EPICS
| nput / Output Controller (10C)
Application Developer’'s Guide

Martin R. Kraimer

Argonne National Laboratory
Advanced Photon Source
June 1998

EPICS Release 3.13.0betal2

/**

NOTICE

EEE RS SRR S EEEE LSS SRS L LSS SRR EEE LRSS EEEEEEEEEE SRR R R T TR L

This material resulted from work developed under a U.S. Government contract and is subject
to the following license: the Government is granted for itesf and the public a paid-up,
nonexclusive, irrevocable worldwide license in this material to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display publicly.

EEE RS SRR SRS EEEE LSS SRS L LSS SRS EEEEEE RS EEEEEEEEEEEEEEEE R EEE S

DISCLAIMER
khkkkhkkkkhkhkkhkkhkhkhkhkhhkhkhkhhkhkhhhkhkhhhhkhhhhkhhhkhhhhhhhhhhhhhhhhkhhhkhhhhkhhhkdhkdkkddkx*x
NEITHER THE UNITED STATES GOVERNMENT NOR ANY AGENCY THEREOF, NOR
ANY OF THEIR EMPLOY ESS OR OFFICERS MAKES ANY WARRANTY, EXPRESS OR

IMPLIED, OR ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE
ACCURACY, COMPLETENESS, OR USEFULNESS OF ANY INFORMATION,
APPARATUS, PRODUCT, OR PROCESS DESCLOSED, OR REPRESENTS THAT ITS
USE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS

EEE RS SRR RS E TS EE LS RS EE LS L LSS RS EEEEE LSS SRR EEEEEEEEE S SRS R

EPICS Release: R3.13.0.betal2 EPICS IOC Application Developer's Guide 1

EPICS IOC Application Developer’'s Guide

Prefaceo e 1

VIV BV .o e 1
Acknowledgments 2
Chapter 1 EPICSOVEVIOW. ... 5
What iISEPICS? . ..o 5
BasiCALribUteS 6
Hardware - Software Platforms (Vendor Supplied) 6
IOC Software CoOmpoNents.ov i 7
Channel ACCESSttt 9
OPI TO0IS . . . 10
EPICSCoreSoftware. 11
GettingStarted e 12
Chapter 2: Database L ocking, Scanning, And Processing. 13
OVEIVIBIW ot e e 13
ReCord Links . ..o 13
Database LinkS. 14
Database Locking. 15
Database SCanningo vt 15
RECOrd ProCESSING .« . v ot ettt it 16
Guiddinesfor Creating DatabaseLinks. 16
Guiddinesfor SynchronousRecords.oovu.... 19
Guiddinesfor AsynchronousRecords. 20
Cached PULSo 21
Channel AccessLinks ... 22
Chapter 3: Database Definition 25
VIV BV . e 25
Definitions 25
Breakpoint Tables. 38
Menu and Record Type Include File Generation. 39
Utility Programs. e 42
Chapter 4:10C Initialization i 47
OVEIVIBIV o e e e e e e e 47
TOCINIL . e 48
ChangingiocCorefixedlimits............... 49
TSCONfigUIE . .o 49
INIHOOKS . . .o e 50
Environment Variables. 51
Initiadize Loggingo oo e 51
Get Resource Definitions. 52
Chapter B ACCESS SECUNItY . oot 53
OVEIVIBIW ot e e 53
QUICK Start . .t e 53
USer'SGUIDE. . .. oot e 54
DESIgN SUMMAIY . .ottt e et et et 59
Access Security Application Programmer’sinterface............... 61
Database ACCESS SECUNtY. . .ot v ittt et 65
Channel ACCESSSECUNtY ... v vt e e 67
Access Control: Implementation Overview 68
SITUCTUNES . . . e 70

EPICS Release: R3.13.0.betal2
EPICS 10C Application Developer's Guide 1

Chapter 6: I0C Test Facilities, 71

OV IV BV o ottt e e 71

Database List, Get, Put 71

Breakpointso 73

Error LOgOing cvv e 74

Hardware REpOITSo 74

SCAN REPOMS . . .o 75

TimeServer REPOIto 75

Access Security Commandsooi 76

Channel ACCESSREPOITS . .. oot e 77

INtErrUPt VECIOrS . . . oo 78

EPICS . 78

Database System Test Routines., 78

Record Link Routineso 79

Old Database ACCESSTESLING . .. v oo i e e 80

Routines to dump database information 80

Chapter 7:1OCError Logging .. vovvveeee i 83
OVEIVIBIV o ettt e e 83

Error Message ROULINES.ot e 84

errlog TasK. ..o 85
SAUSCOAES. . . . v ot 86

IOCLOg . oot 87

Chapter 8: Record Support. ... 89
OVEIV BV . o ettt e 89

Overview of RecordProcessing, 89

Record Support and Device Support Entry Tables 90

Example Record Support Module. 91

Record SUppOrt ROULINES.o e 97

Global Record Support Routines.coiiiiine... 100

Chapter O: Device SUPPOrt . ..ot 103
OV IV BV o ettt e e e e 103

Example Synchronous Device Support Module 104

Example Asynchronous Device Support Module 105

Device SUPPOrt ROULINES.ot 107

Chapter 10: Driver SUPPOIrt 109
OVEIVIBIV et e e e e 109
DeViCEDIIVELS. . . 109

Chapter 11: Static Database ACCESS. i i i 113
. OV BV . o ottt e e 113
Definitions.o 113
Allocatingand FreeingDBBASE i 114

DBENTRY ROULINES. . . oottt et 115

Read and WriteDatabase. 116
Manipulating Record TYpeso i i 117
Manipulating Field Descriptions.coivii i 118
Manipulating Record Attributes, 118
Manipulating Record InStances.oov i 119
ManipulatingMenu Fields. i, 120
ManipulatingLink Fields 121

EPICS IOC Application Developer’'s Guide

Manipulating MenuForm Fields. oL 122

Find Breskpoint Tableo 123

DUMP ROULINES. . . . o 123

Examples 124

Chapter 12: Runtime Database ACCESSo viviinnnn... 127
. OVEIVIBIV ottt e e e 127
DatebaseIncludeFiles. oo 127

Runtime Database ACCESSOVEIVIEWo oo it 129

Database ACCESSROULINESot 132

Runtime Link Modification oo ... 139

Channel AcCeSSMONITOrS. .. oot e 139

LOCK SEL ROULINES. . . vt e 140

Channel AccessDatabaseLinks., 141

Chapter 13: Device Support Library............. 145
OVEIVIBIV o e e e 145

Registering VME AdAresses 145

Interrupt ConnNect ROULINES.o 146

Macros and Routines for Normalized AnalogValues. 146

Chapter 14: EPICS General PurposeTasks. 149
OVEIVIBIV o e e e 149

General Purpose Callback Tasks 149
TaskWatchdog.o 152

Chapter 15: DatabaseScanning. . ..o, 155
OVEIVIBIW ottt e 155

Scan Related Database Fields. 155

Software Components That Interact With The Scanning System 156
Implementation Overview 159

Chapter 16: Database Structures.covienen... 163
OVEIVIBIV e e e e 163

Include Files.o 163

SHUCIUNES . . .o e e e 164

INDEX .. e 167

EPICS Release: R3.13.0.betal2

EPICS 10C Application Developer's Guide 3

EPICS IOC Application Developer’'s Guide

Preface

Overview

This document describes the core software that resides in an Input/Output Controller (10C),
one of the mgjor components of EPICS. It is intended for anyone developing EPICS 10C
databases and/or new record/device/driver support.

The plan of the book is:

EPICS Overview An overview of EPICS s presented, showing how the |OC software fits
into EPICS. Thisisthe only chapter that discusses OPI software and
Channel Access rather than just |OC related topics.

Database L ocking, Scanning, and Processing
Overview of three closely related 10C concepts. These concepts are at
the heart of what constitutes an EPICS 10C.

Database Definition This chapter gives a complete description of the format of the files that
describe |OC databases. Thisis the format used by Database
Configuration Tools and is also the format used to load databasesinto an
I0C.

IOC Initialization A great deal happens at |OC initialization. This chapter removes some
of the mystery about initialization.

Access Security Channel Access Security isimplemented in |OCs. This chapter explains
how it is configured and also how it isimplemented.

IOC Test Facilities Epics supplied test routines that can be executed via the vxWorks shell.

IOC Error Logging 10OC code can cal routines that send messages to a system wide error
logger.

Record Support The concept of record support is discussed. Thisinformation is
necessary for anyone who wishes to provide customized record and
device support.

Device Support The concept of device support is discussed. Device support takes care of
the hardware specific details of record support, i.e. it isthe interface
between hardware and a record support module. Device support can
directly access hardware or may interface to driver support.

Driver Support The concepts of driver support is discussed. Drivers, which are not
always needed, have no knowledge of records but just take care of
interacting with hardware. Guidelines are given about when driver
support, instead of just device support, should be provided.

Static Database Access
Thisisalibrary that works on Unix and vxWorks and on initialized or
uninitialized EPICS databases.

Runtime Database Access
The heart of the |OC software is the memory resident database. This

EPICS Release: R3.13.0betal2 EPICS I0C Application Developer’s Guide 1

Preface
Acknowledgments

chapter describes the interface to this database.

Device Support Library
A set of routines are provided for device support modules that use
shared resources such as VME address space.

EPICS General Purpose Tasks
General purpose callback tasks and task watchdog.

Database Scanning Database scan tasks, i.e. the tasks that request records to process.
Database Structures A description of the internal database structures.

Other than the first chapter this document describes only core 10C software. Thus it does not
describe other EPICS tools which run in an IOC such as the sequencer. It also does not
describe Channel Accesswhich is, of course, one of the major |OC components.

The reader of this manual should a so have the following documents:
» EPICSRecord Reference Manual, Philip Stanley, Janet Anderson and Marty Kraimer

See LANL Web site for |atest version.

* EPICS 10C Applications: Building and Source Release Control ,Marty Kraimer and
Janet Anderson,
See ANL Web site for latest version.

* VXWborks Programmer’s Guide, Wind River Systems
» vxWorks Reference Manual, Wind River Systems

Acknowledgments

The basic model of what an 10C should do and how to do it was developed by Bob Dalesio at
LANL/GTA. The principle ideas for Channel Access were developed by Jeff Hill of LANL/
GTA. Bob and Jeff also were the principle implementers of the original 10C software. They
developed this software (called GTACS) over a period of several years with feedback from
LANL/GTA users. Without their ideas EPICS would not exist.

During 1990 and 1991, ANL/APS undertook a major revision of the I0OC software with the
major goal being to provide easily extendible record and device support. Marty Kraimer (ANL/
APS) was primarily responsible for designing the data structures needed to support extendible
record and device support and for making the changes needed to the IOC resident software.
Bob Zieman (ANL/APS) designed and implemented the UNIX build tools and IOC modules
necessary to support the new facilities. Frank Lenkszus (ANL/APS) made extensive changesto
the Database Configuration Tool (DCT) necessary to support the new facilities. Janet Anderson
developed methods to systematically test various features of the 10C software and is the
principal implementer of changes to record support.

During 1993 and 1994, Matt Needes at LANL implemented and supplied the description of
fast database links and the database debugging tools.

During 1993 and 1994 Jim Kowalkowski at ANL/APS developed GDCT and also developed
the ASCII database instance format now used as the standard format. At that time he also
created dbLoadRecor ds and dbLoadTenpl at e.

The bui | d utility method resulted in the generation of binary files of UNIX that were loaded
into IOCs. As new IOC architectures started being supported this caused problems. During
1995, after learning from an abandoned effort now referred to as Epi csRX, the build utilities

EPICS IOC Application Developer’'s Guide

Preface
Acknowledgments

and binary file (called def aul t .dct sdr) were replaced by al ASCII files. The new method
provides architecture independence and a more flexible environment for configuring the
record/device/driver support. This principle implementer was Marty Kraimer with many ideas
contributed by John Winans and Jeff Hill. Bob Dalesio made sure that we did not go to far, i.e.
1) make it difficult to upgrade existing applications and 2) lose performance.

In early 1996 Bob Dalesio tackled the problem of alowing runtime link modification. This
turned into a cooperative development effort between Bob and Marty Kraimer. The effort
included new code for database to Channel Access links, a new library for lock sets, and a
cleaner interface for accessing database links.

Many other people have been involved with EPICS development, including new record,
device, and driver support modules.

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 3

Preface
Acknowledgments

4 EPICS IOC Application Developer’'s Guide

Chapter 1. EPICS Overview

What isEPICS?

EPICS consists of a set of software components and tools that Application Developers use to
create a control system. The basic components are:

OPI: Operator Interface. This is a UNIX based workstation which can run various
EPICStools.

1OC: Input/Output Controller. ThisisaVME/V XI based chassis containing a processor,
various 1/0 modules and VME modules that provide access to other 1/0 buses such as
GPIB.

LAN: Local Area Network. Thisisthe communication network which allows the IOCs
and OPIs to communicate. EPICS provides a software component, Channel Access,
which provides network transparent communication between a Channel Access client
and an arbitrary number of Channel Access servers.

A control system implemented via EPICS has the following physical structure.

OPI ce OoPI <+ | OPI

LAN

10C - I0C

Therest of this chapter gives a brief description of EPICS:

Basic Attributes: A few basic attributes of EPICS.
Platforms: The vendor supplied Hardware and Software platforms EPICS supports.
10C Software: EPICS supplied 10C software components.

Channel Access: EPICS software that supports network independent access to 10C
databases.

OPI Tools: EPICS supplied OPI based tools.

EPICS Core: A list of the EPICS core software, i.e. the software components without
which EPICS will not work.

EPICS Release: R3.13.0betal2

EPICS I0C Application Developer’s Guide 5

Chapter 1: EPICS Overview
Basic Attributes

Basic Attributes

The basic attributes of EPICS are:

» Tool Based: EPICS provides a number of tools for creating a control system. This
minimizes the need for custom coding and hel ps ensure uniform operator interfaces.

 Digtributed: An arbitrary number of 10Cs and OPIs can be supported. As long as the
network is not saturated, no single bottle neck is present. A distributed system scales
nicely. If asingle IOC becomes saturated, its functions can be spread over several 10Cs.
Rather than running all applications on a single host, the applications can be spread over
many OPIs.

» Event Driven: The EPICS software components are all designed to be event driven to
the maximum extent possible. For example, rather than having to poll 10Csfor changes,
a Channel Access client can request that it be notified when a change occurs. This
design leads to efficient use of resources, aswell as, quick response times.

» High Performance: A SPARC based workstation can handle several thousand screen
updates a second with each update resulting from a Channel Access event. A 68040 10C
can process more than 6,000 records per second, including generation of Channel
Access events.

Hardware - Software Platforms (Vendor Supplied)

OPI Hardware

 Unix based Workstations: Well supported platforms include SUNOS, SOLARIS, and
HP-UX

» Other UNIX platforms have some support, including LINUX

* Limited support is provided for Windows NT and for VM S

Software

* UNIX
o X Windows
» Motif Toolkit

LAN Hardware

» Ethernet and FDDI
e ATM inthefuture

Software
e TCP/IP protocols via sockets

|OC Hardware

* VME/VXI bus and crates
» Motorola 68020, 68030, 68040, 68060
» Some support for other processors: Intel, Mips, PowerPC, Sparc, etc.

6 EPICS IOC Application Developer’'s Guide

Chapter 1: EPICS Overview
I0C Software Components

 Various VME modules (ADCs, DAC, Binary 1/0, etc.)

» GPIB devices

» BITBUS devices
« CAMAC

« CANBUS

Software

» vxWorks operating system
* Real time kernel

» Extensive “Unix like” libraries

Allen Bradley Scanner (Most AB /O modules)

| OC Software Components

An |OC contains the following EPICS supplied software components.

Ethernet
Channel Sequencer
Access
Monitors
Database
Scanners Access |OC Database
Driver or Record Support
Device
Interrupt
Routines
Device Support
Device
Drivers
VME

» |OC Database: The memory resident database plus associated data structures.

» Database Access: Database access routines. With the exception of record and device
support, all access to the database is via the database access routines.

e Scanners. The mechanism for deciding when records should be processed.
» Record Support: Each record type has an associated set of record support routines.
» Device Support: Each record type can have one or more sets of device support routines.

» Device Drivers. Device drivers access external devices. A driver may have an
associated driver interrupt routine.

EPICS Release: R3.13.0betal2

EPICS IOC Application Developer’'s Guide

Chapter 1: EPICS Overview

I0C Software Components

| OC Database

Database Access

Database Scanning

Record Support,
Device Support and
Device Drivers

» Channel Access: The interface between the external world and the 10C. It provides a
network independent interface to database access.

* Monitors: Database monitors are invoked when database field values change.
» Sequencer: A finite state machine.

Let’s briefly describe the major components of the |OC and how they interact.

The heart of each IOC is a memory resident database together with various memory resident
structures describing the contents of the database. EPICS supports alarge and extensible set of
record types, e.g. ai (Analog Input), ao (Analog Output), etc.

Each record type has a fixed set of fields. Some fields are common to all record types and
others are specific to particular record types. Every record has a record name and every field
has afield name. Thefirst field of every database record holds the record name, which must be
unique across al 10Cs that are attached to the same TCP/IP subnet.

A number of data structures are provided so that the database can be accessed efficiently. Most
software components, because they access the database via database access routines, do not
need to be aware of these structures.

With the exception of record and device support, all access to the database is viathe channel or
database access routines. See Chapter 12, “ Runtime Database Access’ on page 127 for details.

Database scanning is the mechanism for deciding when to process a record. Five types of
scanning are possible: Periodic, Event, I/0O Event, Passive and Scan Once.

» Periodic: A request can be made to process a record periodically. A humber of time
intervals are supported.

» Event: Event scanning is based on the posting of an event by any 10C software
component. The actual subroutine call is:
post _event (event _num

* I/O Event: The I/O event scanning system processes records based on external
interrupts. An 1OC device driver interrupt routine must be available to accept the
external interrupts.

» Passive: Passive records are processed as a result of linked records being processed or
as aresult of external changes such as Channel Access puts.

» Scan Once: In order to provide for caching puts, The scanning system provides a
routine scanOnce which arranges for arecord to be processed one time.

Database access needs no record-type specific knowledge, because each record-type has its
associated record support module. Therefore, database access can support any number and
type of records. Similarly, record support contains no device specific knowledge, giving each
record type the ability to have any number of independent device support modules. If the
method of accessing the piece of hardware is more complicated than what can be handled by
device support, then a device driver can be devel oped.

Record types not associated with hardware do not have device support or device drivers.

The 10C software is designed so that the database access layer knows nothing about the record
support layer other than how to call it. The record support layer in turn knows nothing about its
device support layer other than how to call it. Similarly the only thing a device support layer
knows about its associated driver is how to call it. This design alows a particular installation
and even a particular IOC within an installation to choose a unique set of record types, device
types, and drivers. The remainder of the |OC system software is unaffected.

EPICS IOC Application Developer’'s Guide

Chapter 1: EPICS Overview
Channel Access

Channel Access

Database Monitors

Client Services

Because an Application Developer can develop record support, device support, and device
drivers, these topics are discussed in greater detail in later chapters.

Every record support module must provide a record processing routine to be called by the
database scanners. Record processing consists of some combination of the following functions
(particular records types may not need all functions):

* Input: Read inputs. Inputs can be obtained, via device support routines, from hardware,
from other database records via database links, or from other 10Cs via Channel Access
links.

» Conversion: Conversion of raw input to engineering units or engineering units to raw
output values.

e Output: Write outputs. Output can be directed, via device support routines, to
hardware, to other database records via database links, or to other IOCs via Channel
Access links.

» Raise Alarms; Check for and raise alarms.

* Monitor: Trigger monitors related to Channel Access callbacks.

e Link: Trigger processing of linked records.

Channél Accessis discussed in the next section.

Database monitors provide a callback mechanism for database value changes. This alows the
caler to be notified when database values change without constantly polling the database. A
mask can be set to specify value changes, dlarm changes, and/or archival changes.

At the present time only Channel Access uses database monitors. No other software should use
the database monitors. The monitor routines will not be described because they are of interest
only to Channel Access.

Channel Access

Channel Access provides network transparent access to |0C databases. It is based on a client/
server model. Each 10C provides a Channel Access server which is willing to establish
communication with an arbitrary number of clients. Channel Access client services are
available on both OPIs and IOCs. A client can communicate with an arbitrary number of
Servers.

The basic Channel Access client services are:

» Search: Locate the 10Cs containing selected process variables and establish
communication with each one.

e Get: Get value plus additional optional information for a selected set of process
variables.

» Put: Change the values of selected process variables.

» Add Event: Add a change of state callback. This is a request to have the server send
information only when the associated process variable changes state. Any combination
of the following state changes can be requested: change of value, change of alarm status
and/or severity, and change of archival value. Many record types provide hysteresis
factors for value changes.

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 9

Chapter 1: EPICS Overview

OPI Tools

Search Server

Connection Request
Server

Connection
M anagement

Channel Access
Tools

In addition to requesting process variable values, any combination of the following additional
information may be requested:

o Status. Alarm status and severity.

» Units: Engineering units for this process variable.

» Precision: Precision with which to display floating point numbers.

» Time: Time when the record was last processed.

* Enumerated: A set of ASCII strings defining the meaning of enumerated values.
» Graphics: High and low limitsfor producing graphs.

e Control: Highand low control limits.

e Alarm: TheadarmH H , H GH, LOWVand LOLOvalues for the process variable.

It should be noted that Channel Access does not provide access to database records as records.
This is a deliberate design decision. This alows new record types to be added without
impacting any software that accesses the database via Channel Access, and it allows a Channel
Access client to communicate with multiple |OCs having differing sets of record types.

Channel Access provides an 10C resident server which waits for Channel Access search
messages. These are generated when a Channel Access client (for example when an Operator
Interface task starts) searches for the I0Cs containing process variables the client uses. This
server accepts all search messages, checks to see if any of the process variables are located in
this |OC, and, if any are found, replies to the sender with and “1 have it” message.

Once the process variables have been located, the Channel Access client issues connection
requests for each 10OC containing process variables the client uses. The connection request
server, in the 10C, accepts the request and establishes a connection to the client. Each
connection is managed by two separate tasks: ca_get and ca_put. The ca_get and
ca_put requests map to dbCGetField and dbPut Fi el d database access requests.
ca_add_event requests result in database monitors being established. Database access and/
or record support routines trigger the monitorsviaacall todb_post _event .

Each I0C provides a connection management service. When a Channel Access server fails
(e.g. its IOC crashes) the client is notified and when a client fails (e.g. its task crashes) the
server is notified. When aclient fails, the server breaks the connection. When a server crashes,
the client automatically re-establishes communication when the server restarts.

OPI Tools

EPICS provides a number of OPI based tools. These can be divided into two groups based on
whether or not they use Channel Access. Channel Accesstools arereal timetoals, i.e. they are
used to monitor and control 10Cs.

A large number of Channel Access tools have been developed. The following are some
representative examples.

» MEDM: Motif version of combined display manager and display editor.

» DM: Display Manager. Reads one or more display list files created by EDD, establishes
communication with all necessary 10Cs, establishes monitors on process variables,
accepts operator control requests, and updates the display to reflect all changes.

10

EPICS IOC Application Developer’'s Guide

Chapter 1: EPICS Overview
EPICS Core Software

Other OPI Tools .

ALH: Alarm Handler. General purpose alarm handler driven by an alarm configuration
file.

AR: Archiver. General purpose tool to acquire and save data from 10Cs.
Sequencer: Runsinan IOC and emulates afinite state machine.

BURT: Backup and Restore Tool. General purpose tool to save and restore Channel
Access channels. The tool can be run via Unix commands or via a Graphical User
Interface.

KM: Knob Manager - Channel Access interface for the sun dials (a set of 8 knobs)

PROBE: Allows the user to monitor and/or change a single process variable specified at
run time.

CAMATH: Channel Accessinterface for Mathematica.
CAWINGZ: Channel Accessinterface for Wingz.

IDL/PVWAVE Channel Access Interfaces exist for these products.
TCL/TK Channel Access Interface for these products.

CDEV - A library designed to provide a standard APl to one or more underlying
packages, typically control system interfaces. CDEV provides a Channel Access
service.

GDCT: Graphical Database Configuration Tool. Used to create arun time database for
an 10C.

EDD: Display Editor. This tool is used to create a display list file for the Display
Manager. A display list file contains alist of static, monitor, and control elements. Each
monitor and control element has an associated process variable.

SNC: State Notation Compiler. It generates a C program that represents the states for
the |IOC Sequencer tool.

ASCII Tools - Tools are provided which generate C include files from menu and record
type ASCII definition files.

Source/Release: EPICS provides a Source/Rel ease mechanism for managing EPICS.

EPICS Core Software

EPICS consists of a set of core software and a set of optional components. The core software,
i.e. the components of EPICS without which EPICS would not function, are:

Channel Access - Client and Server software
|OC Database

Scanners

Monitors

ASCII tools

Source/Release

All other software components are optional. Of course, any application developer would be
crazy to ignore tools such as MEDM (or EDD/DM). Likewise an application developer would
not start from scratch devel oping record and device support. Most OPI tools do not, however,
have to be used. Likewise any given record support module, device support module, or driver
could be deleted from a particular IOC and EPICS will still function.

EPICS Release: R3.13.0betal2

EPICS IOC Application Developer's Guide 11

Chapter 1: EPICS Overview
Getting Started

Getting Started

The Document “EPICS 10C Applications: Building and Source Release Control” available via
the WWW a www.aps.anl.gov/asd/control s/epics/EpicsDocumentation/AppDevManuals/
iocAppBuildSRcontrol.html gives instructions for building 10C applications. In particular
follow the instructionsin the section “Quick Start”.

12 EPICS I0C Application Developer’s Guide

Chapter 2. Database Locking, Scanning, And
Processing

Overview

Before describing particular components of the 10C software, it is helpful to give an overview
of three closely related topics: Database locking, scanning, and processing. Locking is done to
prevent two different tasks from simultaneously modifying related database records. Database
scanning is the mechanism for deciding when records should be processed. The basics of
record processing involves obtaining the current value of input fields and outputting the
current value of output fields. As records become more complex so does the record processing.

One powerful feature of the DATABASE isthat records can contain linksto other records. This
feature also causes considerable complication. Thus, before discussing locking, scanning, and
processing, record links are described.

Record Links

A database record may contain links to other records. Each link is one of the following types:

* INLINK
OUTLINK
INLINKs and OUTLINKSs can be one of the following:
« constant link
Not discussed in this chapter
* database link
A link to another record in the same |OC.
« channel accesslink
A link to arecord in another 10C. It is accessed viaaspecial IOC client task. It is
also possible to force alink to be a channel access link even it references arecord
in the same 10C.
* hardware link
Not discussed in this chapter
« FWDLINK
A forward link refers to a record that should be processed whenever the record
containing the forward link is processed. The following types are supported:
* constant link
Ignored.
* database link
A link to another record in the same |OC.

» channel access link

EPICS Release: R3.13.0betal2 EPICS I0OC Application Developer's Guide 13

Chapter 2: Database Locking, Scanning, And Processing

Database Links

Process Passive

Maximize Severity

A link to a record in another IOC or alink forced to be a channel access link.
Unless the link references the PROC field it is ignored. If it does reference the
PROC field a channel access put with avalue of 1isissued.

Linksare defined infilel i nk. h.
NOTE: This chapter discusses mainly database links.

Database Links

Database links are referenced by calling one of the following routines:

» dbGetLink: The value of thefield referenced by the input link retrieved.
» dbPutLink: The value of the field referenced by the output link is changed.
» dbScanPassive: The record referred to by the forward link is processed if it is passive.

A forward link only makes sense when it refersto a passive record that the should be processed
when the record containing the link is processed. For input and output links, however, two
other attributes can be specified by the application developer, process passive and maximize
severity.

Process passive (PP or NPP), is either TRUE or FALSE. It determines if the linked record
should be processed before getting a value from an input link or after writing a value to an
output link. The linked record will be processed, viaacall to dbPr ocess, only if therecord is
apassive record and process passive is TRUE.

NOTE: Three other options may also be specified: CA, CP, and CPP. These options force the
link to be handled like a Channel Access Link. See last section of this chapter for details.

Maximize severity (M5 or NVB), is TRUE or FALSE. It determines if alarm severity is
propagated across links. For input links the alarm severity of the record referred to by the link
is propagated to the record containing the link. For output links the alarm severity of the record
containing the link is propagated to the record referred to by the link. In either case, if the
severity is changed, the alarm statusis set to LI NK_ALARM

The method of determining if the alarm status and severity should be changed is called
"maximize severity”. In addition to its actual status and severity, each record also has a new
status and severity. The new status and severity areinitially 0, which means NO_ALARM Every
time a software component wants to modify the status and severity, it first checks the new
severity and only makes a change if the severity it wants to set is greater than the current new
severity. If it does make a change, it changes the new status and new severity, not the current
status and severity. When database monitors are checked, which is normally done by arecord
processing routine, the current status and severity are set equal to the new values and the new
values reset to zero. The end result is that the current alarm status and severity reflect the
highest severity outstanding alarm. If multiple alarms of the same severity are present the
status reflects the first one detected.

14

EPICS IOC Application Developer’'s Guide

Chapter 2: Database Locking, Scanning, And Processing
Database Locking

Database L ocking

The purpose of database locking isto prevent arecord from being processed simultaneously by
two different tasks. In addition, it prevents "outside” tasks from changing any field while the
record is being processed.

The following routines are provided for database locking.

dbScanLock(precord);
dbScanUnl ock(precord);

The basic idea is to cal dbScanLock before accessing database records and calling
dbScanUnl ock afterwords. Because of database links (Input, Output, and Forward) a
maodification to one record can cause modification to other records. Records linked together are
placed in the same lock set. dbScanLock locks the entire lock set not just the record
requested. dbScanUnl ock unlocks the entire set.

The following rules determine when the lock routines must be called:

1. The periodic, I/O event, and event tasks lock before and unlock after processing:

2. dbPut Fi el d locks before modifying arecord and unlocks afterwards.

3. dbCet Fi el d locks before reading and unlocks afterwards.

4. Any asynchronous record support completion routine must lock before modifying a
record and unlock afterwards.

All records linked via QUTLI NKs and FWDLI NKs are placed in the same lock set. Records
linked via | NLI NKs with pr ocess_passi ve or naxi m ze_severity TRUE are aso
forced to bein the same lock set.

Database Scanning

Database scanning refers to requests that database records be processed. Four types of
scanning are possible:

5. Periodic - Records are scanned at regular intervals.

6. 1/0 event - A record is scanned as the result of an 1/0 interrupt.

7. Event - A record is scanned as the result of any task issuing apost _event request.
8

. Passive - A record is scanned as a result of a cal to dbScanPassi ve.
dbScanPassi ve will issue a record processing request if and only if the record is
passive and is not already being processed.

A dbScanPassi ve request results from atask calling one of the following routines:

» dbScanPassive: Only record processing routines, dbCet Li nk, dbPut Li nk, and
dbPut Fi el d call dbScanPassi ve. Record processing routines call it for each
forward link in the record.

« dbPutField: This routine changes the specified field and then, if the field has been
declared pr ocess_passi ve, calsdbScanPassi ve. Each field of each record type
has the attribute pr ocess_passi ve declared TRUE or FALSE in the definition file.
This attributeis aglobal property, i.e. the application developer has no control of it. This
use of process_passi ve isused only by dbPut Fi el d. If dbPut Fi el d finds the

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 15

Chapter 2: Database Locking, Scanning, And Processing

Record Processing

record already active (this can happen to asynchronous records) and it is supposed to
cause it to process, it arranges for it to be processed again, when the current processing
completes.

» dbGetLink: If the link specifies process passive, this routine calls dbScanPassi ve.
Whether or not dbScanPassi ve iscalled, it then obtains the specified value.

» dbPutLink: Thisroutine changes the specified field. Then, if the link specifies process
passive, it calls dbScanPassi ve. dbPut Li nk isonly called from record processing
routines. Note that this usage of process_passi ve is under the control of the
application developer. If dbPut Li nk finds the record already active because of a
dbPut Fi el d directed to this record then it arranges for the record to be processed
again, when the current processing completes.

All non-record processing tasks (Channel Access, Sequence Programs, etc.) call
dbCet Fi el d to obtain database values. dbCGet Fi el d just reads values without asking that a
record be processed.

Record Processing

A record is processed as a result of a call to dbPr ocess. Each record support module must
supply a routine pr ocess. This routine does most of the work related to record processing.
Since the details of record processing are record type specific this topic is discussed in greater
detail in Chapter "Record Support” for details.

Guidelinesfor Creating Database Links

The ability to link records together is an extremely powerful feature of the IOC software. In
order to use links properly it isimportant that the Application Developer understand how they
are processed. As an introduction consider the following example :

InLink PP

A FwdLink B FwdLink C

Assume that A, B, and C are all passive records. The notation states that A has a forward link
to B and B to C. C hasan input link obtaining avalue from A. Assume, for somereason, A gets
processed. The following sequence of events occurs:
9. A begins processing. While processing arequest is made to process B.
10. B starts processing. While processing a request is made to process C.
11. C starts processing. One of thefirst stepsisto get avalue from A viathe input link.

12. At this point a question occurs. Note that the input link specifies process passive
(signified by the PP after | nLi nk). But process passive states that A should be

16

EPICS IOC Application Developer’'s Guide

Chapter 2: Database Locking, Scanning, And Processing
Guidelines for Creating Database Links

Rules Relating to
Database Links

Processing Order

Lock Sets

PACT - processing
active

processed before the value is retrieved. Are we in an infinite loop? The answer is no.
Every record contains afield pact (processing active), which is set TRUE when record
processing begins and is not set FALSE until all processing completes. When C is
processed A still has pact TRUE and will not be processed again.

13. C obtainsthe value from A and completes its processing. Control returnsto B.
14. B completesreturning control to A
15. A completes processing.

This brief example demonstrates that database links needs more discussion.

The processing order is guaranteed to follow the following rules:

1. Forward links are processed in order from left to right and top to bottom. For example
the following records are processed in the order FLNK1, FLNK2, FLNK3, FLNK4 .

FLNK1 FLNK2

fanout

FLNK3 FLNK4

2. If arecord has multiple input links (calculation and select records) the input is obtained
in the natural order. For exampleif thefieldsare named | NPA, | NPB, ..., | NPL, then the
links are read in the order A then B then C, etc. Thus if obtaining an input resultsin a
record being processed, the processing order is guaranteed.

3. All input and output links are processed before the forward link.

All records, except for the conditions listed in the next paragraph, linked together directly or
indirectly are placed in the same lock set. When dbScanLock is caled the entire set, not just
the specified record, is locked. This prevents two different tasks from simultaneously
modifying records in the same lock set.

A linked record is not forced to be in the same lock set if all of the following conditions are
true.

e Thelink isan INLINK (It isan input link)

» Thelink isNPP (It is no process passive)

» Thelink isNMS (It is no maximize severity)

» The number of elementsis<-1 (Thelink references a scalar field)

Each record contains afield pact . Thisfield is set TRUE at the beginning of record processing
and is not set FALSE until the record is completely processed. In particular no links are
processed with pact FALSE. This prevents infinite processing loops. The example given at
the beginning of this section gives an example. It will be seen in the next two sections that
pact has other uses.

EPICS Release: R3.13.0betal2

EPICS IOC Application Developer's Guide 17

Chapter 2: Database Locking, Scanning, And Processing
Guidelines for Creating Database Links

Process Passive: Link Input and output links have an option called process passive. For each such link the application

option

developer can specify process passive TRUE (PP) or process passive FALSE (NPP). Consider

the following example

InLink PP ¥
FwdLink
A fanout
FwdLink C
InLink PP 4

Assume that all records except fanout are passive. When the fanout record is processed the
following sequence of events occur:

1
. B begins processing. It callsdbCet Li nk to obtain datafrom A.

. Because the input link has process passive true, arequest is made to process A.

. A is processed, the data value fetched, and control isreturned to B

. B completes processing and control is returned to fanout. Fanout asks that C be

ga b~ WODN

© 00 N O

Fanout starts processing and asks that B be processed.

processed.

. C begins processing. It callsdbCet Li nk to obtain datafrom A.

. Because the input link has process passive TRUE, arequest is made to process A.
. A is processed, the data value fetched, and control is returned to C.

. C completes processing and returns to fanout

10.

The fanout completes

Note that A got processed twice. This is unnecessary. If the input link to C is declared no
process passive then A will only be processed once. Thus we should have .

InLink PP v
FwdLink
A fanout
FwdLink C
InLink NPP }

Process Passive: Field Each field of each database record type has an attribute called pr ocess_passi ve. This

attribute attribute is specified in the record definition file. It is not under the control of the application
developer. This attribute is used only by dbPut Fi el d. It determines if a passive record will
be processed after dbPut Fi el d changes a field in the record. Consult the record specific
information in the record reference manual for the setting of individual fields.

18

EPICS IOC Application Developer’'s Guide

Chapter 2: Database Locking, Scanning, And Processing
Guidelines for Synchronous Records

Maximize Severity: Input and output links have an option called maximize severity. For each such link the
Link option application developer can specify maximize severity TRUE (MS) or maximize severity FALSE
(NVB).

When database input or output links are defined, the application developer can specify if aarm
severities should be propagated across links. For input links the severity is propagated from the
record referred to by the link to the record containing the link. For output links the severity of
the record containing the link is propagated to the record referenced by the link. The alarm
severity is transferred only if the new severity will be greater than the current severity. If the
severity is propagated the alarm statusis set equal to LI NK_ALARM

Guidelinesfor Synchronous Records

A synchronous record is a record that can be completely processed without waiting. Thus the
application devel oper never needsto consider the possibility of delays when he defines a set of
related records. The only consideration is deciding when records should be processed and in
what order a set of records should be processed.

The following reviews the methods avail able to the application programmer for deciding when
to process arecord and for enforcing the order of record processing.

1. A record can be scanned periodicaly (at one of severa rates), via I/O event, or via
Event.

2. For each periodic group and for each Event group the phase field can be used to specify
processing order.

3. The application programmer has no control over the record processing order of records
in different groups.

4, The disable fields (SDI S, DI SA, and DI SV) can be used to disable records from being
processed. By letting the SDI S field of an entire set of records refer to the same input
record, the entire set can be enabled or disabled simultaneously. See the Record
Reference Manual for details.

5. A record (periodic or other) can be the root of a set of passive records that will al be
processed whenever the root record is processed. The set isformed by input, output, and
forward links.

6. The process_passi ve option specified for each field of each record determinesif a
passive record is processed when a dbPut Fi el d is directed to the field. The
application developer must be aware of the possibility of record processing being
triggered by external sources if dbPut Fi el ds are directed to fields that have
process_passi ve TRUE.

7. The process_passi ve option for input and output links provides the application
developer control over how a set of records are scanned.
8. Genera link structures can be defined. The application programmer should be wary,

however, of defining arbitrary structures without carefully analyzing the processing
order.

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 19

Chapter 2: Database Locking, Scanning, And Processing
Guidelines for Asynchronous Records

I nfinite L oop

Guidelinesfor Asynchronous Records

The previous discussion does not allow for asynchronous records. An example is a GPIB input
record. When the record is processed the GPIB request is started and the processing routine
returns. Processing, however, is not really complete until the GPIB request completes. Thisis
handled via an asynchronous completion routine. Lets state a few attributes of asynchronous
record processing.

During the initial processing for all asynchronous records the following is done:

9. pact isset TRUE
10. Dataisobtained for all input links
11. Record processing is started
12. The record processing routine returns

The asynchronous completion routine performs the following algorithm:

13. Record processing continues

14. Record specific alarm conditions are checked
15. Monitors are raised

16. Forward links are processed

17. pact isset FALSE.

A few attributes of the above rules are:

18. Asynchronous record processing does not delay the scanners.

19. Between the time record processing begins and the asynchronous completion routine
completes, no attempt will be made to again process the record. Thisis because pact is
TRUE. The routine dbPr ocess checks pact and does not call the record processing
routineif it is TRUE. Note, however, that if dbPr ocess findsthe record active 10 times
in succession, it raises a SCAN_ALARM

20. Forward and output links are triggered only when the asynchronous completion routine
completes record processing.

With these rules the following works just fine:

ASYN dbScanPasive B

When dbProcess is called for record ASYN, processing will be started but
dbScanPassi ve will not be called. Until the asynchronous completion routine executes any
additional attempts to process ASY N are ignored. When the asynchronous callback is invoked
thedbScanPassi ve is performed.

Problems still remain. A few examples are:

Infinite processing loops are possible.

Assume both A and B are asynchronous passive records and a request is made to process A.
The following sequence of events occur.

1. A startsrecord processing and returns leaving pact TRUE.

20

EPICS IOC Application Developer’'s Guide

Chapter 2: Database Locking, Scanning, And Processing
Cached Puts

Obtain Old Data

Delays

Task Abort

dbScanPasive

dbScanPasive

2. Sometime later the record completion for A occurs. During record completion a request
is made to process B. B starts processing and control returns to A which completes
leaving itspact field FALSE.

3. Sometime later the record completion for B occurs. During record completion a request
is made to process A. A starts processing and control returns to B which completes
leaving its pact field FALSE.

Thus an infinite loop of record processing has been set up. It is up to the application devel oper
to prevent such loops.

A dbCet Li nk to a passive asynchronous record can get old data.

A dbGetLink B

If A isapassive asynchronous record then the dbGet Li nk request forces dbPr ocess to be
caled for A. dbProcess starts the processing and returns. dbGet Li nk then reads the
desired value which is till old because processing will only be completed at alater time.

Consider the following:

ASYN dbScanPasive ASYN dbScanPasive ——

The second ASY N record will not begin processing until the first completes, etc. This is not
really a problem except that the application developer must be aware of delays caused by
asynchronous records. Again, note that scanners are not delayed, only records downstream of
asynchronous records.

If the processing task aborts and the watch dog task cleans up before the asynchronous
processing routine completes what happens? If the asynchronous routine completes before the
watch dog task runs everything is okay. If it doesn’t? This is a more genera question of the
conseguences of having the watchdog timer restart a scan task. EPICS currently does not allow
scanners to be automatically restarted.

Cached Puts

The rules followed by dbPut Li nk and dbPut Fi el d provide for "cached” puts. This is
necessary because of asynchronous records. Two cases arise.

EPICS Release: R3.13.0betal2

EPICS IOC Application Developer's Guide 21

Chapter 2: Database Locking, Scanning, And Processing

Channel Access Links

INLINK

The first results from a dbPut Fi el d, which is a put coming from outside the database, i.e.
Channel Access puts. If thisis directed to a record that already has pact TRUE because the
record started processing but asynchronous completion has not yet occurred, then a value is
written to the record but nothing will be done with the value until the record is again processed.
In order to make this happen dbPut Fi el d arranges to have the record reprocessed when the
record finally completes processing.

The second case results from dbPut Li nk finding a record already active because of a
dbPut Fi el d directed to the record. In this case dbPut Li nk arranges to have the record
reprocessed when the record finally completes processing. Note that it could already be active
because it appears twice in a chain of record processing. In this case it is not reprocessed
because the chain of record processing would constitute an infinite loop.

Note that the term caching not queuing is used. If multiple requests are directed to a record
whileit is active, each new valueis placed in the record but it will still only be processed once,
i.e. last value wins.

Channel AccessLinks

A channdl accesslink is:

1. A record link that references arecord in adifferent 10C.
2. A link that the application developer forcesto be a channel accesslink.

A channel access client task (dbCa) handles all 1/O for channd access links. It does the
following:

At 10C initialization dbCaissues channel access search requests for each channel access link.

For each input link it establishes a channel access monitor. It uses ca_fi el d_t ype and
ca_el ement _count when it establishes the monitor. It also monitors the alarm status.
Whenever the monitor is invoked the new data is stored in a buffer belonging to dbCa. When
iocCore or the record support module asks for data the data is taken from the buffer and
converted to the requested type.

For each output link, a buffer is allocated the first time iocCore/record support issues a put and
a channel access connection has been made. This buffer is alocated according to
ca_field type and ca_el ement _count . Each time iocCore/record support issues a
put, the data is converted and placed in the buffer and a request is made to dbCato issue a new
ca_put.

Even if alink references a record in the same IOC it can be useful to force it to act like a
channel access link. In particular the records will not be forced to be in the same lock set. As
an example consider a scan record that links to a set of unrelated records, each of which can
cause alot of records to be processed. It is often NOT desirable to force all these records into
the same lock set. Forcing the links to be handled as channel access links solves the problem.

Because channel access links imply network activity, they are fundamentally different than
database links. For this reason and because channel access does not understand process passive
or maximize severity, the semantics of channel access links are not the same as database links.
Let’s discuss the channel access semantics of INLINK, OUTLINK, and FWDLINK separately.

The options for process passive are:

22

EPICS IOC Application Developer’'s Guide

Chapter 2: Database Locking, Scanning, And Processing
Channel Access Links

* PP or NPP - Thislink is made achannel access link because the referenced record is not
found in thelocal 10C. It is not possible to honor PP, thus the link always acts like NPP.

* CA - Forcethelink to be achannel access link.

* CP - Force the link to be a channel access link and also request that the record
containing the link be processed whenever a monitor occurs.

* CPP - Force the link to be a channel access link and also request that the record
containing the link, if it is passive, be processed whenever a monitor occurs.

Maximize Severity is honored.

OUTLINK The options for process passive are:

» PP or NPP - Thislink ismade achannel accesslink because the referenced record is not
found in thelocal 1OC. It is not possible to honor PP thus the link always acts like NPP.

* CA - Forcethelink to be achannel access link.

Maximize Severity is not honored.

FWDLINK A channel access forward link is honored only if it references the PROC field of arecord. In
that case a ca_put with avalue of 1 iswritten each time aforward link request is issued.

The options for process passive are:

* PP or NPP - Thislink is made achannel access link because the referenced record is not
found in thelocal 10C. It is not possible to honor PP thus it always acts like NPP.

* CA - Forcethelink to be achannel access link.

Maximize Severity is not honored.

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 23

Chapter 2: Database Locking, Scanning, And Processing
Channel Access Links

24 EPICS I0C Application Developer’s Guide

Chapter 3: Database Definition

Overview

This chapter describes database definitions. The following definitions are described:

e Menu

 Record Type

» Device

» Driver
 Breakpoint Table
» Record Instance

Record Instances are fundamentaly different from the other definitions. A file containing
record instances should never contain any of the other definitions and vise-versa. Thus the
following convention is followed:

» Database Definition File - A file that contains any type of definition except record
instances.

* Record Instance File - A file that contains only record instance definitions.
This chapter also describes utility programs which operate on these definitions

Any combination of definitions can appear in a single file or in a set of files related to each
other viainclude files.

Definitions

Summary path "path"
addpat h "pat h"
i nclude "fil enane"
#comrent
menu(hame) {
i nclude "fil enane"
choi ce(choi ce_nane, "choi ce_val ue")

}

recordtype(record_type) {
i ncl ude "fil enanme”
field(field_nane,field type) {
asl (asl _l evel)
initial ("init_val ue")

EPICS Release: R3.13.0betal2 EPICS I0OC Application Developer's Guide 25

Chapter 3: Database Definition
Definitions

pr onpt gr oup(gui _gr oup)
pronpt (" pronpt _val ue")
speci al (speci al _val ue)
pp(pp_val ue)
interest(interest_|evel)
base(base_type)

si ze(si ze_val ue)
extra("extra_info")
menu(hane)

}

device(record_type, link_type, dset_nane, "choi ce_string”)

driver(drvet _namne)

br eakt abl e(nane) {
raw val ue, eng_val ue,

}

#The Fol |l owi ng defines a Record Instance

record(record_type, record_nane) {
i nclude "fil enane”
field(field_nane, "val ue")

}
#NOTE: GDCT uses grecord instead of record

General Rules

Keyvvords The following are keywords, i.e. they may not be used as values unless they are enclosed in
quotes:

pat h
addpat h

i ncl ude
nmenu

choi ce
recor dt ype
field

devi ce
driver

br eakt abl e
record
grecord

26 EPICS IOC Application Developer’'s Guide

Chapter 3: Database Definition
Definitions

Unquoted Strings

Quoted Srings

Macro Substitution

Escape Sequences

dbTranslateEscape

Define before
referencing

Multiple Definitions

filename extension

path addpath

In the summary section, some values are shown as quoted strings and some unquoted. The
actua rule is that any string consisting of only the following characters does not have to be
quoted:

a-z AAZ20-9 _ - : . [] <>,

These are also the legal characters for process variable names. Thus in many cases quotes are
not needed.

A quoted string can contain any ascii character except the quote character ". The quote
character itself can given by using \ as an escape. For example "\"" is a quoted string containing
the single character ".

Macro substitutions are permitted inside quoted strings. The macro has the form:

$(nane)
or
${ nane}

Except for \" the database routines never translate standard C escape sequences, however,a
routinedbTr ans| at eEscape can be used to translate the standard C escape sequences:

\a\b \f \n\r \t \v W\?2\ \" \000 \xhh

(\00O0 represenst an octal number of 1, 2, or 3 digits. \xhh represents a hexadecimal number of
1 or 2 digits) A typical useis device support which expects escape sequences in the parm field:

Theroutineis:

i nt dbTransl at eEscape(char *s, const char *ct);

/*
* copies ct to s while substituting escape sequences
* returns the length of the resultant string
* The result may contain O characters

*/

No item can be referenced until it is defined. For example ar ecor dt ype menu field can not
reference amenu unless that menu definition has already been defined. Another exampleisthat
arecord instance can not appear until the associated record type has been defined.

If a particular menu, recordtype, device, driver, or breakpoint table is defined more than once,
then only the first instance is used. Record instance definitions are cumulative, i.e. each time a
new field value is encountered it replaces the previous value.

By convention:

» Record instances files have the extension ".db"
» Database definition files have the extension ".dbd".

The path follows the standard Unix convention, i.e. it isalist of directory names separated by
colons (Unix) or semicolons (winXX).

EPICS Release: R3.13.0betal2

EPICS IOC Application Developer's Guide 27

Chapter 3: Database Definition

Definitions

include

comment

menu

Format:

path "dir:dir...:dir"
addpath "dir:dir...:dir

NOTE: In winXX the separator is; instead of :

The pat h command specifies the current path. The addpat h appends directory names to the
current path. The path is used to locate the initial database file and included files. An empty
di r at the beginning, middle, or end of a non-empty path string means the current directory.
For example:

nnn: : mm # Current directory is between nnn and nmm
:nnn # Current directory is first
nnn: # Current directory is |ast

Utilities which load database files (dbExpand, dbLoadDat abase, etc.) alow the user to
specify an initial path. The pat h and addpat h commands can be used to change or extend
theinitial path.

Theinitia path is determined as follows:

If aninitial pathis specified, it is used. Else:
If the environment variable EPI CS_DB | NCLUDE _PATH s defined, it is used. Else:
the default path is".", i.e. the current directory.

The path is used unless the filename contains a / or \. The first directory containing the
specified file is used.

Format:
i nclude "fil enane"

An include statement can appear at any place shown in the summary. It uses the path as
specified above.

The comment symbol is "#'. Whenever the comment symbol appears, it and al characters
through the end of the line are ignored.

Format:

menu(nanme) {
choi ce(choi ce_nane, "choi ce_val ue")

}
Where:

name - Name for menu. This is the unique name identifying the menu. If duplicate
definitions are specified, only thefirst is used.

choice name - The name placed in the enum generated by dbToMenuH or
dbToRecor dt ypeH

choice value - The value associated with the choice.

Example:

menu(nenuYesNo) {
choi ce(nenuYesNoNO, "NO')
choi ce(nenuYesNoYES, " YES")

28

EPICS IOC Application Developer’'s Guide

Chapter 3: Database Definition
Definitions

Record Type Format:

recordtype(record_type) {

rules g

definitions .

field(field_nane,field_type) {
asl (asl _l evel)
initial ("init_value")
pr onpt gr oup(gui _gr oup)
pronpt (" pronpt _val ue")
speci al (speci al _val ue)
pp(pp_val ue)
interest(interest_|evel)
base(base_type)
si ze(size_val ue)
extra("extra_info")
menu(" nanme")

ad - Access Security Level. The default is ASL1. Access Security isdiscussed in alater
chapter. Only two values are permitted for this field (ASLO and ASL1). Fields which
operators normally change are assigned ASLO. Other fields are assigned ASL1. For
example, the VAL field of an analog output record is assigned ASLO and all other fields
ASL1. Thisisbecause only the VAL field should be modified during normal operations.
initial - Initial Value.

promptgroup - Prompt group to which field belongs. This is for use by Database
Configuration Tools. Thisis defined only for fields that can be given values by database
configuration tools. File gui gr oup.h contains all possible definitions. The different
groups alow database configuration tools to present the user with groups of fields rather
than all prompt fields. | don’t know of any tool that currently uses groups.

prompt - A prompt string for database configuration tools. Optional if pr onpt gr oup
is not defined.

special - If specified, then special processing isrequired for thisfield at run time.

pp - Should a passive record be processed when Channel Access writes to this field?
The default is NO.

interest - Only used by the dbpr shell command.

base - For integer fields, a base of DECI MAL or HEX can be specified. The default is
DECI MAL.

size - Must be specified for DBF_STRI NGfields.

extra - Must be specified for DBF _NQACCESS fields.

menu - Must be specified for DBF_MENUfields. It is the name of the associated menu.

record_type - The unique name of the record type. If duplicates are specified, only the
first definition is used.

field_name - The field name. Only alphanumeric characters are allowed. When include
files are generated, the field name is converted to lower case. Previous versions of
EPICS required that field name be a maximum of four characters. Although this

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 29

Chapter 3: Database Definition
Definitions

restriction no longer exists, problems may arrise with some Channel Access clients if
longer field names are chosen.

« field_type - Thismust be one of the following values:

» DBF_STRI NG

» DBF_CHAR

« DBF_UCHAR

» DBF_SHORT

» DBF_USHORT

- DBF_LONG

» DBF_ULONG

« DBF_FLOAT

- DBF_DOUBLE

» DBF_ENUM

- DBF_MENU

- DBF_DEVI CE

o DBF_I NLI NK

e DBF_QUTLI NK

« DBF_PWDLI NK

» DBF_NQACCESS
» ad_leve - Thismust be one of the following values:

* ASLO

e ASL1 (default value)
* init_value- A legal value for data type.
» prompt_value- A prompt value for database configuration tools.
* gui_group - This must be one of the following:

* QU _COVMON

« QU _ALARMB

« QU _BITS1

« QU _BITS2

« GU _CALC

o« QU _CLOCK

» QU _COWPRESS

« QU _CONVERT

e QU _Di SPLAY

e« QU _H ST

« QU _I NPUTS

o QU _LINKS

« QU _MBB

o QU _MOTOR

o GU _QUTPUT

« QU _PID

QU _PULSE

o QU _SELECT

- QU _SEQL

QU _SEQ

o QU _SE®

30 EPICS 10C Application Developer's Guide

Chapter 3: Database Definition
Definitions

« QU _SUB

o GU _TI MER

o QU _WAVE

+ QU _SCAN
NOTE: QU types were invented with the intention of alowing database
configuration tools to prompt for groups of fields and when a user selects a group
the fields within the group. This feature has never been used and a result is that
many record types have not assigned the correct GUI groups to each field.

special_value must be one of the following:

< Aninteger value greater than 103. In this case, the record support special routine
is called whenever the field is modified by database access. This feature is
present only for compatibility. New support modules should use SPC_MOD.

The following value disallows access to field.

* SPC_NOMDD - This means that field can not be maodified at runtime except by the
record/device support modules for the record type.

The following values are used for database common. They must NOT be used for
record specific fields.

» SPC_SCAN- Scan related field.
e SPC_ALARVACK - Alarm acknowledgment field.
e SPC_AS - Access security field.

The following value is used if record support wants to trap dbNaneToAddr
cals.

« SPC _DBADDR- Thisis set if the record support cvt _dbaddr routine should be
called whenever dbNaneToAddr iscalled, i.e. when code outside record/device
support want to access the field.

The following values all result in the record support specia routine being called
whenever database access modifies the field. The only reason for multiple values
is that originally it seemed like a good idea. New support modules should only
use SPC_MOD.

e SPC MDD - Notify when modified, i.e. call the record support specia routine
whenever the field is modified by database access.

e SPC_RESET - areset field is being modified.

* SPC_LI NCONV - A linear conversion field is being modified.

e SPC CALC- A calcfield is being modified.
pp_value - Should a passive record be processed when Channel Access writes to this
field? The allowed values are:

* NO(default)
* YES
interest_level - Aninterest level for the dbpr command.
base - For integer type fields, the default base. The legal values are:
» DECI MAL (Default)
e HEX
size value - The number of charactersfor aDBF_STRI NGfield.

extra_info - For DBF_NOACCESS fields, thisis the C language definition for the field.
The definition must end with the fieldname in lower case.

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 31

Chapter 3: Database Definition
Definitions

Example The following is the definition of the binary input record.

recordtype(bi) {
i ncl ude "dbConmon. dbd"
field(1 NP, DBF_I NLI NK) {
prompt ("1 nput Specification")
pronpt gr oup(GUI _I NPUTS)
speci al (SPC_NOMVOD)
interest(1)

—h

i el d(VAL, DBF_ENUM {
prompt ("Current Val ue")
asl (ASLO)

pp(TRUE)

—h

i el d(ZSV, DBF_MENU) {

prompt ("Zero Error Severity")
pronpt gr oup(GUl _ALARNVES)

pp(TRUE)

interest(1)

menu(menuAl ar nSevr)

—h

i el d(OsV, DBF_MENU) {

prompt ("One Error Severity")
pr onpt gr oup(GUI _BI TS1)

pp(TRUE)

interest(1)

menu(menuAl ar nSevr)

—h

i el d(COsV, DBF_MENU) {
prompt (" Change of State Svr")
pr onpt gr oup(GUI _BI TS2)

pp(TRUE)

interest(1)

menu(menuAl ar nSevr)

—h

i el d(ZNAM DBF_STRI NG {
pronpt ("Zero Nane")
pr onmpt gr oup(GUI _CALQC)
pp(TRUE)

interest(1)

si ze(20)

—h

i el d(ONAM DBF_STRI NG {
pronpt (" One Nane")

pr onpt gr oup(GUI _CLQOCK)
pp(TRUE)

interest(1)

si ze(20)

—h

i el d(RVAL, DBF_ULONG) {
prompt (" Raw Val ue")
pp(TRUE)

32 EPICS IOC Application Developer’'s Guide

Chapter 3: Database Definition
Definitions

—h

i el d(ORAW DBF_ULONG) {
pronpt ("prev Raw Val ue")
speci al (SPC_NOMOD)

i nterest(3)

—h

i el d(MASK, DBF_ULONG) ({
pronpt (" Har dwar e Mask")
speci al (SPC_NOMVOD)
interest(1)

—h

i el d(LALM DBF_USHORT) {

pronmpt ("Last Val ue Al arned")
speci al (SPC_NOMVOD)

i nterest(3)

—h

i el d(MLST, DBF_USHORT) {

prompt ("Last Val ue Monitored")
speci al (SPC_NOMVOD)

i nterest(3)

—h

i el d(SlIOL, DBF_I NLI NK) {

prompt ("Si m I nput Specifctn")
pronpt gr oup(GUI _I NPUTS)

speci al (SPC_NOMOD)
interest(1)

fiel d(SVAL, DBF_USHORT) {
pronmpt ("Si nul ati on Val ue")

fiel d(SI M, DBF_I NLI NK) {
prompt ("Si m Mode Location")
pronpt gr oup(GUI _I NPUTS)
speci al (SPC_NOMVOD)
interest(1)

—h

i el d(SI VM DBF_MENU) {
pronmpt ("Si nul ati on Mode")
interest(1)

menu(menuYesNo)

—h

i el d(Sl M5, DBF_MENU) {

prompt ("Si m node Al arm Svrty")
pronpt gr oup(GUI _I NPUTS)

i nterest(2)

menu(menuAl ar nSevr)

}

device This definition defines a single device support module.

device(record_type, link_type, dset_nane, ”choi ce_string”)

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 33

Chapter 3: Database Definition

Definitions

definitions e record_type - Record type. The combination of record_type and
choi ce_st ri ng must be unique. If the same combination appears multiple times, the
first definition is used.

* link_type- Link type. This must be one of the following:

» CONSTANT
* PV_LINK

*« VWE IO

« CAMAC IO
*AB 1O

« GPIB 10O

* BITBUS_I O
« INST_IO

* BBGPIB_ IO
*RF_IO

* WX _IO

* dset_name - The exact name of the device support entry table without the trailing
"DSET". Duplicates are not allowed.

* choice string Choice string for database configuration tools. Note that it must be
enclosed in "". Note that for a given record type, each choi ce_string must be
unique.

Examples devi ce(ai , CONSTANT, devAi Soft, "Soft Channel ")
devi ce(ai, VME_I O devAi Xy566Se, " XYCOW 566 SE Scanned")
driver Each driver definition contains the name of adriver entry table. It has the form:
driver (drvet _nane)
Definitions » drvet_name - If duplicates are defined, only the first is used.
Examples driver (drvVxi)

breakpoint table

Definitions

Example

driver (drvXy210)

This defines a breakpoint table.

br eakt abl e(nane) {
raw val ue, eng_val ue,

* name - Name of breakpoint table. If duplicates are specified only the first is used.

» raw_value - Theraw value, i.e. the actual ADC value associated with the beginning of
theinterval.

 eng_value - The engineering value associated with the beginning of the interval.

br eakt abl e(typeJdegC) {
0. 000000 0. 000000

34

EPICS IOC Application Developer’'s Guide

Chapter 3: Database Definition
Definitions

365. 023224 67. 000000

1000.
3007.

046448 178. 000000
255859 524. 000000

3543. 383789 613. 000000
4042. 988281 692. 000000
4101. 488281 701. 000000
}
record instance Each record instance has the following definition:

record(record_type, record_nane) {
field(field_nane,"val ue")

definitions « record_type - The record type.
* record_name - The record name. This must be composed of the following characters:

&zZA-Z09_-:[]<>;
NOTE: If macro substitutions are used the name must be quoted.

If duplicate definitions are given for the same record, then the last value given for each
field is the value assigned to the field.

« field_name- Thefield name
« value - Depends on field type.

DBF_STRI NG

Any ASCII string. If it exceedsthe field length, it will be truncated.

DBF_CHAR, DBF_UCHAR, DBF_SHORT, DBF_USHORT, DBF_LONG
DBF_ULONG

A string that represents a valid integer. The standard C conventions are applied,
i.e. aleading O means the value is given in octal and a leading Ox means that
valueisgivenin hex.

DBF_FLOAT, DBF_DOUBLE

The string must represent a valid floating point number.

DBF_MENU

The string must be one of the valid choices for the associated menu.

DBF_DEVI CE

The string must be one of the valid device choice strings.

DBF_I NLI NK, DBF_QUTLI NK
The alowed value depends on the bus type of the associated DTYP field. These
are asfollows:
NOTE: a DTYP of CONSTANT can be either aconstant or aPV_LI NK.
» CONSTANT
A constant valid for the field associated with the link.
« PV_LINK
A value of the form:

record.field process maximize

field, process,andnaxi m ze areoptional.
The default valuefor f i el d isVAL.
pr ocess can have one of the following values:

* NPP - No Process Passive (Default)

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 35

Chapter 3: Database Definition
Definitions

* PP - Process Passive
» CA - Forcelink to be a channel access link
* CP - CA and process on monitor
* CPP - CA and process on monitor if record is passive
NOTES:
CP and CPP arevalid only for INLINKSs.
FWD_LINKs can be PP or CA. If a FWD_LINK is a channel
access link it must reference the PROC field.
maxi m ze can have one of the following values
* NVB - No Maximize Severity (Default)
* M5 - Maximize severity
VME | O
#Ccard Ssignal @parm
where:
car d - the card number of associated hardware module.
si gnal -signal on card
par m- An arbitrary character string of up to 31 characters.
Thisfield is optional and is device specific.
CAMAC | O
#Bbranch Ccrate Nstation Asubaddress Ffunction @parm
branch, crate, station, subaddress, and f uncti on should be
obviousto canac users. Subaddr ess and f unct i on are optional (O if
not given). Par mis also optional and is device dependent (25 characters
max).
AB IO
#Llink Aadapter Ccard Ssignal @parm
| i nk - Scanner., i.e. vme scanner number
adapt er - Adapter. Allen Bradley also callsthisrack
car d - Card within Allen Bradley Chassis
si gnal -signa on card
par m- An optional character string that is device dependent(27 char max)
GPIB IO
#L1link Aaddr @parm
I'i nk - gpiblink, i.e. interface
addr - GPIB address
par m- device dependent character string (31 char max)
Bl TBUS_| O
#Llink Nnode Pport Ssignal @parm
I'i nk -link, i.e. vme bitbus interface.
node - bitbus node
port - port onthe node
si gnal -signal on port
par m- device specific character string(31 char max)
INST_IO
@parm
par m- Device dependent character string(35 char max)
BBGPIB_| O
#Llink Bbbaddr Ggpibaddr @parm
I'i nk - link, i.e. vme bitbus interface.
bbadddr - bitbus address
gpi baddr - gpib address
par m- optional device dependent character string(31 char max)
RF_10

36

EPICS IOC Application Developer’'s Guide

Chapter 3: Database Definition
Definitions

Examples

record attribute

#Rcryo Mnricro Ddat aset Eel enent

VXI _IO

#Vframe Cdlot Ssignal @parm (Dynamic addressing)
or

#Vla Signal @arm (Static Addressing)

f r ame - VXI frame number

sl ot - Slot within VXI frame

| a - Logical Address

si gnal - Signal Number

par m- device specific character string(25 char max)

» DBF_PWDLI NK
Thisis either not defined or elseisaPV_LI NK. See above for definitions.

record(ai, STS_AbA MaS0) {

fiel d(SCAN,
fiel d(DTYP,

field(INP,"

fiel d(PREC,
fiel d(LINR
fi el d(EGUF,
fiel d(EGUL,

fiel d(EGU, "

fiel d(HOPR
fiel d(LOPR
}

".1 second")

"AB- 17711 FE- 4t 020MA")
#LO0 A2 CO SO FO @)

n 4")

"Ll NEAR")

"20")

n 4")

M11li Amps")

"20")

n 4")

record(ao, STS AbAoOMaClS0) {

fiel d(DTYP,

fiel d(OUT, "

fiel d(LINR
fi el d(EGUF,
fiel d(EGUL,

fiel d(EGU, "

fi el d(DRVH,
fiel d(DRVL,
fiel d(HOPR
fiel d(LOPR
}

" AB- 17710FE")

#L0 A2 C1 SO FO @)
"LI NEAR")

"20")

n 4")

M1 Amp")

"20")

n 4")

"20")

n 4")

record(bi, STS AbD AOCOS0) ({

fiel d(SCAN,
fiel d(DTYP,

field(INP,"

fiel d(ZNAM
fiel d(ONAM
}

"1/O1Intr")

"AB-Bi nary | nput")
#L0O A0 CO SO FO @)
o)

llo.]ll)

Each record type can have a set of record attributes. Each attribute is a “psuedo” field that can
be accessed via database and channel access. An attribute is given a name the acts like afield
name which has the same value for every instance of the record type. Two attributes are
generated automatically for each record type: RTYP and VERS. The value for RTYP is the
record type name. The default value for VERS is "none specified", which can be changed by
record support. Record support can call the following routine to create new attributes or change

existing attributes:

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 37

Chapter 3: Database Definition

Breakpoint Tables

| ong dbPut Attribute(char *recordTypenane,
char *nane, char*val ue)

The arguments are;

r ecor dTypenane - The name of recordtype.
nane - The attribute name, i.e. the psuedo field name.
val ue - The value assigned to the attribute.

Breakpoint Tables

The menu menuConvert is handled specialy by the ai and ao records (field is LI NR).
These records alow raw data to be converted to/from engineering units via one of the
following:

1. No Conversion.
2. Linear Conversion.
3. Breakpoint table.

Other record types can also use this feature. The first two choices specify no conversion and
linear conversion. The remaining choices are assumed to be the names of breakpoint tables. If
a breakpoint table is chosen, the record support modules calls cvt RawToEngBpt or
cvt EngToRawBpt . You can look at theai and ao record support modules for details.

If auser wants to add additional breakpoint tables, then the following should be done:

» Copy themenuConvert .dbd file from EPICS base/sr ¢/ bpt
» Add definitions for new breakpoint tables to the end

* Make sure modified nrenuConvert .dbd is loaded into the IOC instead of EPICS
version.

Please note that it is only necessary to load a breakpoint file if a record instance actually
chooses it. It should aso be mentioned that the Allen Bradley 1XE device support misuses the
LI NR field. If you use this module, it is very important that you do not change any of the
EPICS supplied definitionsin menuConver t .dbd. Just add your definitions at the end.

If abreakpoint table is chosen, then the corresponding breakpoint file must be loaded into the
IOC beforei ocl ni t iscalled.

Normally, it is desirable to directly create the breakpoint tables. However, sometimes it is
desirable to create a breakpoint table from a table of raw values representing equally spaced
engineering units. A good example is the Thermocouple tables in the OMEGA Engineering,
INC Temperature Measurement Handbook. A tool makeBpt is provided to convert such data
to a breakpoint table.

The format for generating a breakpoint table from a data table of raw values corresponding to
equally spaced engineering valuesis:

lcoment |ine
<header |ine>
<dat a tabl e>

The header line contains the following information:

» Name: ASCII string specifying breakpoint table name

38

EPICS IOC Application Developer’'s Guide

Chapter 3: Database Definition
Menu and Record Type Include File Generation.

» Low Value Eng: Engineering Units Value for first breakpoint table entry
* Low Value Raw: Raw value for first breakpoint table entry

» High Value Eng: Engineering Units. Highest Value desired

» High Value Raw: Raw Value for High Value Eng

» Error: Allowed error (Engineering Units)

 First Table: Engineering units corresponding to first data table entry

» Last Table: Engineering units corresponding to last data table entry

» Delta Table: Change in engineering units per data table entry

An example definition is:

"TypeKdegF” 32 0 1832 4095 1.0 -454 2500 1
<data tabl e>

The breakpoint table can be generated by executing
makeBpt bpt XXX. dat a

The input file must have the extension of data. The output filename is the same as the input
filename with the extension of dbd.

Another way to create the breakpoint table is to include the following definition in a
Makefile.Vx:

BPTS += bpt XXX. dbd

NOTE: This requires the naming convention that all data tables are of the form
bpt<name>.data and a breakpoint table bpt<name>.dbd.

Menu and Record Type Include File Generation.

Introduction Given afile containing menus, dbToMenuH generates an include file that can be used by any
code which uses the associated menus. Given a file containing any combination of menu
definitions and record type definitions, dbToRecor dt ypeH generates an include file that can
be used by any code which uses the menus and record type.

EPICS base uses the following conventions for managing menu and recordtype definitions.
Users generating local record types are encouraged to do likewise.

» Each menu that is either for fields in database common (for example menuScan) or is
of global use (for example menuYesNo) is defined in a separate file. The name of the
file is the same as the menu name with an extension of dbd. The name of the generated
include file is the menu name with an extension of h. Thus menuScan is defined in a
file menuScan.dbd and the generated include file is named menuScan.h

* Each record type definition is defined in a separate file. In addition, thisfile contains any
menu definitions that are used only by that record type. The name of the file is the same
as the recordtype name followed by Recor d.dbd. The name of the generated include
file is the same name with an extension of h. Thus aoRecor d is defined in a file
aoRecor d.dbd and the generated include file is named aoRecord.h. Since
aoRecor d hasaprivate menu called a0oQ F, thedbd file and the generated includefile
have definitions for this menu. Thus for each record type, there are two source files
(xxxRecor d.dbd and xxxRecor d.c) and one generated file (xxxRecor d.h).

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 39

Chapter 3: Database Definition
Menu and Record Type Include File Generation.

Before continuing, it should be mentioned that Application Developers don’t have to execute
dbToMenuH or dbToRecor dt ypeH. If adeveloper uses the proper naming conventions, it is
only necessary to add definitionsto their Makef i | e.Vx. The definitions are:

MENUS += nenuXXX. h (nmenus)

RECTYPES += xxRecord.h (recordtype & record specific menus)
USER DBDFLAGS += -1 dir

USER_DBDFLAGS += -S nacsub

Consult the document on building IOC applications for details.

dbToMenuH Thistool is executed as follows:
dbToMenuH -1dir -Smacsub nenuXXX. dbd
It generates a file which has the same name as the input file but with an extension of h.
Multiple - I options can be specified for an include path and multiple - S options for macro
substitution.
Example menuPr i ori t y.dbd, which contains the definitions for processing priority contains:
menu(menuPriority) {
choi ce(nenuPriorityLOWN"LOW)
choi ce(nenuPriorityVEDI UM " MEDI UM')
choi ce(nmenuPriorityH CGH "H GH")
}
Theincludefile, menuPri ori t y.h, generated by dbToMenuH contains:
#i f ndef | NCrenuPriorityH
#define | NCrenuPriorityH
t ypedef enum {
menuPriorityLOW
menuPri orityVED UM
menuPriorityH GH,
}menuPriority;
#endi f /*1 NCrenuPriorityH*/
Any code that needs to use the priority menu values should use these definitions.
dbToRecordtypeH Thistool isexecuted as follows:
dbTorecordtypeH -1dir -Smacsub xxxRecord. dbd
It generates a file which has the same name as the input file but with an extension of h.
Multiple - | options can be specified for an include path and multiple - S options for macro
substitution.
Exampl e aoRecor d.dbd, which contains the definitions for the anal og output record contains:
menu(aoO F) {
choice(aoO F_Full,"Full")
choi ce(aod F_I ncrenmental ,"I ncrenental ")
}
recordtype(ao) {
i ncl ude "dbConmon. dbd"
fiel d(VAL, DBF_DOUBLE) ({
40 EPICS I0C Application Developer’s Guide

Chapter 3: Database Definition
Menu and Record Type Include File Generation.

pronpt (" Desired Qutput")
asl (ASLO)
pp(TRUE)

}

fiel d(OVAL, DBF_DOUBLE) ({
pronpt (" Qut put Val ue")

}

(Many nore field definitions

}
Theincludefile, aoRecor d.h, generated by dbToRecor dt ypeH contains:

#i ncl ude <vxWorks. h>
#i ncl ude <senli b. h>

#i nclude "ellLib.h"

#i ncl ude "fast _| ock.h"
#i nclude "link.h"

#i ncl ude "tsDefs. h"

#i f ndef | NCaoO FH
#def i ne | NCaoO FH
typedef enum {
aoO F_Ful I,
aoQ F_I ncrenent al
}aod F;
#endi f /*1 NCaoO FH+/
#i f ndef | NCaoH
#def i ne | NCaoH
typedef struct aoRecord {

char nane[29]; /*Record Name*/
Remai ning fields in database comon

doubl e val ; /*Desired CQutput*/

doubl e oval ; [*Qut put Val ue*/

remai ning record specific fields

} aoRecord;
#def i ne aoRecor dNAVE 0

defines for remaining fields in database conmon
#def i ne aoRecor dVAL 42
#def i ne aoRecor dOVAL 43

defines for remaining record specific fields
#i f def CGEN_SI ZE_OFFSET
i nt aoRecordSi zeO f set (dbRecor dType *pdbRecor dType)

{
aoRecord *prec = 0;

pdbRecor dType- >papFl dDes|[0] - >si ze=si zeof (pr ec- >nane) ;
pdbRecor dType- >papFl dDes|[0] - >of f set =

(short)((char *)&prec->name - (char *)prec);

code to compute size&offset for other fields in dbComon
pdbRecor dType- >papFl dDes[42] - >si ze=si zeof (prec->val);
pdbRecor dType- >papFl dDes[42] - >of f set =

(short)((char *)&prec->val - (char *)prec);
pdbRecor dType- >papFl dDes[43] - >si ze=si zeof (prec->oval) ;
pdbRecor dType- >papFl dDes[43] - >of f set =

EPICS Release: R3.13.0betal2
EPICS IOC Application Developer's Guide 41

Chapter 3: Database Definition
Utility Programs

(short)((char *)&prec->oval - (char *)prec);
code to conmpute size&offset for remmining fields
pdbRecor dType->rec_si ze = sizeof (*prec);
return(0);

}
#endi f /*GEN_SI ZE_OFFSET*/

The analog output record support module and all associated device support modules should use
thisinclude file. No other code should useit.

Discussion of Only the analog output record support module and associated device support should include
Generated File this record definition. Let’s discuss the various parts of thefile.:

» The enumgenerated from the menu definition should be used to reference the value of
the field associated with the menu.

» The t ypedef and struct ure defining the record are used by record support and
device support to access fields in an analog output record.

» A #defi ne is present for each field within the record. This is useful for the record
support routines that are passed a pointer to a DBADDR structure. They can have code
like the following:

switch (dbGetFi el dl ndex(pdbAddr)) {
case aoRecordVAL :

br eak;
case aoRecor dXXX:
br eak;
defaul t:

}

The C sourceroutineaoRecor dSi zeOr f set isautomatically called when arecord type file
isloaded into an IOC. Thus user code does not have to be aware of this routine except for the
following convention: The associate record support module MUST include the statements:

#defi ne GEN_SI ZE OFFSET
#i ncl ude "xxxRecord. h"
#undef CEN_SI ZE OFFSET

This convention ensures that the routine is defined exactly once.

Utility Programs

dbExpand dbExpand -1dir -Smacsub filel file2 ...

Multiple - | options can be specified for an include path and multiple - S options for macro
substitution. Note that the environment variable EPI CS_DB_| NCLUDE_PATH can also be
used in place of the - | options.

NOTE: Host Utility Only

42 EPICS I0C Application Developer’s Guide

Chapter 3: Database Definition
Utility Programs

This command reads the input files and then writes, to st dout, a file containing ASCII
definitionsfor all information described by the input files. The difference isthat comment lines
do not appear and al include files are expanded.

This routine is extremely useful if an 10C is not using NFS for the dbLoadDat abase
commands. It takes more than 2 minutes to load the base/r ec/base.dbd file into an 10C if
NFSis not used. If dbExpand creates alocal base.dbd file, it takes about 7 seconds to load
(25 MHZ 68040 10C).

dblL oadDatabase dbLoadDat abase(char *db_file, char *path, char *substitutions)
NOTES:

* |OC Only
 Using a path on the ioc does not work very well.
 Both path and substitutions can be null, i.e. they do not have to be given.

This command loads a database file containing any of the definitions given in the summary at
the beginning of this chapter.

dbf i | e must be afile containing only record instances in standard ASCII format. Such files
should have an extension of “.db”.

As each line of dbfil e isread, the substitutions specified in substi tuti ons is
performed. The substitutions are specified as follows:

“var 1=subl, var 2=sub3, ...”
Variables are specified in the dbfile as $(variable_name). If the substitution string
"a=1,b=2,c=\"this is a test\""

were used, any variables $(a), $(b), $(c) would be substituted with the appropriate data.

EXAMPLE For example, let t est .db be:

record(ai,"$(pre)testrecl")
record(ai,"$(pre)testrec2")
record(stringout,"$(pre)testrec3") {
fiel d(VAL, "$(STR")
fiel d(SCAN, "$(SCAN) ")
}

Then issuing the command:
dbLoadDat abase("test. db", 0, "pr e=TEST, STR=t est , SCAN=Passi ve")
gives the same results as loading:

record(ai, " TESTtestrecl")
record(ai, " TESTtestrec2")
record(stringout, " TESTtestrec3") {
fiel d(VAL, "test")
fiel d(SCAN, "Passi ve")

dblL oadRecords dbLoadRecords(char* dbfile, char* substitutions)

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 43

Chapter 3: Database Definition

Utility Programs

dbL cadTemplate

NOTES:
* 10C Only.
+ dbfile must contain only record instances.

» dbLoadRecor ds is no longer needed.It will probably go away in the future. At
the present time dbL oadRecords loads faster than dbL cadDatabase.

dbLoadTenpl at e(char* tenpl at e_def)

dbLoadTenpl at e reads a template definition file. This file contains rules about loading
database instance files, which contain $(xxx) macros, and performing substitutions.

t enpl at e_def contains the rules for performing substitutions on the instance files. For
convenience two formats are provided. The format is:

file name.db {
put Version-1 or Version-2 here

}
Version-1
{ setlvarl=subl, setlvar2=sub2,...... }
{ set2varl=subl, set2var2=sub2,...... }
{ set3varl=subl, set3var2=sub2,...... }
-Or-
Version-2
pattern{ varl,var2,var3,....... }

{ subl for_setl, sub2 for_setl, sub3 for_setl,
{ subl for_set2, sub2 for_set2, sub3 for_set?2,
{ subl for_set3, sub2 for_set3, sub3 for_set3,

(SR

Thefirst line (file nane.db) specifies the record instance input file.

Each set of definitions enclosed in {} is variable substitution for the input file. The input file
has each set applied to it to produce one composite file with all the completed substitutions in
it. Version 1 should be obvious. In version 2, the variables are listed in the “pat t er n{}” line,
which must precede the braced substitution lines. The braced substitution lines contains sets
which match up with the pat t er n{} line.

EXAMPLE Two simple template file examples are shown below. The examples specify the same
substitutions to perform: t hi s=subl and t hat =sub?2 for afirst set, and t hi s=sub3 and
t hat =sub4 for a second set.
file test.db {
{ this=subil,that=sub2 }
{ this=sub3,that=sub4 }
}
file test.db {
pattern{this,that}
{subl, sub2}
{sub3, sub4 }
Assumethatt est .db is:
record(ai,"$(this)record") {
44 EPICS IOC Application Developer’'s Guide

Chapter 3: Database Definition
Utility Programs

fiel d(DESC, “this = $(this)")

}
record(ai,"$(that)record") {

fiel d(DESC, "this = $(that)")
}

Using dbLoadTenpl at e with either input is the same as defining the records:
record(ai, "sublrecord") {
fiel d(DESC, "this = subl")
}

record(ai, "sub2record") {
fiel d(DESC, "this = sub2")
}

record(ai, "sub3record") {
fiel d(DESC, "this = sub3")
}

record(ai, "sub4record") {
fiel d(DESC, "this = sub4")
}

dbReadTest dbReadTest -I1dir -Smacsub file.dbd ... file.db ...

This utility can be used to check for correct syntax in database definition and database instance
files. It just reads all the specified files

Multiple- 1, and- S options can be specified. An arbitrary number of database definition and
database instance files can be specified.

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 45

Chapter 3: Database Definition
Utility Programs

46 EPICS IOC Application Developer’'s Guide

Chapter 4. 10C Initialization

Overview

After vxWorks is loaded at |OC boot time, the following commands, normally in a vxWorks
startup command file, are issued to load and initialize the control system software:

For many board support packages the foll ow ng nust be added
#cd <full path to target bin directory>
< cdCommands
cd appbin
Id < iocCore
Id < <appname>Lib
cd startup
dbLoadDat abase(” <fi | e>. dbd”)
dbLoadDat abase(” <fi |l e>. db")
dbLoadRecords("<fil e>. db")
and/ or
dbLoadTenpl ates("<fil e>. db, "<tenpl at e_def >")

ioclnit
NOTE: The "1OC Applications. Building and Source/Release Control" manual describes

procedures and tools for building 10C applications. This manua should be consulted before
creating new startup file.

cdCommands defines vxWorks global variables that alow vxWorks cd commands for
convient locations. For example in one of my test areas the following cdCommands file

appears.

startup = "/ hone/ phoebus6/ MRK/ epi cs/test/i ocBoot/i ocaccess"
appbin = "/home/ phoebus6/ MRK/ epi cs/test//bin/ m167"

share = "/ home/ phoebus/ MRK/ i ocsys/ share"

NOTE: Thisfile is automatically generated via make rules.

Thefirst| d command loads the core EPICS software. The second command | oads the record,
device, and driver support plus any other application specific modules.

One or more dbLoadDat abase commands |oad database definition files.

One or more dbLoadDat abase , dbLoadRecor ds, and dbLoadTenpl at e commands
load record instance definitions.

ioclnit initializes the various epics components.

EPICS Release: R3.13.0betal2 EPICS I0OC Application Developer's Guide 47

Chapter 4: 10C Initialization

ioclnit
iocl nit
i ocl ni t performsthe following functions:
coreRelease Prints a messages showing which version of iocCore is being |oaded.
getResources See below. Thisis obsolete feature.
iocL ogl nit Initialize system wide logging facility.
taskwdl nit start the task watchdog task. This task accepts requests to watch other tasks. It runs
periodically and checksto seeif any of the tasksis suspended. If so it issues an error message.
It can also optionally invoke a callback routine
callbacklnit Start the general purpose callback tasks. Three tasks are started with the only difference being
scheduling priority.
dbCaLinklnit CallsdbCali nkl ni t . Theinitializes the task that handles database channel access links.
initDrvSup I ni t Dr vSup locates each device driver entry table and calls the init routine of each driver.
initRecSup I ni t RecSup locates each record support entry table and calls the init routine.
initDevSup I ni t DevSup locates each device support entry table and calls the init routine with an
argument specifying that thisistheinitial call.
ts init Ts_init initializes the timing system. If a hardware timing board resides in the 10C,
hardware timing support is used, otherwise software timing is used. If the IOC has been
declared to be a master timer, the initial time is obtained from the UNIX master timer,
otherwise theinitial time is obtained from the |OC master timer.
initDatabase I ni t Dat abase makes three passes over the database performing the following functions:
e Pass 1. Initidizes following fields: rset, dset, mis. Cals record support
init_record (First pass)
e Pass2: Converteach PV_LI NKtoDB LI NK or CA LI NK
» Pass3: Callsrecord supporti nit _record (second pass)
After the databaseisinitialized dbLockl ni t Recor ds iscaled. It creates the lock sets.
finishDevSup I ni t DevSup locates each device support entry table and calls the init routine with an
argument specifying that thisis the finish call.
scanl nit The periodic, event, and io event scanners areinitialized and started.
interruptAccept A global variable "i nt errupt Accept” is set TRUE. Until this time no request should be
made to process records and all interrupts should be ignored.
48 EPICS IOC Application Developer’'s Guide

Chapter 4: 10C Initialization
Changing iocCore fixed limits

initial Process

rsrv_init

callback Set
QueueSize

dbPvdTableSize

scanOnceSet
QueueSize

errloglnit

dbPr ocess iscalled for all recordsthat have PI NI TRUE.

The Channel Access server is started

ChangingiocCore fixed limits

The following commands can be issued after iocCore is loaded to change iocCore fixed limits.
The commands should be given before any dbL oad commands are given.

cal | backSet QueueSi ze(si ze)
dbPvdTabl eSi ze(si ze)
scanOnceSet QueueSi ze(si ze)
errloglnit(buffersize)

Requests for the general putpose callback tasks are placed in aring buffer. This command can
be used to set the size for the ring buffers. The default is 2000. A message isissued when aring
buffer overflows. It should rarely be necessary to override this default. Normally the ring buffer
overflow messages appear when a callback task fails.

Record instance names are stored in a process variable directory, which is a hash table. The
default number of hash entriesis 512. dbPvdTabl eSi ze can be caled to change the size. It
must be called before any dbLoad commands and must be a power of 2 between 256 and
65536. If an 10C contains very large databases (several thousand) then alarger hash table size
speeds up searches for records.

scanOnce requests are placed in aring buffer. This command can be used to set the size for the
ring buffer. The default is 1000. t should rarely be necessary to override this default. Normally
the ring buffer overflow messages appear when the scanOnce task fails.

Thus overrides the default buffer size for the errlog message queue. The default is1280 bytes.

T Sconfigure

EPICS supports several methods for an 10C to obtain time so that accurate time stamps can be
generated. The default isto obtain NTP time stamps from another computer. The following can
be used to change the defaults. If ant argument is given the value 0 then the default is applied.

TSConfi gure(master,sync_rate, cl ock _rate, master_port, sl ave_port)
e master: 1=master timing I0C, O=slave timing, default is slave.
» sync _rate: The clock sync rate in seconds. This rate tells how often the synchronous
time stamp support software will confirm that an 10C clock is synchronized. The default
is 10 seconds.

 clock_rate: The frequency in hertz of the clock, the default is 1000Hz for the event
system. The value will be set to the IOC'sinternal clock rate when soft timing is used.

* master_port: UDP port for master. The default is 18233
» dslave port: UDP port for slave.

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 49

Chapter 4: 10C Initialization

initHooks
 time_out: UDP information request time out in milliseconds, if zero is entered here,
the default will be used which is 250ms.
* type: O=normal operation, 1=force soft timing type
See "Synchronous Time Stamp Support”, by Jim Kowakowski for details. Note that the
default isto be aslave. If no master isfound the slave will obtain a starting time from Unix.
initHooks
NOTE: starting with release 3.13.0betal2 initHooks was changed drastically (thanks to
Benjamin Franksen at BESY). Old initHooks.c functions will still work but users are
encouraged to switch to the new method.
Theinithooks facility allows application specific functions to be called at various states during
ioc initialization. The states are defined in initHooks.h, which contains the following
definitions:
t ypedef enum {
i ni t HookAt Begi nni ng,
i ni t HOOKAft er Get Resour ces,
i ni t HookAfterLoglnit,
i ni t HookAfterCal |l backlnit,
i ni t HOokAfter CaLi nklnit,
i ni t HookAfterlnitDrvSup,
i ni t HookAfterlnitRecSup,
i ni t HookAfterl nitDevSup,
i nitHookAfterTS init,
i ni t HookAft erl nitDat abase,
i ni t HookAft er Fi ni shDevSup,
i ni t HookAfterScanlnit,
i ni t HookAfterlnterruptAccept,
i ni t HookAfterlnitial Process,
i ni t HookAt End
}init HookSt at e;
typedef void (*initHookFunction)(initHookState state);
i nt initHookRegi ster(initHookFunction func);
Any new functions that are registered before ioclnit reaches the desired state will be called
when ioclnit reaches that state. The following is skeleton code to use the facility:
#i ncl ude <vxWorks. h>
#i ncl ude <stdlib. h>
#i ncl ude <stddef. h>
#i ncl ude <initHooks. h>
static initHookFuncti on nyHookFuncti on;
i nt myHookl nit (void)
{
return(initHookRegi ster(myHookFunction));
}
50 EPICS IOC Application Developer’'s Guide

Chapter 4: 10C Initialization
Environment Variables

static void nyHookFunction(initHookState state)
{

switch(state) {
case i nitHookAfterlnitRecSup:

br eak;

case i nitHookAfterlnterruptAccept:
br eak;

defaul t:
br eak;

}
}

Assuming the codeisin file myHook.c, the st.cmd file should contain (before ioclnit).

I d < bin/nyHook. o
myHookl ni t

An arbitrary number of functions can be registered.

Environment Variables

The following environment variables are used by iocCore:

EPI CS_CA_ADDR LI ST

EPI CS_CA_CONN_TMD

EPI CS_CA_BEACON_PERI OD
EPI CS_CA_AUTO ADDR LI ST
EPI CS_CA_REPEATER_PORT
EPI CS_CA_SERVER_PORT
EPI CS_TS_M N_VEST

EPI CS_TS_NTP_I NET

EPI CS_I| OC_LOG_PORT

EPI CS_I| OC_LOG | NET

These variables can be overridden via the vxWorks putenv function. For example:
putenv("EPICS_ TS M N WEST=300")

Any putenv commands should be issued after iocCore is loaded and before any dbLoad
commands.

I nitialize L ogging

Initialize the logging system. See chapter "IOC Error Logging" for details. For initiliization
just realise that the following can be used if you want to use a private host log file.

put env(" EPI CS_| OC_LOG_PORT=7004")

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 51

Chapter 4: 10C Initialization

Get Resource Definitions

put env("EPI CS_| OC_LOG | NET=164. 54. 8. 12")

These command must be given immediately after iocCore is loaded.

If you want to disable logging to the system wide log file just give the command.
i ocLogDi sable = 1

This must be given after iocCore is loaded and before any dbL.oad commands.

Get Resour ce Definitions

NOTE: This facility is supported for compatibility with previous releases. It should NOT be
used for new applications.

ioclnit accepts a string argument which is the name of a resource file which can set values of
IOC global variables. The resource file contains lines with the following format:

gl obal _nane type val ue
gl obal _nan® isthe name of the variable to be changed.
t ype must be one of the following:

DBF_STRI NG
DBF_SHORT
DBF_LONG
DBF_FLOAT
DBF_DOUBLE

val ue isthe value to be assigned to the global variable.

Please note that type MUST be set so that it matches the actua type of the global variable
because there is no way for Get Resour ces to know the actual type.

52

EPICS IOC Application Developer’'s Guide

Chapter 5. Access Security

Overview

This chapter describes access security. i.e. the system that limits access to |0C databases. It
consists of the following sections:

1.
. Quick start - A summary of the steps necessary to start access security.

. User's Guide - This explains what access security is and how to useit.

. Design Summary - Functional Requirements and Design Overview.

. Application Programmer’s Interface

. Database Access Security - Access Security features for EPICS |OC databases.
. Channel Access Security - Access Security features in Channel Access

8.

N o o~ WN

Overview - This section

Implementation Overview

The requirements for access security were generated at ANL/APS in 1992. The requirements
document is:

EPICS: Channel Access Security - Functional Requirements, Ned D. Arnold, 03/-9/92.
This document is available via the EPICS WWW documentation

Quick Start

In order to “turn on” access security for a particular 10C the following must be done:

Create the access security file.
|OC databases may have to be modified
» Record instances may have to have values assigned to field ASG. If ASG is null
therecord isin group DEFAULT.

» Access security files can be reloaded after ioclnit via a subroutine record with
asSubl nit and asSubPr ocess as the associated subroutines. Writing the
value 1 to thisrecord will cause areload.

» The vxWorks startup file must contain the following command before iocl nit.

asSet Fi | ename(“accessSecurityFile”)
Thefollowing is an optional command.
asSet Substitutions(“varl=subl, var2=sub2,..."))

The following rules decide if access security isturned on for an |OC:

« If asSetFilename is not executed before ioclnit, access security will NEVER be started..

EPICS Release: R3.13.0betal2

EPICS I0OC Application Developer's Guide 53

Chapter 5: Access Security
User’s Guide

« If asSetFile is given and any error occurs while first initializing access security, then
ALL accessto that ioc is denied.

* If after successfully starting access security, an attempt is made to restart and an error
occurs then the previous access security configuration is maintained.

User’'s Guide

Features Access security protects |OC databases from unauthorized Channel Access Clients. Access
security is based on the following:

* Who: Userid of the channél access client.

* Where: Hostid where the user is logged on. This is the host on which the channel
access client exists. Thus no attempt is made to see if a user is local or is remotely
logged on to the host.

» What: Individual fields of records are protected. Each record has afield containing the
Access Security Group (ASG) to which the record belongs. Each field has an access
security level, which must be 0 or 1.The security level is defined in the ascii record
definition file. Thus the access security level for a field is the same for all record
instances of arecord type.

* When: Access rules can contain input links and calculations similar to the calculation
record.

Limitations An |OC database can be accessed only via Channel Access or via the vxWorks shell. It is
assumed that access to the local 10C console is protected via physical security and t el net /
r I ogi n access protected vianormal Unix and physical security.

No attempt has been made to protect against the sophisticated saboteur. Unix security must be
used to limit access to the subnet on which theiocs reside.

Definitions This document uses the following terms:

» ASL: Access Security Level (Called access level in Req Doc)
» ASG: Access Security Group (Called PV Group in Reg Daoc)
* UAG: User Access Group
* HAG: Host Access Group

Access Secur ity This section describes the format of afile containing definitions of the user access groups, host

Configuration File —accessgroups, and access security groups. An 10C creates an access configuration database by
reading an access configuration file (the extension .acf is recommended). Lets first give a
simple example and then a complete description of the syntax.

Smple Example UAG(uag) {userl, user?2}
HAG(hag) {host1, host 2}
ASG(DEFAULT) {
RULE(1, READ)
RULE(1, WRI TE) {
UAG(uag)
HAG(hag)

54 EPICS IOC Application Developer’'s Guide

Chapter 5: Access Security
User’s Guide

}

These rules provide read access to anyone located anywhere and write access to user 1 and
user 2 if they arelocated at host 1 or host 2.

Syntax Definition In the following description:
[Lists optiona elements
| Separator for alternatives

Means that an arbitrary number of definitions may be given.
Any line beginning with # is a comment

UAG <nane>) [{ <user> [, <user> ...] }]
HAG(<name>) [{ <host> [, <host> ...] }]
ASG(<nane>) [{

[I NP<i ndex>(<pvnamne>)

]
RULE(<l evel >, NONE | READ | WRITE) {

[UAG <nane> [, <nanme> ...])]
[HAG <nane> [, <nanme> ...])]
CALC(" <cal cul ation>")
}
}H
Discussion * UAG: User Access Group. Thisisalist of userids. The list may be empty. The same

userid can appear in multiple UAGs. For iocs the userid is taken from the user field of
the boot parameters.

* HAG: Host Access Group. Thisisalist of host names. It may be empty. The same host
name can appear in multiple HAGs. For iocs the host name is taken from the target
name of the boot parameters.

» ASG: An access security group. The group "DEFAULT” is a special case. If a member
specifies a null group or a group which has no ASG definition then the member is
assigned to the group " DEFAULT”.

e INP<index> Index must have one of the values “A” to “L". These are just like
the | NP fields of a calculation record. It is necessary to define | NP fields if a
CALCfield is defined in any RULE for the ASG.

* RULE This defines access permissions. <I evel > must be 0 or 1. Permission
for alevel 1fieldimpliespermission for level O fields. The permissions are NONE,
READ, and WRI TE. WRI TE permission implies READ permission. The standard
EPICS record types have all fields set to level 1 except for VAL, CVD (command),
and RES (reset).

* UAG specifies a list of user access groups that can have the access
privilege. If UAG is not defined then all users are allowed.

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 55

Chapter 5: Access Security

User’'s Guide

ascheck - Check
Syntax of Access
Configuration File

* HAG specifiesalist of host access groups that have the access privilege. If
HAG is not defined then all hosts are allowed.

* CALC isjust like the CALC field of a calculation record except that the
result must evaluate to TRUE or FALSE. If the calculation resultsin (0,1)
meaning (FALSE, TRUE) then the rule (doesn’'t apply, does apply) . The
actual testis.99<result <1.01.

Each 10C record contains a field ASG, which specifies the name of the ASG to which the
record belongs. If this field is null or specifies a group which is not defined in the access
security file then the record is placed in group " DEFAULT".

The access privilege for a channel access client is determined as follows:

1. The ASG associated with the record is searched.

2. Each RULE is checked for the following:

a. Thefield'slevel must be less than or equal to the level for this RULE.

b. If UAG is defined, the user must belong to one of the specified UAGs. If UAG is
not defined all users are accepted.

c. If HAG is defined, the user’s host must belong to one one of the HAGs. If HAG is
not defined all hosts are accepted.

d. If CALC is specified, the calculation must yield the value 1, i.e. TRUE. If any of
the INP fields associated with this calculation are in INVALID alarm severity the
calculation is considered false. The actual test for TRUE is.99 < result < 1.01.

3. The maximum access allowed by step 2 is the access chosen.

Multiple RULEs can be defined for a given ASG, even RULEs with identical levels and access
permission.

After creating or modifying an access configuration file it can be checked for syntax errors by
issuing the command:

ascheck -S “xxx=yyy,...” < "filenane"

This is a Unix command. It displays errors on st dout . If no errors are detected it prints
nothing. Only syntax errors not logic errors are detected. Thusit isstill possible to get your self
in trouble. The flag - S means a set of macro substitutions may appear. This is just like the
macro substitutions for dbL oadDatabase.

| OC Access Security In order to have access security turned on during 10C initialization the following command

I nitialization must appear in the startup file beforei ocl ni t iscalled:
asSet Fi | enanme("<access security file>")
If this command does not appear then access security will not be started by i ocl ni t. If an
error occurs when ioclnit cals asl ni t than al access to the ioc is disabled, i.e. no channel
access client will be able to access theioc.
Access security also supports macro substitution just like dbLoadDat abase. The following
command specifies the desired substitutions:
asSet Substitutions(“var1l=subl, var2=sub2,...")
This command must be issued beforei ocl ni t .
After an IOC is initialized the access security database can be changed. The preferred way is
via the subroutine record described in the next section. It can aso be changed by issuing the
following command to the vxWorks shell:
aslnit
56 EPICS IOC Application Developer’'s Guide

Chapter 5: Access Security
User’s Guide

Database
Configuration

Access Security
Group

Subroutine Record
Support

Record Type
Description

Example:

It is also possible to reissue asSet Fi | enanme and/or asSet Substi tuti ons before
aslnit. If any error occurs during aslnit the old access security configuration is
maintained. It isNOT permissableto call asl nit beforei ocl ni t iscalled.

Restarting access security after ioc initialization is an expensive operation and should not be
used as aregular procedure.

Each database record has a field ASG which holds a character string. Any database
configuration tool can be used to give avalueto thisfield. If the ASG of arecord is not defined
or isnot equal to a ASG in the configuration file then the record is placed in DEFAULT.

Two subroutines, which can be attached to a subroutine record, are available (provided with
i ocCor e):

asSubl ni t

asSubProcess

If arecord is created that attaches to these routines, it can be used to force the IOC to load a
new access configuration database. To change the access configuration:

1. Modify the file specified by the last call to asSet Fi | enane so that it contains the new
configuration desired.
2. Write a 1 to the subroutine record VAL field. Note that this can be done via channel
access.
The following action is taken:

1. When thevalueisfound to be 1, asl ni t iscalled and the value set back to O.

2. The record is treated as an asynchronous record. Completion occurs when the new
access configuration has been initialized or a time-out occurs. If initiaization fails the
record is placed into alarm with a severity determined by BRSV.

Each field of each record type has an associated access security level of ASLO or ASL1. Seethe
chapter “Database Definition” for details.

Lets design a set of rulesfor aLinac. Assume the following:

1. Anyone can have read accessto al fields at anytime.

2. Linac engineers, located in the injection control or control room, can have write access
to most level Ofields only if the Linac is not in operational mode.

3. Operators, located in the injection control or control room, can have write access to
most level O fields anytime.

4. The operations supervisor, linac supervisor, and the application developers can have
write access to al fields but must have some way of not changing something
inadvertently.

5. Most records use the above rules but afew (high voltage power supplies, etc.) are placed
under tighter control. These will follow rules 1 and 4 but not 2 or 3.

6. 10C channel access clients always have level 1 write privilege.

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 57

Chapter 5: Access Security

User’'s Guide

Most Linac 10C records will not have the ASG field defined and will thus be placed in ASG
“DEFAULT". The following records will have an ASG defined:

e LI : OPSTATE and any other records that need tighter control have ASG="cri ti cal ".
One such record could be a subroutine record used to cause a new access configuration
file to be loaded. LI _OPSTATE has the value (0,1) if the Linac is (not operational,
operational).

e LI:levipermt has ASG="permt". In order for the opSup, | i nacSup, or an
appDev to have write privilege to everything this record must be set to the value 1.

The following access configuration satisfies the above rules.

UAG(op) {opl, op2, superguy}
UAG(opSup) {superguy}
UAG(|l i nac) {waw, nassiri,grelick, berg, fuja,gsn}
UAG(|l i nacSup) {gsmi
UAG appDev) {nda, kko}
HAG(icr) {silver, phebos, gaea}
HAG(cr) {mars, hera, gol d}
HAG(i oc)
{ioclicl,ioclic2,ioclidl,ioclid2,ioclid3,ioclid4,ioclid5}
ASG DEFAULT) {
| NPA(LI : OPSTATE)
I NPB(LI:levipermt)
RULE(0, WRI TE) {
UAG(op)
HAGi cr, cr)
CALC(" A=1")
}
RULE(0, WRI TE) {
UAG op, | i nac, appdev)
HAG(i cr, cr)
CALC(" A=0")
}
RULE(1, WRI TE) {
UAG opSup, | i nacSup, appdev)
CALC("B=1")
}
RULE(1, READ)
RULE(1, WRI TE) {
HAG(i oc)
}
}
ASE permit) {
RULE(0, WRI TE) {
UAG opSup, | i nacSup, appDev)
}
RULE(1, READ)
RULE(1, WRI TE) {
HAG(i oc)
}
}
ASEcritical) {
I NPB(LI:levlipermt)

58

EPICS IOC Application Developer’'s Guide

Chapter 5: Access Security
Design Summary

Summary of
Functional
Requirements

Additional
Requirements

Performance

Generic
I mplementation

No Access Security
within an 10C

Defaults

RULE(1, WRI TE) {
UAG opSup, | i nacSup, appdev)
CALC("B=1")

}

RULE(1, READ)

RULE(1, WRI TE) {
HAG(i oc)

}

Design Summary

A brief summary of the Functional Requirementsis:

1. Each field of each record type is assigned an access security level.
2. Each record instance is assigned to a unique access security group.
3. Each user isassigned to one or more user access groups.

4. Each node is assigned to a host access group.

5. For each access security group a set of access rules can be defined. Each rule specifies:
a. Access security level
b. READ or READ/WRITE access.
c. Anoptional list of User Access Groups or * meaning anyone.
d. An optional list of Host Access Groups or * meaning anywhere.
e. Conditions based on values of process variables

Although the functional requirements doesn’t mention it, a fundamental goal is performance.
The design provides almost no overhead during norma database access and moderate
overhead for the following: channel access client/server connection, ioc initialization, a change
in value of a process variable referenced by an access calculation, and dynamically changing a
records access control group. Dynamically changing the user access groups, host access
groups, or the rules, however, can be a time consuming operation. This is done, however, by a
low priority 1OC task and thus does not impact normal ioc operation.

Access security should be implemented as a stand alone system, i.e. it should not be imbedded
tightly in database or channel access.

Within an 10C no access security isinvoked. This means that database links and local channel
access clients calls are not subject to access control. Also test routines such as dbgf should not
be subject to access contral.

It must be possible to easily define default access rules.

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 59

Chapter 5: Access Security

Design Summary

Access Security is
Optional

Design Overview

Configuration File

Access Security
Library

When an IOC is initialized, access security is optional.

The implementation provides a library of routines for accessing the security system. This
library has no knowledge of channel access or IOC databases, i.e. it is generic. Database
access, which is responsible for protecting an 10C database, calls library routines to add each
IOC record to one of the access control groups.

Lets briefly discuss the access security system and how database access and channel access
interact with it.

User access groups, host access groups, and access security groups are configured via an
ASCII file.

The access security library consists of the following groups of routines: initialization, group
manipulation, client manipulation, access computation, and diagnostic. The initiaization
routine reads a configuration file and creates a memory resident access control database. The
group manipulation routines allow members to be added and removed from access groups. The
client routines provide services for clients attached to members.

| OC Database Access Theinterface between an |0C database and the access security system.

Security

Channel Access
Security

Comments

Performance and
Memory
Requirements

Whenever the Channel Access broadcast server receives a ca_sear ch request and finds the
process variable, it calls asAdddient. Whenever it disconnects it calls
asRenoved i ent . Whenever it issues aget or put to the database it must call asCheckGet
or asCheckPut .

Channel access is responsible for implementing the requirement of allowing the user to be
changed dynamically.

Itislikely that the access rules will be defined such that many 10Cs will attach to a common
process variable. As aresult the |OC containing the PV will have many CA clients.

What about password protection and encryption? | maintain that thisis a problem to be solved
in alevel above the access security described in this document. This is the issue of protecting
against the sophisticated saboteur.

Performance has not yet been measured but during the tests to measure memory usage no
noticeable change in performance during ioc initialization or during Channel Access clients
connection was noticed. Unless access privilege is violated the overhead during channel access
gets and putsis only an extra comparison.

In order to measure memory usage, the following test was performed:

1. A database consisting of 5000 soft analog records was created.

2. A channel access client (caput) was created that performs ca_put s on each of the
5000 channels. Each time it begins a new set of puts the value increments by 1.

3. A channel access client (caget) was created that has monitors on each of the 5000
channels.

60

EPICS IOC Application Developer’'s Guide

Chapter 5: Access Security
Access Security Application Programmer’s Interface

Definitions

Initialization

Group manipulation

add Member

The memory consumption was measured before i ocl ni t, after i ocl ni t, after caput
connected to all channels, and after caget connected to all 5000 channels. This was done for
APS release 3.11.5 (before access security) and the first version which included access
security. The results were;

R3.11.5 After
Beforeioclnit 4,244,520 4,860,840
After ioclnit 4,995,416 5,964,904
After caput 5,449,780 6,658,868
After caget 8,372,444 9,751,796

Before the database was loaded the memory used was 1,249,692 bytes. Thus most of the
memory usage before ioclnit resulted from storage for records. The increase since R3.11.5
results from added fields to dbConmon. Fields were added for access security, synchronous
time support and for the new caching put support. The other increases in memory usage result
from the control blocks needed to support access control. The entire design was based on
maximum performance. This resulted in increased memory usage.

Access Security Application Programmer’sInterface

t ypedef struct asgMenber * ASMEMBERPVT;
typedef struct asgCdient *ASCLI ENTPVT;
typedef int (*ASINPUTFUNCPTR) (char *buf,int nmax_size);
t ypedef enuni
asCl i ent COAR/ * Change of access rights*/
/*For now this is all*/
} asCient Status;
typedef void (*ASCLI ENTCALLBACK) (ASCLI ENTPVT, asd i ent St at us) ;

I ong aslnitialize(ASI NPUTFUNPTR i nput Functi on)
long aslnitFile(const char *fil enane, const char *substitutions)
| ong aslnitFP(FILE *fp, const char *substitutions)

These routines read an access definition file and perform al initialization necessary. The caller
must provide a routine to provide input lines for aslnitialize. aslnitFile and
asl ni t FP do their own input and also perform macro substitutions.

The initilization routines can be called multiple times. If an access system already exists the
old definitions are removed and the new one initialized. Existing members are placed in the
new ASGs.

| ong asAddMember (ASMEMBERPVT *ppvt, char *asgNane);

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 61

Chapter 5: Access Security
Access Security Application Programmer’s Interface

remove Member

get Member Pwvt

put Member Pvt

change Group

Client Manipulation

This routine adds a new member to ASG asgNane. The calling routine must provide storage
for ASMEMBERPVT. Upon successful return *ppvt will be equal to the address of storage used
by the access control system. The access system keeps an orphan list for all asgNanes not
defined in the access configuration.

The caller must provide permanent storage for asgNane.

ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control is not
active.

| ong asRenmpbveMenber (ASMEVMBERPVT *ppvt);

This routine removes a member from an access control group. If any clients are still present it
returns an error status of S_asLib_clientExists without removing the member.

This routine returns S asLib_asNotActive without doing anything if access control is not
active.

voi d *asGet Menber Pvt (ASMEMBERPVT pvt);

For each member, the access system keeps a pointer that can be used by the caller. Thisroutine
returns the value of the pointer.

Thisroutine returns NULL if access security is not active

| ong asPut Menmber Pvt (ASMEMBERPVT pvt, void *userPvt);
Thisroutine is used to set the pointer returned by asGetM emberPvt.

ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control is not
active.

| ong asChangeG oup(ASMEMBERPVT *ppvt, char *newAsgNane);

This routine changes the group for an existing member. The access rights of al clients of the
member are recomputed.

The caller must provide permanent storage for newAsgNane.

ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control isnot
active.

add Client | ong asAddd i ent (ASCLI ENTPVT *ppvt, ASMEMBERPVT pvt,int asl,
char *user, char*host);

This routine adds a client to an ASG member. The calling routine must provide storage for
ASCLI ENTPVT. ASMEMBERPVT is the value that was set by calling asAddMenber . asl is
the access security level.
The caller must provide permanent storage for user and host .
ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control isnot
active.

62 EPICS IOC Application Developer’'s Guide

Chapter 5: Access Security
Access Security Application Programmer’s Interface

change Client

remove Client

get Client Pvt

put Client Pvt

register Callback

check Get

check Put

Access Computation

compute all Asg

| ong asChanged i ent (ASCLI ENTPVT ppvt,int asl,
char *user, char*host);

This routine changes one or more of the values asl , user, and host for an existing client.
Again the caller must provide permanent storage for user and host . It is permissible to use
thesameuser and host usedinthecal to asAddd i ent with different values.

ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control is not
active.

| ong asRemoved i ent (ASCLI ENTPVT *pvt);
This call removes aclient.

ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control isnot
active.

voi d *asGet C i ent Pvt (ASCLI ENTPVT pvt);

For each client, the access system keeps a pointer that can be used by the caler. This routine
returns the value of the pointer.

Thisroutine returns NULL if access security is not active.

voi d asPut dient Pvt (ASCLI ENTPVT pvt, void *userPvt);
Thisroutine is used to set the pointer returned by asCGet d i ent Pvt .

| ong asRegi sterd i ent Cal | back(ASCLI ENTPVT pvt,
ASCLI ENTCALLBACK pcal | back) ;

This routine registers a callback that will be called whenever the access privilege of the client
changes.

ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control isnot
active.

| ong asCheckGet (ASCLI ENTPVT pvt);

This routine, actually a macro, returns (TRUE,FALSE) if the client (has, doesn't have) get
accessrights.

| ong asCheckPut (ASCLI ENTPVT pvt);

This routine, actually a macro, returns (TRUE,FALSE) if the client (has, doesn’'t have) put
access rights

| ong asComput eAl | Asg(void);

Thisroutine calls asConput eAsg for each access security group.

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 63

Chapter 5: Access Security
Access Security Application Programmer’s Interface

ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control is not
active.

compute Asg | ong asComput eAsg(ASG *pasq) ;
This routine calculates all CALC entries for the ASG and calls asConput e for each client of
each member of the specified access security group.
ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control isnot
active.

compute access | ong asConput e(ASCLI ENTPVT pvt);

rights This routine computes the access rights of a client. This routine is normally called by the
access library itself rather than use code.
ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control is not
active.

Diagnostic

dump int asDunp(void (*nenber) (ASVMEMBERPVT),

void (*client)(ASCLI ENTPVT),int verbose);

This routine prints the current access security database. If verbose is 0 (FALSE), then only the
information obtained from the access security file is printed.
If verbose is TRUE then additional information is printed. The value of each | NP is displayed.
The list of members belonging to each ASG and the clients belonging to each member are
displayed. If member callback is specified as an argument, then it is called for each member. If
client callback is specified, it is called for each access security client.

dump UAG i nt asDunpUag(char *uagnane)
This routine displays the specified UAGor if uagnane is NULL each UAGdefined in the access
security database.

dump HAG i nt asDunpHag(char *hagnane)
This routine displays the specified UAGor if uagnarne is NULL each UAGdefined in the access
security database.

dump Rules i nt asDunpRul es(char *asgnane)
This routine displays the rules for the specified ASGor if asgnane is NULL the rules for each
ASG defined in the access security database.

dump member i nt asDunpMen(char *asgnane,

void (*rmental | back) (ASMEMBERPVT), i nt clients)
64 EPICS IOC Application Developer’'s Guide

Chapter 5: Access Security
Database Access Security

dump hash table

Access Level
definition

Access Security
Group definition

Access Client
Definition

Database Access
Library

Initialization

This routine displays the member and, if clients is TRUE, client information for the specified
ASGor if asgname is NULL the member and client information for each ASG defined in the
access security database. It also cals nental | back for each member if this argument is not
NULL.

i nt asDunpHash(voi d)
This shows the contents of the hash table used to locate UAGs and HAGs,

Database Access Security

The definition of access level means that alevel is defined for each field of each record type.

1. Structure f | dDes (dbBase.h), which describes the attributes of each field, contains a
field access security | evel . In addition definitions exist for the symbols: ASLO and
ASL1.

2. Each field description in arecord description contains a field with the value ASLx.
The meanings of the Access Security Level definitions are as follows:

» ASLO Assigned to fields used during normal operation

e ASL1 Assigned to fields that may be sensitive to change. Permission to access this
level implies permission for ASLO.

Most record types assign ASL as follows: The fields VAL, RES (Reset), and CVD use the value
ASLO. All other fieldsuse ASL1.

dbConmon contains the fields ASG and ASP. ASG (Access Security Group) is a character
string. The value can be assigned via a database configuration tool or else a utility could be
provided to assign values during ioc initialization. ASP is an access security private field. It
contains the address of an ASGVEMBER.

Struct dbAddr contains a field asPvt , which contains the address of an ASGCLI ENT. This
definition is also added to struct db_addr so that old database access also supports access
security.

Two filesasDbLi b.c and asCa.c implement the interface between |OC databases and access
control. It contains the following routines:

int asSetFil enane(char *acf)

Calling this routine sets the filename of an access configuration file. The next call to asl ni t
uses this file. This routine must be called before i ocl ni t otherwise access configuration is
disabled. I's access security is disabled during ioclnit it will never be turned on.

i nt asSet Substitutions(char *substitutions)

This routine specifies macro substitutions.

int aslnit()

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 65

Chapter 5: Access Security

Database Access Security

Routines used by
Channel Access
Server

Routine to test
asAddClient

Subroutines attached

i nt aslnitAsyn(ASDBCALLBACK *pcal | back)

This routines call asl nitial i ze. If the current access configuration file, as specified by
asSet Fi | enane, is NULL then the routine just returns, otherwise the configuration file is
used to create the access configuration database.

This routine is called by i oclnit. aslnit can aso be caled a any time to change the
access configuration information.

asl nit Asyn spawns a task asl nit Task to perform the initialization. This alows
asl ni t Asyn to be caled from a subroutine called by the process entry of a subroutine
record. asl ni t Task callst askwdl nsert so that if it suspends for some reason t askwd
can detect the failure. After initialization all records in the database are made members of the
appropriate access control group.

If the caller provides an ASDBCALLBACK then when either initialization completes or t askwd
detects afailure the users callback routine is called via one of the standard callback tasks.

asl ni t Asyn will return avalue of - 1 if access initialization is already active. It returns O if
asl ni t Task is successfully spawned.

i nt asDbGet Asl (voi d *paddr)

Get Access Security level for the field referenced by a database access structure. The argument
isdefined asavoi d* so that both old and new database access can be used.

ASMEMBERPVT asDbGet Menber Pvt (voi d *paddr)

Get ASMEMBERPVT for the field referenced by a database access structure. The argument is
defined asavoi d* so that both old and new database access can be used.

i nt astac(char *pnane, char *user, char *host)

This is a routine to test asAddd i ent . It smulates the calls that are made by Channel
Access.

These routines are provided so that a channel access client can force an ioc to load a new

to a subroutine record access configuration database.

Diagnostic Routines

| ong asSublnit(struct subRecord *prec,int pass)
| ong asSubProcess(struct subRecord *prec)

These are routines that can be attached to a subroutine record. Whenever a 1 is written to the
record, asSubProcess cals aslnit. If aslnit returns success, it returns with
asynchronously. When aslnitTask cals the completion routine supplied by
asSubPr ocess, the return status is used to place the record in alarm.

These routines provide interfaces to the asDunp routines described in the previous chapter.
They do NOT lock before calling the associated routine. Thus they may fail if the access
security configuration is changing while they are running. However the danger of the user
accidently aborting a command and leaving the access security system locked is considered a
risk that should be avoided.

asdbdunp(voi d)

66

EPICS IOC Application Developer’'s Guide

Chapter 5: Access Security
Channel Access Security

Thisroutine calls asDunp with amember callback and with verbose TRUE.

aspuag(char *uagnamne)

Thisroutine callsasDunpUag.

asphag(char *hagnane)

Thisroutine callsasDunpHag.

asprul es(char *asgnane)

Thisroutine callsasDunpRul es.

asprmem(char *asgname,int clients)

Thisroutine callsasDunpMem

Channel Access Security

EPICS Access Security is designed to protect Input Output Controllers (IOCs) from
unauthorized access via the Channel Access (CA) network transparent communication
software system. This chapter describes the interaction between the CA server and the Access
Security system. It also briefly describes how the current access rights state is communicated
to clients of the EPICS control system via the CA communication system and the CA client
interface.

CA Server InterfacesThe CA server calls asAddCl i ent () and asRegi sterd i ent Cal | back() for each

tothe Access
Security System

of the channels that a client connects to the server. The routine asRenoved i ent () is
called whenever the client clears (removes) a channel or when the client disconnects.

The server maintains storage for the clients host and user names. The initial value of these
strings are supplied to the server when the client connects and can be updated at any time by
the client. When these strings change then asChangeCl i ent () is caled for each of the
channels maintained by the server for the client.

The server checks for read access when processing gets and for write access when processing
puts. If accessis denied then an exception message is sent to the client.

The server checks for read access when processing requests to register an event callback
(monitor) for the client. If there is read access the server always sends an initial update
indicating the current value. If thereisn't read access the server sends one update indicating no
read access and disables subsequent updates.

The server receives asynchronous notification of access rights change via the callback
registered with asRegi st er O i ent Cal | back() . When a channel’s access rights change
the server communicates the current state to the client library. If read accessto achannel islost
and there are events (monitors) registered on the channel then the server sends an update to the
client for each of them indicating no access and disables future updates for each event. If read

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 67

Chapter 5: Access Security
Access Control: Implementation Overview

Client Interfaces

I mplementation
Overview

access is reestablished to a channel and there are events (monitors) registered on the channel
then the server re-enables updates and sends an initial update message to the client for each of
them.

Additional details on the channel access client side callable interfaces to access security can be
obtained from the “ Channel Access Reference Manua”.

The client library stores and maintains the current state of the access rights for each channel
that it has established. The client library receives asynchronous updates of the current access
rights state from the server. It uses this state to check for read access when processing gets and
for write access when processing puts. If a program issues a channel access request that is
inconsistent with the client library’s current knowledge of the access rights state then accessis
denied and an error code is returned to the application. The current access rights state as known
by the client library can be tested by an applications program with the C macros
ca_read_access() andca_wite_access().

An application program can also receive asynchronous notification of changes to the access
rights state by registering a function to be called back when the client library updates its
storage of the access rights state. The application’s call back function is installed for this
purpose by callingca_r epl ace_access_rights_event ().

If the access rights state changes in the server after areguest is queued in the client library but
before the request is processed by the server then it is possible that the request will fail in the
server. Under these circumstances then an exception will be raised in the client.

The server aways sends one update to the client when the event (monitor) is initialy
registered. If there isn't read access then the status in the arguments to the application
program’s event call back function indicates no read access and the value in the arguments to
the clients event call back is set to zero. If the read access right changes after the event is
initially registered then another update is supplied to the application programs call back
function.

Access Control: | mplementation Overview

This chapter provides a few aids for reading the access security code. Include file asLi b.h
describes the control blocks used by the access security library.

The following files form the access security system:

» asLib.h Déefinitions for the portion of access security that is independent of 10C
databases.

» asDbLib.h Definitions for access routines that interface to an |OC database.

» asLib_lex.| Lex and Yacc (actually EPICSf| ex and ant el ope) are used to parse
the access configuration file. Thisisthel ex input file.

e asLib.y Thisistheyacc input file. Note that it includes asLi bRout i nes.c, which
do most of the work.

» asLibRoutines.c These are the routines that implement access security. This code has
no knowledge of the database or channel access. It is a general purpose access security
implementation.

» asDbLib.c This containsthe code for interfacing access security to the |OC database.

68

EPICS IOC Application Developer’'s Guide

Chapter 5: Access Security
Access Control: Implementation Overview

» asCa.c This code contains the channel access client code that implements the | NP and
CALC definitionsin an access security database.

 ascheck.c The Unix program which performs a syntax check on a configuration file.

L ocking Because it is possible for multiple tasks to simultaneously modify the access security database
it is necessary to provide locking. Rather than try to provide low level locking, the entire access
security database is locked during critical operations. The only things this should hold up are
access initialization, CA searches, CA clears, and diagnostic routines. It should NEVER cause
record processing to wait. In addition CA gets and puts should never be delayed. One
exception exists. If the ASG field of a record is changed then asChangeQG oup is called
which locks.

All operations invoked from outside the access security library that cause changes to the
internal structures of the access security database.routines lock.

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 69

Chapter 5: Access Security

Structures
Structures
—>U'Dr‘](§de J" UAGNAME
name node
list LSer
HAG
node HAGNAME
ASBASE name node
uagList list host
hagList > ASGINP
asglList ASG node
phash node inp
name Capvt
inpList pasy
ruleList inplndex
memberList[] >
pavalue ASGRULE ASGUAG
inpBad node node
inpChanged access puag
level
inpUsed ASGHAG
(r;lwlt node
C
rpcl phag
uaglist
> hagLis. ASGCLIENT
ASGI(\j/I EMBER node
node Member
pasyg e
clientList host
asgName userPvt
userPvt pcallback
level
access
70 EPICS I0C Application Developer’s Guide

Chapter 6: 10OC Test Facilities

dbl

dbgrep

Overview

This chapter describes a number of 1OC test routines that are of interest to both application
developers and system developers. All routines can be executed from the vxWorks shell. The
parentheses are optional, but the arguments must be separated by commas. All character string
arguments must be enclosed in “”.

The user should also be aware of the field TPRO, which is present in every database record. If it
is set TRUE then amessage is printed each timeits record is processed and amessage is printed
for each record processed as aresult of it being processed.

Database List, Get, Put

Database List:
dbl (“<record type>","<fil enane>")
Examples

dbl
dbl *ai”

This command prints the names of records in the run time database. If <record type>is
not specified, al records are listed. If <r ecord t ype> is specified, then only the names of
the records of that type are listed.

If <f i | ename> is specified the output iswritten to the specified file (if the file already exists
it is overwritten). If this argument is O then the output is sent to st dout .

List Record Names That Match a Pattern:
dbgrep (“<pattern>")
Examples

dbgrep “SO0*”
dbgrep “*gpi bA *”

Lists al record names that match a pattern. The pattern can contain any characters that are
legal in record names as well as“*”, which matches O or more characters.

EPICS Release: R3.13.0betal2 EPICS I0OC Application Developer's Guide 71

Chapter 6: I0C Test Facilities

Database List, Get, Put

dba

dbgf

dbpf

dbpr

dbtr

Database Address:
dba (“<record_nane. field_nane>")
Example

dba “aitest”
dba “aitest. VAL"

This command calls dbNaneToAddr and then prints the value of each field in the dbAddr
structure describing the field. If the field name is not specified then VAL is assumed (the two
examples above are equivalent).

Get Field:
dbgf (“<record_nane.field_name>")
Example:

dbgf “aitest”
dbgf “aitest.VAL”

This performs a dbNanmeToAddr and then adbGet Fi el d. It prints the field type and value.
If the field name is not specified then VAL is assumed (the two examples above are equivalent).

Put Field:

dbpf (“<record_nane.field_nane>", " <val ue>")
Example:

dbpf “aitest”,”5.0"

This command performs a dbNaneToAddr followed by a dbPut Fi el d and dbgf. If
<fi el d_nane> isnot specified VAL is assumed.

Print Record:

dbpr (“<record_nane>",<interest |evel>)
Example

dbpr “aitest”, 2

This command prints all fields of the specified record up to and including those with the
indicated interest level. Interest level has one of the following values:

» 0: Fields of interest to an Application developer and that can be changed as a result of
record processing.

1: Fields of interest to an Application developer and that do not change during record
processing.

2: Fields of major interest to a System devel oper.

3: Fields of minor interest to a System devel oper.

4: Fields of no interest.

Test Record:
dbtr (“<record_nane>")

This calls dbNameToAddr , then dbPr ocess and finally dbpr (interest level 3). Its purpose
isto test record processing.

72

EPICS IOC Application Developer’'s Guide

Chapter 6: I0C Test Facilities
Breakpoints

dbnr

dbb

dbd

dbs

dbc

dbp

Print number of records:
dbnr (al | _recordtypes)

This command displays the number of records of each type and the total number of records. If
all _record_types is 0 then only record types with record instances are displayed. If
al | _record_types isnot 0then al record types are displayed.

Breakpoints

A breakpoint facility that allows the user to step through database processing on a per lockset
basis. This facility has been constructed in such away that the execution of all locksets other
than ones with breakpoints will not be interrupted. This was done by executing the records in
the context of a separate task.

The breakpoint facility records all attempts to process records in a lockset containing
breakpoints. A record that is processed through external means, e.g.: a scan task, is called an
entrypoint into that lockset. The dbst at command described below will list all detected
entrypoints to alockset, and at what rate they have been detected.
Set Breakpoint:

dbb (“<record_nane>")

Sets a breakpoint in a record. Automatically spawns the bkpt Cont, or breakpoint
continuation task (one per lockset). Further record execution in this lockset is run within this
task’s context. This task will automatically quit if two conditions are met, all breakpoints have
been removed from records within the lockset, and all breakpoints within the lockset have been
continued.
Remove Breakpoint:

dbd (”<record_nane>")

Removes a breakpoint from arecord.

Single Step:
dbs (“<record_nane>")
Steps through execution of records within a lockset. If this command is called without an
argument, it will automatically step starting with the last detected breakpoint.
Continue:
dbc (“<record_nane>")
Continues execution until another breakpoint is found. This command may also be called
without an argument.
Print Fields Of Suspended Record:
dbp

Prints out the fields of the last record whose execution was suspended.

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 73

Chapter 6: I0C Test Facilities

Error Logging

dbap Auto Print:
dbap (“<record_nane>")
Toggles the automatic record printing feature. If this feature is enabled for a given record, it
will automatically be printed after the record is processed.
dbstat Status:
dbst at
Prints out the status of all locksets that are suspended or contain breakpoints. This lists all the
records with breakpoints set, what records have the autoprint feature set (by dbap), and what
entrypoints have been detected. It aso displays the vxWorks task ID of the breakpoint
continuation task for the lockset. Here is an example output from this call:
LSet: 00009 Stopped at: so#B: 00001 T: Ox23cafac
Entrypoi nt: so#C:. 00001 as: 0.1
Br eakpoi nt: so(ap)
LSet: 00008#B: 00001 T: 0x22fee4dc
Br eakpoi nt: out put
The above indicates that two locksets contain breakpoints. One lockset is stopped at record
“s0.” The other is not currently stopped, but contains a breakpoint at record “out put
“LSet :” isthelockset number that is being considered. “#B: ” isthe number of breakpoints set
in recordswithin that lockset. “T: " isthe vxWorkstask ID of the continuation task. “C: " isthe
total number of calls to the entrypoint that have been detected. “C/ S: ” is the number of those
calls that have been detected per second. (ap) indicates that the autoprint feature has been
turned on for record “so.”
Error Logging
etc Display error log messages on console:
eltc(int noYes)
This determines if error messages are displayed on vxWorks console. A value of 0 means no
and any other value means yes.
Hardware Reports
dbior I/0O Report:
dbi or (“<driver_name>",<interest |evel>)
This command calls the report entry of the indicated driver. If <dri ver _name> is not
specified then the report for all drivers is generated. It also calls the report entry of all device
support modules. Interest level is one of the following:
* 0: Print a short report for each module.
74 EPICS I0C Application Developer’s Guide

Chapter 6: I0C Test Facilities
Scan Reports

dbhcr

scanppl

scanpel

scanpiol

TSreport

» 1. Print additional information.
» 2. Print even moreinfo. The user may be prompted for options.

Hardware Configuration Report:
dbhecr ("fil ename")

This command produces a report of al hardware links. To use it on the 10C, issue the
command:

dbhcr > report
or
dbhcr ("report")

The report will probably not be in the sort order desired. The Unix command:
sort report > report.sort

should produce the sort order you desire.

Scan Reports

Print Periodic Lists:
scanppl (doubl e rate)
Thisroutine printsalist of all recordsin the periodic scan list of the specidied rate. If rateis 0.0
all period lists are shown.
Print Event Lists:
scanpel (i nt event nunber)
This routine prints a list of all records in the event scan list for the specified event nunber. If
event_number is 0 all event scan lists are shown.
Print 1/0 Event Lists:
scanpi ol

Thisroutine printsalist of al recordsin the 1/O event scan lists.

Time Server Report

Format:
TSr eport
This routine prints out information about the Time server. Thisincludes:

» Slave or Master
 Soft or Hardware synchronized

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 75

Chapter 6: I0C Test Facilities
Access Security Commands

asSetFilename

asl nit

asdbdump

aspuag

asphag

asprules

aspmem

» Clock and Sync rates
* etc.

Access Security Commands

Format:
asSetFil enanme (“<fil ename>")

This command defines anew access security file.

Format:
aslnit

This command reinitializes the access security system. It rereads the access security file in
order to create the new access security database. This command is useful either because the
asSet Fi | ename command was used to change the file or because the file itself was
modified. Notethat it isalso possible to reinitialize the access security viaa subroutine record.
See the access security document for details.
Format:

asdbdunp

This provides a complete dump of the access security database.

Format:
aspuag (“<user access group>")

Print the members of the user access group. If no user access group is specified then the
members of all user access groups are displayed.

Format:
asphag (“<host access group>")

Print the members of the host access group. If no host access group is specified then the
members of all host access groups are displayed.

Format:
asprul es (“<access security group>")

Print the rules for the specified access security group or if no group is specified for all groups.

Format:
asprmem (“<access security group>", <print clients>)

Print the members (records) that belong to the specified access security group, for all groups if
no group isspecified. If <print clients>is(0, 1) then Channel Access clients attached to
each member (are not, are) shown.

76

EPICS IOC Application Developer’'s Guide

Chapter 6: I0C Test Facilities
Channel Access Reports

Channel Access Reports

ca_channel_status Format:

ca_channel _status (taskid)

Prints status for each channel in use by specialized vxWorks task.

casr Channel Access Server Report

casr (| evel)

Level can have one of the following values:

0

dbe Format:
dbel

Prints server’'s protocol version level and a one line summary for each client
attached. The summary lines contain the client’s login name, client’s host name,
client’s protocol version number, and the number of channel created within the
server by the client.

Level one provides all information in level 0 and adds the task id used by the
server for each client, the client’s IP protocol type, the file number used by the
server for the client, the number of seconds elapsed since the last request was
received from the client, the number of seconds elapsed since the last response
was sent to the client, the number of unprocessed request bytes from the client,
the number of response bytes which have not been flushed to the client, the
client's P address, the client’s port number, and the client’s state.

Level two provides al information in levels 0 and 1 and adds the number of bytes
allocated by each client and alist of channel names used by each client. Level 2
also provides information about the number of bytes in the server’'s free memory
pool, the distribution of entriesin the server’s resource hash table, and the list of
IP addresses to which the server is sending beacons. The channel names are
shown in the form:

<name>(nrw)

where

nis number of ca add_eventsthe client has on this channel

ris(-,R) if client (does not, does) have read access to the channel.
wis(-, W) if client (does not, does) have write access to the channel.

(“<record_name>")

This routine prints the Channel Access event list for the specified record.

dbcar Database to Channel Access Report - See “Record Link Reports”

EPICS Release: R3.13.0betal2

EPICS IOC Application Developer's Guide 77

Chapter 6: I0C Test Facilities

Interrupt Vectors

veclist

epicsPrtEnvParams

Interrupt Vectors

Format:
vecl i st

Print Interrupt Vector List

EPICS

Format:
epi csPrt EnvPar ans

Print Environment Variables

epicsRelease Format:
cor eRel ease
Print release of iocCore.
Database System Test Routines
These routines are normally only of interest to EPICS system developers NOT to Application
Developers.
dbt Measure Time To Process A Record:
dbt (“<record_nane”)
Times the execution of 100 successive processings of record r ecor d_nane. Note that
process passive and forward links within this record may incur the processing of other records
in its lockset. This function is a wrapper around the VxWorks ti nexN() function, and
directly displays its output. Therefore one must divide the result by 100 to get the execution
time for one processing of r ecor d_narre.
dbtgf Test Get Field:
dbtgf (“<record_nane.field_name>")
Example:
dbtgf “aitest”
dbtgf “aitest. VAL”
78 EPICS I0C Application Developer’s Guide

Chapter 6: I0C Test Facilities
Record Link Routines

dbtpf

dbtpn

dblsr

dbcar

This performs adbNaneToAddr and then callsdbCGet Fi el d with all possible request types
and options. It prints the results of each call. This routine is of most interest to system
developers for testing database access.

Test Put Field:
dbt pf (“<record_nane.field _name>", " <val ue>")
Example:
dbt pf “aitest”,”5.0"
This command performs a dbNarmeToAddr, then callsdbPut Fi el d, followed by dbgf for
each possible request type. This routine is of interest to system devel opers for testing database
access.
Test Put Notify:
dbt pn (“<record_name.field nanme>", " <val ue>")
Example:
dbtpn “aitest”,”5.0"

This command performs a dbNanmeToAddr, then calls dbPut Not i f y and has a callback
routine that prints a message when it is called. Thisroutine is of interest to system developers
for testing database access.

Record Link Routines

Lock Set Report:
dbl sr(recordnane, | evel)

This command generates a report showing the lock set to which each record belongs. If
recordnane is O al records are shown, otherwise only records in the same lock set as
r ecor dnanme are shown.

| evel can have thefollowing values:

0 - Show lock set information only.
1 - Show each record in the lock set.
2 - Show each record and all database links in the lock set.

Database to channel access report
dbcar (recordnaneg, | evel)

This command generates areport showing database channel accesslinks. If r ecor dnane is0
then information about al records is shown otherwise only information about the specified
record.

| evel can have thefollowing values:

0 - Show summary information only.
1 - Show summary and each CA link that is not connected.
2 - Show summary and status of each CA link.

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 79

Chapter 6: I0C Test Facilities
Old Database Access Testing

dbhcr Report hardware links. See “Hardware Reports”.
Old Database Access Testing
These routines are of interest to EPICS system developers. They are used to test the old
database accessinterface, which is still used by Channel Access.
oft Get Field Test:
gft (“<record_nane.field_nane>")
Example:
gft “aitest”
gft “aitest. VAL"
This performs a db_name_t o_addr and then calls db_get fi el d with al possible
request types. It prints the results of each call. This routine is of interest to system developers
for testing database access.
pft Put Field Test:
pft (“<record_name.field_name>",”<val ue>")
Example:
pft “aitest”,”5.0”
This command performs a db_nane_t o_addr, db_put _field, db_get _field and
prints the result for each possible request type. Thisroutineis of interest to system developers
for testing database access.
tpn Test Put Notify:
tpn (“<record_nane.field_name>", " <val ue>")
Example:
tpn “aitest”,”5.0"
Thisroutine testsdbPut Not i f y viathe old database access interface.
Routinesto dump database infor mation
dbDumpPath Dump Peth:
dbDunpPat h(pdbbase)
dbDunpPat h(pdbbase)
The current path for database includes is displayed.
80 EPICS 10C Application Developer's Guide

Chapter 6: I0C Test Facilities
Routines to dump database information

dbDumpMenu

Dump Menu:

dbDunpMenu(pdbbase, " <menu>")

dbDunpMenu(pdbbase, " nenuScan”)

If the second argument is O then all menus are displayed.

dbDumpRecor dTypeDump Record Description:

dbDumpFldDes

dbDumpDevice

dbDumpDriver

dbDumpRecords

dbDunpRecor dType(pdbbase, "<record type>")

dbDunpRecor dType(pdbbase, "ai ")

If the second argument is O then all descriptions of all records are displayed.

Dump Field Description:
dbDunpFl dDes(pdbbase, "<record type>","<field nanme>")

dbDunpFl dDes(pdbbase, "ai ", " VAL")

If the second argument is O then the field descriptions of all records are displayed. If the third
argument is O then the description of all fields are displayed.

Dump Device Support:
dbDunpDevi ce(pdbbase, "<record type>")

dbDunpDevi ce(pdbbase, "ai ")
If the second argument is O then the device support for all record typesis displayed.

Dump Driver Support:
dbDunpDri ver (pdbbase)

dbDunpDri ver (pdbbase)
Dump Record Instances:

dbDunpRecor ds(pdbbase, "<record type>", | evel)

dbDunpRecor ds(pdbbase, "ai ")

If the second argument is 0 then the record instances for all record typesis displayed. The third
argument determines which fields are displayed just like for the command dbpr .

dbDumpBreaktable Dump breakpoint table

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 81

Chapter 6: I0C Test Facilities
Routines to dump database information

dbPvdDump

dbDunpBr eakt abl e(pdbbase, nane)

dbDunpBr eakt abl e(pdbbase, "t ypeKdegF”)
This command dumps a breakpoint table. If the second argument is O all breakpoint tables are
dumped.
Dump the Process variable Directory:
dbPvdDunp(pdbbase, ver bose)

dbPvdDunp(pdbbase, 0)

This command shows how many records are mapped to each hash table entry of the process
variable directory. If verboseis not 0 then the command also displays the names which hash to
each hash table entry.

82

EPICS IOC Application Developer’'s Guide

Chapter 7. 1OC Error Logging

Overview

Errors detected by an |OC can be divided into classes: Errors related to a particular client and
errors not attributable to a particular client. An example of the first type of error is an illegal
Channel Access request. For this type of error, a status value should be passed back to the
client. An example of the second type of error is a device driver detecting a hardware error.
Thistype of error should be reported to a system wide error handler.

Dividing errorsinto these two classes is complicated by a number of factors.

» Inmany casesit isnot possible for the routine detecting an error to decide which type of
error occurred.

« Normally, only the routine detecting the error knows how to generate afully descriptive
error message. Thus, if aroutine decides that the error belongs to a particular client and
merely returns an error status value, the ability to generate a fully descriptive error
messageislost.

« If aroutine always generates fully descriptive error messages then a particular client
could cause error message storms.

» While developing a new application the programmer normally prefers fully descriptive
error messages. For a production system, however, the system wide error handler should
not normally receive error messages cause by a particular client.

If used properly, the error handling facilities described in this chapter can process both types of
errors.

This chapter describes the following:

» Error Message Generation Routines - Routines which pass messages to the errlog Task.

 errlog Task - A task that displays error messages on the target console and also passes
the messagesto all registered system wide error logger.

* status codes - EPICS status codes.

* iocLog- A system wide error logger supplied with base. It writes all messages to a
system widefile.

NOTE: r ecGbl error routines are also provided. They in turn call one of the error message
routines.

EPICS Release: R3.13.0betal2 EPICS I0OC Application Developer's Guide 83

Chapter 7: 10C Error Logging
Error Message Routines

Error Message Routines

Basic Routines int errlogPrintf(const char *pformat, ...);
int errlogVprintf(const char *pformat,va_list pvar);

int errl ogMessage(const char *nmessage);

errlogPrintf and errlogVprintf arelikeprintf andvprintf provided by the
standard C library, except that the output is sent to the errlog task. Consult any book that
describes the standard C library such as "The C Programming Language ANSI C Edition" by
Kernighan and Ritchie.

err | ogMessage sends message to the errlog task

Log with Severity t ypedef enum {
errloglnfo, errl ogM nor, errl ogMaj or, errl ogFat al
}errl ogSevEnum

int errlogSevPrintf(const errl ogSevEnum severity,
const char *pformat, ...);
int errlogSevVprintf(const errlogSevEnum severity,
const char *pformat,va_|ist pvar);

char *errl ogGet SevEnunstri ng(const errl ogSevEnum severity);
void errlogSet SevToLog(const errl ogSevEnum severity);

errl ogSevEnum err| ogGet SevToLog(voi d);

errlogSevPrintf and errlogSevVprintf are like errlogPrintf and
errl ogVprintf except that they add the severity to the beginning of the message in the
form "sevr=<value>" where value is on of "info, minor, mgjor, fatal". Also the message is
suppressed if severity islessthan the current severity to suppress.

errl ogGet SevEnuntst ri ng gets the string value of severity.
errl ogSet SevTolLog sets the severity to log. er r |1 ogGet SevTolLog gets the current
severity to log.
Status Routines voi d errMessage(l ong status, char *nessage);
void errPrintf(long status, const char *pFileNaneg,
int lineno, const char *pformat, ...);
Routine er r Message (actually amacro that callser r Pri nt f) hasthe following format:
voi d errMessage(long status, char *nessage);
Where statusis defined as:

e 0: Find latest vxWorks or Unix error.
» -1: Don't report status.
e Other: See“Return Status Values’ above.

84 EPICS IOC Application Developer’'s Guide

Chapter 7: 10C Error Logging
errlog Task

Obsolete Routines

err Message, viaacal to errPrintf, prints the message, the status symbol and string
values, and the name of the task which invoked er r Message. It also prints the name of the
source file and the line number from which the call was issued.

The calling routine is expected to pass a descriptive message to this routine. Many subsystems
provide routines built on top of er r Message which generate descriptive messages.

An IOC global variable er r Ver bose, defined as an ext er nal in err Mlef . h, specifies
verbose messages. If er r Ver bose is TRUE then er r Message should be called whenever an
error is detected even if it is known that the error belongs to a specific client. If er r Ver bose
is FALSE then er r Message should be called only for errors that are not caused by a specific
client.

Routineerr Pri nt f hasthe following format:

void errPrintf(long status, _ FILE , _ LINE
char *fmstring <argl>, ...);

Where status is defined as:

e 0: Find latest vxWorks or Unix error.
» -1: Don't report status.
o Other: See“Return Status Vaues’, above.

FILE and LINE are defined as;

e FILE _ Asshownor NULL if the file name and line number should not be printed.
e LINE__ Asshown

The remaining arguments are just like the argumentsto the C pri nt f routine. er r Ver bose
determines if the filename and line number are shown.

int epicsPrintf(const char *pformat, ...);
int epicsVprintf(const char *pformat,va_list pvar);

These are macros that call errlogPrintf and errlogV printf. They are provided for compatibility.

errlog Task

The error message routines can be called by any non-interrupt level code. These routines
merely pass the message to the errlog Task.

Task errlog manages the messages. Messages are placed in a message queue, which is read by
the errlog task. The message queue uses a fixed block of memory to hold al messages. When
the message queue is full additional messages are rejected but a count of missed messages is
kept. The next time the message queue empties an extra message about the missed messagesis
generated.

The maximum message size is256 characters. If amessageislonger, the messageis truncated
and a message explaining that it was truncated is appended. There is a chance that long
messages corrupt memory. This only happensif client code is defective. Long messages most
likely result from "%s" formats with a bad string argument.

The error message routines are partially implemented on the host. The host version just cals
fprintf or vfprintf instead of using a separate task and a message queue. Thus host messages are
NOT sent to a system wide error logger.

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 85

Chapter 7: 10C Error Logging

Status Codes

Add and Remove
Log Listener

target console
routines

typedef void(*errloglListener) (const char *nessage);
voi d errl ogAddLi stener(errl ogLi stener |istener);
voi d errl ogRenoveli stener(errl ogLi stener |istener);

These routines add/remove a callback that receives each error message. These routines are the
interface to the actual system wide error handlers.

int eltc(int yesno); /* error log to console (0 or 1) */
int errloglnit(int bufsize);

eltc determinesif errlog task writes message to the console. During error messages storms this
command can be used to suppress console messages. A argument of O suppresses the messages
and any other value lets the message go to the console.

errloglnit can be used to initialize the error logging system with a larger buffer. The default is
1280 bytes. An extra MAX_MESSAGE_SIZE (currently 256) bytes are allocated but never
used. Thisisasmall extra protection against long error messages.

Status Codes

EPICS defined status values provide the following features:

» Whenever possible, I0C routines return a status value: (0, non-0) means (OK, ERRCR).

» Theinclude files for each I0C subsystem contain macros defining error status symbols
and strings.

* Routines are provided for run time access of the error status symbols and strings.

» A globa variable errVerbose helps code decide if error messages should be
generated.

WARNING: During the fall of 1995 a series of tech-talk messages were generated concerning
EPICS status values. No consensus was reached.

Whenever it makes sense, |OC routines return along word status value encoded similar to the
vxWorks error status encoding. The most significant short word indicates the subsystem
modul e within which the error occurred. The low order short word is a subsystem status value.
In order that status values do not conflict with the vxWorks error status values all subsystem
numbers are greater than 500.

A file epi cs/ shar e/ epi csH err Mlef . h defines each subsystem number. For example
thedef i ne for the database access routinesis:

#defi ne M dbAccess (501 << 16) \
/ *Dat abase Access Routines*/

Directory "epi cs/ shar e/ epi csH' containsani ncl ude library for every |OC subsystem
that returns standard status values. The status values are encoded with lines of the following
format:

#defi ne S _xxxxxxx value /*string val ue*/
For example:

#defi ne S _dbAccessBadDBR (M dbAccess| 3) \
/*Invalid Database Request*/

86

EPICS IOC Application Developer’'s Guide

Chapter 7: 10C Error Logging
iocLog

iocL ogSer ver

iocL ogClient

Initialize L ogging

For example, when dbCet Fi el d detects a bad database request type, it executes the
Statement:

return(S_dbAccessBadDBR) ;
The calling routine checks the return status as follows:

status = dbGetField(...);
if(status) {/* Call was not successful */ }

iocLog

This consists of two modules: iocLogServer and iocLogClient. The client code runs on each
ioc and listens for the messages generated by the errlog system. It also reports the messages
from vxWorkslogMsg.

This runs on a host. It receives messages for all enabled iocLogClients in the local area
network. The messages are written to a file. Epics base provides a startup file "base/src/util/
rc2.logServer", which is a shell script to start the server. Consult this script for details.

This runs on each ioc. It is started by default when ioclnit runs. The globa variable
iocLogDisable can be used to enable/disable the messages from being sent to the server.
Setting this variable to (0,1) (enables,disables) the messages generation. If iocLogDisable is
set to 1 immediately after iocCore is loaded then iocL ogClient will not even initiaize itself.

Initialize the logging system. This system traps all | ogMsg calls and sends a copy to a Unix
file. Note that this can be disabled by issuing the command i ocLogDi sabl e=1 before
issuingi oclnit.

The following description was supplied by Jeff Hill:

It is possible to configure EPICS so that a log of 10C error messages is stored in a circular
ASCII file on a PC or UNIX workstation. Each entry in the log contains the IOC's DNS name,
the date and time when the message was received by the log server, and the text of the message
generated on the 10OC.

All messages generated by the EPICS functions epicsPrintf() and errMessage() are placed in
the log. Messages generated by the vxWorks function logMsg() are also placed in the log
(logMsg() can be safely called from interrupt level). Messages generated by printf() do not end
up in the log and are instead used primarily by diagnostic functions called from the vxWorks
shell.

To start alog server on aUNIX or PC workstation you must first set the following environment
variables and then run the executable "iocLogServer" on your PC or UNIX workstation.

EPICS IOC_LOG_FILE_NAME
The name and path to the log file.

EPICS IOC_LOG _FILE_LIMIT
The maximum size in charactersfor the log file (after which it becomes acircular
file and writes new messages over old messages at the beginning of the file). If
the valueis zero then thereis no limit on the size of the log file.

EPICS IOC_LOG_FILE_COMMAND

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 87

Chapter 7: 10C Error Logging

iocLog

Configuring a
Private Log Server

A shell command string used to obtain the log file path name during initialization
and in response to SIGHUP. The new path name will replace any path name
supplied in EPICS_IOC_LOG_FILE_NAME.
Thus, if EPICS_IOC_LOG_FILE_NAME is
"albl/c.log" and EPICS_IOC_LOG_FILE_COMMAND returns "A/B" or "A/B/"
the log server will be stored at "A/B/c.log"
If EPICS IOC_LOG_FILE_COMMAND is empty then this behavior is
disabled. This feature was donated to the collaboration by KECK, and it is used
by them for switching to anew directory at afixed time each day. Thisvariableis
currently used only by the UNIX version of the log server.

EPICS |OC_LOG_PORT
THE TCP/IP port used by the log server.

To configure an IOC so that its messages are placed in the log you must set the environment
variable EPICS 10C_LOG_INET to the IP address of the host that is running the log server
and EPICS_10C_LOG_PORT to the TCP/IP port used by the log server.

Defaults for all of the above parameters are specified in the files $(EPICS_BASE)/config/
CONFIG_SITE_ENV and $(EPICS_BASE)/config/ CONFIG_ENV.

In base/src/util thereis a solaris script for starting the log server. This can be adapted for use on
other host architectures.

In atesting environment it is desirable to use a private log server. This can be done as follows:

* Add a putenv command to your 10C startup file. For example
Id < iocCore
put env("EPI CS_| OC_LOG | NET=XXX. XXX. XXX. XXX")
Theinet addressis for your host workstation.

» Onyou host start aversion of the log server.

88

EPICS IOC Application Developer’'s Guide

Chapter 8: Record Support

Overview

The purpose of this chapter is to describe record support in sufficient detail such that a C
programmer can write new record support modules. Before attempting to write new support
modules, you should carefully study a few of the existing support modules. If an existing
support moduleis similar to the desired module most of the work will already be done.

From previous chapters, it should be clear that many things happen as a result of record
processing. The details of what happens are dependent on the record type. In order to allow
new record types and new device types without impacting the core |0C system, the concept of
record support and device support has been created. For each record type, a record support
module exists. It isresponsible for all record specific details. In order to allow arecord support
module to be independent of device specific details, the concept of device support has been
created.

A record support module consists of a standard set of routines that can be called by database
access routines. This set of routines implements record specific code. Each record type can
define a standard set of device support routines specific to that record type.

By far the most important record support routine is pr ocess, which dbPr ocess calls when
it wants to process a record. This routine is responsible for the details of record processing. In
many cases it calls a device support 1/0 routine. The next section gives an overview of what
must be done in order to process arecord. Next is a description of the entry tables that must be
provided by record and device support modules. The remaining sections give example record
and device support modules and describe some globa routines useful to record support
modules.

The record and device support modules are the only modules that are allowed to include the
record specific include files as defined in base/ r ec. Thus they are the only routines that
access record specific fields without going through database access.

Overview of Record Processing

The most important record support routine is pr ocess. This routine determines what record
processing means. Before the record specific “pr ocess” routine is called, the following has
already been done;

 Decision to process a record.
» Check that record is not active, i.e. pact must be FALSE.
» Check that the record is not disabled.

The process routine, together with its associated device support, is responsible for the
following tasks:

EPICS Release: R3.13.0betal2 EPICS I0OC Application Developer's Guide 89

Chapter 8: Record Support
Record Support and Device Support Entry Tables

» Set record active whileit is being processed
Perform /O (with aid of device support)
 Check for record specific alarm conditions
* Raise database monitors

* Request processing of forward links

A complication of record processing is that some devices are intrinsically asynchronous. It is
NEVER permissible to wait for a slow device to complete. Asynchronous records perform the
following steps:

1. Initiate the I/O operation and set pact TRUE

2. Determine amethod for again calling process when the operation compl etes

3. Return immediately without completing record processing

4. When processis called after the 1/0O operation complete record processing

5. Set pact FALSE and return

The examples given below show how this can be done.

Record Support and Device Support Entry Tables

Each record type has an associated set of record support routines. These routines are located
via the data structures defined in epi cs/ shar e/ epi csH recSup. h. The concept of
record support routines isolates the i ocCor e software from the details of each record type.
Thus new records can be defined and supported without affecting the |OC core software.

Each record type also has zero or more sets of device support routines. Record types without
associated hardware, e.g. calculation records, normally do not have any associated device
support. Record types with associated hardware normally have a device support module for
each device type. The concept of device support isolates |OC core software and even record
support from device specific details.

Corresponding to each record type is a set of record support routines. The set of routinesis the
same for every record type. These routines are located via a Record Support Entry Table
(RSET), which has the following structure

struct rset { /* record support entry table */
| ong nunber; /* nunber of support routine */
RECSUPFUN report; /* print report */
RECSUPFUN init; /* init support */
RECSUPFUN init _record; /* init record */
RECSUPFUN process; /* process record */
RECSUPFUN speci al ; /* special processing */
RECSUPFUN get val ue; /* OBSOLETE: Just |eave NULL */
RECSUPFUN cvt _dbaddr; /* cvt dbAddr */
RECSUPFUN get _array_info;
RECSUPFUN put _array_info;

RECSUPFUN get units;

RECSUPFUN get _preci sion;

RECSUPFUN get _enum str; /* get string fromenum */
RECSUPFUN get _enum strs; /* get all enum strings */
RECSUPFUN put _enum str; /* put enumfromstring */

90 EPICS 10C Application Developer's Guide

Chapter 8: Record Support
Example Record Support Module

RECSUPFUN get _gr aphi c_doubl e;
RECSUPFUN get _control _doubl e;
RECSUPFUN get _al ar m doubl e;
b
Each record support module must define its RSET. The external name must be of the form:
<record_t ype>RSET

Any routines not needed for the particular record type should be initialized to the value NULL.
Look at the example below for details.

Device support routines are located via a Device Support Entry Table (DSET), which has the
following structure;

struct dset ({ /* device support entry table */
| ong nunber ; /* nunber of support routines */
DEVSUPFUN report; [* print report */
DEVSUPFUN init; [* init support */
DEVSUPFUN init_record;/* init record instance*/
DEVSUPFUN get _ioint_info; /* get io interrupt info*/
/* other functions are record dependent*/
b
Each device support module must define its associated DSET. The external name must be the
same as the name which appearsin devSup. asci i .

Any record support module which has associated device support must also include definitions
for accessing its associated device support modules. The field”dset ”, which is located in
dbComon, contains the address of the DSET. It isgiven avauebyi oclnit.

Example Record Support Module

This section contains the skeleton of a record support package. The record typeis xxx and the
record has the following fields in addition to the dbConmon fields: VAL, PREC, EGJ, HOPR,
LOPR H H , LOLO, H GH, LONVHHSV, LLSV, HSV, LSV, HYST, ADEL, MDEL, LALM ALST,
M_ST. These fields will have the same meaning as they have for the ai record. Consult the
Record Reference manual for a description.

Declarations /* Create RSET - Record Support Entry Tabl e*/
#defi ne report NULL
#define initialize NULL
static long init_record();
static | ong process();
#def i ne special NULL
#def i ne get val ue NULL
#def i ne cvt _dbaddr NULL
#define get _array_info NULL
#define put _array_info NULL
static long get _units();
static |long get precision();
#defi ne get _enum str NULL
#defi ne get _enumstrs NULL

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 91

Chapter 8: Record Support
Example Record Support Module

#def i ne put_enum str NULL

static | ong get_graphi c_doubl e();
static |ong get_control _double();
static | ong get_al arm doubl e();

struct rset XxXRSET={
RSETNUVBER
report,
initialize,
init_record,
process,
speci al
get val ue,
cvt _dbaddr,
get _array_info,
put _array_info,
get _units,
get _preci si on,
get _enum str,
get _enum strs,
put _enumstr,
get _gr aphi c_doubl e,
get _control _doubl e,
get _al ar m doubl e} ;

/* declarations for associ ated DSET */
typedef struct xxxdset { /* anal og input dset */
| ong numnber ;
DEVSUPFUN dev_report;
DEVSUPFUN init;
DEVSUPFUN init_record; /* returns: (1,0)=> (failure,
success) */
DEVSUPFUN get _ioint_info;
DEVSUPFUN read_ xxX;
} xxxdset ;

/* forward declaration for internal routines*/
static void al arn(xxxRecord *pxxx);
static void nmonitor(xxxRecord *pxxx);

The above declarations define the Record Support Entry Table (RSET), a template for the
associated Device Support Entry Table (DSET), and forward declarations to private routines.

The RSET must be declared with an external name of xxxRSET. It defines the record support
routines supplied for this record type. Note that forward declarations are given for all routines
supported and a NULL declaration for any routine not supported.

The template for the DSET is declared for use by this module.

init_record static long init_record(void *precord, int pass)
{
xxxXRecor d*pxxx = (xxxRecord *)precord;
xxxdset *pdset;
| ong st at us;
92 EPICS IOC Application Developer’'s Guide

Chapter 8: Record Support
Example Record Support Module

i f(pass==0) return(0);

i f((pdset = (xxxdset *)(pxxx->dset)) == NULL) {
rec@l Recor dError (S_dev_noDSET, pxxx, "xxx: init_record”);
return(S_dev_noDSET) ;
}
/* must have read_xxx function defined */
i f((pdset->nunmber < 5) || (pdset->read_xxx == NULL)) {
rec@l RecordError (S_dev_m ssi ngSup, pxxx,
"XXX: init_record”);
return(S_dev_m ssi ngSup);
}
if(pdset->init_record) {
i f((status=(*pdset->init_record)(pxxx))) return(status);
}

return(0);

}

Thisroutine, whichiscaled by i ocl ni t twicefor each record of type xxx, checksto seeif it
has a proper set of device support routines and, if present, callsthei ni t _r ecor d entry of the
DSET.

During thefirst call toi nit _recor d (pass=0) only initializations relating to this record can
be performed. During the second call (pass=1) initializations that may refer to other records
can be performed. Note also that during the second pass, other records may refer to fields
within this record. A good example of where these rules are important is a waveform record.
The VAL field of awaveform record actually refers to an array. The waveform record support
module must allocate storage for the array. If another record has a database link referring to the
waveform VAL field then the storage must be allocated before the link is resolved. This is
accomplished by having the waveform record support allocate the array during the first pass
(pass=0) and having the link reference resolved during the second pass (pass=1).

process static | ong process(void *precord)
{
xxxXRecor d*pxxx = (xxxRecord *)precord;
xxxdset *pdset = (xxxdset *)pxxx->dset;
| ong st at us;
unsi gned char pact =pxxx->pact;

if((pdset==NULL) || (pdset->read_xxx==NULL)) {
/* | eave pact true so that dbProcess doesnt call again*/
pxxx->pact =TRUE;
recCbl Recor dError (S_dev_mi ssi ngSup, pxxx, " read_xxx");
return(S_dev_m ssi ngSup);

}

[* pact nust not be set true until read_xxx conpl etes*/
stat us=(*pdset - >r ead_xxx) (pxxx); /* read the new val ue */
/* return if beginning of asynch processing*/

i f(!pact && pxxx->pact) return(0);

pxxx->pact = TRUE;

recCbl Get Ti neSt anp(pxxx) ;

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 93

Chapter 8: Record Support
Example Record Support Module

/* check for alarnms */

al ar m{ pxxx) ;

/* check event list */

noni t or (pxxx) ;

/* process the forward scan link record */
rec@l FwdLi nk(pxxx) ;

pxxx- >pact =FALSE;
return(status);

}

The record processing routines are the heart of the |OC software. The record specific process
routine is called by dbPr ocess whenever it decides that a record should be processed.
Process decides what record processing realy means. The above is a good example of what
should be done. In addition to being called by dbPr ocess the process routine may also be
called by asynchronous record completion routines.

The above model supports both synchronous and asynchronous device support routines. For
example, if read_xxx is an asynchronous routine, the following sequence of events will
occur:

» process iscalled with pact FALSE

» read_xxx is caled. Since pact is FALSE it starts 1/O, arranges callback, and sets
pact TRUE

e read_xxx returns

* because pact went from FALSE to TRUE process just returns

» Any new cal to dbPr ocess isignored because it finds pact TRUE

» Sometime later the callback occurs and pr ocess iscalled again.

» read_xxx iscalled. Since pact is TRUE it knowsthat it is acompletion request.
* read_xxx returns

» process completes record processing

» pact isset FALSE

* process returns

At this point the record has been completely processed. The next time pr ocess is called
everything starts all over from the beginning.

MiscellaneousUtilitystatic | ong get _units(DBADDR *paddr, char *units)
{

Routines

xxxRecord *pxxx=(xxxRecord *)paddr->precord;

strncpy(units, pxxx->egu, si zeof (pxxx->egu));
return(0);

}

static | ong get graphi c_doubl e(DBADDR * paddr,
struct dbr _grDoubl e *pgd)
{

xxxRecord *pxxx=(xxxRecord *)paddr->precord;
i nt fieldl ndex = dbGet Fi el dl ndex(paddr) ;

i f(fieldlndex == xxxRecordVAL) {
pgd- >upper _disp_linmt = pxxx->hopr;

94

EPICS IOC Application Developer’'s Guide

Chapter 8: Record Support
Example Record Support Module

pgd- >l ower _disp_limt = pxxx->lopr;
} el se rec®l Get G aphi cDoubl e(paddr, pgd) ;
return(0);
}
/* simlar routines would be provided for */
/* get_control _doubl e and get _al ar m doubl e*/

These are a few examples of various routines supplied by a typical record support package.
The functions that must be performed by the remaining routines are described in the next
section.

Alarm Processing static void al arm(xxxRecord *pxxx)

doubl e val ;
fl oat hyst, | al m hi hi, hi gh, I ow, | ol o;
unsi gned short hhsv, |1 sv, hsv, | sv;

i f(pxxx->udf == TRUE){
rec@l Set Sevr (pxxx, UDF_ALARM VALI D_ALARM) ;

return;
}
hi hi =pxxx->hi hi; 1ol o=pxxx->l ol o;
hi gh=pxxx- >hi gh; | ow=pxxx- >l ow,
hhsv=pxxx->hhsv; || sv=pxxx->l1sv;

hsv=pxxx- >hsv; | sv=pxxx->| sv;
val =pxxx->val ; hyst =pxxx->hyst; | al mepxxx->l al m

/* alarmcondition hihi */
if (hhsv && (val >= hi hi
[] ((lalme=hihi) && (val >= hihi-hyst)))) {
i f(recCol Set Sevr (pxxx, H H _ALARM pxxx- >hhsv)
pxxx->lal m = hi hi;

return;
}
/* alarmcondition [olo */
if (Ilsv & (val <=1lolo
[] ((lalme=lolo) && (val <= lolo+hyst)))) {
i f(recCol Set Sevr (pxxx, LOLO_ALARM pxxx- >l [sv))
pxxx->lal m= | ol o;
return;
}
/* alarm condition high */
if (hsv & (val >= high
[((lal me=high) && (val >= high-hyst)))) {
i f(recCol Set Sevr (pxxx, H GH_ALARM pxxx- >hsv))
pxxx->lal m = hi gh;
return;
}
/* alarmcondition | ow */
if (Isv & (val <= |ow
N

(lal mF=l ow) && (val <= lowthyst)))) {
i f(recCbl Set Sevr (pxxx, LON ALARM pxxx- >l sv))

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 95

Chapter 8: Record Support
Example Record Support Module

pxxx->lal m= | ow
return;
}
/*we get here only if val is out of alarmby at |east hyst*/
pxxx->l al meval ;
return;

}

This is a typical set of code for checking alarms conditions for an analog type record. The
actual set of code can be very record specific. Note also that other parts of the system can raise
adarms. The algorithm is to aways maximize alarm severity, i.e. the highest severity
outstanding alarm will be reported.

The above algorithm also honors a hysteresis factor for the alarm. This is to prevent alarm
storms from occurring in the event that the current value is very near an alarm limit and noise
makes it continually cross the limit. It honors the hysteresis only when the value is going to a
lower alarm severity.

Raising Monitors static void nonitor(xxxRecord *pxxx)
{
unsi gned short noni t or _mask;
fl oat del ta;

noni t or _mask = recCbl Reset Al ar ms(pxxx) ;
/* check for val ue change */
delta = pxxx->nmlst - pxxx->val;
if(delta<0.0) delta = -delta;
if (delta > pxxx->ndel) {
/* post events for value change */
noni t or _mask | = DBE_VALUE;
/* update |ast value nonitored */
pxxx->m st = pxxx->val ;
}
/* check for archive change */
delta = pxxx->al st - pxxx->val;
i f(delta<0.0) delta = 0.0;
if (delta > pxxx->adel) {
/* post events on value field for archive change */
nmoni t or_mask | = DBE_LOG
/* update | ast archive value nonitored */
pxxx->al st = pxxx->val;

* send out nobnitors connected to the value field */
i f (nonitor_nmask){
db_post _event s(pxxx, &xxx->val , noni t or _mask) ;

return;

}

All record types should call r ecGbl Reset Al ar ns as shown. Note that nst a and nsev
will have the value O after this routine completes. This is necessary to ensure that aarm
checking starts fresh after processing completes. The code also takes care of raising alarm

96 EPICS 10C Application Developer's Guide

Chapter 8: Record Support
Record Support Routines

Generate Report of

monitors when a record changes from an alarm state to the no alarm state. It is essential that
record support routines follow the above model or else alarm processing will not follow the
rules.

Analog type records should also provide monitor and archive hysteresis fields as shown by this
example.

db_post _event s results in channel access issuing monitors for clients attached to the
record and field. Thecall is

i nt db_post_events(void *precord, void *pfield,
unsi gned int nonitor_mnask)

where:

pr ecor d - The address of the record

pfi el d - The address of the field

nmoni t or _mask - A bit mask that can be any combinations of the following:
DBE_ALARM - A change of alarm state has occured. This is set by
rec@l Reset Al ar ns.
DBE_LOG - Archive change of state.
DBE_VAL - Vaue change of state

IMPORTANT: The record support module is responsible for calling db_post _event for
any fields that change as a result of record processing. Also it should NOT call
db_post _event for fieldsthat do not change.

Record Support Routines

This section describes the routines defined in the RSET. Any routine that does not apply to a
specific record type must be declared NULL.

report (void *precord); /* addr of record*/

Each Field in Recor drhjs routine is not used by most record types. Any action is record type specific.

Initialize Record
Processing

I nitialize Specific
Record

init(void):

Thisroutine is called once at 10C initialization time. Any action is record type specific. Most
record types do not need this routine.

init_record(
voi d *precord, /* addr of record*/
i nt pass);

i ocl nit calls this routine twice (pass=0 and pass=1) for each database record of the type
handled by this routine. It must perform the following functions:

* Check and/or issue initialization calls for the associated device support routines.

 Perform any record type specific initialization.

* During thefirst passit can only perform initializations that affect the record referenced
by precord.

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 97

Chapter 8: Record Support

Record Support Routines

Process Record

Special Processing

Get Value

Convert dbAddr

* During the second pass it can perform initializations that affect other records.

process(void *precord); /* addr of record*/

This routine must follow the guidelines specified previougly.

speci al (
struct dbAddr *paddr,
i nt after);/*(FALSE, TRUE) =>(Before, After) Processi ng*/

This routine implements the record type specific specia processing for the field referred to by
dbAddr . Note that it is called twice. Once before any changes are made to the associated field
and once after. File speci al . h defines specia types. This routine is only called for user
specid fields, i.e. fieldswith SPC_xxx >= 100. A field is declared special in the ASCI| record
definition file. New values should not by added to speci al . h, instead use SPC_MOD.

The database access routine, dbGet Fi el dl ndex can be used to determine which field is
being modified.

This routine is no longer used. It should be left as a NULL procedure in the record support
entry table.

cvt _dbaddr (struct dbAddr *paddr);

Definitions This routine s called by dbNameToAddr if the field has special set equal to SPC_DBADDR. A
typical use is when afield refers to an array. This routine can change any combination of the
dbAddr fields:no_el enent s, fi el d_type,fiel d_size,special, and dbr_type.
For example if the VAL field of a waveform record is passed to dbNameToAddr,
cvt _dbaddr would change dbAddr so that it refers to the actual array rather then VAL.

The database access routine, dbCGet Fi el dl ndex can be used to determine which field is
being modified.

Get Array get _array_i nf o

| nformation struct dbAddr *paddr,

| ong *no_el ement s,

| ong *of fset);
This routine returns the current number of elements and the offset of the first value of the
specified array. The offset field is meaningful if the array is actually acircular buffer.
The database access routine, dbGet Fi el dl ndex can be used to determine which field is
being modified.

Put Array put _array_i nfo(

| nformation struct dbAddr *paddr,

| ong nNew) ;
Thisroutineis called after new values have been placed in the specified array.
The database access routine, dbCGet Fi el dl ndex can be used to determine which field is
being modified.

Get Units get _uni t s(

struct dbAddr *paddr,
char *punits);
98 EPICS 10C Application Developer's Guide

Chapter 8: Record Support
Record Support Routines

Get Precision

Get Enumerated
String

Get Stringsfor
Enumerated Field

Put Enumerated
String

Get Graphic Double

| nfor mation

This routine sets units equal to the engineering units for the field.

The database access routine, dbCet Fi el dl ndex can be used to determine which field is
being modified.

get _preci si on(
struct dbAddr *paddr,
| ong *preci sion);

This routine gets the precision, i.e. number of decimal places, which should be used to convert
the field value to an ASCII string. r ecGbl Get Pr ec should be called for fields not directly
related to the value field.

The database access routine, dbGet Fi el dl ndex can be used to determine which field is
being modified.

get _enum str(
struct dbAddr *paddr,
char *p);

This routine sets * p equal to the ASCII string for the field value. The field must have type
DBF_ENUM

L ook at the code for the bi or nbbi records for examples.

The database access routine, dbGet Fi el dl ndex can be used to determine which field is
being modified.

get _enum strs(
struct dbAddr *paddr,
struct dbr_enunfStrs *p);

Thisroutine gives values to al fields of structuredbr _enunstrs.
Look at the code for the bi or nmbbi records for examples.

The database access routine, dbCet Fi el dl ndex can be used to determine which field is
being modified.

put _enum str(
struct dbAddr *paddr,
char *p);

Given an ASCI|I string, this routine updates the database field. It compares the string with the
string values associated with each enumerated value and if it finds a match sets the database
field equal to theindex of the string which matched.

Look at the code for the bi or nbbi records for examples.

The database access routine, dbGet Fi el dl ndex can be used to determine which field is
being modified.

get _graphi c_doubl e(
struct dbAddr *paddr,
struct dbr_grDouble *p); /* addr of return info*/

This routine fills in the graphics related fields of structure dbr _gr Doubl e.
rec@l Get G aphi cDoubl e should be called for fields not directly related to the value
field.

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 99

Chapter 8: Record Support
Global Record Support Routines

The database access routine, dbCet Fi el dl ndex can be used to determine which field is
being modified.

Get Control Double get _control _doubl e(
| nformation struct dbAddr *paddr,
struct dbr_ctrl Double *p); /* addr of return info*/

This routine gives values to al fields of structure dbr_ctrl Doubl e.
rec@l Get Cont r ol Doubl e should be called for fields not directly related to the value

field.
The database access routine, dbGet Fi el dl ndex can be used to determine which field is
being modified.

Get Alarm Double get _al ar m_doubl e(

| nformation struct dbAddr *paddr,

struct dbr_al Double *p); [/* addr of return info*/
Thisroutine gives values to all fields of structure dbr _al Doubl e.

The database access routine, dbGet Fi el dl ndex can be used to determine which field is
being modified.

Global Record Support Routines

A number of global record support routines are available. These routines are intended for use
by the record specific processing routines but can be called by any routine that wishes to use
their services.

The name of each of these routines beginswith "r ecGbl ”.

Alarm Status and Alarms may be raised in many different places during the course of record processing. The

Severity algorithm is to maximize the alarm severity, i.e. the highest severity outstanding alarm is
raised. If more than one alarm of the same severity is found then the first one is reported. This
means that whenever a code fragment wants to raise an alarm, it does so only if the alarm
severity it will declare is greater then that already existing. Four fields (in database common)
are used to implement alarms: sevr, st at , nsev, and nst a. The first two are the status and
severity after the record is completely processed. The last two fields (nst a and nsev) arethe
status and severity values to set during record processing. Two routines are used for handling
alarms. Whenever a routine wants to raise an alarm it calls r ec@l Set Sevr . This routine
will only change nst a and nsev if it will result in the alarm severity being increased. At the
end of processing, the record support module must call r ecGbl Reset Al ar ms. This routine
sets st at =nst a, sevr =nsev, nst a=0, and nsev=0. If st at or sevr has changed value
since the last call it calls db_post _event for stat and sevr and returns a value of
DBE_ALARM If no change occured it returns 0. Thus after calling r ecCGbl Reset Al ar ns
everything is ready for raising alarms the next time the record is processed. The example
record support module presented above shows how these macros are used.

recCbl Set Sevr (
voi d *precord,
short nsta,
short nsevr);

100 EPICS IOC Application Developer’'s Guide

Chapter 8: Record Support
Global Record Support Routines

Alarm
Acknowledgment

GenerateError:
Process Variable
Name, Caller,

M essage

GenerateError:
Status String,

Record Name, Caller

GenerateError:
Record Name,
Caller, Record
Support Message

Get Graphics
Double

Get Control Double

Get Alarm Double

Returns. (TRUE, FALSE) if (did, did not) change nst a and nsev.

unsi gned short recGbl Reset Alarnms(void *precord);

Returns: Initial value for noni t or _mask

Database common contains two additional alarm related fields: acks (Highest severity
unacknowledged alarm) and ackt (does transient alarm need to be acknowledged). These
field are handled by i ocCor e and r ecGol Reset Al ar ns and are not the responsibility of
record support. These fields are intended for use by the alarm handler.

SUGGESTION: useepi csPri nt f instead of thisfor new code.
recGol Dbaddr Er r or (

| ong st at us,
struct dbAddr *paddr,
char *pcal l er_nane); /* calling routine nane */

This routine interfaces with the system wide error handling system to display the following
information: Status information, process variable name, calling routine.

SUGGESTION: useepi csPri nt f instead of thisfor new code.
recGol Recor dEr r or (

| ong st at us,
voi d *precord, /* addr of record */
char *pcal | er _nane); /* calling routine nane */

This routine interfaces with the system wide error handling system to display the following
information: Status information, record name, calling routine.

SUGGESTION: useepi csPri nt f instead of thisfor new code.
recCGbl RecsupError (

| ong st at us,

st ruct dbAddr *paddr ,

char *pcal | er _nane, /* calling routine nane */
char *psupport _nane); /* support routine nane*/

This routine interfaces with the system wide error handling system to display the following
information: Status information, record name, calling routine, record support entry name.

rec@l Get G aphi cDoubl e(
struct dbAddr *paddr,
struct dbr_grDouble *pgd);

This routine can be used by the get _graphi ¢c_doubl e record support routine to obtain
graphics values for fields that it doesn’t know how to set.

recGol Get Cont r ol Doubl e(
struct dbAddr *paddr,

struct dbr_ctrl Doubl e *pcd) ;

This routine can be used by the get _cont rol _doubl e record support routine to obtain
control values for fields that it doesn’t know how to set.

rec@l Get Al ar nDoubl e(
struct dbAddr *paddr,

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 101

Chapter 8: Record Support
Global Record Support Routines

Get Precision

Get Time Stamp

Forward link

I nitialize Constant
Link

struct dbr_al Double *pcd);

Thisroutine can be used by theget _al ar m doubl e record support routine to obtain control
valuesfor fields that it doesn’t know how to set.

recCbl Get Prec(
struct dbAddr *paddr,
[ong *pprecision);

This routine can be used by the get preci si on record support routine to obtain the
precision for fields that it doesn’t know how to set the precision.

rec@l Get Ti meSt anp(voi d *precord)

This routine gets the current time stamp and putsit in the record

recGbl FwdLi nk(
void *precord);

This routine can be used by process to request processing of forward links.

int recCbllnitConstantLink(
struct link *plink,
short dbf Type,
voi d *pdest) ;

Initialize a constant link. This routine is usually called by i nit _record (or by associated
device support) to initialize the field associated with a constant link. It returns(FALSE, TRUE)
if it (did not, did) modify the destination.

102

EPICS IOC Application Developer’'s Guide

Chapter 9: Device Support

Overview

In addition to a record support module, each record type can have an arbitrary number of
device support modules. The purpose of device support is to hide hardware specific details
from record processing routines. Thus support can be developed for a new device without
changing the record support routines.

A device support routine has knowledge of the record definition. It also knows how to talk to
the hardware directly or how to call a device driver which interfaces to the hardware. Thus
device support routines are the interface between hardware specific fields in a database record
and device drivers or the hardware itself.

Database common contains two device related fields:

 dtyp: Device Type.
 dset: Addressof Device Support Entry Table.

The field dt yp contains the index of the menu choice as defined by the device ASCII
definitions. i ocl ni t usesthisfield and the device support structures defined in devSup. h to
initialize the field dset . Thus record support can locate its associated device support via the
dset field.

Device support modules can be divided into two basic classes: synchronous and asynchronous.
Synchronous device support is used for hardware that can be accessed without delays for 1/0.
Many register based devices are synchronous devices. Other devices, for example al GPIB
devices, can only be accessed via I/O requests that may take large amounts of time to
complete. Such devices must have associated asynchronous device support. Asynchronous
device support makes it more difficult to create databases that have linked records.

If a device can be accessed with a delay of less then a few microseconds then synchronous
device support is appropriate. If a device causes delays of greater than 100 microseconds then
asynchronous device support is appropriate. If the delay is between these values your guess
about what to do is as good as mine. Perhaps you should ask the hardware designer why such a
device was created.

If a device takes a long time to accept requests there is another option than asynchronous
device support. A driver can be created that periodically polls all its attached input devices.
The device support just returns the latest polled value. For outputs, device support just notifies
the driver that a new value must be written. the driver, during one of its polling phases, writes
the new value. The EPICS Allen Bradley device/driver support is a good example.

EPICS Release: R3.13.0betal2 EPICS I0OC Application Developer's Guide 103

Chapter 9: Device Support
Example Synchronous Device Support Module

Example Synchronous Device Support Module

/* Create the dset for devAi Soft */
long init_record();
| ong read_ai ();
struct {
| ong numnber ;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record,;
DEVSUPFUN get _ioint_info;
DEVSUPFUN read_ai
DEVSUPFUN speci al _| i nconv;
}devAi Sof t ={
6,
NULL,
NULL,
init_record,
NULL,
read_ai
NULL};

static long init_record(void *precord)

{
ai Record *pai = (aiRecord *)precord,;
| ong status;

/* ai.inp must be a CONSTANT, PV_LINK, DB LINK or CA LI NK*/
switch (pai->inp.type) {
case (CONSTANT) :
rec®l I ni t Const ant Li nk(&pai - >i np
DBF_DQUBLE, &pai - >val) ;
br eak;
case (PV_LINK)
case (DB_LI NK)
case (CA _LINK)
br eak;
def aul t
rec®l RecordError (S _db_badField, (void *)pai
"devAi Soft (init_record) Illegal INP field");
return(S_db_badFi el d);
}
/* Make sure record processing routine does not perform any
conver si on*/
pai - >l i nr=0;
return(0);

}

static |long read_ai (void *precord)

{

ai Record*pai =(ai Record *)precord,;

104 EPICS I0C Application Developer’s Guide

Chapter 9: Device Support
Example Asynchronous Device Support Module

|l ong status;

st at us=dbGet Get Li nk(& pai - >i np. val ue. db_l i nk),

(void *)pai, DBR_DOUBLE, & pai ->val), 0,1);

i f(status) return(status);
return(2); /*don’t convert*/

}

The example is devAi Sof t, which supports soft analog inputs. The | NP field can be a
constant or a database link or a channel access link. Only two routines are provided (the rest
are declared NULL). Thei ni t _r ecor d routine first checks that the link type is valid. If the
link isa constant it initializes VAL If thelink is a Process Variable link it callsdbCaGet Li nk
toturn it into a Channel Accesslink. Ther ead_ai routine obtains an input valueif thelink is
adatabase or Channel Accesslink, otherwise it doesn’t have to do anything.

Example Asynchronous Device Support Module

This example shows how to write an asynchronous device support routine. It does the
following sequence of operations:

1

6.

When first called pact is FALSE. It arranges for a callback (nyCal | back) routine to
be called after a number of seconds specified by the VAL field. cal | backRequest is
an EPICS supplied routine. The watchdog timer routines are supplied by vxWorks.

. It prints amessage stating that processing has started, setspact TRUE, and returns. The

record processing routine returns without completing processing.

. When the specified time elapses nyCal | back is called. It locks the record, calls

process, and unlocks the record. It calls the process entry of the record support
module, which it locates via the rset field in dbCommon, directly rather than
dbPr ocess. dbPr ocess would not call pr ocess because pact is TRUE.

. When pr ocess executes, it again callsr ead_ai . Thistime pact is TRUE.
. read_ai prints a message stating that record processing is complete and returns a

status of 2. Normally a value of 0 would be returned. The value 2 tells the record
support routine not to attempt any conversions. Thisis a convention (a bad convention!)
used by the analog input record.

Whenr ead_ai returnsthe record processing routine completes record processing.

At this point the record has been completely processed. The next time process is called
everything starts all over.

/* Create the dset for devAi Test Asyn */
long init_record();
I ong read_ai ();
struct {
| ong nunber;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;
DEVSUPFUN get i oint_info;
DEVSUPFUN read_ai
DEVSUPFUN speci al _|inconv;
} devAi Test Asyn={

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 105

Chapter 9: Device Support
Example Asynchronous Device Support Module

6,

NULL,

NULL,
init_record,
NULL,
read_ai
NULL} ;

/* control block for callback*/

typedef struct myCall back {
CALLBACK cal | back
sruct dbCommon *precord;
WOG ID wd_id;

} nyCal | back;

static void myCal | back(CALLBACK *pcal | back)
{

dbConmon *precord

struct rset*prset;

cal | backGet User (precord, pcal | back) ;
prset = (struct rset *)precord->rset;
dbScanLock(precord);
*(prset->process) (precord);
dbScanUnl ock(precord);

static long init_record(void *precord)

{
ai Record *pai = (ai Record *)precord,
nyCal | back *pcal | back

[* ai.inp must be a CONSTANT*/
switch (pai->inp.type) {
case (CONSTANT) :

pcal | back = (nyCal |l back *)(calloc(1,sizeof(mnmyCallback)));

pai - >dpvt = (void *)pcal | back
cal | backSet Cal | back(nyCal | back, &pcal | back->cal | back);
cal | backSet User (precord, &pcall back->cal |l back);
pcal | back->precord = (struct dbConmon *) pai
pcal | back->wd_id = wdCreate();
pai - >val pai - >i np. val ue. val ue;
pai - >udf FALSE
br eak;
defaul t :
rec®l RecordError (S _db_badField, (void *)pai
"devAi Test Asyn (init_record) Illegal INP field");
return(S_db_badFi el d);

}

return(0);

106

EPICS IOC Application Developer’'s Guide

Chapter 9: Device Support
Device Support Routines

Generate Device
Report

I nitialize Record
Processing

static long read_ai (void *precord)

{
ai Record *pai = (ai Record *)precord;;
struct cal |l back *pcal | back=(struct call back *)(pai->dpvt);
i nt wait_tine;
[* ai.inp must be a CONSTANT*/
switch (pai->inp.type) {
case (CONSTANT) :
i f(pai->pact) {
printf(”% Conpleted\n”, pai->nane);
return(2); /* don‘t convert*/
} else {
wait_time = (int)(pai->val * vxTicksPerSecond);
if(wait_time<=0) return(0);
cal | backSet Priority(pai->prio, &vcall back->cal | back);
printf(”"% Starting asynchronous processing\n”,
pai - >hane) ;
wdSt art (pcal | back->wd_i d, wai t _tine,
(FUNCPTR) cal | backRequest ,
(i nt)&pcal | back->cal | back) ;
pai - >pact = TRUE;
return(0);
}
defaul t :
i f(rec@l Set Sevr (pai, SOFT_ALARM VALI D_ALARM) {
i f(pai->stat!=SOFT_ALARM ({
rec®l RecordError (S _db_badField, (void *)pai,
"devAi Test Asyn (read_ai) Illegal INP field");
}
}
}
return(0);
}

Device Support Routines

This section describes the routines defined in the DSET. Any routine that does not apply to a
specific record type must be declared NULL.

report (
FILE fp, /* file pointer*/
i nt i nterest);

Thisroutine is responsible for reporting all 1/0 cards it has found. If i nt er est is (0,1) then
generate a(short, long) report. If a device support module is using adriver, it normally does not
have to implement this routine because the driver generates the report.

init(
i nt after);

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 107

Chapter 9: Device Support

Device Support Routines

I nitialize Specific
Record

Get I/O Interrupt
I nformation

Other Device
Support Routines

This routine is caled twice at 10C initiaization time. Any action is device specific. This
routine is called twice: once before any database records are initialized and once after all
records are initialized but before the scan tasks are started. af t er hasthe value (0,1) (before,
after) record initialization.

init_record(
voi d *precord); /* addr of record*/

Therecord supporti ni t _r ecor d routine calls this routine.

get _ioint_info(
i nt cmd,
struct dbConmon *precord,
| OSCANPVT *ppvt);

This is called by the I/O interrupt scan task. If cnd is (0,1) then this routine is being called
when the associated record is being (placed in, taken out of) an 1/0O scan list. See the chapter on
scanning for details.

It should be noted that a previous type of I/O event scanning is still supported. It is not
described in this document because, hopefully, it will go away in the near future. When it calls
this routine the arguments have completely different meanings.

All other device support routines are record type specific.

108

EPICS IOC Application Developer’'s Guide

Chapter 10: Driver Support

Overview

It is not necessary to create a driver support module in order to interface EPICS to hardware.
For simple hardware device support is sufficient. At the present time most hardware support
has both. The reason for thisis historical. Before EPICS there was GTACS. During the change
from GTACS to EPICS, record support was changed drastically. In order to preserve all
existing hardware support the GTACS drivers were used without change. The device support
layer was created just to shield the existing drivers form the record support changes.

Since EPICS now has both device and driver support the question arises. When do | need
driver support and when don’t 1? Lets give afew reasons why drivers should be created.

» Thehardwareisactualy asubnet, e.g. GPIB. In this case adriver should be provided for
accessing the subnet. There is no reason to make the driver aware of EPICS except
possibly for issuing error messages.

e The hardware is complicated. In this case supplying driver support helps modularized
the software. The Allen Bradley driver, which is also an example of supporting a subnet,
isagood example.

» An existing driver, maintained by others, is available. | don't know of any examples.

» The driver should be general purpose, i.e. not tied to EPICS. The CAMAC driver is a
good example. It is used by other systems, such as CODA.

The only thing needed to interface a driver to EPICS is to provide a driver support module,
which can be layered on top of an existing driver, and provide a database definition for the
driver. The driver support module is described in the next section. The database definition is
described in chapter “ Database Definition”.

Device Drivers

Device drivers are modules that interface directly with the hardware. They are provided to
isolate device support routines from details of how to interface to the hardware. Device drivers
have no knowledge of the internals of database records. Thus there is no necessary
correspondence between record types and device drivers. For example the Allen Bradley driver
provides support for many different types of signals including analog inputs, analog outputs,
binary inputs, and binary outputs.

In general only device support routines know how to call device drivers. Since device support
varies widely from device to device, the set of routines provided by a device driver is almost
completely driver dependent. The only requirement isthat routinesr eport andi ni t must be
provided. Device support routines must, of course, know what routines are provided by a
driver.

EPICS Release: R3.13.0betal2 EPICS I0OC Application Developer's Guide 109

Chapter 10: Driver Support
Device Drivers

Filedr vSup. h describesthe format of adriver support entry table. The driver support module
must supply adriver entry table. An example definition is:

LOCAL long report();
LOCAL long init();

struct {
| ong numnber ;
DRVSUPFUN report,;
DRVSUPFUN init;

} drvAb={
2,
report,
init

1

The above exampleisfor the Allen Bradley driver. It has an associated ascii definition of:
driver (drvAb)

Thusit is seen that the driver support module should supply two EPICS callable routines: i nt
andreport.

init This routine, which has no arguments, is called by i ocl ni t. The driver is expected to ook
for and initialize the hardware it supports. As an example theinit routine for Allen Bradley is:

LOCAL long init()

{
return(ab_driver_init());
}
report The report routine is called by the dbi or, an 10C test routine. It is responsible for producing a

report describing the hardware it found at init time. It is passed one argument, level, whichisa
hint about how much information to display. An example, taken from Allen Bradley, is:

LOCAL I ong report(int level)

{
return(ab_io _report(level));
}
Guidelinesfor level are asfollows:
Level=0 Display aone line summary for each device
Level=1 Display more information
Level=2 Display alot of information. It is even permissible to

prompt for what is wanted.

Hardware Hardware configuration includes the following:

Configuration « VME/NXI address space
* VME Interrupt Vectors and levels
* Device Specific Information
The information contained in hardware links supplies some but not all configuration

information. In particular it does not define the VME/V X| addresses and interrupt vectors. This
additional information is what is meant by hardware configuration in this chapter.

110 EPICS I0C Application Developer’s Guide

Chapter 10: Driver Support
Device Drivers

The problem of defining hardware configuration information is an unsolved problem for
EPICS. At one time configuration information was defined in nodul e_t ypes.h Many
existing device/driver support modules still uses this method. It should NOT be used for any
new support for the following reasons:

» Thereisno way to manage thisfile for the entire EPICS community.
* It does not allow arbitrary configuration information.
* Itishard for usersto determine what the configuration information is.

Thefact that it is now easy to include ASCII definitions for only the device/driver support used
in each 10C makes the configuration problem much more manageable than previously.
Previoudly if you wanted to support a new VME modules it was necessary to pick addresses
that nothing in nodul e_t ypes.h was using. Now you only have to check modules you are
actualy using.

Since there are no EPICS defined rules for hardware configuration, the following minimal
guidelines should be used:

» Never use #def i ne to specify things like VME addresses. Instead use variables and
assign default values. Allow the default values to be changed before ioclnit is executed.
The best way isto supply aglobal routine that can be invoked from the |OC startup file.
Note that all arguments to such routines should be one of the following:

i nt
char *
doubl e

* Call the routines described in chapter “Device Support Library” whenever possible.

EPICS Release: R3.13.0betal2
EPICS IOC Application Developer's Guide 111

Chapter 10: Driver Support
Device Drivers

112 EPICS I0C Application Developer’s Guide

Chapter 11: Static Database Access

Overview

An |OC database is created on a Unix system via a Database Configuration Tool and stored in
a Unix file. EPICS provides two sets of database access routines: Static Database Access and
Runtime Database Access. Static database access can be used on Unix or IOC database files.
Runtime database requires an initialized |0C databases. Static database access is described in
this chapter and runtime database access in the next chapter.

Static database access provides asimplified interface to a database, i.e. much of the complexity
is hidden. DBF_MENU and DBF_DEVI CE fields are accessed via a common type called
DCT_MENU. A set of routines are provided to simplify access to link fields. All fields can be
accessed as character strings. This interface is called static database access because it can be
used to access an uninitialized, as well as an initialized database.

Before accessing database records, the files describing menus, record types, and devices must
be read via dbReadDat abase or dbReadDat abaseFP. These routines, which are aso
used to load record instances, can be called multiple times.

Database Configuration Tools (DCTs) should manipulate an EPICS database only viathe static
database access interface. An |OC database is created on a Unix system via a database
configuration tool and stored in a Unix file with a file extension of ”.db”. Three routines
(dbReadDat abase, dbReadDat abaseFP and dbW it eRecord) access a Unix
database file. These routines read/write a database file to/from a memory resident EPICS
database. All other access routines manipulate the memory resident database.

AnincludefiledbSt ati cLi b. h contains all the definitions needed to use the static database
access library. Two structures (DBBASE and DBENTRY) are used to access a database. The
fields in these structures should not be accessed directly. They are used by the static database
access library to keep state information for the caller.

Definitions

DBBASE Multiple memory resident databases can be accessed simultaneously. The user must provide
definitionsin the form:

DBBASE *pdbbase;

DBENTRY A typical declaration for a database entry structureis:

DBENTRY *pdbentry;
pdbent r y=dbAl | ocEnt r y(pdbbase);

EPICS Release: R3.13.0betal2 EPICS I0OC Application Developer's Guide 113

Chapter 11: Static Database Access
Allocating and Freeing DBBASE

Most static access to a database is via a DBENTRY structure. As many DBENTRYs as desired
can be allocated.

The user should NEVER access the fields of DBENTRY directly. They are meant to be used by
the static database access library.

Most static access routines accept an argument which contains the address of a DBENTRY.
Each routine uses this structure to locate the information it needs and gives values to as many
fieldsin this structure as possible. All other fields are set to NULL.

Field Types Each database field has a type as defined in the next chapter. For static database access a new
and simpler set of field types are defined. In addition, at runtime, a database field can be an
array. With static database access, however, al fields are scalars. Static database access field
types are called DCT field types.

The DCT field types are:

* DCT_STRING: Character string.

* DCT_INTEGER: Integer value

* DCT_REAL: Floating point number

 DCT_MENU: A set of choice strings

« DCT_MENUFORM: A set of choice strings with associated form.

e DCT_INLINK: Input Link

* DCT_OUTLINK: Output Link

 DCT_FWDLINK: Forward Link

* DCT_NOACCESS: A private field for use by record access routines
A DCT_STRI NG field contains the address of a NULL terminated string. The field types
DCT_I NTEGER and DCT_REAL are used for numeric fields. A field that has any of these types
can be accessed via the dbCGet Stri ng, dbPut Stri ng, dbVerify, and dbGet Range
routines.
The field type DCT_MENU has an associated set of strings defining the choices. Routines are
available for accessing menu fields. A menu field can also be accessed viathe dbGet St ri ng,
dbPut St ri ng, dbVeri fy, and dbCGet Range routines.
The field type DCT_MENUFCRM s like DCT_MENU but in addition the field has an associated
link field. The information for the link field can be entered via a set of form manipulation
fields.
DCT_I NLI NK (input), DCT_QUTLI NK (output), and DCT_FWDLI NK (forward) specify that
the field is a link, which has an associated set of static access routines described in the next
subsection. A field that has any of these types can also be accessed via the dbCGet St ri ng,
dbPut St ri ng, dbVeri fy, and dbCGet Range routines.
Allocating and Freeing DBBASE

dbAllocBase DBBASE *dbAl | ocBase(voi d) ;

This routine allocates and initializes a DBBASE structure. It does not return if it is unable to
allocate storage.

114 EPICS I0C Application Developer’s Guide

Chapter 11: Static Database Access
DBENTRY Routines

dbFreeBase

Alloc/Free
DBENTRY

dblnitEntry
dbFinishEntry

dbAl | ocBase alocates and initializes a DBBASE structure. Normally an application does
not need to cal dbA |ocBase because a cal to dbReadDatabase or
dbReadDat abaseFP automatically callsthisroutine if pdbbase isnull. Thus the user only
has to supply code like the following:

DBBASE *pdbbase=0;
status = dbReadDat abase(&dbbase, "sanpl e. db",
"<pat h>","<nmacro substitutions>");

The static database access library allows applications to work with multiple databases, each
referenced viaa different (DBBASE *) pointer. Such applications may find it necessary to call
dbAl | ocBase directly.

dbAl | ocBase doesnot return if it is unable to allocate storage.

voi d dbFr eeBase(DBBASE *pdbbase);

dbFr eeBase frees the entire database reference by pdbbase including the DBBASE
structure itself.

DBENTRY Routines

DBENTRY *dbAl | ocEnt r y(DBBASE *pdbbase) ;
voi d dbFreeEntry(DBENTRY *pdbentry);

These routines allocate, initialize, and free DBENTRY structures. The user can allocate and free
DBENTRY structures as necessary. Each DBENTRY is, however, tied to a particular database.

dbAl | ocEntry and dbFreeEntry act as a pair, i.e. the user calls dbAl | ocEntry to
create anew DBENTRY and calls dbFr eeEnt r y when done.

voi d dbl nit Ent ry(DBBASE *pdbbase, DBENTRY *pdbentry);
voi d dbFi ni shEntry(DBENTRY *pdbentry);

The routines dbl ni t Ent ry and dbFi ni shEnt ry are provided in case the user wants to
allocate a DBENTRY structure on the stack. Note that the caller MUST call dbFi ni shEntry
before returning from the routine that calls dbl ni t Ent ry. An example of how to use these
routinesis:

i nt xxx(DBBASE *pdbbase)

{
DBENTRY dbentry;
DBENTRY *pdbentry = &dbentry;
dbl ni t Entry(pdbbase, pdbentry);
de| ni shEntry(pdbentry);

}

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 115

Chapter 11: Static Database Access
Read and Write Database

dbCopyEntry DBENTRY *dbCopyEnt r y(DBENTRY *pdbentry);
dbCopyEntry voi d dbCopyEnt r yCont ent s(DBENTRY * pfrom DBENTRY *pto);
Contents The routine dbCopyEnt ry allocates a new entry, via a call to dbAl | ocEnt ry, copies the

information from the original entry, and returns the result. The caller must free the entry, via
dbFr eeEnt r y when finished with the DBENTRY.

The routine dbCopyEnt r yCont ent s copies the contents of pfrom to pto. Code should
never perform structure copies.

Read and Write Database

Read Database File | ong dbReadDat abase(DBBASE **ppdbbase, const char *fil enaneg,
char *path, char *substitutions);
| ong dbReadDat abaseFP(DBBASE **ppdbbase, FI LE *f p,
char *path, char *substitutions);
| ong dbPat h(DBBASE *pdbbase, const char *path);
| ong dbAddPat h(DBBASE *pdbbase, const char *path);

dbReadDat abase and dbReadDat abaseFP both read a file containing database
definitions as described in chapter “Database Definitions’. If *ppdbbase is NULL,
dbAl | ocBase is automatically invoked and the return address assigned to *pdbbase. The
only difference between the two routines is that one accepts a file name and the other a"FILE
*"_Any combination of these routines can be called multiple times. Each adds definitions with
the rules described in chapter “ Database Definitions’.

The routines dbPat h and dbAddPat h specify paths for use by include statements in
database definition files. These are not normally called by user code.

Write Database | ong dbWiteMenu(DBBASE *pdbbase, char *fil enane,
Definitons char *menuNane);
| ong dbW it eMenuFP(DBBASE *pdbbase, FI LE *fp, char *menuNane) ;
| ong dbWiteRecordType(DBBASE *pdbbase, char *fil enane,
char *recordTypeNane);
| ong dbWiteRecordTypeFP(DBBASE *pdbbase, FILE *fp,
char *recordTypeNane);
| ong dbWit eDevi ce(DBBASE *pdbbase, char *fil enane);
| ong dbWit eDevi ceFP(DBBASE *pdbbase, FI LE *f p)
l ong dbWiteDriver(DBBASE *pdbbase, char *fil enane);
| ong dbWiteDriver FP(DBBASE *pdbbase, FI LE *fp);
| ong dbW it eBr eakt abl e(DBBASE *pdbbase,
const char *fil enane);
| ong dbWit eBr eakt abl eFP(DBBASE *pdbbase, FI LE *fp);

Each of these routines writes files in the same format accepted by dbReadDat abase and
dbReadDat abaseFP. Two versions of each type are provided. The only difference isthat one
accepts a filename and the other a"FI LE *". Thus only one of each type has to be described.

dbW i t eMenu writes the description of the specified menu or, if menuName is NULL, the
descriptions of al menus.

116 EPICS I0C Application Developer’s Guide

Chapter 11: Static Database Access
Manipulating Record Types

Write Record
I nstances

Get Number of
Record Types

L ocate Record Type

Get Record Type
Name

dbWiteRecordType writes the description of the specified record type or, if
recor dTypeNane isNULL, the descriptions of all record types.

dbW i t eDevi ce writes the description of al devices to stdout.

dbWi t eDri ver writesthe description of all driversto stdout.

| ong dbWiteRecor d(DBBASE *pdbbase, char * file,
char *precordTypeNane,int |evel);

| ong dbW it eRecor dFP(DBBASE *pdbbase, FI LE *f p,
char *precordTypeNane,int |evel);

Each of these routines writes files in the same format accepted by dbReadDat abase and
dbReadDat abaseFP. Two versions of each type are provided. The only differenceisthat one
accepts afilename and the other a“FI LE *”. Thus only one of each type has to be described.

dbW i t eRecor d writes record instances. If pr ecor dTypeNarme is NULL, then the record
instances for al record types are written, otherwise only the records for the specified type are
written. | evel hasthe following meaning:

» 0- Writeonly prompt fields that are different than the default value.
» 1- Writeonly the fields which are prompt fields.
» 2-Writethevalues of al fields.

Manipulating Record Types

int dbGet NRecordTypes(DBENTRY *pdbentry);

This routine returns the number of record types in the database.

| ong dbFi ndRecor dType(DBENTRY *pdbentry,
char *recordTypeNane);

| ong dbFi rst Recor dType(DBENTRY *pdbentry);

| ong dbNext Recor dType(DBENTRY *pdbentry);

dbFi ndRecor dType locates a particular record type. dbFi r st Recor dType locates the
first, in alphabetical order, record type. Given that DBENTRY points to a particular record
type, dbNext Recor dType locates the next record type. Each routine returns O for success
and a non zero status value for failure. A typical code segment using these routinesis:

status = dbFirstRecordType(pdbentry);
whil e(!status) {
/*Do somet hi ng*/
status = dbNext RecordType(pdbentry)
}

char *dbGet Recor dTypeNane(DBENTRY *pdbentry);

This routine returns the name of the record type that DBENTRY currently references. This
routine should only be caled after a successful cal to dbFi ndRecor dType,
dbFi r st Recor dType, or dbNext Recor dType. It returns NULL if DBENTRY does not
point to a record description.

EPICS Release: R3.13.0betal2

EPICS IOC Application Developer's Guide 117

Chapter 11: Static Database Access
Manipulating Field Descriptions

Get Number of
Fields

Locate Field

Get Field Type

Get Field Name

Get Default Value

Get Field Prompt

Manipulating Field Descriptions

The routines described in this section all assume that DBENTRY references arecord type, i.e.
that dbFi ndRecor dType, dbFi r st Recor dType, or dbNext Recor dType has returned
success or that a record instance has been successfully located.

int dbGet NFi el ds(DBENTRY *pdbentry,int dctonly);
Returns the number of fields for the record instance that DBENTRY currently references.

| ong dbFirstFiel d(DBENTRY *pdbentry,int dctonly);

| ong dbNext Fi el d(DBENTRY *pdbentry,int dctonly);
These routines are used to locate fields. If any of these routines returns success, then
DBENTRY references that field description.

int dbGCetFiel dType(DBENTRY *pdbentry);
This routine returns the integer value for a DCT field type, see Section on page 114, for a
description of the field types.

char *dbGet Fi el dNane(DBENTRY *pdbentry);
This routine returns the name of the field that DBENTRY currently references. It returns
NULL if DBENTRY does not point to afield.

char *dbGet Def aul t (DBENTRY *pdbentry);
This routine returns the default value for the field that DBENTRY currently references. It
returns NULL if DBENTRY does not point to afield or if the default valueisNULL.

char *dbGet Pronpt (DBENTRY *pdbentry);

i nt dbGet Pr onpt G oup(DBENTRY * pdbentry);

The dbGet Pr onpt routine returns the character string prompt value, which describes the
field. dbGet Pr onpt G- oup returnsthe field group as described in guigroup.h.

Manipulating Record Attributes

A record attribute is a"psuedo"” field definition attached to a record type. If a attribute value is
assigned to a psuedo field name then all record instances of that record type appear to have that
field with the defined value. All attribute fields are DCT_STRING fields.

Two field attributes are automatically created: RTYP and VERS. RTYP is set equal to ,the
record type name. VERS is initialized to the value "none specified" but can be changed by
record support.

dbPutRecord | ong dbPut Recor dAttri but e(DBENTRY *pdbentry,
Attribute char *nane, char *val ue)

This creates or modifies attribute nane with val ue.
118 EPICS I0C Application Developer’s Guide

Chapter 11: Static Database Access
Manipulating Record Instances

dbGetRecord
Attribute

Get Number of
Records

L ocate Record

Get Record Name

Create/Delete/Free
Record

Copy Record

| ong dbGet Recor dAttri but e(DBENTRY *pdbentry, char *nane);

Manipulating Record | nstances

With the exception of dbFindRecord, each of the routines described in this section require that
DBENTRY references a valid record type, i.e. that dbFi ndRecordType,
dbFi r st Recor dType, or dbNext Recor dType has been called and returned success.

int dbGet NRecords(DBENTRY *pdbentry);

Returns the number of record instances for the record type that DBENTRY currently
references.

| ong dbFi ndRecor d(DBENTRY *pdbentry, char *precor dNane) ;
| ong dbFi r st Recor d(DBENTRY *pdbentry);
| ong dbNext Recor d(DBENTRY *pdbentry);

These routines are used to locate record instances. If any of these routines returns success, then
DBENTRY references the record. dbFi ndRecord can be called without DBENTRY
referencing a valid record type. dbFi r st Recor d only works if DBENTRY references a
record type. The dbDunpRecor ds example given at the beginning of this chapter shows how
these routines can be used.

dbFi ndRecor d aso calls dbFi ndFi el d if the record name includes a field name, i.e. it
ends in “. XXX'. The routine dbFoundFi el d returns (TRUE, FALSE) if the field (was, was
not) found. If it was not found, then dbFi ndFi el d must be called before individual fields can
be used.

char *dbGet Recor dName(DBENTRY *pdbentry);

This routine only works properly if called after dbFi ndRecor d, dbFi r st Record, or
dbNext Recor d has returned success.

| ong dbCreat eRecor d(DBENTRY *pdbentry, char *precordNane);
| ong dbDel et eRecor d(DBENTRY *pdbentry);
| ong dbFr eeRecor ds(DBBASE *pdbbase);

dbCr eat eRecor d, which assumes that DBENTRY references a valid record type, creates a
new record instance and initializes it as specified by the record description. If it returns
success, then DBENTRY references the record just created. dbDel et eRecor d deletes a
single record instance/. dbFr eeRecor ds deletes al record instances.

| ong dbCopyRecor d(DBENTRY *pdbentry, char *newRecor dNane
int overWiteOK)

This routine copies the record instance currently referenced by DBENTRY. Thus it creates and
new record with the name newRecor dNarme that is of the same type as the original record
and copies the original records field values to the new record. If newRecor dNane already
exists and over WiteOK is true, then the originad newRecor dNane is deleted and
recreated. If dbCopyRecor d completes successfully, DBENTRY references the new record.

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 119

Chapter 11: Static Database Access

Manipulating Menu Fields

Rename Record

Record Visibility

Find Field

Get/Put Fidld Values

Get Number of
Menu Choices

Get Menu Choice

| ong dbRenameRecor d(DBENTRY *pdbentry, char *newnane)

This routine renames the record instance currently referenced by DBENTRY. If
dbRenanmeRecor d completes successfully, DBENTRY references the renamed record.

These routines are for use by graphical configuration tools.

[ong dbVi si bl eRecor d(DBENTRY *pdbentry);
[ong dbl nvi si bl eRecor d(DBENTRY *pdbentry);
i nt dbl sVi si bl eRecor d(DBENTRY *pdbentry);

dbVi si bl eRecor d sets a record to be visible. dbl nvi si bl eRecord sets a record
invisible. dbl sVi si bl eRecor d returns TRUE if arecord is visible and FAL SE otherwise.

| ong dbFi ndFi el d(DBENTRY *pdbentry, char *pfiel dNane);
i nt dbFoundFi el d(DBENTRY *pdbentry);

Given that a record instance has been located, dbFi ndFi el d finds the specified field. If it
returns success, then DBENTRY references that field. dbFoundFi el d returns (FALSE,
TRUE) if (no field instance is currently available, afield instance is available).

char *dbGCet Stri ng(DBENTRY *pdbentry);

| ong dbPut String(DBENTRY *pdbentry, char *pstring);
char *dbVeri fy(DBENTRY *pdbentry, char *pstring);
char *dbGet Range(DBENTRY *pdbentry);

i nt dbl sDef aul t Val ue(DBENTRY *pdbentry);

These routines are used to get or change field values. They work on all the database field types
except DCT_NQACCESS but should NOT be used to prompt the user for information for
DCT_MENU, DCT_MENUFCORM or DCT_LI NK xxx fields. dbVerify returns (NULL, a
message) if the string is (valid, invalid). Please note that the strings returned are volatile, i.e.
the next call to aroutines that returns a string will overwrite the value returned by a previous
call. Thusit isthe caller’s responsibility to copy the stringsif the value must be kept.

DCT_MENU, DCT_MENUFORM and DCT_LI NK_xxx fields can be manipulated via routines
described in the following sections. If, however dbCGet St ri ng and dbPut St ri ng are used,
they do work correctly. For these field types dbGet St ri ng and dbPut St ri ng are intended
to be used only for creating and restoring versions of a database.

Manipulating Menu Fields

These routines should only be used for DCT_MENU and DCT_MENUFORM fields. Thus they
should only be called if dbFi ndFi el d, dbFi rst Fi el d, or dbNext Fi el d has returned
success and the field type is DCT_MENU or DCT_ MENUFORM

i nt dbGet NMenuChoi ces(DBENTRY *pdbentry);

This routine returns the number of menu choices for menu.

char **dbGet MenuChoi ces(DBENTRY *pdbentry);

120

EPICS IOC Application Developer’'s Guide

Chapter 11: Static Database Access
Manipulating Link Fields

Get/Put Menu

L ocate Menu

Link Types

This routine returns the address of an array of pointers to strings which contain the menu
choices.

int dbGet Menul ndex(DBENTRY *pdbentry);
| ong dbPut Menul ndex(DBENTRY *pdbentry,int index);
char *dbGet MenuSt ri ngFr om ndex(DBENTRY *pdbentry,int index);
i nt dbGet Menul ndexFronstri ng(DBENTRY *pdbentry,
char *choice);

NOTE: These routines do not work if the current field value contains a macro definition.

dbGet Menul ndex returnstheindex of the menu choice for the current field, i.e. it specifies
which choice to which thefield is currently set. dbPut Menul ndex setsthe field to the choice
specified by the index.

dbGet MenuSt ri ngFr om ndex returns the string value for a menu index. If the index
value is invalid NULL is returned. dbGet Menul ndexFr onSt ri ng returns the index for
the given string. If the string is not a valid choice a-1 isreturned.

dbMenu *dbFi ndMenu(DBBASE * pdbbase, char *nane);

dbFi ndMenu is most useful for runtime use but is a static database access routine. This
routine just finds a menu with the given name.

Manipulating Link Fields

Links are the most complicated types of fields. A link can be a constant, reference a field in
another record, or can refer to a hardware device. Two additional complications arise for
hardware links. The first is that field DTYP, which is a menu field, determines if the | NP or
QUT field isadevice link. The second isthat the information that must be specified for adevice
link is bus dependent. In order to shelter database configuration tools from these complications
the following is done for static database access.

* Static database access will treat DTYP as a DCT_ MENUFORM(field.

» Theinformation for the link field related to the DCT_MENUFORM can be entered via a
set of form manipulation routines associated with the DCT_MENUFORMfield. Thus the
link information can be entered via the DTYP field rather than the link field.

» The Form routines described in the next section can also be used with any link field.
Each link is one of the following types:
* DCT_LINK_CONSTANT: Constant value.
* DCT_LINK_PV: A process variablelink.
* DCT_LINK_FORM: A link that can only be processed via the form routines described
in the next chapter.

Database configuration tools can change any link between being a constant and a process
variable link. Routines are provided to accomplish these tasks.

TheroutinesdbCet St ri ng, dbPut St ri ng, and dbVeri f y can be used for link fields but
the form routines can be used to provide afriendlier user interface.

EPICS Release: R3.13.0betal2

EPICS IOC Application Developer's Guide 121

Chapter 11: Static Database Access
Manipulating MenuForm Fields

All Link Fields

Constant and
Process Variable
Links

Alloc/Free Form

Get/Put Form

Verify Form

Get Related Field

int dbGet NLi nks(DBENTRY *pdbentry);
| ong dbGCet Li nkFi el d(DBENTRY *pdbentry,int index)
int dbGetLi nkType(DBENTRY *pdbentry);

These are routines for manipulating DCT_xxxLI NK fields. dbCGet NLi nks and
dbGet Li nkFi el d are used to walk through all the link fields of arecord. dbGet Li nkType
returns one of the values: DCT_LI NK_CONSTANT, DCT_LI NK_PV, DCT_LI NK_FCORM or the
value-1if itiscalled for anillega field.

[ong dbCvt Li nkToConst ant (DBENTRY *pdbentry);
[ong dbCvt Li nkToPvl i nk(DBENTRY *pdbentry);

These routines should be used for modifying DCT_LI NK_CONSTANT or DCT_LI NK_PV
links. They should not be used for DCT_LI NK_FCORMIinks, which should be processed viathe
associated DCT_ MENUFCORM(field described above.

Manipulating MenuForm Fields

These routines are used with a DCT_MENUFORM field (a DTYP field) to manipulate the
associated DCT I NLI NK or DCT_QUTLI NK field. They can aso be used on any
DCT_I NLI NK, DCT_QUTLI NK, or DCT_FWDLI NK field.

i nt dbAl | ocFor m(DBENTRY *pdbentry)
| ong dbFr eeFor m(DBENTRY *pdbentry)

dbAl | ocFor mallocates storage needed to manipulate forms. The return value is the number
of elements in the form. If the current field value contains a macro definition, the number of
lines returned is 0.

char **dbCet For nPr onpt (DBENTRY *pdbentry)
char **dbCet For nVal ue(DBENTRY *pdbent ry)
| ong dbPut For m DBENTRY *pdbentry, char **val ue)

dbGet For nPr onpt returns a pointer to an array of pointers to character strings specifying
the prompt string. dbGet For nVal ue returns the current values. dbPut For m which can use
the same array of values returned by dbGet For m sets new values.

char **dbVeri f yFor m{ DBENTRY *pdbentry, char **val ue)

dbVer i f yFor mcan be called to verify user input. It returns NULL if no errors are present. If
errors are present, it returns a pointer to an array of character strings containing error
messages. Linesin error have a message and correct lines have a NULL string.

char *dbCet Rel at edFi el d(DBENTRY *pdbentry)

This routine returns the field name of the related field for a DCT_MENUFORM field. If it is
called for any other type of field it returns NULL.

Example The following is code showing use of these routines:
char **val ue;
char **pronpt;

122 EPICS IOC Application Developer’'s Guide

Chapter 11: Static Database Access
Find Breakpoint Table

char **error;
int n;

n = dbAl | ocFor m(pdbentry);
i f(n<=0) {<Error>}
prompt = dbGet For nPr onpt (pdbentry);
val ue = dbGCet For nVal ue(pdbentry);
for(i=0; i<n; i++) {
printf("% (%) : \n”,pronmpt[i],value[i]);
/*The follw ng accepts input from stdin*/
scanf ("9%”,valuel[i]);
}
error = dbVerifyForm pdbentry, val ue);
if(error) {
for(i=0; i<n; i++) {
if(error[i]) printf("Error: % (%) %\n", pronpt[i],
value[i],error[i]);
}
}else {
dbPut For m(pdbent ry, val ue)

}
dbFr eeFor n{ pdbentry) ;

All value strings are MAX_STRI NG_SI ZE in length.

A set of form calls for a particular DBENTRY, MUST begin with acall to dbAl | ocFor mand
end with a call to dbFreeForm The values returned by dbGet For nPronpt,
dbGet For nVal ue, and dbVer i f yFor mare valid only between the callsto dbAl | ocFor m
and dbFr eeFor m

Find Breakpoint Table

br kTabl e *dbFi ndBr kTabl e(DBBASE *pdbbase, char *nane)

This routine returns the address of the specified breakpoint table. It is normally used by the
runtime breakpoint conversion routines so will not be discussed further.

Dump Routines

voi d dbDunpPat h(DBBASE * pdbbase)
voi d dbDunpRecor d(DBBASE *pdbbase, char *precordTypeNane,
int level);
voi d dbDunpMenu(DBBASE *pdbbase, char *nmenuNane) ;
voi d dbDunpRecor dType(DBBASE *pdbbase, char *recor dTypeNane) ;
voi d dbDunpFl dDes(DBBASE * pdbbase, char *recordTypeNane,
char *fnane);
voi d dbDunpDevi ce(DBBASE *pdbbase, char *recordTypeNane) ;

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 123

Chapter 11: Static Database Access
Examples

voi d dbDunmpDri ver (DBBASE *pdbbase) ;

voi d dbDunpBr eakt abl e(DBBASE * pdbbase, char *nane);

voi d dbPvdDunp(DBBASE *pdbbase, i nt verbose);

voi d dbReport Devi ceConfi g(DBBASE *pdbbase, FI LE *report);

These routines are used to dump information about the database. dbDunpRecor d,
dbDunpMenu, and dbDunpDri ver just call the corresponding dbWritexxxFP routine
specifying stdout for thefile. dbDunpRecDes, dbDunpFl dDes, and dbDunpDevi ce give
internal information useful on an ioc. Note that all of these commands can be executed on an
ioc. Just specify pdbbase as the first argument.

Examples

Expand Include This example is like the dbExpand utility, except that it doesn't allow path or macro
substitution options, It reads a set of database definition files and writes al definitions to
stdout. All include statements appearing in the input files are expanded.

/* dbExpand.c */

#i ncl ude <stdlib. h>

#i ncl ude <stddef. h>

#i ncl ude <stdio. h>

#i ncl ude <epi csPrint. h>
#i ncl ude <dbStaticLib. h>

DBBASE *pdbbase = NULL;

int main(int argc,char **argv)

{
| ong st at us;
i nt i;
i nt arg;

i f(argc<2) {
printf("usage: expandlnclude filel.db file2.db...\n");
exit(0);
}
for(i=1; i<argc; i++) {
st atus = dbReadDat abase(&dbbase, argv[i], NULL, NULL) ;
i f(!status) continue;
fprintf(stderr,"For input file %",argv[i]);
err Message(st atus, "from dbReadDat abase") ;
}
dbW it eMenuFP(pdbbase, st dout, 0) ;
dbW it eRecor dTypeFP(pdbbase, st dout, 0);
dbW it eDevi ceFP(pdbbase. st dout) ;
dbWiteDri ver FP(pdbbase. st dout) ;
dbW it eRecor dFP(pdbbase, st dout, 0, 0) ;
return(0);

124 EPICS I0C Application Developer’s Guide

Chapter 11: Static Database Access
Examples

dbDumpRecords NOTE: Thisexampleis similar but not identical to the actual dbDunpRecor ds routine.

The following example demonstrates how to use the database access routines. The example
shows how to locate each record and display each field.

voi d dbDunpRecor ds(DBBASE * pdbbase)
{

DBENTRY *pdbentry;

l ong status;

pdbentry = dbAl | ocEntry(pdbbase);
status = dbFirstRecordType(pdbentry);
if(status) {printf(”No record descriptions\n”);return;}
whil e(!status) {
printf(”record type: %", dbGet Recor dTypeNane(pdbentry));
status = dbFirstRecord(pdbentry);
if(status) printf(” No Records\n”);
else printf(”"\n Record: %\ n”, dbGet Recor dNanme(pdbentry));
whil e(!status) {
status = dbFirstFiel d(pdbentry, TRUE);
i f(status) printf(” No Fields\n");
whil e(!status) {
printf(” %: %", dbCet Fi el dName(pdbentry),
dbCet Stri ng(pdbentry));
st at us=dbNext Fi el d(pdbentry, TRUE) ;

}
status = dbNext Record(pdbentry);

}
status = dbNext RecordType(pdbentry);

}
printf(”End of all Records\n”);

dbFreeEnt ry(pdbentry);

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 125

Chapter 11: Static Database Access
Examples

126 EPICS IOC Application Developer’'s Guide

Chapter 12: Runtime Database Access

Overview

This chapter describes routines for manipulating and accessing an initialized |OC database.
This chapter is divided into the following sections:

 Database related include files. All of interest are listed and those of general interest are
discussed briefly.

* Runtime database access overview.

* Description of each runtime database access routine.
» Runtime modification of link fields.

e Lock Set Routines

» Database to Channel Access Routines

» Old Database Access. This is the interface still used by Channel Access and thus by
Channel Accessclients.

Database Include Files

Directory base/ i ncl ude contains a number of database related include files. Of interest to
this chapter are:

» dbDefs.h: Miscellaneous database related definitions
» dbFIdTypes.h: Field type definitions

» dbAccess.h: Runtime database access definitions.

* link.h: Definitions for link fields.

dbDefs.h Thisfile contains a number of database related definitions. The most important are:

« PVYNAME_SZ: The number of characters alowed in the record name.

* FLDNAME_SZ: The number of characters formerly allowed in a field name. This
restriction no longer appliesin any base software except dbCali nk.c. THIS SHOULD
BE FIXED. It is unknown what effect removing this restriction will have on Channel
Access Clients.

e MAX_STRING_SIZE: The maximum string size for string fields or menu choices.

« DB_MAX_CHOICES: The maximum number of choices for achoice field.

dbFIldTypes.h This file defines the possible field types. A field's type is perhaps its most important attribute.
Changing the possible field types is a fundamental change to the 10C software, because many
| OC software components are aware of the field types.

EPICS Release: R3.13.0betal2 EPICS I0OC Application Developer's Guide 127

Chapter 12: Runtime Database Access

Database Include Files

Thefield types are:

* DBF_STRING: ASCII character string
» DBF_CHAR: Signed character
 DBF_UCHAR: Unsigned character
 DBF_SHORT: Short integer

» DBF_USHORT: Unsigned short integer
 DBF_LONG: Long integer
 DBF_ULONG: Unsigned long integer
» DBF_FLOAT: Floating point number

» DBF_DOUBLE: Double precision float
« DBF_ENUM: An enumerated field
 DBF_MENU: A menu choicefield

» DBF_DEVICE: A device choicefield

* DBF_INLINK: Input Link

* DBF_OUTLINK: Output Link
 DBF_FWDLINK: Forward Link

* DBF_NOACCESS: A privatefield for use by record access routines

A field of type DBF_STRI NG ..., DBF_DOUBLE can be a scalar or an array. A DBF_STRI NG
field contains a NULL terminated ascii string. The field types DBF_CHAR, ..., DBF_DOUBLE
correspond to the standard C data types.

DBF_ENUMis used for enumerated items, which is analogous to the C language enumeration.
An example of an enum field isfield VAL of amulti bit binary record.

The field types DBF_ENUM DBF_MENU, and DBF_DEVI CE all have an associated set of
ASCII strings defining the choices. For a DBF_ENUM the record support module supplies
values and thus are not available for static database access. The database access routines locate
the choice strings for the other types.

DBF_I NLI NK and DBF_QUTLI NK specify link fields. A link field can refer to asignal located
in a hardware module, to a field located in a database record in the same 10C, or to a field
located in arecord in another I0C. A DBF_FWDLI NK can only refer to a record in the same
IOC. Link fields are described in alater chapter.

DBF_I NLI NK (input), DBF_QUTLI NK (output), and DBF_FWDLI NK (forward) specify that
thefield isalink structure asdefined in | i nk. h. There are three classes of links:

1. Constant - The value associated with the field is a floating point value initialized with a
constant value. This is somewhat of a misnomer because constant link fields can be
modified viadbPut Fi el d or dbPut Li nk.

2. Hardware links - The link contains a data structure which describes a signal connected
to a particular hardware bus. See | i nk. h for a description of the bus types currently
supported.

3. Process Variable Links - Thisis one of three types:
a. PV_LINK: The process variable name.
b. DB_LINK: A referenceto a process variable in the same |OC.
c. CA_LINK: A reference to avariable located in another 10C.

DCT aways creates a PV_LI NK. When the IOC is initialized each PV_LI NK is converted
eithertoaDB_LI NKoraCA LI NK

DBF_NQACCESS fields are for private use by record processing routines.

128

EPICS IOC Application Developer’'s Guide

Chapter 12: Runtime Database Access
Runtime Database Access Overview

dbAccess.h

link.h

Thisfile is the interface definition for the run time database access library, i.e. for the routines
described in this chapter.

An important structure defined in this header file is DBADDR

typedef struct dbAddr{
struct dbConmmon *precord;/* address of record*/

voi d *pfi el d; /* address of field*/

voi d *pf | dDes; /* address of struct fldDes*/

voi d *asPvt ; /* Access Security Private*/

| ong no_elements; /* nunber of elenments (arrays)*/

short field type; /* type of database field*/

short field size; /* size (bytes) of the field*/

short speci al ; /* special processing*/

short dbr _field_type; /*optiml database request type*/
} DBADDR,;

» precord: Address of record. Note that its type is a pointer to a structure defining the
fields common to all record types. The common fields appear at the beginning of each
record. A record support module can cast pr ecor d to point to the specific record type.

« pfield: Address of the field within the record. Note that pf i el d provides direct access
to the data value.

» pfldDes: This points to a structure containing all details concerning the field. See
Chapter “Database Structures’ for details.

 asPvt: A field used by access security.

* no_elements. A string or numeric field can be either a scalar or an array. For scalar
fields no_el enent s has the value 1. For array fields it is the maximum number of
elements that can be stored in the array.

« field_type: Field type.

« field_size: Size of one element of the field.

» gpecial: Some fields require special processing. This specifies the type. Special
processing is described later in this manual.

» dbr_field_type: This specifies the optimal database request type for this field, i.e. the
reguest type that will require the least CPU overhead.

NOTE: pfield, no_elenments, field type, field_size, special, and
dbr _field_type can al be set by record support (cvt _dbaddr). Thusfi el d_type,
field_size,andspeci al candiffer from that specified by pf | dDes.

This header file describes the various types of link fields supported by EPICS.

Runtime Database Access Overview

With the exception of record and device support, all access to the database is viathe channel
or database access routines. Even record support routines access other records only via
database or channel access. Channel Access, in turn, accesses the database via database access.

Perhaps the easiest way to describe the database access layer is to list and briefly describe the
set of routines that congtitute database access. This provides a good look at the facilities
provided by the database.

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 129

Chapter 12: Runtime Database Access
Runtime Database Access Overview

Before describing database access, one caution must be mentioned. The only way to
communicate with an |OC database from outside the IOC is via Channel Access. In addition,
any special purpose software, i.e. any software not described in this document, should
communicate with the database via Channel Access, not database access, even if it residesin
the same 1OC as the database. Since Channel Access provides network independent accessto a
database, it must ultimately call database access routines. The database access interface was
changed in 1991, but Channel Accesswas never changed. Instead a module was written which
trandates old style database access calls to new. This interface between the old and new style
database access callsis discussed in the last section of this chapter.

The database access routines are:

dbNameToAddr: Locate a database variable.

dbGetField: Get values associated with a database variable.

dbGetLink: Get value of field referenced by database link (Macro)
dbGetLinkValue: Get value of field referenced by database link (Subroutine)
dbGet: Routine called by dbCGet Li nkVal ue and dbCGet Fi el d

dbPutField: Change the value of a database variable.

dbPutLink: Change value referenced by database link (Macro)
dbPutLinkValue: Change value referenced by database link (Subroutine)
dbPut: Routine called by dbPut xxx functions.

dbPutNotify: A database put with notification on completion
dbNotifyCancel: Cancel dbPut Noti fy

dbNotifyAdd: Add anew record for to notify set.

dbNotifyCompletion: Announce that put notify is complete.

dbBuffer Size: Determine number of bytesin request buffer.
dbValueSize: Number of bytes for avaluefield.

dbGetRset Get pointer to Record Support Entry Table

dblsValueField Isthisfield the VAL field.

dbGetFieldindex Get field index. Thefirst field in arecord hasindex O.
dbGetNelement Get number of elementsin the field
dblsLinkConnected Isthelink field connected.

dbGetPdbAddr FromLink Get address of DBADDR.

dbGet Li nkDBFt ype Get field type of link.

dbPut At t ri but e Give avaueto arecord attribute.

dbScanPassive: Process record if it is passive.

dbScanLink: Process record referenced by link if it is passive.
dbProcess: Process Record

dbScanFwdLink: Scan aforward link.

Database Request Before describing database access structures, it is necessary to describe database request types
Types and Options and request options. When dbPut Fi el d or dbGet Fi el d are called one of the argumentsis
a database request type. This argument has one of the following values:

DBR_STRING: VaueisaNULL terminated string

130

EPICS IOC Application Developer’'s Guide

Chapter 12: Runtime Database Access
Runtime Database Access Overview

Options
Example

« DBR_CHAR: Vaueisasigned char

 DBR_UCHAR: Vaueisan unsigned char

 DBR_SHORT: Vaueisashort integer

« DBR_USHORT: Vaueis an unsigned short integer

 DBR_LONG: Valueisalong integer

 DBR_ULONG: Vaueisan unsigned long integer

* DBR_FLOAT: Valueis an |EEE floating point value

» DBR_DOUBLE: Vaueisan |EEE double precision floating point value
 DBR_ENUM: Valueis ashort which isthe enum item

« DBR_PUT_ACKT: Vaueisan unsigned short for setting the ACKT.
 DBR_PUT_ACKS: Valueis an unsigned short for global aarm acknowledgment.

The request types DBR_STRI NG..., DBR_DOUBLE correspond exactly to valid data types for
database fields. DBR_ENUM corresponds to database fields that represent a set of choices or
options. In particular it corresponds to the fields types DBF_ENUM DBF_DEVI CE, and
DBF_MENU. The complete set of database field types are defined in dbFI dTypes. h.
DBR_PUT_ACKT and DBR_PUT_ACKS are used to perform global aarm acknowledgment.

dbCGet Fi el d also accepts argument options which is a mask containing a bit for each
additional type of information the caller desires. The complete set of optionsis:

* DBR_STATUS: returnsthe alarm status and severity
 DBR_UNITS: returns a string specifying the engineering units
» DBR_PRECISION: returns along integer specifying floating point precision.
* DBR_TIME: returnsthetime

« DBR_ENUM _STRS: returnsan array of strings

* DBR_GR_LONG: returnsgraphicsinfo aslong values

» DBR_GR _DOUBLE: returns graphicsinfo as double values

* DBR_CTRL_LONG: returns control info aslong values

« DBR_CTRL_DOUBLE: returns control info as double values
* DBR_AL_LONG: returnsaarm info aslong values

« DBR_AL_DOUBLE: returnsalarm info as double values

The file dbAccess. h contains macros for using options. A brief example should show how
they are used. The following example defines a buffer to accept an array of up to ten float
values. In addition it contains fields for options DBR_STATUS and DBR_TI ME.

struct buffer {
DBRst at us
DBRt i me
float val ue[10];
} buffer;

The associated dbCet Fi el d call is:
| ong opti ons, nunber _el enent s, st at us;
options = DBR_STATUS | DBR_TI ME;
nunber el ements = 10;

status =
dbGet Fi el d(paddr, DBR_FLOAT, &buf f er, &opti ons, &unber _el enent s) ;

Consult dbAccess. h for acomplete list of macros.

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 131

Chapter 12: Runtime Database Access

Database Access Routines

ACKT and ACKS

Structure dbAddr containsafield dbr _fi el d_t ype. Thisfield is the database request type
that most closely matches the database field type. Using this request type will put the smallest
load on the IOC.

Channel Access provides routines similar to dbGet Fi el d, and dbPut Fi el d. It provides
remote accessto dbGet Fi el d, dbPut Fi el d, and to the database monitors described below.

The request types DBR_PUT_ACKT and DBR PUT_ACKS are used for global alarm
acknowledgment. The alarm handler uses these requests. For each of these types the user
(normally channel access) passes an unsigned short value. This value represents:

DBR_PUT_ACKT - Do transient alarms have to be acknowledged? (0,1) means (no, yes).

DBR_PUT_ACKS - The highest alarm severity to acknowledge. If the current alarm severity is
less then or equal to this value the alarm is acknowledged.

Database Access Routines

dbNameToAddr Locate a process variable, format:
| ong dbNaneToAddr (
char *pname, /*ptr to process variable nanme */
struct dbAddr *paddr);
The most important goal of database access can be stated ssimply: Provide quick access to
database records and fields within records. The basic rules are:
« Cdl dbNanmeToAddr once and only once for each field to be accessed.
* Readfield valuesviadbGet Fi el d and write valuesviadbPut Fi el d.

The routines described in this subsection are used by channel access, sequence programs, etc.
Record processing routines, however, use the routines described in the next section rather then
dbGet Fi el d and dbPut Fi el d.
Given a process variable name, this routine locates the process variable and fills in the fiel ds of
structure dbAddr . The format for a process variable nameis:

“<record_nane>. <fi el d_name>"
For example the value field of arecord with record name sanpl e_nane is:

“sanpl e_nane. VAL".
The record name is case sensitive. Field names always consist of all upper case letters.
dbNaneToAddr locates arecord via a process variable directory (PVD). It fillsin a structure
(dbAddr) describing the field. dbAddr contains the address of the record and also the field.
Thus other routines can locate the record and field without a search. Although the PVD allows
the record to be located via a hash algorithm and the field within arecord viaabinary search, it
till takes about 80 microseconds (25MHz 68040) to located a process variable. Once located
thedbAddr structure allows the process variable to be accessed directly.

132 EPICS IOC Application Developer’'s Guide

Chapter 12: Runtime Database Access
Database Access Routines

Get Routines

dbGetField

dbGetLink
dbGetLinkValue

dbGet

Get values associated with a process variable, format:

| ong dbGet Fi el d(
struct dbAddr *paddr,
short dbrType, [/* DBR xxx */
voi d *pbuffer, /*addr of returned data */
| ong *options, [/*addr of options */
| ong *nRequest, [/*addr of nunber of el enents */
voi d *pfl); [/*used by nonitor routines */

Thus routine locks, calls dbGet , and unlocks.

Get value from the field referenced by a database link, format:

| ong dbGet Li nk(
struct db_link *pdbLink,/*addr of database |ink*/
short dbr Type,/* DBR_xxx*/
void *pbuffer,/*addr of returned data*/
long *options,/*addr of options*/
long *nRequest);/*addr of nunber of elenments desired*/

NOTES:
1) options can be NULL if no options are desired.
2) nRequest can be NULL for a scalar.

dbGet Li nk isactually a macro that calls dbGet Li nkVal ue. The macro skips the call for
constant links. User code should never call dbGet Li nkVal ue.

This routine is called by database access itself and by record support and/or device support
routines in order to get values for input links. The value can be obtained directly from other
records or via a channel access client. This routine honors the link options (process and
maximize severity). In addition it has code that optimizes the case of no options and scalar.

Get values associated with a process variable, format:

l ong dbGCet (
struct dbAddr*paddr,
short dbrType, /* DBR_Xxx*/
void *pbuffer,/*addr of returned data
long *options,/*addr of options*/
ong *nRequest,/*addr of nunber of elenents*/
void *pfl); /*used by nonitor routines*/

Thus routine retrieves the data referenced by paddr and convertsit to the format specified by
dbr Type.

"options” is a read/write field. Upon entry to dbGet, opti ons specifies the desired
options. When dbCet Fi el d returns, opt i ons specifies the options actually honored. If an
option is not honored, the corresponding fields in buffer are filled with zeros.

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 133

Chapter 12: Runtime Database Access

Database Access Routines

Put Routines

dbPutField

dbPutLink
dbPutLinkValue

"nRequest " isalso aread/writefield. Upon entry to dbGet it specifies the maximum number
of data elements the caller is willing to receive. When dbGet returns it equals the actual
number of elements returned. It is permissible to request zero elements. This is useful when
only option datais desired.

"pfl” is a field used by the Channel Access monitor routines. All other users must set
pf | =NULL.

dbGet calls one of a number of conversion routines in order to convert data from the DBF
types to the DBR types. It calls record support routines for special cases such as arrays. For
example, if the number of field elements is greater then 1 and record support routine
get _array_i nf o exists, then it is called. It returns two values. the current number of valid
field elements and an offset. The number of vaid eements may not match
dbAddr.no_el enment s, which is really the maximum number of elements alowed. The
offset isfor use by records which implement circular buffers.

Change the value of a process variable, format:

| ong dbPut Fi el d(
struct dbAddr *paddr,
short dbrType, /* DBR_xxx*/
void *pbuffer,/*addr of data*/
l ong nRequest);/*nunber of elenents to wite*/

This routine is responsible for accepting data in one of the DBR_xxx formats, converting it as
necessary, and modifying the database. Similar to dbGet Fi el d, this routine calls one of a
number of conversion routinesto do the actual conversion and relies on record support routines
to handle arrays and other special cases.

It should be noted that routine dbPut does most of the work. The actual algorithm for
dbPut Fi el dis:

1. If the Dl SPfieldis TRUE then, unlessit isthe DI SP field itself which is being modified,
the field is not written.

2. Therecord is|ocked.
3. dbPut iscalled.

4. If thedbPut is successful then:
If thisis the PROC field or if both of the following are TRUE: 1) the field is a process
passive field, 2) the record is passive.
a If the record is already active ask for the record to be reprocessed when it
compl etes.
b. Call dbScanPassi ve after setting put f TRUE to show the process request
came from dbPut Fi el d.

5. Therecord is unlocked.

Change the value referenced by a database link, format:

[ong dbPut Li nk(
structdb_Iink *pdbLink,/*addr of database Iink*/
short dbrType, /* DBR_Xxx*/
void *pbuffer,/*addr of data to wite*/
long nRequest);/*nunber of elenents to wite*/

134

EPICS IOC Application Developer’'s Guide

Chapter 12: Runtime Database Access
Database Access Routines

dbPut

Put Notify Routines

dbPut Li nk isactually a macro that calls dbPut Li nkVal ue. The macro skips the call for
constant links. User code should never call dbPut Li nkVal ue.

This routine is called by database access itself and by record support and/or device support
routinesin order to put valuesinto other database records via output links.

For Channel Accesslinksit callsdbCaPut Li nk.
For database links it performs the following functions:

1. CallsdbPut .
2. Implements maximize severity.

3. If the field being referenced is PROC or if both of the following are true: 1)
process_passi ve isTRUE and 2) the record is passive then:
a If therecord is aready active because of adbPut Fi el d request then ask for the
record to be reprocessed when it completes.
b. otherwise call dbScanPassi ve.

Put avalue to a database field, format:

[ong dbPut (
struct dbAddr *paddr,
short dbrType, /* DBR_Xxx*/
void *pbuffer,/*addr of data*/
long nRequest);/*nunber of elenents to wite*/

This routine is responsible for accepting data in one of the DBR_xxx formats, converting it as
necessary, and modifying the database. Similar to dbCet , this routine calls one of a number of
conversion routines to do the actual conversion and relies on record support routines to handle
arrays and other special cases.

dbPut Not i f y isarequest to notify the caller when all records that are processed as a result
of a put complete processing. The complication occurs because of record linking and
asynchronous records. A put can cause an entire chain of recordsto process. If any recordisan
asynchronous record then record compl etion means asynchronous compl etion.

The following rules are implemented:

1. If a putNotify is already active on the record to which the put is directed,
dbPut Not i fy justreturnsS_db_ Bl ocked without calling the callback routine.

In al other cases, i.e. the cases for the following rules, the callback routine will be
aways be called unlessdbNot i f yCancel iscalled.

2. The user supplied callback is called when all processing is complete or when an error is
detected. If everything completes synchronously the callback routine will be called
BEFORE dbPut Not i fy returns.

3. The user supplied callback routine must not issue any calls that block such as Unix 1/0O
requests.

4. In general a set of records may need to be processed as a result of a single
dbPut Not i fy. If database access detects that another dbPut Not i f y request is active
on any record in the set, other then the record referenced by the dbPut Not i f y, then
thedbPut Not i f y request will restarted

5. If arecord in the set is found to be active because of adbPut Fi el d request then when
that record completes the dbPut Not i fy will be restarted.

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 135

Chapter 12: Runtime Database Access
Database Access Routines

dbPutNotify

dbNotifyCancel

6. If arecord isfound to aready be active because of the original dbPut Not i f y request
then nothing is done. This is what is done now and any attempt to do otherwise could
easily cause existing databases to go into an infinite processing loop.

It is expected that the caller will arrange atimeout in case the dbPut Not i f y takes too long.
In this case the caller can call dbNot i f yCancel

Perform a database put and notify when record processing is compl ete.
Format:
[ong dbPut Not i fy(PUTNOTI FY *pput noti fy);

where PUTNOTIFY is

typedef struct putNotify{
voi d (*userCal | back) (struct putNotify *);
DBADDR *paddr; [/ *dbAddr set by dbNaneToAddr*/
voi d *pbuffer; [*address of data*/
| ong nRequest ; [*nunmber of elements to be witten*/
short dbr Type; / *dat abase request type*/
voi d *usr Pvt ; /[*for private use of user*/
/*The following is status of request.Set by dbPutNotify*/
| ong st at us;
[*fields private to database access*/

} PUTNOTI FY;
The caller must allocate a PUTNOTI FY structure and set the fields:

user Cal | back - Routine that is called upon conpletion
paddr - address of a DBADDR

pbuffer - address of data

nRequest - nunber of data el enents

dbr Type - dat abase request type

usrPvt - a void * field that caller can use as needed.

The status value returned by dbPut Not i fy is either:

» S db_Pending: Success: Callback may already have been called or will be called later.

» S db_Blocked: The request failed because a dbPut Not i fy is aready active in the
record to which the put is directed.

When the user supplied callback is called, the status value stored in PUTNOTI FY is one of the
following:

» 0: Success
* S xxxx: The reguest failed due to some other error.

The user calback is aways called unless dbPut Notify returns S db Blocked or
dbNot i f yCancel iscalled before the put notify competes.

Cancel an outstanding dbPut Not i f y.
Format:
voi d dbNot i fyCancel (PUTNOTI FY *pput notify);

136

EPICS IOC Application Developer’'s Guide

Chapter 12: Runtime Database Access
Database Access Routines

dbNotifyAdd

dbNotifyCompl etion

Utility Routines

dbBufferSze

dbValueS ze

dbGetRest

dblsvalueField

dbGetFieldindex

This cancels an active dbPut Not i fy.

Thisroutineis called by database access itself. It should never be called by user code.

Thisroutine is called by database access itself. It should never be called by user code.

Determine the buffer size for adbCGet Fi el d request, format:

| ong dbBufferSize(
short dbrType, /* DBR_Xxx*/
long options, /* options mask*/
ong nRequest);/* nunber of el enments*/

This routine returns the number of bytes that will be returned to dbGet Fi el d if the request
type, options, and number of elements are specified as given to dbBuf f er Si ze. Thusit can
be used to alocate storage for buffers.

NOTE: This should become a Channel Access routine

Determine the size avalue field, format:

dbVal ueSi ze(short dbrType);/* DBR xxx*/
This routine returns the number of bytes for each element of type dbr Type.
NOTE: This should become a Channel Access routine

Get address of arecord support entry table.
Format:
struct rset *dbGet Rset (DBADDR *paddr);

This routine returns the address of the record support entry table for the record referenced by
the DBADDR.

Isthisfield the VAL field of the record?
Format:
i nt dbl sVal ueFi el d(struct dbFl dDes *pdbFl dDes);

Thisisthe routine that makesthe get _val ue record support routine obsolete.

Get field index.
Format:
i nt dbGet Fi el dl ndex(DBADDR * paddr) ;

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 137

Chapter 12: Runtime Database Access

Database Access Routines

dbGetNe ements

dbl sLinkConnected

dbGetPdbAddr FromL
ink

dbGetLinkDBFtype

Attribute Routine

dbPutAttribute

Process Routines

dbScanPassive
dbScanLink
dbScanFwdLink

Record support routines such as speci al and cvt _dbaddr need to know which field the
DBADDR references. The include file describing the record contains define statements for each
field. dbGet Fi el dl ndex returns the index that can be matched against the define
statements (normally via a switch statement).

Get number of elementsin afield.
Format:
[ong dbCet Nel ement s(struct |ink *plink,long *nel ements);

Thissets*nel erment s to the number of elementsin the field referenced by plink.

Isthelink connected.
Format:

i nt dbl sLi nkConnected(struct Iink *plink);
Thisroutine returns (TRUE, FALSE) if thelink (is, is not) connected.

Get address of DBADDR from link.
Format:
DBADDR *dbGet PdbAddr Fr onli nk(struct |ink *plink);

This macro returns the address of the DBADDR for a database link and NULL for all other
link types.

Get field type of alink.
Format:
i nt dbCet Li nkDBFt ype(struct Iink *plink);

Give avalue to arecord attribute.

| ong dbPut Attribute(char *recordTypenane,
char *name, char*val ue) ;

This sets the record attribute nane for record type r ecor dTypenane to val ue. For
exampl e the following would set the version for the ai record.

dbPut Attribute("ai","VERS", "V800. 6. 95")

Process record if it is passive, format:

| ong dbScanPassi ve(

struct dbCommon *pfrom

struct dbConmmon *pto); /* addr of record*/
[ong dbScanLi nk(

138

EPICS IOC Application Developer’'s Guide

Chapter 12: Runtime Database Access
Runtime Link Modification

dbProcess

struct dbConmon *pfrom
struct dbConmon *pto);
voi d dbScanFwdLi nk(struct |ink *plink);

dbScanPassi ve and dbScanLi nk are given the record requesting the scan, which may
be NULL, and the record to be processed. If the record is passive and pact =FALSE then
dbPr ocess is called. Note that these routine are called by dbGet Li nk, dbPut Fi el d, and
by r ecGbol FwdLi nk.

dbScanFwdLi nk is given a link that must be a forward link field. It follows the rules for
scanning a forward link. That is for DB_LINKsi it calls dbScanPassive and for CA_LINKS it
does adbCaPutLink if the PROC field of record is being addressed.

Request that a database record be processed, format:
 ong dbProcess(struct dbCommom *precord);

Request that record be processed. Record processing is described in detail below.

RuntimeLink Modification

Database links can be changed at run time but only via a channel access client, i.e. viacallsto
dbPut Fi el d but not to dbPut Li nk. The following restrictions apply:

» Only DBR_STRI NGisallowed.
« If alink is being changed to a different hardware link type then the DTYP field must be
modified before the link field.

» The syntax for the string field is exactly the same as described for link fields in chapter
“Database Definition”

NOTE: For this release modification to/from hardware links has not been tested. In addition
modification to record/device support will be needed in order to properly support dynamic
modification of hardware links.

Channel Access Monitors

There are facilities within the Channel Access communication infrastructure which alow the
value of a process variable to be monitored by a channel access client. It is a responsibility of
record support (and db common) to notify the channel access server when the internal state of
a process variable has been modified. State changes can include changes in the value of a
process variable and also changes in the aarm state of a process variable. The routine
“db_post_events()” is called to inform the channel access server that a process variable state
change event has occurred.

#i ncl ude <caevent mask. h>

int db_post _events(void *precord, void *pfield,
unsi gned intsel ect);

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 139

Chapter 12: Runtime Database Access

Lock Set Routines

dbScanLock

dbScanUnlock

The first argument, “precord”, should be passed a pointer to the record which is posting the
event(s). The second argument, “pfield”, should be passed a pointer to the field in the record
that contains the process variable that has been modified. The third argument, “select”, should
be passed an event select mask. This mask can be any logical or combination of
{DBE_VALUE, DBE_LOG, DBE_ALARM}. A description of the purpose of each flag in the
event select mask follows.

» DBE_VALUE Thisindicatesthat a significant change in the process variable's value has
occurred. A significant change is often determined by the magnitude of the monitor
“dead band” field in the record.

» DBE_LOG This indicates that a change in the process variable's value significant to
archival clients has occurred. A significant change to archival clientsis often determined
by the magnitude of the archive “dead band” field in the record.

« DBE_ALARM This indicates that a change in the process variable's alarm state has
occurred.

The function “db_post_events()” returns O if it is successful and -1 if it fails. It appears to be
common practice within EPICS record support to ignore the status from “db_post_events()”.
At this time “db_post_events()” aways returns O (success). because so many records at this
time depend on this behavior it is unlikely that it will be changed in the future.

The function “db_post_events()” is written so that record support will never be blocked
attempting to post an event because a slow client is not able to process events fast enough.
Each call to “db_post_events()” causes the current value, alarm status, and time stamp for the
field to be copied into aring buffer. The thread calling “db_post_events()” will not be delayed
by any network or memory alocation overhead. A lower priority thread in the server is
responsible for transferring the events in the event queue to the channel access clients that may
be monitoring the process variable.

Currently, when an event is posted for aDBF_STRING field or afield containing array datathe
value is NOT saved in the ring buffer and the client will receive whatever value happens to be
in the field when the lower priority thread transfers the event to the client. This behavior may
be improved in the future.

Lock Set Routines

User code only calls dbScanLock and dbScanUnl ock. All other routines are caled by
i ocCore.

Lock alock set:
| ong void dbScanLock(struct dbCommon *precord);

Lock the lock set to which the specified record belongs.

Unlock alock set:
| ong voi d dbScanUnl ock(struct dbConmon *precord);

Lock the lock set to which the specified record belongs

140

EPICS IOC Application Developer’'s Guide

Chapter 12: Runtime Database Access
Channel Access Database Links

dbLockGetLockld

dbLockl nitRecords

dbLockSetMerge

dbLockSetSplitS

dbLockSetGblLock

dbLockSetGblUnlock

Get lock set id:
| ong dbLockGet Lockl d(struct dbCommon *precord);

Each lock set isassigned aunique ID. Thisroutineretrievesit. Thisis most useful to determine
if two records are in the same lock set.

Determine lock sets for each record in database.
voi d dbLockl nit Recor ds(dbBase *pdbbase);
Cdledbyioclnit.

Merge records into same lock set.

voi d dbLockSet Merge(struct dbComron *pfirst,
struct dbCommon *psecond);

If specified records are not in same lock set the lock sets are merged. Called by
dbL ocklInitRecords and also when links are modified by dbPut Fi el d.

Recompute lock sets for given lock set
voi d dbLockSet Split(struct dbComon *psource);
Thisis caled when dbPut Fi el d modifyslinks.

Global lock for modifying links.
voi d dbLockSet Gol Lock(voi d);

Only one task at a time can modify link fields. This routine provides a global lock to prevent
conflicts.

Unlock the global lock.
voi d dbLockSet Gol Unl ock(void);

dblLockSetRecordLock!f record is not already scan locked lock it.

voi d dbLockSet Recor dLock(struct dbCommon *precord);

Channel Access Database Links

The routines described here are used to create and manipulate Channel Access connections
from database input or output links. At 1OC initialization an attempt is made to convert al
process variable links to database links. For any link that fails, it is assumed that the link is a
Channel Access link, i.e. a link to a process variable defined in another 10C. The routines
described here are used to manage these links. User code never needs to call these routines.
They are automatically called by ioclnit and database access.

EPICS Release: R3.13.0betal2

EPICS IOC Application Developer's Guide 141

Chapter 12: Runtime Database Access
Channel Access Database Links

Basic Routines

dbCaLinklnit

dbCaAddLink

dbCaRemoveLink

dbCaGetLink

dbCaPutLink

dbGetNel ements

dbCaGetSevr

Atioclnit time atask dbCaLi nk is spawned. This task is a channel access client that
issues channel access requests for al channel access links in the database. For each link a
channel access search request isissued. When the search succeeds a channel access monitor is
established. The monitor is issued specifying ca_fi el d_t ype and ca_el ement _count .
A buffer is also alocated to hold monitor return data as well as severity. When dbCaGet Li nk
is called data is taken from the buffer, converted if necessary, and placed in the location
specified by the pbuf f er argument.

When the first dbCaPut Li nk is called for a link an output buffer is allocated, again using
ca_field_type andca_el ement _count. The data specified by the pbuffer argument is
converted and stored in the buffer. A request is then made to dbCaLi nk task to issue a
ca_put . Subsequent callsto dbCaPut Li nk reuse the same buffer.

These routines are normally only called by database access, i.e. they are not called by record
support modules.

Cdledby i ocl ni t toinitialize the dbCa library
voi d dbCaLi nklnit (void);

Add anew channel access link
voi d dbCaAddLi nk(struct Iink *plink);

Remove channel access link.
voi d dbCaRenovelLi nk(struct |ink *plink);

Get link value

| ong dbCaCet Li nk(struct link *plink,short dbrType,
voi d *pbuffer,unsigned short *psevr,long *nRequest);

Put link value

| ong dbCaPut Li nk(struct |ink *plink,short dbrType,
voi d *buffering nRequest);

Get Number of Elements
| ong dbCaGet Nel enent s(struct |ink *plink,long *nel enents);

This call, which returns an error if link is not connected, sets the native number of elements.

Get Alarm Severity
| ong dbCaGet Sevr(struct |ink *plink,short *severity);

Thiscall, which returns an error if link is not connected, sets the alarm severity.

dbCal sLinkConnected!s Channel Connected

i nt dbCal sLi nkConnected(struct Iink *plink)

142

EPICS IOC Application Developer’'s Guide

Chapter 12: Runtime Database Access
Channel Access Database Links

Thisroutine returns (TRUE, FALSE) if thelink (is, is not) connected.

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 143

Chapter 12: Runtime Database Access
Channel Access Database Links

144 EPICS I0C Application Developer’s Guide

Chapter 13: Device Support Library

Overview

Include file devLi b. h provides definitions for a library of routines useful for device and
driver modules. These are a new addition to EPICS and are not yet used by al device/driver
support modules. Until they are, the registration routines will not prevent addressing conflicts
caused by multiple device/drivers trying to use the same VME addresses.

Registering VM E Addresses

Definitions of typedef enum {
Address Types at VMEALS,

at VVEA24,

at VVEA32,

atLast /* atlLast must be the last enumin this |ist */
} epi csAddr essType;

char *epi csAddressTypeNaneg[]
={
n V'\E A16H ,
"VME A24",
n '\E A32H
i
i nt EPI CSt ovxWor ksAddr Type[]
={
VME_AM SUP_SHORT_I O,
VME_AM STD_SUP_DATA,
VME_AM EXT_SUP_DATA
i

Register Address | ong devRegi st er Address(
const char *pOwner Nane,
epi csAddressType addr Type,
void *baseAddress,
unsi gned si ze,
void **plLocal Address);

Thisroutineis called to register aVME address. This routine keeps alist of al VME addresses
requested and returns an error message if an attempt is made to register any addresses that are
already being used. *pLocal Addr ess isset equal to the address as seen by the caller.

EPICS Release: R3.13.0betal2 EPICS I0OC Application Developer's Guide 145

Chapter 13: Device Support Library
Interrupt Connect Routines

Unregister Address l ong devUnregi sterAddress(
epi csAddr essType addr Type,
voi d *baseAddress,
const char *pOwner Nane);

This routine rel eases addresses previously registered by acall to devRegi st er Addr ess.

Interrupt Connect Routines

Definitions of typedef enum {intCPU, intVME, intVXl} epicslnterruptType;
Interrupt Types
Connect | ong devConnect | nterrupt (

epi csl nterrupt Type i nt Type,

unsi gned vect or Nunber,
void (*pFunction)(),
void *paraneter);

Disconnect | ong devDi sconnect | nterrupt(
epi csl nterrupt Type intType,
unsi gned vect or Nunber) ;

Enable Level | ong devEnabl el nterruptLevel (
epi cslnterrupt Type intType,
unsi gned |evel);

Disable Leve | ong devDi sabl el nterruptLevel (
epi csl nterrupt Type intType,
unsi gned |evel);

Macros and Routinesfor Normalized Analog Values

Normalized GetFidd long devNormal i zedGhl Get Fi el d(
long rawval ue,
unsi gned nbits,
DBREQUEST *pdbr equest,
int pass,
CALLBACK *pcal | back);

Thisroutineisjust liker ecGol Get Fi el d, except that if the request type is DBR_FLQAT or
DBR_DOUBLE, the normalized value of r awVal ue isaobtained, i.e. r awval ue is converted to
avaluein the range 0.0<=value<.1.0

146 EPICS I0C Application Developer’s Guide

Chapter 13: Device Support Library
Macros and Routines for Normalized Analog Values

Convert Digital
Valuetoa
Normalized Double
Value

Convert Normalized
Double Valueto a
Digital Value

#defi ne devCreat eMask(NBI TS) ((1<<(NBITS))-1)
#defi ne devDi gToNm (DI A TAL, NBI TS) \
(((doubl e) (DI G TAL))/ devCreat eMask(NBI TS))

#def i ne devNm ToDi g(NORVAL, NBI TS) \
(((long) (NORVAL)) * devCreat eMask(NBITS))

EPICS Release: R3.13.0betal2

EPICS IOC Application Developer's Guide 147

Chapter 13: Device Support Library
Macros and Routines for Normalized Analog Values

148 EPICS I0C Application Developer’s Guide

Chapter 14: EPICS General Purpose Tasks

Overview

Overview

This chapter describes two sets of EPICS supplied general purpose tasks: 1) Callback, and 2)
Task Watchdog.

Often when writing code for an 10C there is no obvious task under which to execute. A good
example is completion code for an asynchronous device support module. EPICS supplies the
callback tasks for such code.

If an 10C tasks "crashes' there is normally no one monitoring the vxWorks shell to detect the
problem. EPICS provides a task watchdog task which periodically checks the state of other
tasks. If it finds that a monitored task has terminated or suspended it issues an error message
and can aso call other routines which can take additional actions. For example a subroutine
record can arrange to be put into alarm if a monitored task crashes.

Since |0Cs normally run autonomously, i.e. no one is monitoring the vxWorks shell, 10C code
that issues printf calls generates errors messages that are never seen. In addition the
vxWorks implementation of fprintf requires much more stack space then printf calls.
Another problem with vxWorks isthe | ogMsg facility. | ogMsg generates messages at higher
priority then al other tasks except the shell. EPICS solves al of these problems via an error
message handling facility. Code can call any of the routines er r Message, errPrintf, or
epi csPrintf. Any of these result in the error message being generated by a separate low
priority task. The calling task has to wait until the message is handled but other tasks are not
delayed. In addition the message can be sent to a system wide error message file.

General Purpose Callback Tasks

EPICS provides three genera purpose 10C callback tasks. The only difference between the
tasks is scheduling priority: Low, Medium, and High. The low priority task runs at a priority
just higher than Channel Access, the medium at a priority about equal to the median of the
periodic scan tasks, and the high at a priority higher than the event scan task.The callback tasks
provide a service for any software component that needs a task under which to run. The
callback tasks use the task watchdog (described below). They use a rather generous stack and
can thus be used for invoking record processing. For example the 1/0 event scanner uses the
genera purpose callback tasks.

The following steps must be taken in order to use the general purpose callback tasks:
1. Include callback definitions:

#i ncl ude <cal | back. h>

EPICS Release: R3.13.0betal2 EPICS I0OC Application Developer's Guide 149

Chapter 14: EPICS General Purpose Tasks
General Purpose Callback Tasks

2. Provide storage for a structure that is a private structure for the callback tasks:
CALLBACK mycal | back;
It is permissible for thisto be part of alarger structure, e.g.
struct {
CALLBACK mycal | back;
\ Ce
3. Call routines (actually macros) to initialize fields in CALLBACK:
cal | backSet Cal | back(VO DFUNCPTR, CALLBACK *);

This defines the callers callback routine. The first argument is the address of a function
returning VO D. The second argument is the address of the CALLBACK structure.

cal | backSetPriority(int, CALLBACK *);
The first argument is the priority, which can have one of the values: pri orityLow
priorityMedi umor priorityH gh. These values are defined in cal | back. h.
The second argument is again the address of the CALLBACK structure.

cal | backSet User (VO D *, CALLBACK *);
This call is used to save avalue that can be retrieved viaa call to:

cal | backGet User (VO D *, CALLBACK *);

4. Whenever a callback request is desired just call one of the following:

cal | backRequest (CALLBACK *);
cal | backRequest ProcessCal | back(CALLBACK *);

Either can be called from interrupt level code. The callback routine is passed a single
argument, which is the same argument that was passed to cal | backRequest , i.e., the
address of the CALLBACK structure.

Syntax The following calls are provided:
[ong cal | backl nit(void);
voi d cal | backSet Cal | back(voi d *pcal | backFuncti on,
CALLBACK *pcal | back);
voi d cal | backSetPriority(int priority, CALLBACK *pcal | back);
voi d cal | backSet User (voi d *user, CALLBACK *pcal | back);
voi d cal | backRequest (CALLBACK *);
voi d cal | backRequest ProcessCal | back(CALLBACK *pCal | back,
int Priority, void *pRec);
150 EPICS I0C Application Developer’s Guide

Chapter 14: EPICS General Purpose Tasks
General Purpose Callback Tasks

voi d cal | backGet User (voi d *user, CALLBACK *pcal | back);

Notes:

cal | backl ni t is performed automatically when EPICS initializes and 10C. Thus
user code never calls this function.

cal | backSet Cal | back, cal | backSet Priority, callbackSet User, and
cal | backGet User areactually macros.

cal | backRequest and cal | backRequest ProcessCal | back can both be
called at interrupt level.

cal | backRequest ProcessCal | back is designed for the completion phase of
asynchronous record processing. It issues the calls:

cal | backSet Cal | back(ProcessCal | back, pCall back);
cal | backSetPriority(Priority, pCallback);

cal | backSet User (pRec, pCall back);

cal | backRequest (pCal I back) ;

ProcessCal | back, which is designed for asynchronous device completion
applications, consists of the following code:

static void ProcessCal | back(CALLBACK *pCal | back)
{

dbConmon *pRec;

struct rset *prset;

cal | backGet User (pRec, pCall back);
prset = (struct rset *)pRec->rset;
dbScanLock(pRec) ;
(*prset->process) (pRec);

dbScanUnl ock(pRec) ;

}

Example An example use of the callback tasks.

#i ncl ude <cal | back. h>

static structure {

char begi d[80] ;

CALLBACK cal | back;

char endi d[80] ;
}nyStruct;

voi d nyCal | back(CALLBACK *pcal | back)
{
struct myStruct *pnyStruct;
cal | backGet User (pny St ruct, pcal | back)
printf(”begi d=% endi d=%\n", &nySt ruct - >begi d[0] ,
&pnt ruct - >endi d[0]) ;

}

exanpl e(char *pbegi d, char*pendi d)

{
strcpy(&myStruct. begi d[0], pbegi d);
strcpy(&myStruct. endi d[0], pendi d) ;

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 151

Chapter 14: EPICS General Purpose Tasks

Task Watchdog

Callback Queue

cal | backSet Cal | back(nyCal | back, &yStruct. cal | back);
cal | backSetPriority(priorityLow, &yStruct. call back);
cal | backSet User (&mryStruct, &myStruct . cal | back) ;

cal | backRequest (&nyStruct. cal | back) ;

}

The example can be tested by issuing the following command to the vxWorks shell:
exanpl e(” begin”, "end”)

This simple example shows how to use the callback tasks with your own structure that contains
the CALLBACK structure at an arbitrary location.

The callback requests put the requests on avxWorks ring buffer. Thus buffer is set by default to
hold 2000 requests. This value can bechanged by calling cal | backSet QueueSi ze before
i ncl ni t inthestartup file. The syntax is:

i nt call backSet QueueSi ze(int size)

Task Watchdog

EPICS provides an |OC task that is awatchdog for other tasks. Any task can make arequest to
be watched. The task watchdog runs periodically and checks each task in its task list. If any
task is suspended, an error message is issued and, optionally, a callback task is invoked. The
task watchdog provides the following features:

1. Include module:

#i ncl ude <taskwd. h>

2. Insert request:

taskwdl nsert (int tid, VO DFUNCPTR cal l back,
VO D *userarg);

This is the reguest to include the task with the specified t i d in the list of tasks to be
watched. If callback is not NULL then if the task becomes suspended, the callback
routine will be called with asingle argument user ar g.

3. Remove request:
t askwdRenmove(int tid);

This routine would typically be called from the callback routine invoked when the
original task goes into the suspended state.

4. Insert request to be notified if any task suspends:

t askwdAnyl nsert (voi d *user pvt, VO DFUNCPTR cal | back,
VO D *userarg);

The callback routine will be called whenever any of the tasks being monitored by the
task watchdog task suspends. userpvt must have a non NULL unique value

152

EPICS IOC Application Developer’'s Guide

Chapter 14: EPICS General Purpose Tasks
Task Watchdog

t askwdAnyl nsert , because the task watchdog system uses this value to determine
who to remove if t askwdAnyRenove iscalled.

5. Remove request for t askwdAnyl nsert :
t askwdAnyRenove(voi d *userpvt);

user pvt isthe value that was passed tot askwdAnyl nsert .

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 153

Chapter 14: EPICS General Purpose Tasks
Task Watchdog

154 EPICS I0C Application Developer’s Guide

Chapter 15: Database Scanning

Overview

Database scanning is the mechanism for deciding when to process a record. Five types of
scanning are possible:

Periodic: A record can be processed periodicaly. A number of time intervals are
supported.

Event: Event scanning is based on the posting of an event by another component of the
software viaacall to the routine post _event .

I/O Event: The original meaning of this scan type is arequest for record processing as
aresult of ahardware interrupt. The mechanism supports hardware interrupts as well as
software generated events.

Passive: Passive records are processed only via requests to dbScanPassi ve. This
happens when database links (Forward, Input, or Output), which have been declared
"Process Passive” are accessed during record processing. It can also happen as a result
of dbPut Fi el d being called (This normally results from a Channel Access put
request).

Scan Once: In order to provide for caching puts, The scanning system provides a
routine scanOnce which arranges for arecord to be processed one time.

This chapter explains database scanning in increasing order of detail. It first explains database
fields involved with scanning. It next discusses the interface to the scanning system. The last
section gives a brief overview of how the scanners are implemented.

Scan Related Database Fields

The following fields are normally defined via DCT. It should be noted, however, that it is quite
permissible to change any of the scan related fields of a record dynamically. For example, a
display manager screen could tie a menu control to the SCAN field of a record and allow the
operator to dynamically change the scan mechanism.

SCAN Thisfield, which specifies the scan mechanism, has an associated menu of the following form:

Passive: Passively scanned.

Event: Event Scanned. The field EVNT specifies event number
I/O Event scanned.

10 Second: Periodically scanned - Every 10 seconds

.1 Second: Periodically scanned - Every .1 seconds

EPICS Release: R3.13.0betal2

EPICS I0OC Application Developer's Guide 155

Chapter 15: Database Scanning
Software Components That Interact With The Scanning System

PHAS

EVNT - Event
Number

PRI O - Scheduling
Priority

menuScan.ascii

dbScan.h

Thisfield determines processing order for records that arein the same scan set. For example all
records periodically scanned at a 2 second rate are in the same scan set. All Event scanned
records with the same EVNT are in the same scan set, etc. For records in the same scan set, all
records with PHAS=0 are processed before records with PHAS=1, which are processed before
all records with PHAS=2, etc.

In general it is not a good idea to rely on PHAS to enforce processing order. It is better to use
database links.

This field only has meaning when SCAN is set to Event scanning, in which case it specifies
the event number. In order for arecord to be event scanned, EVNT must be in therange0,...255.
It should also be noted that some EPICS software components will not request event scanning
for event 0. One example is the event Recor d record support module. Thus the application
developer will normally want to define eventsin the range 1,...,255.

This field can be used by any software component that needs to specify scheduling priority,
e.g. the event and 1/0 event scan facility usesthisfield.

Software Components That Interact With The Scanning
System

Thisfile contains definitions for amenu related to field SCAN. The definitions are of the form:

menu(nenuScan) {
choi ce(nenuScanPassi ve, " Passi ve”)
choi ce(nenuScanEvent, " Event ")
choi ce(nmenuScanl _O Intr,”1/O Intr”)
choi ce(nmenuScanl10_second, " 10 second”)
choi ce(nmenuScan5_second,”5 second”)
choi ce(nmenuScan2_second, "2 second”)
choi ce(nmenuScanl_second,”1 second”)
choi ce(nmenuScan_5_second,”.5 second”)
choi ce(nmenuScan_2_second, ”. 2 second”)
choi ce(nmenuScan_1 second,”.1 second”)

}

The first three choices must appear first and in the order shown. The remaining definitions are
for the periodic scan rates, which must appear in order of decreasing rate. At IOC initialization,
the menu values are read by scan initialization. The number of periodic scan rates and the value
of each rate is determined from the menu values. Thus periodic scan rates can be changed by
changing menuScan. ascii and loading this version via dbLoadAscii. The only
requirement is that each periodic definition must begin with the value and the value must bein
units of seconds.

All software components that interact with the scanning system must include thisfile.
The most important definitionsin thisfile are:

/* Note that these nmust match the first four definitions*/
/* in choice®l.ascii*/
#def i ne SCAN_PASS| VE 0

156

EPICS IOC Application Developer’'s Guide

Chapter 15: Database Scanning
Software Components That Interact With The Scanning Sys-

#define SCAN EVENT 1
#define SCAN | O EVENT 2
#define SCAN 1ST PERIODIC 3

/*definitions for SCAN_| O EVENT */
typedef void * | OSCANPVT;
extern int interruptAccept;

I ong scanlnit(void);

voi d post_event (int event);

voi d scanAdd(struct dbComon *);
voi d scanDel et e(struct dbConmon *);
voi d scanOnce(void *precord);

i nt scanOnceSet QueueSi ze(int size);

i nt scanppl (voi d); [*print periodic |ists*/
i nt scanpel (voi d); [*print event |ists*/
i nt scanpi ol (void); [*print io_event list*/

voi d scanlol nit (1 OSCANPVT *);
voi d scanl oRequest (1 OSCANPVT) ;

The first set of definitions defines the various scan types. The next two definitions
(I OSCANPVT and i nt er r upt Accept) are for interfacing with the 1/O event scanner. The
remaining definitions define the public scan access routines. These are described in the
following subsections.

Initializing Database scanl ni t (void);

Scanners Theroutinescanl ni t iscalled by i ocl ni t . Itinitializes the scanning system.
Adding And The following routines are called each time arecord is added or deleted from a scan list.
Deleting Recqrds scanAdd(struct dbComon *);

From Scan List scanDel et e(struct dbComon *);

These routines are called by scanl ni t at |OC initialization time in order to enter al records
created via DCT into the correct scan list. The routine dbPut calls scanDel et e and
scanAdd each time a scan related field is changed (each scan related field is declared to be
SPC SCANin dbCommon. asci i). scanDel et e is called before the field is modified and
scanAdd after the field is modified.

Declaring Database Whenever any software component wants to declare a database event, it just cals:
Event post _event (event)

This can be called by virtually any 10C software component. For example sequence programs
can call it. The record support module for event Recor d callsit.

Interfacing to Interfacing to the 1/O event scanner is done via some combination of device and driver support.
|/O Event Scanning 1. Include <dbScan. h>

2. For each separate event source the following must be done;
a. Declare an | OSCANPVT variable, e.g.
static | OSCANPVT i oscanpvt;
b. Call scanl ol ni t, eg.
scanl ol nit (& oscanpvt);

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 157

Chapter 15: Database Scanning
Software Components That Interact With The Scanning System

3. Provide the device support get _i oi nt _i nf o routine. This routine has the format:
| ong get _ioint_info(

i nt
str

cnd,
uct dbConmon *precord,
| OSCANPVT *ppvt);

This routine is called each time the record pointed to by pr ecor d is added or deleted
from an 1/0 event scan list. cnd has the value (0,1) if the record is being (added to,
deleted from) an 1/O event list. This routine must give avalueto *ppvt .

4. Whenever an |/O event is detected call scanl oRequest , e.g.

SCa

nl oRequest (i oscanpvt)

This routine can be called from interrupt level. The request is actually directed to one of
the standard callback tasks. The actual one is determined by the PRI O field of

dbComon

The following code fragment shows an event record device support module that supports I/O
event scanning:

#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
/*

st

nclude <vxWrks. h>
ncl ude <types. h>
nclude <stdioLib.h>

nclude <i
nclude <d
nclude <d
nclude <d

nt Li b. h>
bDef s. h>
bAccess. h>
bScan. h>

ncl ude <recSup. h>

ncl ude <devSup. h>

ncl ude <event Record. h>

Create the dset for devEvent XXX */
long init();
long get _ioint_info();

ruct {

| ong nunber;

DEVSUPFUN
DEVSUPFUN
DEVSUPFUN
DEVSUPFUN
DEVSUPFUN

report;

init;
init_record;
get _ioint_info;
read_event;

}devEvent Test | oEvent ={

5,

NULL,
init,
NULL,

get _ioint_info,

NULL} ;

static | OSCANPVT i oscanpvt;
static void int_service(l OSCANPVT ioscanpvt)

{
}

scanl oRequest (i oscanpvt);

static long init()

{

scanl ol n

it(& oscanpvt);

i nt Connect (<vector>, (FUNCPTR)i nt _servi ce, i oscanpvt);

158

EPICS IOC Application Developer’'s Guide

Chapter 15: Database Scanning
Implementation Overview

Definitions And
Routines Common
To All Scan Types

return(0);
}
static |l ong get _ioint_info(
i nt cnd,
struct eventRecord *pr,
| OSCANPVT *ppvt)
{
*ppvt = ioscanpvt;
return(0);
}

I mplementation Overview

The code for the entire scanning system resides in dbScan. c, i.e. periodic, event, and 1/O
event. This section gives an overview of how the code in dbScan. c¢ is organized. The listing
of dbScan. ¢ must be studied for a complete understanding of how the scanning system
works.

Everything is built around two basic structures:

struct scan_list {
FAST LOCK | ock;
ELLLI ST Iist;
short nodi fi ed;
| ong ticks; /*used only for periodic scan sets*/

}s

struct scan_el enent{
ELLNODE node;
struct scan_list *pscan_|list;
struct dbConmon *precord;

}

Later we will see how scan |ists are determined. For now just redlize that
scan_list.list isthe head of a list of records that belong to the same scan set (for
example, al records that are periodically scanned at a 1 second rate are in the same scan set).
The node field in scan_el enent contain the list links. The norma vxWorks | st Li b
routines are used to access the list. Each record that appears in some scan list has an associated
scan_el enent. The SPVT field which appears in dbComon holds the address of the
associated scan_el enent .

Thel ock, nodi fi ed, and pscan_| i st fieldsalow scan_el enent s, i.e. records, to be
dynamically removed and added to scan lists. If scanLi st, the routine which actually
processes a scan list, is studied it can be seen that these fields allow the list to be scanned very
efficiently if no modifications are made to the list while it is being scanned. This s, of course,
the normal case.

The dbScan. ¢ module contains severa private routines. The following access a single scan
Set:

e printList: Printsthe names of al recordsin ascan set.

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 159

Chapter 15: Database Scanning
Implementation Overview

pevent_list[][] —
—=| event_scan_list

list ——=| scan_element
s node —>| scan_element
node —_—
precord cee
precord

Figure 15-1: Scan List Memory Layout

» scanList: Thisroutineisthe heart of the scanning system. For each record in a scan set
it does the following:
dbScanLock(precord);
dbProcess(precord);
dbScanUnl ock(precord);
It also has code to recognize when a scan list is modified while the scan set is being
processed.
» addTolList: Thisroutine addsanew element to ascan list.

» deleteFromList: Thisroutine deletes an element from ascan list.

Event Scanni ng Event scanning is built around the following definitions:

#defi ne MAX_EVENTS 256
typedef struct event_scan_list {
CALLBACK cal | back;
scan_li st scan_li st;
}event _scan_list;
static event_scan_|i st
*pevent _| i st[NUM_CALLBACK_ PRI ORI Tl ES] [MAX_EVENTS] ;

pevent _|i st isa2d array of pointersto scan_| i st s. Note that the array allows for 256
events, i.e. one for each possible event number. In other words, each event number and priority
has its own scan list. No scan_|l i st is actually created until the first request to add an
element for that event number. The event scan lists have the memory layout illustrated in
Figure 15-1.

post_event post _event (i nt event)

Thisroutineiscalled to request event scanning. It can be called from interrupt level. It [ooks at
each event _scan_l| i st referenced by pevent _| i st[*][event] (one for each callback
priority) and if any elements are present inthescan_| i st acal | backRequest isissued.
The appropriate callback task callsroutine event Cal | back, which just callsscanLi st .

|/O Event Scanning 1/0 event scanning is built around the following definitions:

struct io_scan_list {
CALLBACK cal | back;
struct scan_|ist scan_list;
struct io_scan_|ist *next ;

160 EPICS IOC Application Developer’'s Guide

Chapter 15: Database Scanning
Implementation Overview

scanlolnit

scanl oRequest

Periodic Scanning

}

static struct io_scan_|ist
*i osl _head[NUM_CALLBACK PRI ORI Tl ES]
= {NULL, NULL, NULL};

The array i osl _head and the field next are only kept so that scanpi ol can be
implemented and will not be discussed further. 1/0 event scanning uses the general purpose
callback tasks to perform record processing, i.e. no task is spawned for 1/0 event. The callback
fieldof i 0_scan_l i st isused to communicate with the callback tasks.

The following routines implement 1/O event scanning:

scanlolnit (1 OSCANPVT *ppi oscanpvt)

This routine is called by device or driver support. It is called once for each interrupt source.
scanl ol nit alocates and initializes an array of i 0_scan_l i st structures; one for each
callback priority and puts the address in pi oscanpvt. Remember that three callback
priorities are supported (low, medium, and high). Thus for each interrupt source the structures
areillustrated in Figure 15-2:

When scanAdd or scanDel ete are caled, they call the device support routine
get _i oi nt _i nf o which returns pi oscanpvt . The scan_el enent is added or deleted
from the correct scan list.

scanl oRequest (| OSCANPVT pi oscanpvt)

This routine is caled to request 1/0 event scanning. It can be called from interrupt level. It
looks at each i 0_scan_| i st referenced by pi oscanpvt (one for each callback priority)
and if any elements are present in the scan_| i st acal | backRequest is issued. The
appropriate callback task calls routinei oevent Cal | back, whichjust callsscanLi st .

Periodic scanning is built around the following definitions:

static int nPeriodic;
static struct scan_list **papPeriodic;
static int *periodi cTaskld;

nPeri odi ¢, which is determined at i ocl nit time, is the number of periodic rates.
papPer i odi c isapointer to an array of pointerstoscan_| i st s. Thereisan array element
for each scan rate. Thus the structure illustrated in Figure 15-3 exists afteri ocl ni t .

A periodic scan task is created for each scan rate. The following routines implement periodic
scanning:

pioscanpvt —=

io_scan_list
.callback
scan_list
— | scan_list |7 | scan_element
o node
list
precord

Figure 15-2: Interrupt Source Structure

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 161

Chapter 15: Database Scanning

Implementation Overview

papPeriodic —=

scan_list

list

? scan_element scan_element
node node
precord precord

Figure 15-3: Structure after ioclnit

initPeriodic i ni tPeriodic()
This routine first determines the scan rates. It does this by accessing the SCAN field of the first
record it finds. It issues a call to dbGet Fi el d with a DBR_ENUMrequest. This returns the
menu choices for SCAN. From this the periodic rates are determined. The array of pointers
referenced by papPer i odi c isallocated. For each scanrateascan_| i st isallocated and a
peri odi cTask isspawned.

periodicTask peri odi cTask (struct scan_list *psl)
This task just performs an infinite loop of calling scanLi st and then calling t askDel ay to
wait until the beginning of the next time interval.

Scan Once

scanOnce voi d scanOnce (void *precord)
A task onceTask waits for requests to issue a dbPr ocess request. The routine scanOnce
puts the address of the record to be processed in aring buffer and wakes up onceTask.
This routine can be called from interrupt level.

SetQueueSize scanOnce places its request on a vxWorks ring buffer.This is set by default to 1000 entries. It
can be changed by executing the following command in the vxWorks startup file.
i nt scanOnceSet QueueSi ze(int size);

162 EPICS IOC Application Developer’'s Guide

Chapter 16: Database Structures

Overview

This chapter describes the internal structures describing an 10C database. It is of interest to
EPICS system developers but serious application developers may aso find it useful. This
chapter isintended to make it easier to understand the |OC sourcelistings. It also gives alist of
the header files used by 10C Code.

Include Files

This section lists the files in base/include that are of most interest to IOC Application
Developers:

alarm.h alarmString.h - These files contain definitions for al alarm status and severity
values.

cadef.h caerr.h caeventmask.h - These files are of interest to anyone writing channel access
clients.

callback.h - The definitions for the General Purpose callback system.
dbAccess.h - Definitions for the runtime database access routines.
dbBase.h - Definitions for the structures used to store an EPICS database.
dbDefs.h - A catchall file for definitions that have no other reasonable place to appear.
dbFIdTypes.h - Definitions for DBF_xxx and DBR_XXX types.
dbScan.h - Definitions for the scanning system.

dbStaticLib.h - The static databases access system.

db_access.h db_addr.h - Old database access.

devLib.h - The device support library

devSup.h - Device Support Modules

drvSup.h - Driver Support Modules

elLib.h - A library that is provides the same functions as the vxWorks | st Li b. All routines
start withel | instead of | st. Theel | Li b routines work on both IOCs and on UNIX.

epicsPrint.h errMdef.h - EPICS error handling system
fast_lock.h - The FASTLOCK routines.
freeList.h - A general purpose freelist facility

EPICS Release: R3.13.0betal2 EPICS I0OC Application Developer's Guide 163

Chapter 16: Database Structures
Structures

gpHash.h - A general purpose hash library.

guigroup.h - The guigroup definitions.

initHooks.h - Definitions used by i ni t Hooks.c routines.
link.h - Link definitions

module_types.h - VME hardware configuration. SHOULD NOT BE USED BY NEW
SUPPORT.

recSup.h - The record global routines.

special.h - Definitions for special fields, i.e. SPC_xxXx.

task_params.h - Definitions for task priorities, stack space, etc.

taskwd.h - Task Watchdog System

tsDefs.h - Time stamp routines. Will also have to look at base/sr ¢/l i bComit sSubr .c

Structures

164 EPICS I0C Application Developer’s Guide

Chapter 16: Database Structures
Structures

. [abMent
node
name
nChoice
papChoiceName
papChoiceValue »-[dDRecordNode
node
precord
recordname
visible
P dbRecordType
node cevsup
attributeL ist node
recList name
dbBase devList | pdset
menuList — name link_type
recordTypeList no_fields P> GbrETdDes
drvList — no_prompt romot
bptList link_ind Eamep
patthvt papsortFldName extra
ppv sortFldind
popHash pvalFldDes ipr?deEeeggrrddTT)y;)ee
ignoreMissingM enus indval Flddes special
papFldDes field_type
process_passive
drvsup pase
L | promptgroup
node interest
name as level
pdrvet initial
|y [orkTable
node ®bBrikint
name raw
number slope
papBrkI nt eng

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 165

Chapter 16: Database Structures
Structures

166 EPICS IOC Application Developer’'s Guide

INDEX

INDEX

A

AB IO, . 36
AccessSecurity. 53
addpath o 26
aam-example.......... ... oL 95
Alloc/FreeDBENTRYcovvvnnnn 115
asAddClient. 62
asAddMember.l 61
asChangeClient......................... 63
asChangeGroup. vvvvvene e 62
ascheck 56
asCheckGet(..................oiiiL. 63
asCheckPut 63
asCompute. 64
asComputeAllASg.o 63
asCoOMpUteASTo 64
asdbdump 66, 76
asDbGetAsl 66
asDbGetMemberPvt 66
asDump(.. 64
asDumpHag. 64
asDumpHash., 65
aDumpMem. 64
asDumpRUIES 64
asDumpuag. . ..o 64
ASG. . 55

.................................... 54
asGetClientPvt 63
asGetMemberPvt.o 62
aslnit. ... 56, 65, 76
aslnitAsyn. ... 66
ashnitFile. 61
aslnitFP. 61
ashnitidize. o 61
ASL 54
adl - field definitionrules. 29
ad_leve - field definition 30
asphag. 67,76
BSPMEM . ottt 67, 76
asprules. 67, 76
BOPUAG - - o vt 67,76
asPutClientPvt. 63
asPutMemberPvt. L 62

asPvtinDBADDR 129
asRegisterClientCallback 63
asRemoveClientccvuvnn. 63
asRemoveMember 62
asSetFilename. 56, 65, 76
asSetSubstitutions. L. 56, 65
asSublnit. ... 57, 66
asSubProcess. 57, 66
ASIAC. . . o e 66
asynchronous device support example.. 105
B
base - field definition. 31
base - field definitionrules 29
BBGPIB IO ... 36
BITBUSIO ... 36
breakpoint table - database definition. 34
Breakpoint Tables. 38
Breakpoints.oo i 73
breaktable 26
C
ca channel_status. 7
CachedPuts.................ccoiiiin.. 21
CALC ... 56
CALLBACK ... oo 150
callbackGetUser 150-151
calbacklnit 150
calbackRequest 150
callbackRequestProcessCallback 150
calbackSetCallback 150
callbackSetPriority 150
calbackSetQueueSize. 49, 152
calbackSetUser.nn.. 150
CAMAC IO ...t 36
(07 = 77
Channel ACCeSS. 5
channel accesslink 13
Channél AccessMonitors. 139
choice ... o 26
choice_string - device definition. 34
comment - Database Definitions. 28
CONSTANT ...t 35
constantlink 13
coreRelease. ... 78
cvt_dbaddr - Record Support Routine 98
D
database accessroutines- Listof 130
Database DefinitionFile. 25

167

EPICS IOC Application Developer’'s Guide

INDEX

database definitions. 25
Database Format - Summary 25
databaselink 13
Database Link Guidelines. 16
DatabaseLinks.................... ... 13
DatabaseLocking............. ..., 15
DatabaseScanning 15
DB MAX CHOICES................... 127
do post events. ..., 139
dba.......... ... 72
dbAccessho i 127
doAdd 129
doAddPath. 116
DBADDR ... 129
dbAllocBase 114
dbAllocEntry. ... 115
doAllocForm.............. ..ot 122
dbap. 74
dbAsciiToMenuH 40
dbAsciiToRecordtypeH. 40
dob. 73
dbBufferSize. 137
doc. ..o 73
doCaAddLinkt 142
dbCaGetLink. . ..o 142
dbCaGetSevr.ocv e 142
doCaLinklnit. 48, 142
doCaPutLink.............coviii.... 142
dbcar.......... 77,79
dbCaRemoveLink. 142
dbCopyEntry. ... 116
dbCopyEntryContents. 116
dbCopyRecordo ... 119
dbCreateRecord. 119
dbCvtLinkToConstant. 122
dbCvtLinkToPvlink. 122
dod. 73
doDefsh ... 127
doDeleteRecord.l 119
dbDumpBreaktable. 124
doDumpDevice..................... 81, 123
doDumpDriver 81, 124
doDumpFldDes. 81, 123
doDumpMenu. 80-81, 123
doDumpPath 123
doDumpRecord. L 123
doDumpRecords. 81, 125
dbDumpRecordType. 81,123
DBE ALARMiinn.. 97
DBE LOG ..o 97
DBE VAL......oiiiiiiiii i 97
doel ... 77
doExpand 42,124
DBFCHAR ... 128
DBFEDEVICEcoiiiiinn.. 128
DBF DOUBLE........................ 128
DBFEENUM..........ccoiiii e 128
DBF FLOAT ... 128
DBF FWDLINK 37,128
DBF_INLINK
................................... 128
DBF LONG..........coiiiiiiii . 128
DBF MENU..............ccoiviinnnn. 128
DBF NOACCESSccviiinn.. 128

DBF OUTLINK..........ccoviiiiann.. 128
DBF SHORT ..o 128
DBF UCHAR...........ccoiiiiiinn. 128
DBF ULONG.ccviiiieeennn 128
DBF USHORT.........ccovviiiiiiinnn, 128
DBF_xxx Definitions of Fieldtypes. 128
dbFindBrkTable 123
doFindField. 120
doFindMenu 121
doFindRecord, 119
dbFindRecordType 117
dbFinishEntry 115
doFirstField. 118
dbFirstRecord, 119
dbFirstRecordTypecconn... 117
dbFldTypesh. 127
doFoundField 118, 120
doFreeBase 115
dbFreeEntry. 115
doFreeForm. 122
dbGet. 133
dbGetDefaultName. 118
dbGetField. 133
dbGetFieldindex 137
dbGetFieldName. 118
dbGetFieldType.t 118
dbGetFormPrompt 122
dbGetFormValue. 122
dbGetLink. 133
dbGetLinkDBFtype. 138
dbGetLinkField. 122
dbGetLinkType.cooviiiiiit 122
dbGetMenuChoices. 120
dbGetMenulndex 121
dbGetMenulndexFromString 121
dbGetMenuStringFromindex 121
dbGetNelements. 138
dbGetNFields 118
dbGetNLinks.coviii 122
dbGetNMenuChoices. 120
dbGetNRecords.ovviinn... 119
dbGetNRecordTypes. 117
dbGetPdbAddrFromLink 138
dbGetPrompt. 118
dbGetPromptGroup. 118
dbGetRange. 120
dbGetRecordAttribute. 119
dbGetRecordName 119
dbGetRecordTypeName 117
dbGetRset 137
dbGetString. . ..o oo 120
dogf. ... 72
dogrep. ... 71
doher. ... 75, 80
dblnitEntry 115
dblnvisibleRecord. 120
doior ... 74
dbisDefaultVaue. 120
dblsLinkConnected. 138
dolsvalueField 137
dblsVisibleRecord. 120
dbl ... 71
dbLoadDatabase.ccouinn... 43
dbLoadRecords. 43

168

EPICS IOC Application Developer’'s Guide

INDEX

dbLoadTemplate. 44
dbLockGetLockld. 141
dbLocklnitRecords 141
dbLockSetGblLock. 141
dbLockSetGblUnlock 141
dbLockSetMerge. 141
dbLockSetRecordLock 141
dbLockSetSplitSl ... 141
dolsr. ..o 79
dbNameToAddr. 132
doNextField. 118
dbNextRecord. 119
dbNextRecordType. 117
doNotifyAdd. 137
dbNotifyCancel 136
dbNotifyCompletion. 137
donr. ... 73
dbp. . 73
doPath.........coi 116
dopfo 72
dbpr. ... 72
dbProcess i 139
doPut........... 135
dbPutAttribute. 38, 138
doPutField. 134
doPutForm. ... 122
dbPutLinkcoovie 134
dbPutMenuindex. 121
dbPutNotify....................... 135-136
dbPutRecordAttribute. 118
dbPutString 120
doPvdDump 82, 124
dbPvdTableSize. 49
DBR AL DOUBLE.................... 131
DBR AL LONG..............covuun.. 131
DBR CHAR.........cciiiiii e 131
DBR CTRL DOUBLE 131
DBR CTRL LONG.................... 131
DBR DOUBLEcvvuunn. 131
DBR ENUM.......................... 131
DBR ENUM STRS.................... 131
dor_field_typeinDBADDR.............. 129
DBR FLOAT ... 131
DBR GR DOUBLE.................... 131
DBRGRLONG..........covvvvvnnnn 131
DBRLONG..........oiiiiiiiii .. 131
DBR PRECISION 131
DBR PUT ACKS 131-132
DBR PUT ACKT 131-132
DBR SHORTcciiiiiiiannn. 131
DBR STATUS ... 131
DBRTIME.................. ot 131
DBR UCHAR 131
DBRULONGcciiiiieeeinnn 131
DBRUNITS. ... 131
DBR USHORT..............coviinn.. 131

DBR_xxx Database Reguest Types and Options .
130

dbReadDatabase 116
dbReadDatabaseFP. 116
dbReadTest i, 45
dbRenameRecord 120
dbReportDeviceConfig.................. 124
dbs. ... 73

doScanh........... ...l 156
dbScanFwdLink 139
doScanLink............ 138
dbScanLock. 140
dbScanPassive. 138
dbScanUnlock.t 140
dostat. 74
dbt. ... 78
dotgf ... 78
doToMenuH 39
dbToRecordtypeH 39
dotpf 79
dotpn. ... 79
dbtr ... 72
dbTranslateEscapecconn... 27
dovalueSize................ ... 137
doVerify. ... 120
doVerifyForm 122
dbVisibleRecord 120
dbWriteBresktable 116
dbWriteBreaktableFP 116
dbWriteDevice o 116
dbWriteDeviceFP 116
doWriteDriver. 116
doWriteDriverFP. 116
doWriteMenu 116
doWriteMenuFP 116
doWriteRecord 117
dbWriteRecordFP. 117
dbWriteRecordType 116
dbWriteRecordTypeFP 116
DCT_FWDLINKo 114
DCT_INLINK. ... 114
DCT_INTEGER...............cvvunnn. 114
DCT_LINK_CONSTANT 121
DCT LINK DEVICE 121
DCT LINK FORMoonnn. 121
DCT_LINK PV ... 121
DCT MENU...........coiiiiiiinn 114
DCT_MENUFORM 114
DCT_NOACCESS.......c.covvvieiinnnn 114
DCT_OUTLINK. 114
DCT REAL ... 114
DCT STRING 114
devConnectinterrupt 146
devCreateMask 147
devDisablelnterruptLevel 146
devDisconnectinterrupt. 146
devEnablelnterruptLevel 146
device ... 26
device - database definition. 33
Device Support Entry Table 91
devNmIToDigt 147
devNormalizedGblGetField 146
devRegisterAddress 145
devUnregisterAddress. 146
driver. ... 26
driver - database definition 34
Driver Support Entry Table Example. 110
drvet_name - driver definition. 34
DSET. .ot 91
dset-dbCommon 103
dset_name - device definition.............. 34
dtyp-dbCommon. 103

169

EPICS IOC Application Developer’'s Guide

INDEX

E

etc. ... 74, 86
Environment Variables 51
EPICS. ... 1,5

Basic Attributes. 6

Hardware/Software Platforms. 6

OVENVIEW. ..o 1
EPICS CA_ADDR LIST 51
EPICS CA_AUTO_ADDR LIST.......... 51
EPICS CA_BEACON_PERIOD........... 51
EPICS CA_CONN_TMO 51
EPICS CA_REPEATER PORT 51
EPICS CA_SERVER PORT.............. 51
EPICS 10C_LOG_FILE_COMMAND...... 87
EPICS IOC_ LOG_FILE_LIMIT........... 87
EPICS I0C_LOG_FILE_NAME 87
EPICS IOC LOG INET 51
EPICS IOC_ LOG PORT.............. 51, 88
EPICS TS MIN_WEST 51
EPICS TS NTP_INET 51
epicsAddressType.oviv v 145
epicsAddressTypeName 145
epicsinterruptType 146
epicsPrintf........... 85, 101
epicsPrtEnvParams 78
epicsRelease 78
EPICStovxWorksAddrType 145
epicsVprintf. 85
erlogTask ... 85
errflogAddListener. 86
erlogFatal 84
errflogGetSevEnumString 84
errlogGetSevToLog.ovvvii i 84
erloginfoo 84
errloglnit. 49, 86
errloglistener 86
erlogMaor. 84
erlogMessage. 84
erlogMinor. i 84
errlogPrintf 84
errlogRemoveListener. 86
errlogSetSevToLog. ooo v 84
errlogSevEnum 84
errflogSevPrintf L 84
errflogSevvprintf............. 84
errlogvprintf......... ... oo 84
aTMESSage 84
erPrintf. ... 84-85
EscapeSequence. ...t 27
Event...... 155
Event-ScanType..............coovnn.. 155
EventScamning. 160
EVNT - Scan Related Field 156
extra- field definitionrules. 29
extra_info - field definition. 31

F

fidd. . 26
field_name- field definition 29

field_name - record instance definition. 35
field sizeinDBADDR.................. 129
field_typeinDBADDR. 129
filed_type - field definition 30
filename extension conventions 27
FLDNAME SZ..............cooiitt 127
FWDLINK 13
G

get_alarm_double Record Support Routine . . 100

get_array_info - Record Support Routine. 98
get_control_double - Record Support Routine 100
get_enum_str - record Support Routine 99
get_enum_strs - record Support Routine 99
get_graphic_double-example 94
get_graphic_double - Record Support Routine. 99
get_ioint_info.............. 159
get_ioint_info - device support routine. 108
get_precision - Record Support Routine. 99
get_units- .example 94
get_units - Record Support Routine. 98
Oft o 80
GPIB_IO. ... 36
grecord ... 26
gui_group - field definition. 30
Guidelines for Asynchronous Records. 20
Guidelines for Synchronous Records. 19
H
HAG .. 54-56
|
I/OEvent-ScanType. 155
I/OEventscanned. 155
I/OEventScanning................. 157, 160
include. 26
include - Database Definitions 28
Include File Generation. 39
init - device support routine 107
init - Record Support Routine. 97
init_record - device support routine 108
init_record-example 92
init_record - Record Support Routine. 97
init_value- field definition 30
InitDatabasecooiiin... 438
InitDevsSupo 48
INItDIVSUp. ... 48
initHookFunction 50
initHookRegister. 50
initHooks.o oo i 50
initHookState 50
initial - field definitionrules. 29
InitidizeLoggingooviiii.. 51
initPeriodic 162
InitRecSuUp. 48

170

EPICS IOC Application Developer’'s Guide

INDEX

INLINK. e 13
INP . 55
Input/Output Controller 1
Hardware/Software Platforms. 6
Software Components. 7
INST 1O, ..o 36
interest - field definitionrules. 29
interest_level - field definition 31
interruptAccept 48
IOC . 5
See Input/Out Controller
IOCError Logging . . .+« vvvoeeeeeen s 83
iochnit 48
iocLogClient................ 87
iocLogDisable. 87
iocLogServer. i 87
K
Keywordsciiiiiiin... 26
L
LAN 5
linkh. ... o 127
LINK_ALARM. ... 14
link_type - device definition............... 34
Local Area Network
Hardware/Software Platforms. 6
10gMSg ..o 87
M
Macro Substitution 27
MAX_STRING SIZE 127
Maximize Severity, 14
07 016 26
menu - Database Definition 28
menu - field definitionrules 29
MeNUSCaN.asCiivvvvve i 156
monitor -example. 96
MS. 14
Multiple Definitions 27
N
name - breakpointtable. 34
NMS 14
no_elementsinDBADDR 129
NPP . 14
o

Operator Interface
Hardware/Software Platforms. 6

OPl ..o 5
OUTLINK. ... 13
Overview of Record Processing 89
P
Passive. 155
Passive- ScanType.oovvviinnn.,. 155
path ... 26
path - Database Definitions. 27
Periodic-ScanType. 155
PeriodicScanning. 161
periodicTask 162
pfieldinDBADDR 129
pfldDesinDBADDR 129
Pit 80
PHAS- Scan Related Field. 156
post event.............., 157, 160
PP 14
pp - field definitionrules. 29
pp_vaue- field definition. 31
precord-DBADDR 129
PRIO - Scan Related Field 156
process-example. ... 93
process - Record Support Routine 98
process - record support routine. 16
ProcessPassive...............cooii... 14
prompt - field definitionrules. 29
prompt_value - field definition 30
...................................... 29
PsuedoField 37
put_array_info - Record Support Routine. 98
put_enum_str - Record Support Routine 99
PULENV . .o 51
PUTNOTIFYo 136
PV_LINK .o 35
PYNAME SZ.............coiin 127
Q
QuotedStringovieie 27
R
recGblDbaddrError. 101
recGblFwdLink. 102
recGblGetAlarmDouble 101
recGblGetControlDouble 101
recGblGetGraphicDouble. 101
recGhlGetPrec. 102
recGblGetTimeStamp 102
recGblInitConstantLink 102
recGblRecordError 101
recGblRecsupError 101
recGblResetAlarms. 101
recGblSetSevr................... ... 100
record ... 26
recordattribute L L 37

171

EPICS IOC Application Developer’'s Guide

record instance - database definition. 35

Record InstanceFile..................... 25
Record Processing. 16
Record Support Entry Table 90
record type - Database Definition........... 29
record_name - record instance definition 35
record_type - device definition. 34
record_type - record instance definition. 35
record_type - record type definition 29
recordtype. 26
report - device support routine 107
report - Record Support Routine. 97
Resource Definitions. 52
RFE IO . . 36
RSET. .ot 90
RSET-example 91
RULE ... e 55
rules

field definition. 29
SdoBlocked............... ..., 136
Sdb Pending................ ... 136
SCAN - Scan Related Field 155
ScanOnce-ScanType.c.c..... 155
Scan Related Database Fields. 155
SCAN_1ST PERIODIC................. 157
sCanAdd. ... 157
scanDelete. i 157
scanlnit 157
scanlolnit. 161
scanloRequest. s 161
SCANONCE. . ..ottt 162
scanOnceSetQueueSize. 49, 162
SCANPEL. . o 75
SCaNPIiol . ..o 75
scanppl .. 75
size- field definitionrules. 29
size value- field definition. 31
SPC ALARMACK. ...t 31
SPC AS ... 31
SPC CALC. ... 31
SPC DBADDR.ciiiiiiiiiiin. 31
SPC LINCONV ...ttt 31
SPC MODoiiii i 31
SPC NOMODcoviiiiiiinn. 31
SPC RESET . ..o 31
SPC SCAN. ... 31
special - field definitionrules 29
special - Record Support Routine. 98
special inDBADDR 129
special_value- field definition 31
SAUSCOAES . . . oo e 86
structdbAddr 129
struct putNotify........................ 136
synchronous device support example. 104

172

EPICS IOC Application Developer’'s Guide

INDEX

T
taskwd.h ... 152
taskwdAnylnsert. 152
taskwdAnyRemove. 153
taskwdlnsert L 152
taskwdRemove i 152
tmexN. 78
PN . 80
Tsinit. ... 48
TSConfigure 49
TSconfigure. 49
TSreport 75

u
UAG . 54-55
Unquoted Stringo oo 27

\Y
value - record instance definition 35
VECHISt .o 78
VME_AM_EXT_SUP DATA 145
VME_AM_STD_SUP DATA 145
VME_AM_SUP_SHORT _IO............. 145
VME IO . . 36
VX IO, 37
vxWorks startup command file............. 47

EPICS Release: R3.13.0betal2

EPICS IOC Application Developer’'s Guide

173

174 EPICS I0C Application Developer’s Guide

	EPICS Input / Output Controller (IOC) Application Developer’s Guide
	Martin R. Kraimer
	Preface
	Overview
	Acknowledgments

	Chapter 1: EPICS Overview
	What is EPICS?
	Basic Attributes
	Hardware - Software Platforms (Vendor Supplied)
	OPI
	LAN
	IOC
	IOC Software Components

	IOC Database
	Database Access
	Database Scanning
	Record Support, Device Support and Device Drivers
	Channel Access
	Database Monitors
	Channel Access

	Client Services
	Search Server
	Connection Request Server
	Connection Management
	OPI Tools

	Channel Access Tools
	Other OPI Tools
	EPICS Core Software
	Getting Started

	Chapter 2: Database Locking, Scanning, And Processing
	Overview
	Record Links
	Database Links
	Process Passive
	Maximize Severity
	Database Locking
	1. The periodic, I/O event, and event tasks lock before and unlock after processing:
	2. dbPutField locks before modifying a record and unlocks afterwards.
	3. dbGetField locks before reading and unlocks afterwards.
	4. Any asynchronous record support completion routine must lock before modifying a record and unl...

	Database Scanning
	5. Periodic - Records are scanned at regular intervals.
	6. I/O event - A record is scanned as the result of an I/O interrupt.
	7. Event - A record is scanned as the result of any task issuing a post_event request.
	8. Passive - A record is scanned as a result of a call to dbScanPassive. dbScanPassive will issue...

	Record Processing
	Guidelines for Creating Database Links
	9. A begins processing. While processing a request is made to process B.
	10. B starts processing. While processing a request is made to process C.
	11. C starts processing. One of the first steps is to get a value from A via the input link.
	12. At this point a question occurs. Note that the input link specifies process passive (signifie...
	13. C obtains the value from A and completes its processing. Control returns to B.
	14. B completes returning control to A
	15. A completes processing.

	Rules Relating to Database Links
	Processing Order
	1. Forward links are processed in order from left to right and top to bottom. For example the fol...
	2. If a record has multiple input links (calculation and select records) the input is obtained in...
	3. All input and output links are processed before the forward link.

	Lock Sets
	PACT - processing active
	Process Passive: Link option
	1. Fanout starts processing and asks that B be processed.
	2. B begins processing. It calls dbGetLink to obtain data from A.
	3. Because the input link has process passive true, a request is made to process A.
	4. A is processed, the data value fetched, and control is returned to B
	5. B completes processing and control is returned to fanout. Fanout asks that C be processed.
	6. C begins processing. It calls dbGetLink to obtain data from A.
	7. Because the input link has process passive TRUE, a request is made to process A.
	8. A is processed, the data value fetched, and control is returned to C.
	9. C completes processing and returns to fanout
	10. The fanout completes

	Process Passive: Field attribute
	Maximize Severity: Link option
	Guidelines for Synchronous Records
	1. A record can be scanned periodically (at one of several rates), via I/O event, or via Event.
	2. For each periodic group and for each Event group the phase field can be used to specify proces...
	3. The application programmer has no control over the record processing order of records in diffe...
	4. The disable fields (SDIS, DISA, and DISV) can be used to disable records from being processed....
	5. A record (periodic or other) can be the root of a set of passive records that will all be proc...
	6. The process_passive option specified for each field of each record determines if a passive rec...
	7. The process_passive option for input and output links provides the application developer contr...
	8. General link structures can be defined. The application programmer should be wary, however, of...

	Guidelines for Asynchronous Records
	9. pact is set TRUE
	10. Data is obtained for all input links
	11. Record processing is started
	12. The record processing routine returns
	13. Record processing continues
	14. Record specific alarm conditions are checked
	15. Monitors are raised
	16. Forward links are processed
	17. pact is set FALSE.
	18. Asynchronous record processing does not delay the scanners.
	19. Between the time record processing begins and the asynchronous completion routine completes, ...
	20. Forward and output links are triggered only when the asynchronous completion routine complete...

	Infinite Loop
	1. A starts record processing and returns leaving pact TRUE.
	2. Sometime later the record completion for A occurs. During record completion a request is made ...
	3. Sometime later the record completion for B occurs. During record completion a request is made ...

	Obtain Old Data
	Delays
	Task Abort
	Cached Puts
	Channel Access Links
	1. A record link that references a record in a different IOC.
	2. A link that the application developer forces to be a channel access link.

	INLINK
	OUTLINK
	FWDLINK
	Chapter 3: Database Definition

	Overview
	Definitions
	Summary
	General Rules
	Keywords
	Unquoted Strings
	Quoted Strings
	Macro Substitution
	Escape Sequences
	dbTranslateEscape
	Define before referencing
	Multiple Definitions
	filename extension
	path addpath
	include
	comment
	menu
	Record Type
	rules
	definitions
	Example
	device
	definitions
	Examples
	driver
	Definitions
	Examples
	breakpoint table
	Definitions
	Example
	record instance
	definitions
	Examples
	record attribute

	Breakpoint Tables
	1. No Conversion.
	2. Linear Conversion.
	3. Breakpoint table.

	Menu and Record Type Include File Generation.
	Introduction
	dbToMenuH
	Example

	dbToRecordtypeH
	Example
	Discussion of Generated File

	Utility Programs
	dbExpand
	dbLoadDatabase
	EXAMPLE
	dbLoadRecords
	dbLoadTemplate
	EXAMPLE
	dbReadTest

	Chapter 4: IOC Initialization
	Overview
	iocInit
	coreRelease
	getResources
	iocLogInit
	taskwdInit
	callbackInit
	dbCaLinkInit
	initDrvSup
	initRecSup
	initDevSup
	ts_init
	initDatabase
	finishDevSup
	scanInit
	interruptAccept
	initialProcess
	rsrv_init
	Changing iocCore fixed limits

	callbackSet QueueSize
	dbPvdTableSize
	scanOnceSet QueueSize
	errlogInit
	TSconfigure
	initHooks
	Environment Variables
	Initialize Logging
	Get Resource Definitions

	Chapter 5: Access Security
	Overview
	1. Overview - This section
	2. Quick start - A summary of the steps necessary to start access security.
	3. User’s Guide - This explains what access security is and how to use it.
	4. Design Summary - Functional Requirements and Design Overview.
	5. Application Programmer’s Interface
	6. Database Access Security - Access Security features for EPICS IOC databases.
	7. Channel Access Security - Access Security features in Channel Access
	8. Implementation Overview

	Quick Start
	User’s Guide
	Features
	Limitations
	Definitions
	Access Security Configuration File
	Simple Example
	Syntax Definition
	Discussion
	1. The ASG associated with the record is searched.
	2. Each RULE is checked for the following:
	a. The field’s level must be less than or equal to the level for this RULE.
	b. If UAG is defined, the user must belong to one of the specified UAGs. If UAG is not defined al...
	c. If HAG is defined, the user’s host must belong to one one of the HAGs. If HAG is not defined a...
	d. If CALC is specified, the calculation must yield the value 1, i.e. TRUE. If any of the INP fie...
	3. The maximum access allowed by step 2 is the access chosen.

	ascheck - Check Syntax of Access Configuration File
	IOC Access Security Initialization
	Database Configuration
	Access Security Group
	Subroutine Record Support
	1. Modify the file specified by the last call to asSetFilename so that it contains the new config...
	2. Write a 1 to the subroutine record VAL field. Note that this can be done via channel access.
	1. When the value is found to be 1, asInit is called and the value set back to 0.
	2. The record is treated as an asynchronous record. Completion occurs when the new access configu...

	Record Type Description
	Example:
	1. Anyone can have read access to all fields at anytime.
	2. Linac engineers, located in the injection control or control room, can have write access to mo...
	3. Operators, located in the injection control or control room, can have write access to most lev...
	4. The operations supervisor, linac supervisor, and the application developers can have write acc...
	5. Most records use the above rules but a few (high voltage power supplies, etc.) are placed unde...
	6. IOC channel access clients always have level 1 write privilege.
	Design Summary

	Summary of Functional Requirements
	1. Each field of each record type is assigned an access security level.
	2. Each record instance is assigned to a unique access security group.
	3. Each user is assigned to one or more user access groups.
	4. Each node is assigned to a host access group.
	5. For each access security group a set of access rules can be defined. Each rule specifies:
	a. Access security level
	b. READ or READ/WRITE access.
	c. An optional list of User Access Groups or * meaning anyone.
	d. An optional list of Host Access Groups or * meaning anywhere.
	e. Conditions based on values of process variables

	Additional Requirements
	Performance
	Generic Implementation
	No Access Security within an IOC
	Defaults
	Access Security is Optional
	Design Overview
	Configuration File
	Access Security Library
	IOC Database Access Security
	Channel Access Security
	Comments
	Performance and Memory Requirements
	1. A database consisting of 5000 soft analog records was created.
	2. A channel access client (caput) was created that performs ca_puts on each of the 5000 channels...
	3. A channel access client (caget) was created that has monitors on each of the 5000 channels.
	Access Security Application Programmer’s Interface

	Definitions
	Initialization
	Group manipulation
	add Member
	remove Member
	get Member Pvt
	put Member Pvt
	change Group
	Client Manipulation
	add Client
	change Client
	remove Client
	get Client Pvt
	put Client Pvt
	register Callback
	check Get
	check Put
	Access Computation
	compute all Asg
	compute Asg
	compute access rights
	Diagnostic
	dump
	dump UAG
	dump HAG
	dump Rules
	dump member
	dump hash table
	Database Access Security

	Access Level definition
	1. Structure fldDes (dbBase.h), which describes the attributes of each field, contains a field ac...
	2. Each field description in a record description contains a field with the value ASLx.

	Access Security Group definition
	Access Client Definition
	Database Access Library
	Initialization
	Routines used by Channel Access Server
	Routine to test asAddClient
	Subroutines attached to a subroutine record
	Diagnostic Routines
	Channel Access Security

	CA Server Interfaces to the Access Security System
	Client Interfaces
	Access Control: Implementation Overview

	Implementation Overview
	Locking
	Structures

	Chapter 6: IOC Test Facilities
	Overview
	This chapter describes a number of IOC test routines that are of interest to both application dev...
	The user should also be aware of the field TPRO, which is present in every database record. If it...

	Database List, Get, Put
	dbl
	Database List:
	Examples
	This command prints the names of records in the run time database. If <record type> is not specif...
	If <filename> is specified the output is written to the specified file (if the file already exist...

	dbgrep
	List Record Names That Match a Pattern:
	Examples
	Lists all record names that match a pattern. The pattern can contain any characters that are lega...

	dba
	Database Address:
	Example
	This command calls dbNameToAddr and then prints the value of each field in the dbAddr structure d...

	dbgf
	Get Field:
	Example:
	This performs a dbNameToAddr and then a dbGetField. It prints the field type and value. If the fi...

	dbpf
	Put Field:
	Example:
	This command performs a dbNameToAddr followed by a dbPutField and dbgf. If <field_name> is not sp...

	dbpr
	Print Record:
	Example
	This command prints all fields of the specified record up to and including those with the indicat...

	dbtr
	Test Record:
	This calls dbNameToAddr, then dbProcess and finally dbpr (interest level 3). Its purpose is to te...

	dbnr
	Print number of records:
	This command displays the number of records of each type and the total number of records. If all_...
	Breakpoints
	A breakpoint facility that allows the user to step through database processing on a per lockset b...
	The breakpoint facility records all attempts to process records in a lockset containing breakpoin...

	dbb
	Set Breakpoint:
	Sets a breakpoint in a record. Automatically spawns the bkptCont, or breakpoint continuation task...

	dbd
	Remove Breakpoint:
	Removes a breakpoint from a record.

	dbs
	Single Step:
	Steps through execution of records within a lockset. If this command is called without an argumen...

	dbc
	Continue:
	Continues execution until another breakpoint is found. This command may also be called without an...

	dbp
	Print Fields Of Suspended Record:
	Prints out the fields of the last record whose execution was suspended.

	dbap
	Auto Print:
	Toggles the automatic record printing feature. If this feature is enabled for a given record, it ...

	dbstat
	Status:
	Prints out the status of all locksets that are suspended or contain breakpoints. This lists all t...
	The above indicates that two locksets contain breakpoints. One lockset is stopped at record “so.”...
	Error Logging

	eltc
	Display error log messages on console:
	This determines if error messages are displayed on vxWorks console. A value of 0 means no and any...
	Hardware Reports

	dbior
	I/O Report:
	This command calls the report entry of the indicated driver. If <driver_name> is not specified th...

	dbhcr
	Hardware Configuration Report:
	This command produces a report of all hardware links. To use it on the IOC, issue the command:
	The report will probably not be in the sort order desired. The Unix command:
	should produce the sort order you desire.
	Scan Reports

	scanppl
	Print Periodic Lists:
	This routine prints a list of all records in the periodic scan list of the specidied rate. If rat...

	scanpel
	Print Event Lists:
	This routine prints a list of all records in the event scan list for the specified event nunber. ...

	scanpiol
	Print I/O Event Lists:
	This routine prints a list of all records in the I/O event scan lists.
	Time Server Report

	TSreport
	Format:
	This routine prints out information about the Time server. This includes:
	Access Security Commands

	asSetFilename
	Format:
	This command defines a new access security file.

	asInit
	Format:
	This command reinitializes the access security system. It rereads the access security file in ord...

	asdbdump
	Format:
	This provides a complete dump of the access security database.

	aspuag
	Format:
	Print the members of the user access group. If no user access group is specified then the members...

	asphag
	Format:
	Print the members of the host access group. If no host access group is specified then the members...

	asprules
	Format:
	Print the rules for the specified access security group or if no group is specified for all groups.

	aspmem
	Format:
	Print the members (records) that belong to the specified access security group, for all groups if...
	Channel Access Reports

	ca_channel_status
	Format:
	Prints status for each channel in use by specialized vxWorks task.

	casr
	Channel Access Server Report
	Level can have one of the following values:

	dbel
	Format:
	This routine prints the Channel Access event list for the specified record.

	dbcar
	Database to Channel Access Report - See “Record Link Reports”
	Interrupt Vectors

	veclist
	Format:
	Print Interrupt Vector List
	EPICS

	epicsPrtEnvParams
	Format:
	Print Environment Variables

	epicsRelease
	Format:
	Print release of iocCore.
	Database System Test Routines
	These routines are normally only of interest to EPICS system developers NOT to Application Develo...

	dbt
	Measure Time To Process A Record:
	Times the execution of 100 successive processings of record record_name. Note that process passiv...

	dbtgf
	Test Get Field:
	Example:
	This performs a dbNameToAddr and then calls dbGetField with all possible request types and option...

	dbtpf
	Test Put Field:
	Example:
	This command performs a dbNameToAddr, then calls dbPutField, followed by dbgf for each possible r...

	dbtpn
	Test Put Notify:
	Example:
	This command performs a dbNameToAddr, then calls dbPutNotify and has a callback routine that prin...
	Record Link Routines

	dblsr
	Lock Set Report:
	This command generates a report showing the lock set to which each record belongs. If recordname ...
	level can have the following values:

	dbcar
	Database to channel access report
	This command generates a report showing database channel access links. If recordname is 0 then in...
	level can have the following values:

	dbhcr
	Report hardware links. See “Hardware Reports”.
	Old Database Access Testing
	These routines are of interest to EPICS system developers. They are used to test the old database...

	gft
	Get Field Test:
	Example:
	This performs a db_name_to_addr and then calls db_get_field with all possible request types. It p...

	pft
	Put Field Test:
	Example:
	This command performs a db_name_to_addr, db_put_field, db_get_field and prints the result for eac...

	tpn
	Test Put Notify:
	Example:
	This routine tests dbPutNotify via the old database access interface.
	Routines to dump database information

	dbDumpPath
	Dump Path:
	The current path for database includes is displayed.

	dbDumpMenu
	Dump Menu:
	If the second argument is 0 then all menus are displayed.

	dbDumpRecordType
	Dump Record Description:
	If the second argument is 0 then all descriptions of all records are displayed.

	dbDumpFldDes
	Dump Field Description:
	If the second argument is 0 then the field descriptions of all records are displayed. If the thir...

	dbDumpDevice
	Dump Device Support:
	If the second argument is 0 then the device support for all record types is displayed.

	dbDumpDriver
	Dump Driver Support:

	dbDumpRecords
	Dump Record Instances:
	If the second argument is 0 then the record instances for all record types is displayed. The thir...

	dbDumpBreaktable
	Dump breakpoint table
	This command dumps a breakpoint table. If the second argument is 0 all breakpoint tables are dumped.

	dbPvdDump
	Dump the Process variable Directory:
	This command shows how many records are mapped to each hash table entry of the process variable d...

	Chapter 7: IOC Error Logging
	Overview
	Error Message Routines
	Basic Routines
	Log with Severity
	Status Routines
	Obsolete Routines
	errlog Task

	Add and Remove Log Listener
	target console routines
	Status Codes
	iocLog

	iocLogServer
	iocLogClient
	Initialize Logging
	Configuring a Private Log Server

	Chapter 8: Record Support
	Overview
	Overview of Record Processing
	1. Initiate the I/O operation and set pact TRUE
	2. Determine a method for again calling process when the operation completes
	3. Return immediately without completing record processing
	4. When process is called after the I/O operation complete record processing
	5. Set pact FALSE and return

	Record Support and Device Support Entry Tables
	Example Record Support Module
	Declarations
	init_record
	process
	Miscellaneous Utility Routines
	Alarm Processing
	Raising Monitors
	Record Support Routines

	Generate Report of Each Field in Record
	Initialize Record Processing
	Initialize Specific Record
	Process Record
	Special Processing
	Get Value
	Convert dbAddr Definitions
	Get Array Information
	Put Array Information
	Get Units
	Get Precision
	Get Enumerated String
	Get Strings for Enumerated Field
	Put Enumerated String
	Get Graphic Double Information
	Get Control Double Information
	Get Alarm Double Information
	Global Record Support Routines

	Alarm Status and Severity
	Alarm Acknowledgment
	Generate Error: Process Variable Name, Caller, Message
	Generate Error: Status String, Record Name, Caller
	Generate Error: Record Name, Caller, Record Support Message
	Get Graphics Double
	Get Control Double
	Get Alarm Double
	Get Precision
	Get Time Stamp
	Forward link
	Initialize Constant Link

	Chapter 9: Device Support
	Overview
	Example Synchronous Device Support Module
	Example Asynchronous Device Support Module
	1. When first called pact is FALSE. It arranges for a callback (myCallback) routine to be called ...
	2. It prints a message stating that processing has started, sets pact TRUE, and returns. The reco...
	3. When the specified time elapses myCallback is called. It locks the record, calls process, and ...
	4. When process executes, it again calls read_ai. This time pact is TRUE.
	5. read_ai prints a message stating that record processing is complete and returns a status of 2....
	6. When read_ai returns the record processing routine completes record processing.

	Device Support Routines
	Generate Device Report
	Initialize Record Processing
	Initialize Specific Record
	Get I/O Interrupt Information
	Other Device Support Routines

	Chapter 10: Driver Support
	Overview
	Device Drivers
	init
	report
	Hardware Configuration

	Chapter 11: Static Database Access
	Overview
	Definitions
	DBBASE
	DBENTRY
	Field Types
	Allocating and Freeing DBBASE

	dbAllocBase
	dbFreeBase
	DBENTRY Routines

	Alloc/Free DBENTRY
	dbInitEntry dbFinishEntry
	dbCopyEntry dbCopyEntry Contents
	Read and Write Database

	Read Database File
	Write Database Definitons
	Write Record Instances
	Manipulating Record Types

	Get Number of Record Types
	Locate Record Type
	Get Record Type Name
	Manipulating Field Descriptions

	Get Number of Fields
	Locate Field
	Get Field Type
	Get Field Name
	Get Default Value
	Get Field Prompt
	Manipulating Record Attributes

	dbPutRecord Attribute
	dbGetRecord Attribute
	Manipulating Record Instances

	Get Number of Records
	Locate Record
	Get Record Name
	Create/Delete/Free Record
	Copy Record
	Rename Record
	Record Visibility
	Find Field
	Get/Put Field Values
	Manipulating Menu Fields

	Get Number of Menu Choices
	Get Menu Choice
	Get/Put Menu
	Locate Menu
	Manipulating Link Fields

	Link Types
	All Link Fields
	Constant and Process Variable Links
	Manipulating MenuForm Fields

	Alloc/Free Form
	Get/Put Form
	Verify Form
	Get Related Field
	Example
	Find Breakpoint Table
	Dump Routines
	Examples

	Expand Include
	dbDumpRecords

	Chapter 12: Runtime Database Access
	Overview
	Database Include Files
	dbDefs.h
	dbFldTypes.h
	1. Constant - The value associated with the field is a floating point value initialized with a co...
	2. Hardware links - The link contains a data structure which describes a signal connected to a pa...
	3. Process Variable Links - This is one of three types:
	a. PV_LINK: The process variable name.
	b. DB_LINK: A reference to a process variable in the same IOC.
	c. CA_LINK: A reference to a variable located in another IOC.

	dbAccess.h
	link.h
	Runtime Database Access Overview

	Database Request Types and Options
	Options Example
	ACKT and ACKS
	Database Access Routines

	dbNameToAddr
	Get Routines
	dbGetField
	dbGetLink dbGetLinkValue
	dbGet
	Put Routines
	dbPutField
	1. If the DISP field is TRUE then, unless it is the DISP field itself which is being modified, th...
	2. The record is locked.
	3. dbPut is called.
	4. If the dbPut is successful then: If this is the PROC field or if both of the following are TRU...
	a. If the record is already active ask for the record to be reprocessed when it completes.
	b. Call dbScanPassive after setting putf TRUE to show the process request came from dbPutField.

	5. The record is unlocked.

	dbPutLink dbPutLinkValue
	1. Calls dbPut.
	2. Implements maximize severity.
	3. If the field being referenced is PROC or if both of the following are true: 1) process_passive...
	a. If the record is already active because of a dbPutField request then ask for the record to be ...
	b. otherwise call dbScanPassive.

	dbPut
	Put Notify Routines
	1. If a putNotify is already active on the record to which the put is directed, dbPutNotify just ...
	2. The user supplied callback is called when all processing is complete or when an error is detec...
	3. The user supplied callback routine must not issue any calls that block such as Unix I/O requests.
	4. In general a set of records may need to be processed as a result of a single dbPutNotify. If d...
	5. If a record in the set is found to be active because of a dbPutField request then when that re...
	6. If a record is found to already be active because of the original dbPutNotify request then not...

	dbPutNotify
	dbNotifyCancel
	dbNotifyAdd
	dbNotifyCompletion
	Utility Routines
	dbBufferSize
	dbValueSize
	dbGetRest
	dbIsValueField
	dbGetFieldIndex
	dbGetNelements
	dbIsLinkConnected
	dbGetPdbAddrFromL ink
	dbGetLinkDBFtype
	Attribute Routine
	dbPutAttribute
	Process Routines
	dbScanPassive dbScanLink dbScanFwdLink
	dbProcess
	Runtime Link Modification
	Channel Access Monitors
	Lock Set Routines

	dbScanLock
	dbScanUnlock
	dbLockGetLockId
	dbLockInitRecords
	dbLockSetMerge
	dbLockSetSplitSl
	dbLockSetGblLock
	dbLockSetGblUnlock
	dbLockSetRecordLock
	Channel Access Database Links

	Basic Routines
	dbCaLinkInit
	dbCaAddLink
	dbCaRemoveLink
	dbCaGetLink
	dbCaPutLink
	dbGetNelements
	dbCaGetSevr
	dbCaIsLinkConnected

	Chapter 13: Device Support Library
	Overview
	Registering VME Addresses
	Definitions of Address Types
	Register Address
	Unregister Address
	Interrupt Connect Routines

	Definitions of Interrupt Types
	Connect
	Disconnect
	Enable Level
	Disable Level
	Macros and Routines for Normalized Analog Values

	Normalized GetField
	Convert Digital Value to a Normalized Double Value
	Convert Normalized Double Value to a Digital Value

	Chapter 14: EPICS General Purpose Tasks
	Overview
	General Purpose Callback Tasks
	Overview
	1. Include callback definitions:
	2. Provide storage for a structure that is a private structure for the callback tasks:
	3. Call routines (actually macros) to initialize fields in CALLBACK:
	4. Whenever a callback request is desired just call one of the following:

	Syntax
	Example
	Callback Queue
	Task Watchdog
	1. Include module:
	2. Insert request:
	3. Remove request:
	4. Insert request to be notified if any task suspends:
	5. Remove request for taskwdAnyInsert:

	Chapter 15: Database Scanning
	Overview
	Scan Related Database Fields
	SCAN
	PHAS
	EVNT - Event Number
	PRIO - Scheduling Priority
	Software Components That Interact With The Scanning System

	menuScan.ascii
	dbScan.h
	Initializing Database Scanners
	Adding And Deleting Records From Scan List
	Declaring Database Event
	Interfacing to I/O Event Scanning
	1. Include <dbScan.h>
	2. For each separate event source the following must be done:
	a. Declare an IOSCANPVT variable, e.g.
	b. Call scanIoInit, e.g.
	3. Provide the device support get_ioint_info routine. This routine has the format:
	4. Whenever an I/O event is detected call scanIoRequest, e.g.

	Implementation Overview

	Definitions And Routines Common To All Scan Types
	Event Scanning
	Figure 15-1: Scan List Memory Layout

	post_event
	I/O Event Scanning
	scanIoInit
	Figure 15-2: Interrupt Source Structure

	scanIoRequest
	Periodic Scanning
	Figure 15-3: Structure after iocInit

	initPeriodic
	periodicTask
	Scan Once
	scanOnce
	SetQueueSize

	Chapter 16: Database Structures
	Overview
	Include Files
	Structures

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

