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Abstract

The transverse and the temporal characteristics of a high-gain free-electron laser
are governed by refractive guiding and sideband instability, respectively. Using the
self-consistent Vlasov-Maxwell equations, we explicitly determine the effective in-
dex of refraction and the guided radiation mode for an electron beam with arbitrary
transverse size. Electrons trapped by the guided radiation execute synchrotron oscil-
lation and hence are susceptible to the sideband instability. We explain the spectral
evolution and determine the sideband growth rate. These theoretical predictions
agree well with GINGER simulation results.
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1 Introduction

After an initial start-up stage and an exponential buildup, the radiation power
of a high-gain free-electron laser (FEL) saturates. A future light source facility
based on a high-gain FEL is very likely to operate in the saturation regime

for maximum power extraction and high stability. This paper investigates
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both the transverse and the temporal characteristics of the radiation in the

saturation regime.

It is worthwhile to first summarize the radiation characteristics in the exponen-
tial growth regime. In the transverse domain, the interplay between diffraction
and gain usually selects a single transverse mode that has a larger growth rate
than any other modes [1]. This process is referred as gain guiding. In the tem-
poral or frequency domain, an initially broadband spectrum of white noise (in
the case of self-amplified spontaneous emission (SASE)) becomes narrower as

the gain is predominant near the resonant frequency [2].

In the saturation regime, the electrons are trapped in the ponderomotive po-
tential of the combined radiation and undulator fields. Scharlemann et al. uses
a fiber analog to point out that guided transverse modes can exist due to the
effective index of refraction caused by the FEL interaction [3]. This process
may be referred as refractive guiding. In this paper, we study the refractive
guiding with the self-consistent Vlasov-Maxwell equations and compare the
results with the FEL simulation code GINGER [4]. The equilibrium state
formed by the guided radiation and the trapped electrons is unstable in the
presence of sideband waves [5]. We discuss the sideband instability and its

implications to SASE FELs.

2 Refractive Guiding

For simplicity, we consider a parallel electron beam by ignoring the transverse

betatron motion. The electron motion is governed by the pendulum equation
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where z = 2pk,z is the scaled distance in an undulator with period A\, =
27 [ky, 0 is the electron phase relative to the resonant wave exp(ik,z — iw,t),
7 = dv/(yp) is the scaled electron energy, & = x+/2pk.k, and 7 = 2pw,(dt)
are the scaled transverse and temporal coordinates, and a is the scaled slowly

varying electric field. Here p is the FEL scaling parameter [6].

At FEL saturation, we may assume the radiation has established a dominant
frequency component at, say, w,. The radiation power stays approximately
constant along Z after saturation, but both the amplitude and phase of the
radiation field can vary with z. Following Refs. [7,8], we look for a “primary
wave” of the form

ag(Z; Z) = A(Z)e™ 9. (2)
Electron motion under such a field is governed by a stationary Hamiltonian

Hy = 24— 2A(2) sin, 3)

where ¢ = 0 + kz + ¢ and ¥’ = 1 + K are canonical variables. The electron
distribution function that satisfies the Vlasov equation is Fy(Hy)U (&), where
F, is an arbitrary function of Hy, and U(&) describes the transverse profile of

the electron beam.

The computer simulation of Ref. [8] shows that the electron distribution in

the saturation regime is very similar to the Boltzmann distribution

Fy(Hy) = Leszo’ (4)

V 27]'[0 (2514)
where [, is the modified Bessel function of order m, and £ is a measure of
particle spread in the pondoromotive potential. Under these assumptions, the

paraxial wave equation for the “primary wave” becomes

<H - 18_2) Az) = U(m)gggj; ~ EU(2)A(). (5)



The ratio of the modified Bessel functions is the bunching fraction. To be
consistent with the last approximation, we require that £A < 1. The approxi-
mated equation can be shown to be equivalent to the mode equation in optical
fibers [9] with the effective index of refraction

2pk,,

=1
n + k.

§U(). (6)

Generated by the bunched electron beam, this effective index of refraction
is slightly larger than 1 and can guide the radiation after saturation [3]. To
demonstrate refractive guiding, we apply Snell’s law from geometrical optics [9]

to obtain the critical angle for total internal reflection:

Here LY = )\,/(47/3p) is the one-dimensional (1-D) power gain length in the

exponential growth regime, and £ ~ 1 after saturation. The right-hand side
of Eq. (7) is approximately the radiation angle determined by gain guiding.
Thus, the radiation is expected to be confined to the e-beam due to the total

internal reflection.

We take a round, uniform electron beam with a transverse size R (i.e., U(Z) =
1 when |Z| = 7 < R = R\/2k,k,p and zero otherwise). Since the guided
mode in the exponential region is axisymmetric, we look for the axisymmetric
solution that satisfies Eq. (5):
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where J,, and K,, are the usual Bessel functions of order m. Matching at
7 = R yields:
@J1(y1) _ Ki(y2)
ya Jo(y1) Ko(y2)’

(9)



where y; = /2(6 — k)R and y, = /2kR. As pointed out in Ref. [8], the
equilibrium solutions are constrained by two constants of motion concerning

the first and second moments of electron energy distribution:

[ dzA*(x) _
K :deU(:_c) (energy conservation),
2 - =1[2
10 a0 JdE[0A/(02)|
&= P> 3R [dzU(z) (10)

where 0,0 = (0,/7)o is the initial rms energy spread. Putting Eq. (8) into

Eq. (10) and eliminating A,, we obtain

2R* oy y2 . (it u3)us
v?+y2  p?  AR? 2R4
y Ji (1) + T2 (y) _
J§ () + I (y1) + J§(y1) /v

(11)

Given the electron beam size R and the initial energy spread o,y, Egs. (9)
and (11) can be solved numerically to determine y; and ys, and hence &, &,
and the guided mode A(r). The mode profile that satisfies the consistency
requirement {Ay < 1 is that of TEMyg (nodeless). As 0,0 = 0 and R — o0,
we have £ = k &~ 0.7 with the plane wave solution, in agreement with Ref. [8]
obtained using a longitudinal phase-space model that is a delta function in
H,. There appears to be a systematic difference between the two models in

the limit R — 0.

Let us compare the theory with the GINGER [4] simulations employing a
parallel electron beam with a Gaussian transverse profile (rms size o). We
take R = v/20, and use the relations

1 dp P

— T = 12
Tk dz  pPocam’ (12)
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where ¢ is the phase of the “primary wave,” Pyeam is the electron beam power,
P is the equilibrium radiation power after saturation, and oy is the equilib-
rium energy spread after saturation. As shown in Fig. 1, k obtained from
Egs. (9) and (11) for g,0 = 0 agrees well with the simulation results obtained
from the radiation phase (at 7 = 0) and from the average power level after
saturation (see Eq. (12)). In Fig. 2 the equilibrium energy spread in units
of p is obtained through the theory (= v/£ 1 + k2) and through simulations.
Although the theory predicts correctly the rising o,, with increasing R, the
numerical values are higher than the simulation results, implying the elec-
tron longitudinal phase space is more complicated than the simple Boltzmann

distribution used in the theory.

Next, we examine the evolution of the transverse profile after saturation. Af-
ter an initial overshoot in the radiation power at the onset of saturation, the
beam-radiation system tends to relax to the self-consistent equilibrium state
prescribed above. Some of the excess radiation is unguided and “leaks” out of
the electron beam through diffraction, while the rest of the excess radiation
gives rise to small amplitude and phase oscillations around the equilibrium
state [8]. Figure 3 illustrates these transverse characteristics using the GIN-
GER simulation of the low-energy undulator test line (LEUTL) FEL [10] at
the Advanced Photon Source. The increase of the rms transverse size of the
radiation with distance z can be explained by the “leaking” portion of the
radiation propagating to r — oo, and the (almost) constant FWHM trans-
verse size clearly indicates a well-guided transverse mode. In Fig. 4, we show
comparison between the calculated FWHM transverse size as a function of
R (0,0 = 0) and the GINGER simulation results using a parallel electron
beam. The agreement is again good. Note that our analysis does not take into

account the e-beam emittance ¢ and is expected to be valid when ¢ < A, /(4m).



3 Sideband instability

As shown in Sec. 2, electrons subject to the Hamiltonian of Eq. (3) execute
synchrotron oscillation in the ponderomotive potential formed by the “primary
wave” and the undulator magnetic field. The small-amplitude synchrotron
frequency is given by Qo = 2pw,v/2A4. Thus, a wave that is shifted from the
resonant frequency by an amount equal to {2 can interact resonantly with the
synchrotron motion and give rise to the sideband instability [5]. This instability
has been studied extensively in the literature, including Refs. [7] and many
others. However, there has been some confusion that the calculated growth
spectra is symmetric about the “primary wave” frequency, while simulations

indicate that the spectrum is asymmetric towards the lower sidebands [7].

Following the one-dimensional analysis of Ref. [11]|, we write the temporal

electric field as
a(T;2) = ap(z —i—/dyb T gtREFPo iz (13)

where ay(Z) is the equilibrium solution (i.e., Eq. (2)), 7 is the scaled detuning

(i.e., w = w,(1 —2p0w)), and b; is a sideband wave and is treated as a perturba-

F,,z

tion. Linearizing the Vlasov-Maxwell equations and assuming b, o e one
obtain [11]
= /lew + (% — K)]2 — (Bp + ia)2. (14)
where
21 d0 dFO
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and f(z) and g(x) are lineshape functions defined in Ref. [11] (neglecting the
untrapped-particle contributions). The corresponding eigenmode is a mixture

of both lower and upper sidebands that satisfies
[y — ap —i(do — )by = (85 + i52)b2‘_p). (16)

In general, | (5 +i02| < | — i(dp — k)|, hence we have |by| > |b_y)| for 7 > 0.
The FEL spectrum after saturation always contains more lower sidebands than

upper sidebands even though the growth rates of both sidebands are equal.

A physical picture of the spectral behavior after saturation was discussed
in Ref. [12]: an initially symmetric spectrum can be viewed as a frequency-
modulated wave. The lower frequency portion of such a wave can extract
more energy because the electron is farther above the resonance, while the
opposite is true for the upper frequency portion of the wave. As a result, the
frequency and the amplitude modulation become correlated, and the spectrum
is asymmetric, emphasizing the lower sidebands (longer wavelength) at the
expense of the upper sidebands. As the energy is continuously extracted, the

sidebands grow and the spectral width becomes broader.

For numerical calculation, let us first consider the zero detuning case (7 = 0).
Using the Boltzmann distribution for Fy (Eq. (4)) and the self-consistent 1-D
equilibrium solution (=8 = & = k = A? = 0.7), we have [y ~ 2ix = 1.41,
since ag = By = 0 and |dy| < |dp|. Thus, the power of the “primary wave” is
oscillatory around the equilibrium value with a scaled oscillation wavenumber
1.4, comparable to 1.25 observed in 1-D simulations and 1.14 calculated using
a different model [8]. For the sideband instability, if we ignore 5, and J, in
Eq. (14) and take the maximum value of the lineshape function f(z) & 0.56

at £ = 1 or 7 = V24 = 1.3 (dw = 2.6pw, = ), we obtain the maximum



sideband growth rate Re[l']: &~ @1 = 0.30, or a maximum sideband power
gain length
1.7),

Amp
This gain length agrees with the GINGER sideband simulation within 10%.

L3P = ~ 3LY. (17)

4 Discussion

The present analysis of refractive guiding and sideband instability assumes a
dominant frequency component at a particular frequency and hence is directly
applicable to a high-gain FEL amplifier that starts with a coherent seed. For
a SASE FEL that starts from the shot noise, the linewidth at the saturation
point is about p [2], smaller than the location of the strongest sideband compo-
nent, which is ~ 2p away from the resonant frequency. Thus, we expect these
physics phenomena to occur in an average sense. For example, after integrating
over the temporal dependence, the GINGER SASE simulation of the radiation
profile evolves qualitatively as does the GINGER steady-state simulation. Be-
cause of the sideband instability, the SASE radiation power continues to grow
(slowly) after saturation but at the expense of increased spectral bandwidth.
These features have been observed in simulations and may explain some of

the spectral measurements at the LEUTL FEL [13,14].

We thank S. Milton and W. Fawley for stimulating discussions, and thank
W. Fawley for providing many useful features in GINGER to enable direct

comparisons with our analysis.
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Fig. 1. s versus the scaled e-beam size R as calculated from theory (curve) and from
GINGER simulations (symbols) (see text for details.)
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Fig. 2. Equilibrium energy spread in units of p.
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Fig. 3. GINGER steady-state simulation of the LEUTL FEL (A, = 530 nm,
ono = 0.1% at 217 MeV, peak current 266 A and ye = 8.5um).
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Fig. 4. Scaled FWHM of the radiation transverse size.
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