirements and Design Overview.
	5. Application Programmer’s Interface
	6. Database Access Security - Access Security features for EPICS IOC databases.
	7. Channel Access Security - Access Security features in Channel Access
	8. Implementation Overview

	8.2 Quick Start
	8.3 User’s Guide
	8.3.1 Features
	8.3.2 Limitations
	8.3.3 Definitions
	8.3.4 Access Security Configuration File
	8.3.4.1 Simple Example
	8.3.4.2 Syntax Definition
	8.3.4.3 Discussion
	1. The ASG associated with the record is searched.
	2. Each RULE is checked for the following:
	a. The field’s level must be less than or equal to the level for this RULE.
	b. If UAG is defined, the user must belong to one of the specified UAGs. If UAG is not defined al...
	c. If HAG is defined, the user’s host must belong to one one of the HAGs. If HAG is not defined a...
	d. If CALC is specified, the calculation must yield the value 1, i.e. TRUE. If any of the INP fie...
	3. The maximum access allowed by step 2 is the access chosen.

	8.3.5 ascheck - Check Syntax of Access Configuration File
	8.3.6 IOC Access Security Initialization
	8.3.7 Database Configuration
	8.3.7.1 Access Security Group
	8.3.7.2 Subroutine Record Support
	1. Modify the file specified by the last call to asSetFilename so that it contains the new config...
	2. Write a 1 to the subroutine record VAL field. Note that this can be done via channel access.
	3. When the value is found to be 1, asInit is called and the value set back to 0.
	4. The record is treated as an asynchronous record. Completion occurs when the new access configu...

	8.3.7.3 Record Type Description

	8.3.8 Example:
	1. Anyone can have read access to all fields at anytime.
	2. Linac engineers, located in the injection control or control room, can have write access to mo...
	3. Operators, located in the injection control or control room, can have write access to most lev...
	4. The operations supervisor, linac supervisor, and the application developers can have write acc...
	5. Most records use the above rules but a few (high voltage power supplies, etc.) are placed unde...
	6. IOC channel access clients always have level 1 write privilege.

	8.4 Design Summary
	8.4.1 Summary of Functional Requirements
	1. Each field of each record type is assigned an access security level.
	2. Each record instance is assigned to a unique access security group.
	3. Each user is assigned to one or more user access groups.
	4. Each node is assigned to a host access group.
	5. For each access security group a set of access rules can be defined. Each rule specifies:
	a. Access security level
	b. READ or READ/WRITE access.
	c. An optional list of User Access Groups or * meaning anyone.
	d. An optional list of Host Access Groups or * meaning anywhere.
	e. Conditions based on values of process variables

	8.4.2 Additional Requirements
	8.4.2.1 Performance
	8.4.2.2 Generic Implementation
	8.4.2.3 No Access Security within an IOC
	8.4.2.4 Defaults
	8.4.2.5 Access Security is Optional

	8.4.3 Design Overview
	8.4.3.1 Configuration File
	8.4.3.2 Access Security Library
	8.4.3.3 IOC Database Access Security
	8.4.3.4 Channel Access Security

	8.4.4 Comments
	8.4.5 Performance and Memory Requirements
	1. A database consisting of 5000 soft analog records was created.
	2. A channel access client (caput) was created that performs ca_puts on each of the 5000 channels...
	3. A channel access client (caget) was created that has monitors on each of the 5000 channels.

	8.5 Access Security Application Programmer’s Interface
	8.5.1 Definitions
	8.5.2 Initialization
	8.5.3 Group manipulation
	8.5.3.1 add Member
	8.5.3.2 remove Member
	8.5.3.3 get Member Pvt
	8.5.3.4 put Member Pvt
	8.5.3.5 change Group

	8.5.4 Client Manipulation
	8.5.4.1 add Client
	8.5.4.2 change Client
	8.5.4.3 remove Client
	8.5.4.4 get Client Pvt
	8.5.4.5 put Client Pvt
	8.5.4.6 register Callback
	8.5.4.7 check Get
	8.5.4.8 check Put

	8.5.5 Access Computation
	8.5.5.1 compute all Asg
	8.5.5.2 compute Asg
	8.5.5.3 compute access rights

	8.5.6 Diagnostic
	8.5.6.1 dump
	8.5.6.2 dump UAG
	8.5.6.3 dump HAG
	8.5.6.4 dump Rules
	8.5.6.5 dump member
	8.5.6.6 dump hash table

	8.6 Database Access Security
	8.6.1 Access Level definition
	1. Structure fldDes (dbBase.h), which describes the attributes of each field, contains a field ac...
	2. Each field description in a record description contains a field with the value ASLx.

	8.6.2 Access Security Group definition
	8.6.3 Access Client Definition
	8.6.4 Database Access Library
	8.6.4.1 Initialization
	8.6.4.2 Routines used by Channel Access Server
	8.6.4.3 Routine to test asAddClient
	8.6.4.4 Subroutines attached to a subroutine record
	8.6.4.5 Diagnostic Routines

	8.7 Channel Access Security
	8.7.1 CA Server Interfaces to the Access Security System
	8.7.2 Client Interfaces

	8.8 Access Control: Implementation Overview
	8.8.1 Implementation Overview
	8.8.2 Locking

	8.9 Structures

	Chapter 9: IOC Test Facilities
	9.1 Overview
	9.2 Database List, Get, Put
	9.2.1 dbl
	9.2.2 dbgrep
	9.2.3 dba
	9.2.4 dbgf
	9.2.5 dbpf
	9.2.6 dbpr
	9.2.7 dbtr
	9.2.8 dbnr

	9.3 Breakpoints
	9.3.1 dbb
	9.3.2 dbd
	9.3.3 dbs
	9.3.4 dbc
	9.3.5 dbp
	9.3.6 dbap
	9.3.7 dbstat

	9.4 Error Logging
	9.4.1 eltc

	9.5 Hardware Reports
	9.5.1 dbior
	9.5.2 dbhcr

	9.6 Scan Reports
	9.6.1 scanppl
	9.6.2 scanpel
	9.6.3 scanpiol

	9.7 Time Server Report
	9.7.1 TSreport

	9.8 Access Security Commands
	9.8.1 asSetSubstitutions
	9.8.2 asSetFilename
	9.8.3 asInit
	9.8.4 asdbdump
	9.8.5 aspuag
	9.8.6 asphag
	9.8.7 asprules
	9.8.8 aspmem

	9.9 Channel Access Reports
	9.9.1 ca_channel_status
	9.9.2 casr
	9.9.3 dbel
	9.9.4 dbcar

	9.10 Interrupt Vectors
	9.10.1 veclist

	9.11 EPICS
	9.11.1 epicsPrtEnvParams
	9.11.2 epicsRelease

	9.12 Database System Test Routines
	9.12.1 dbt
	9.12.2 dbtgf
	9.12.3 dbtpf
	9.12.4 dbtpn

	9.13 Record Link Reports
	9.13.1 dblsr
	9.13.2 dbcar
	9.13.3 dbhcr

	9.14 Old Database Access Testing
	9.14.1 gft
	9.14.2 pft
	9.14.3 tpn

	9.15 Routines to dump database information
	9.15.1 dbDumpPath
	9.15.2 dbDumpMenu
	9.15.3 dbDumpRecordType
	9.15.4 dbDumpFldDes
	9.15.5 dbDumpDevice
	9.15.6 dbDumpDriver
	9.15.7 dbDumpRecord
	9.15.8 dbDumpBreaktable
	9.15.9 dbPvdDump

	Chapter 10: IOC Error Logging
	10.1 Overview
	10.2 Error Message Routines
	10.2.1 Basic Routines
	10.2.2 Log with Severity
	10.2.3 Status Routines
	10.2.4 Obsolete Routines

	10.3 errlog Task
	10.3.1 Add and Remove Log Listener
	10.3.2 target console routines

	10.4 Status Codes
	10.5 iocLog
	10.5.1 iocLogServer
	10.5.2 iocLogClient
	10.5.3 Initialize Logging
	10.5.4 Configuring a Private Log Server

	Chapter 11: Record Support
	11.1 Overview
	11.2 Overview of Record Processing
	1. Initiate the I/O operation and set pact TRUE
	2. Determine a method for again calling process when the operation completes
	3. Return immediately without completing record processing
	4. When process is called after the I/O operation complete record processing
	5. Set pact FALSE and return

	11.3 Record Support and Device Support Entry Tables
	11.4 Example Record Support Module
	11.4.1 Declarations
	11.4.2 init_record
	11.4.3 process
	11.4.4 Miscellaneous Utility Routines
	11.4.5 Alarm Processing
	11.4.6 Raising Monitors

	11.5 Record Support Routines
	11.5.1 Generate Report of Each Field in Record
	11.5.2 Initialize Record Processing
	11.5.3 Initialize Specific Record
	11.5.4 Process Record
	11.5.5 Special Processing
	11.5.6 Get Value
	11.5.7 Convert dbAddr Definitions
	11.5.8 Get Array Information
	11.5.9 Put Array Information
	11.5.10 Get Units
	11.5.11 Get Precision
	11.5.12 Get Enumerated String
	11.5.13 Get Strings for Enumerated Field
	11.5.14 Put Enumerated String
	11.5.15 Get Graphic Double Information
	11.5.16 Get Control Double Information
	11.5.17 Get Alarm Double Information

	11.6 Global Record Support Routines
	11.6.1 Alarm Status and Severity
	11.6.2 Alarm Acknowledgment
	11.6.3 Generate Error: Process Variable Name, Caller, Message
	11.6.4 Generate Error: Status String, Record Name, Caller
	11.6.5 Generate Error: Record Name, Caller, Record Support Message
	11.6.6 Get Graphics Double
	11.6.7 Get Control Double
	11.6.8 Get Alarm Double
	11.6.9 Get Precision
	11.6.10 Get Time Stamp
	11.6.11 Forward link
	11.6.12 Initialize Constant Link

	Chapter 12: Device Support
	12.1 Overview
	12.2 Example Synchronous Device Support Module
	12.3 Example Asynchronous Device Support Module
	1. When first called pact is FALSE. It arranges for a callback (myCallback) routine to be called ...
	2. It prints a message stating that processing has started, sets pact TRUE, and returns. The reco...
	3. When the specified time elapses myCallback is called. It locks the record, calls process, and ...
	4. When process executes, it again calls read_ai. This time pact is TRUE.
	5. read_ai prints a message stating that record processing is complete and returns a status of 2....
	6. When read_ai returns the record processing routine completes record processing.

	12.4 Device Support Routines
	12.4.1 Generate Device Report
	12.4.2 Initialize Record Processing
	12.4.3 Initialize Specific Record
	12.4.4 Get I/O Interrupt Information
	12.4.5 Other Device Support Routines

	Chapter 13: Driver Support
	13.1 Overview
	13.2 Device Drivers
	13.2.0.1 init
	13.2.0.2 report
	13.2.0.3 Hardware Configuration

	Chapter 14: Static Database Access
	14.1 Overview
	14.2 Definitions
	14.2.1 DBBASE
	14.2.2 DBENTRY
	14.2.3 Field Types

	14.3 Allocating and Freeing DBBASE
	14.3.1 dbAllocBase
	14.3.2 dbFreeBase

	14.4 DBENTRY Routines
	14.4.1 Alloc/Free DBENTRY
	14.4.2 dbInitEntry dbFinishEntry
	14.4.3 dbCopyEntry dbCopyEntry Contents

	14.5 Read and Write Database
	14.5.1 Read Database File
	14.5.2 Write Database Definitons
	14.5.3 Write Record Instances

	14.6 Manipulating Record Types
	14.6.1 Get Number of Record Types
	14.6.2 Locate Record Type
	14.6.3 Get Record Type Name

	14.7 Manipulating Field Descriptions
	14.7.1 Get Number of Fields
	14.7.2 Locate Field
	14.7.3 Get Field Type
	14.7.4 Get Field Name
	14.7.5 Get Default Value
	14.7.6 Get Field Prompt

	14.8 Manipulating Record Attributes
	14.8.1 dbPutRecord Attribute
	14.8.2 dbGetRecord Attribute

	14.9 Manipulating Record Instances
	14.9.1 Get Number of Records
	14.9.2 Locate Record
	14.9.3 Get Record Name
	14.9.4 Create/Delete/Free Record
	14.9.5 Copy Record
	14.9.6 Rename Record
	14.9.7 Record Visibility
	14.9.8 Find Field
	14.9.9 Get/Put Field Values

	14.10 Manipulating Menu Fields
	14.10.1 Get Number of Menu Choices
	14.10.2 Get Menu Choice
	14.10.3 Get/Put Menu
	14.10.4 Locate Menu

	14.11 Manipulating Link Fields
	14.11.1 Link Types
	14.11.2 All Link Fields
	14.11.3 Constant and Process Variable Links

	14.12 Manipulating MenuForm Fields
	14.12.1 Alloc/Free Form
	14.12.2 Get/Put Form
	14.12.3 Verify Form
	14.12.4 Get Related Field
	14.12.5 Example

	14.13 Find Breakpoint Table
	14.14 Dump Routines
	14.15 Examples
	14.15.1 Expand Include
	14.15.2 dbDumpRecords

	Chapter 15: Runtime Database Access
	15.1 Overview
	15.2 Database Include Files
	15.2.1 dbDefs.h
	15.2.2 dbFldTypes.h
	1. Constant - The value associated with the field is a floating point value initialized with a co...
	2. Hardware links - The link contains a data structure which describes a signal connected to a pa...
	3. Process Variable Links - This is one of three types:
	a. PV_LINK: The process variable name.
	b. DB_LINK: A reference to a process variable in the same IOC.
	c. CA_LINK: A reference to a variable located in another IOC.

	15.2.3 dbAccess.h
	15.2.4 link.h

	15.3 Runtime Database Access Overview
	15.3.1 Database Request Types and Options
	15.3.2 Options Example
	15.3.3 ACKT and ACKS

	15.4 Database Access Routines
	15.4.1 dbNameToAddr
	15.4.2 Get Routines
	15.4.2.1 dbGetField
	15.4.2.2 dbGetLink and dbGetLinkValue
	15.4.2.3 dbGet

	15.4.3 Put Routines
	15.4.3.1 dbPutField
	1. If the DISP field is TRUE then, unless it is the DISP field itself which is being modified, th...
	2. The record is locked.
	3. dbPut is called.
	4. If the dbPut is successful then: If this is the PROC field or if both of the following are TRU...
	a. If the record is already active ask for the record to be reprocessed when it completes.
	b. Call dbScanPassive after setting putf TRUE to show the process request came from dbPutField.
	5. The record is unlocked.

	15.4.3.2 dbPutLink and dbPutLinkValue
	1. Calls dbPut.
	2. Implements maximize severity.
	3. If the field being referenced is PROC or if both of the following are true: 1) process_passive...
	a. If the record is already active because of a dbPutField request then ask for the record to be ...
	b. otherwise call dbScanPassive.

	15.4.3.3 dbPut

	15.4.4 Put Notify Routines
	1. If a putNotify is already active on the record to which the put is directed, dbPutNotify just ...
	2. The user supplied callback is called when all processing is complete or when an error is detec...
	3. The user supplied callback routine must not issue any calls that block such as Unix I/O requests.
	4. In general a set of records may need to be processed as a result of a single dbPutNotify. If d...
	5. If a record in the set is found to be active because of a dbPutField request then when that re...
	6. If a record is found to already be active because of the original dbPutNotify request then not...
	15.4.4.1 dbPutNotify
	15.4.4.2 dbNotifyCancel
	15.4.4.3 dbNotifyAdd
	15.4.4.4 dbNotifyCompletion

	15.4.5 Utility Routines
	15.4.5.1 dbBufferSize
	15.4.5.2 dbValueSize
	15.4.5.3 dbGetRest
	15.4.5.4 dbIsValueField
	15.4.5.5 dbGetFieldIndex
	15.4.5.6 dbGetNelements
	15.4.5.7 dbIsLinkConnected
	15.4.5.8 dbGetPdbAddrFromLink
	15.4.5.9 dbGetLinkDBFtype
	15.4.5.10 dbGetControlLimits
	15.4.5.11 dbGetGraphicLimits
	15.4.5.12 dbGetAlarmLimits
	15.4.5.13 dbGetPrecision
	15.4.5.14 dbGetUnits
	15.4.5.15 dbGetSevr
	15.4.5.16 dbGetTimeStamp

	15.4.6 Attribute Routine
	15.4.6.1 dbPutAttribute

	15.4.7 Process Routines
	15.4.7.1 dbScanPassive dbScanLink dbScanFwdLink
	15.4.7.2 dbProcess

	15.5 Runtime Link Modification
	15.6 Channel Access Monitors
	15.7 Lock Set Routines
	15.7.0.1 dbScanLock
	15.7.0.2 dbScanUnlock
	15.7.0.3 dbLockGetLockId
	15.7.0.4 dbLockInitRecords
	15.7.0.5 dbLockSetMerge
	15.7.0.6 dbLockSetSplitSl
	15.7.0.7 dbLockSetGblLock
	15.7.0.8 dbLockSetGblUnlock
	15.7.0.9 dbLockSetRecordLock

	15.8 Channel Access Database Links
	15.8.1 Basic Routines
	15.8.1.1 dbCaLinkInit
	15.8.1.2 dbCaAddLink
	15.8.1.3 dbCaRemoveLink
	15.8.1.4 dbCaGetLink
	15.8.1.5 dbCaPutLink
	15.8.1.6 dbCaGetAttributes
	15.8.1.7 dbCaGetControlLimits
	15.8.1.8 dbCaGetGraphicLimits
	15.8.1.9 dbCaGetAlarmLimits
	15.8.1.10 dbCaGetPrecision
	15.8.1.11 dbCaGetUnits
	15.8.1.12 dbCaGetNelements
	15.8.1.13 dbCaGetSevr
	15.8.1.14 dbCaGetTimeStamp
	15.8.1.15 dbCaIsLinkConnected
	15.8.1.16 dbCaGetLinkDBFtype

	Chapter 16: Device Support Library
	16.1 Overview
	16.2 Registering VME Addresses
	16.2.1 Definitions of Address Types
	16.2.2 Register Address
	16.2.3 Unregister Address

	16.3 Interrupt Connect Routines
	16.3.1 Definitions of Interrupt Types
	16.3.2 Connect
	16.3.3 Disconnect
	16.3.4 Enable Level
	16.3.5 Disable Level

	16.4 Macros and Routines for Normalized Analog Values
	16.4.1 Normalized GetField
	16.4.2 Convert Digital Value to a Normalized Double Value
	16.4.3 Convert Normalized Double Value to a Digital Value

	Chapter 17: EPICS General Purpose Tasks
	17.1 Overview
	17.2 General Purpose Callback Tasks
	17.2.1 Overview
	1. Include callback definitions:
	2. Provide storage for a structure that is a private structure for the callback tasks:
	3. Call routines (actually macros) to initialize fields in CALLBACK:
	4. Whenever a callback request is desired just call one of the following:

	17.2.2 Syntax
	17.2.3 Example
	17.2.4 Callback Queue

	17.3 Task Watchdog
	1. Include module:
	2. Insert request:
	3. Remove request:
	4. Insert request to be notified if any task suspends:
	5. Remove request for taskwdAnyInsert:

	Chapter 18: Database Scanning
	18.1 Overview
	18.2 Scan Related Database Fields
	18.2.1 SCAN
	18.2.2 PHAS
	18.2.3 EVNT - Event Number
	18.2.4 PRIO - Scheduling Priority

	18.3 Scan Related Software Components
	18.3.1 menuScan.dbd
	18.3.2 dbScan.h
	18.3.3 Initializing Database Scanners
	18.3.4 Adding And Deleting Records From Scan List
	18.3.5 Declaring Database Event
	18.3.6 Interfacing to I/O Event Scanning
	1. Include <dbScan.h>
	2. For each separate event source the following must be done:
	a. Declare an IOSCANPVT variable, e.g.
	b. Call scanIoInit, e.g.
	3. Provide the device support get_ioint_info routine. This routine has the format:
	4. Whenever an I/O event is detected call scanIoRequest, e.g.

	18.4 Implementation Overview
	18.4.1 Definitions And Routines Common To All Scan Types
	18.4.2 Event Scanning
	Figure 18-1: Scan List Memory Layout
	18.4.2.1 post_event

	18.4.3 I/O Event Scanning
	18.4.3.1 scanIoInit
	Figure 18-1: Interrupt Source Structure

	18.4.3.2 scanIoRequest

	18.4.4 Periodic Scanning
	Figure 18-1: Structure after iocInit
	18.4.4.1 initPeriodic
	18.4.4.2 periodicTask

	18.4.5 Scan Once
	18.4.5.1 scanOnce
	18.4.5.2 SetQueueSize

	Chapter 19: libCom
	19.1 bucketLib.h
	19.2 calc
	19.3 cvtFast.h
	19.4 cxxTemplates.h
	19.5 dbmf.h
	19.6 ellLib.h
	19.7 fdmgr.h
	19.8 freeList.h
	19.9 gpHash.h
	19.10 logClient
	19.11 macLib.h
	19.12 misc
	19.12.1 aToIPAddr
	1. n.n.n.n:p The Internet address of the host, specified as four numbers separated by periods.
	2. xxxxxxxx:p The Internet address number of the host, specified as a single number.
	3. hostname:p The Internet host name of the host.

	19.12.2 adjustment.h
	19.12.3 cantProceed.h
	19.12.4 dbDefs.h
	19.12.5 epicsString.h
	19.12.6 epicsTypes.h
	19.12.7 gsd_sync_defs.h
	19.12.8 locationException.h
	19.12.9 shareLib.
	19.12.10 truncateFile.h
	19.12.11 unixFileName.h

	19.13 timer.h

	Chapter 20: libCom OSI libraries
	20.1 Overview
	20.2 epicsAssert.h
	20.3 osiEvent.h
	20.4 osiFindGlobalSymbol.h
	20.5 osiInterrupt.h
	20.6 osiMutex.h
	20.7 osiPoolStatus.h
	20.8 osiProcess.h
	20.9 osiRing.h
	20.10 osiSem.h
	20.11 osiSigPipeIgnore.h
	20.12 osiSock.h
	20.13 osiThread.h
	20.14 osiTime.h
	20.15 tsStamp.h

	Chapter 21: Registry
	21.1 Registry.h
	21.2 registryRecordType.h
	21.3 registryDeviceSupport.h
	21.4 registryDriverSupport.h
	21.5 registryFunction.h
	21.6 registerRecordDeviceDriver.c
	21.7 registerRecordDeviceDriver.pl

	Chapter 22: Database Structures
	22.1 Overview
	22.2 Include Files
	22.3 Structures
	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	Y

