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A general Hamiltonian suitable for perturbative analysis of rapidly accelerating beams is derived from first
principles. With the proper choice of coordinates, the resulting Hamiltonian has a simple and familiar form, yet
is able to take into account the rapid acceleration, rf focusing, magnetic focusing, and average space-charge
forces in rf photoinjectors. From the linear Hamiltonian, the beam-envelope evolution is solved and analyzed,
which better illuminates the invariant-envelope solution as well as the theory of emittance compensation. The
third-order nonlinear Hamiltonian is derived and analyzed to some extent. To make the analysis systematic and
self-contained, alternative derivations are given for the smoothed ponderomotive rf focusing and the transfer
matrix of a rf cavity.
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I. INTRODUCTION

High-brightness rf photoinjectors have become the pre-
mier electron source for applications that demand high-
brightness and high-intensity electron beams, such as free-
electron lasers based on self-amplified spontaneous emission.
A key advance in rf photoinjector development is the so-
called emittance compensation, which brings under control
the correlated transverse emittance growth due to linear
space-charge forces �1,2�. Beam dynamics in rf photoinjec-
tors is rather complex because of the strong collective space-
charge forces and time-dependent rf forces that electrons ex-
perience while being rapidly accelerated from rest to
relativistic velocities. Although most of the design studies
are based on simulations, many theoretical investigations
have been done to better understand the dynamics. Besides
the pioneering analysis leading to the proposal of �space-
charge� emittance compensation �1�, two well-known analy-
ses are representative: one is based on analytical integration
of the single-particle equation of motion �3�, and the other is
based on analysis of the beam-envelope equation �4�. The
former provides critical insights during the early days of de-
velopment, while the latter provides a comprehensive ac-
count of emittance compensation with the introduction of the
invariant-envelope solution. However, improvement is desir-
able for better understanding and treatment of the physics.
Here a fresh investigation is presented based on a Hamil-
tonian analysis of the system. The goal is to establish a rig-
orous framework for systematically studying the dynamics,
which can yield and improve established results, and, fur-
thermore, lay the groundwork for analyzing dynamics be-
yond the linear dynamics covered by the transverse envelope
equation. The Hamiltonian we derived is suitable for six-
dimensional treatment. However, our present analysis ne-
glects longitudinal dynamics and is limited to the third-order
Hamiltonian.

The Hamiltonian approach has been used extensively in
perturbative analysis of circular machines, especially for ana-
lyzing nonlinearity. However, it is seldom used in accelera-

tors with rapid acceleration. Consequently, commonly used
Hamiltonians assume a reference particle with �quasi�con-
stant momentum, which is not suitable for our purpose. Thus,
in Sec. II, starting from the very basic relativistic Hamil-
tonian for a single particle, we derive a generic Hamiltonian
with an accelerating reference particle. With the proper
choice of coordinates, the resulting Hamiltonian has a simple
and familiar form, yet is able to take into account the rapid
acceleration, rf focusing, magnetic focusing, and average
space-charge forces in a rf photoinjector. This section is in-
dependent of the rest of the paper, and the result should also
be of interest to systems other than photoinjectors.

Section III specifies the general electromagnetic fields en-
countered in rf photoinjectors and the explicit field models
used in our analysis. The second-order Hamiltonian is de-
rived with these fields. Then linear focusing forces and com-
monly used approximations are addressed. Unique to the
choice of accelerating coordinates, there is a pseudofocusing
force in addition to the Lorentz forces, which helps to sig-
nificantly reduce the complication due to acceleration. Subtle
cancellation between Lorentz focusing and pseudofocusing
is revealed. Smoothed rf focusing is derived in the reduced
coordinates.

Section IV analyzes the beam-envelope equation resulting
from the linear Hamiltonian. Our treatment of the invariant-
envelope solution is much simpler and provides a more sat-
isfactory physical picture. A general solution for small oscil-
lations around the invariant envelopes is given, which
resembles the solution of the simple “illustrative model” in
�4�. For analyzing split photoinjectors, the beam envelope in
drift space is discussed and a better approximation to the
beam-spreading curve is given.

Section V discusses the emittance oscillation based on the
envelope solutions, with emphasis more on the physics of the
invariant envelope and emittance compensation. A practical
matching condition is readily established, as well as the
crossover energy from the space-charge-dominated laminar
regime to the emittance-dominated thermal regime. A gen-
eral proof is given for the damping of correlated emittance
when a beam evolves close to invariant envelopes. The
“double-minimum” feature of emittance oscillation in drift
space of a split injector is explained simply by beam spread-
ing due to space charge.*Electronic address: wangcx@aps.anl.gov
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For those not interested in Hamiltonian analysis, Secs. IV
and V can be read without understanding the others. They
provide an improved account of the essential part of emit-
tance compensation theory �4�.

In Sec. VI, the third-order Hamiltonian is analyzed for
emittance-compensated photoinjectors. The chromatic effect
due to energy spread and the geometric effect due to the rf
field are discussed based on preliminary treatments of these
nonlinearities.

As related exercises, alternative derivations �consistent
with our analysis� are given in the appendixes for the
smoothed ponderomotive rf focusing published in �5� and the
transfer matrix of a rf cavity published in �6�. Other exten-
sive appendixes are included so that the derivations in the
text can be followed with ease.

II. HAMILTONIANS WITH AN ACCELERATING
REFERENCE PARTICLE

The Hamiltonians commonly used for studying beam dy-
namics in accelerators assume a reference particle with �qua-
si�constant momentum. In rf injectors, electrons are rapidly
accelerated; thus a Hamiltonian with an accelerating refer-
ence particle is needed for perturbative analysis. Here we
start from the well-known relativistic Hamiltonian for a par-
ticle of mass m and charge q moving under the influence of
an external electromagnetic field, i.e.,

H = q��X,t� + �m2c4 + �P − qA�X,t��2c2, �1�

where X is the laboratory-frame Cartesian coordinate of the
particle and P is the canonical momentum. The electromag-
netic field is given by the scalar potential � and vector po-
tential A. Time t is the independent variable.

For convenience we use the longitudinal position s of a
reference particle as the independent variable and replace t
with the time of the reference particle tr�s�. Furthermore, we
normalize the momentum by mc. In other words, we use

X̂�s�=X�tr� and P̂�s�=P�tr� /mc as the canonical variables.
The new Hamiltonian is given by

Ĥ�X̂,P̂,s� =
1

ds/dtr

H

mc
=

H„X,P,tr�s�…
�r�s�mc2 . �2�

It is clear that Ĥ�X̂ , P̂ ,s� yields the same Hamiltonian equa-
tions as H�X ,P , t� does. Note that we do not change t to a
canonical variable in order to preserve it as the underlying
independent variable so that particle positions are evaluated
at the same time, which is important for evaluating space-
charge forces. Using the normalized electromagnetic field
potentials

�̂ =
q�

mc2 , Â =
qA

mc
, �3�

the Hamiltonian simply reads

Ĥ =
1

�r
�̂ +

1

�r

�1 + �P̂ − Â�2. �4�

Before continuing, let us say a few words about our no-
tation scheme. Subscripts and superscripts in Roman font are

descriptive in nature. For examples, “k” refers to kinetic �vs
canonical�, “r” refers to the reference particle, “sc” refers to
space charge, and “rf” refers to rf field. On the other hand,
subscripts in italic font usually relate to a component of co-
ordinates, such as x, y, z, and s. It is subtle to distinguish the
radial-component subscript “r” from the reference-particle
subscript “r”. Fortunately, it is quite obvious in most cases,
and few cases may have to rely on the difference in font. A
caret usually indicates a normalized quantity, which is often

dimensionless, such as P̂, �̂, and Â, but not always, such as

X̂ and the reduced coordinates x̂ and �̂ used later.
To facilitate perturbative treatment of beam dynamics, we

change variables to the deviations from the reference particle

with the new coordinate x= X̂− X̂r=X−Xr and the new mo-

mentum p= P̂− P̂r= �P−Pr� /mc. Using the generating func-

tion F2�X̂ ,p ,s�= �X̂− X̂r� · �p+ P̂r�, the new Hamiltonian be-
comes

H�x,p,s� =
1

�r
�̂ +

1

�r

�1 + �p + P̂r − Â�2

− Xr� · �p + P̂r� + x · P̂r�, �5�

where the prime means differentiation with respect to s.
Since several canonical transformations are used in this pa-
per, we choose not to introduce new symbols for new Hamil-
tonians, which can be distinguished by their canonical coor-
dinates.

To expand the square root in the Hamiltonian into a series,

we note that P̂r− Â= P̂r
k−�Â, where P̂r

k is the dimensionless

kinetic momentum of the reference particle, and �Â� Â
− Âr is the difference in vector potential experinced by a
particle and the reference particle, which should be small.
Thus the terms under the square root can be written as 1

+ �P̂r
k�2+2P̂r

k · �p−�Â�+ �p−�Â�2, where P̂r
k=�r�r is the

magnitude of P̂r
k. The first two terms are dominating and sum

to �r
2. Taking �r

2 out of the square root, the rest becomes 1
+2�r

2�z+�r
2�2, where

� =
p − �Â

P̂r
k

=
Pk − Pr

k

Pr
k �6�

is the relative deviation in kinematic momentum, and the
subscript z indicates the longitudinal component in the direc-
tion of Pr

k. This form is suitable for Taylor expansion since

both p / P̂r
k and �Â / P̂r

k, and thus �, are small quantities. Fur-
thermore, when the momentum of the reference particle is
not much larger than the momentum deviation, i.e., � is not
small, �r will be small. Expanding the square-root term up to
the third order yields 1+�r

2�z+�r
2��2−�r

2�z
2� /2−�r

4�z��2

−�r
2�z

2� /2+O��4�. Now the Hamiltonian can be expanded as
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H =
�r

�r
− Xr� · P̂r +

1

�r
�̂ + P̂r� · x − Xr� · p + P̂r

k · �

+
P̂r

k

2
���

2 +
1

�r
2�z

2� −
�r

2

2
P̂r

k · � ���
2 +

1

�r
2�z

2� + ¯ .

�7�

Ignoring both the zeroth-order terms, which do not play a
role in the Hamiltonian equations, and the first-order terms,
which cancel out since the reference particle follows the
first-order solution �Appendix A�, the Hamiltonian reduces
to H=H2+H3+¯, where

H2 = � 1

�r
�̂ − Âz�

2
+

P̂r
k

2
���

2 +
1

�r
2�z

2�
2

, �8�

H3 = � 1

�r
�̂ − Âz�

3
+

P̂r
k

2
���

2 +
1

�r
2�z

2�
3

−
�r

2

2
�P̂r

k · �1����
2 +

1

�r
2�z

2�
2

. �9�

Hereafter integer subscripts indicate which order to keep.
Note that the first terms in both expressions are potential
terms depending only on the coordinates.

The internal space-charge force is modeled by an average
static potential �0

sc in the beam frame �of the reference par-
ticle moving in z direction�, assuming the particles’ relative
motions are negligible for evaluating the space-charge force.
Transforming to the laboratory frame, we have

�sc = �r�0
sc, Az

sc =
�r

c
�sc, �10�

i.e.,

Âz
sc = �r�̂

sc = �r�r�̂0
sc. �11�

Using these relations, the space-charge contribution to the

potential terms �̂ /�r− Âz in the Hamiltonian reduces to
�̂0

sc /�r�r, showing the well-known suppression of space-
charge force due to cancellation of its electric and magnetic
forces in the ultrarelativistic limit. However, the space-
charge vector potential also contributes to the kinematic
terms via �, whose effects are not canceled at all and may
play a role even in the ultrarelativistic limit �for examples,
see Sec. VI and �7��.

The second-order Hamiltonian H2 governs the linear fo-
cusing properties around the reference orbit and usually
dominates the dynamics. It depends on the linear order �,

which is �p− �x ·�Â�r� / P̂r
k. To simplify the linear dynamics,

we make a linear canonical transformation generated by

F2 = x��P̂r
k p̂x −

1

2
�P̂r

k�P̂r
k�x +

1

2
��xÂx�r x�

+ �x ↔ y� + z�p̂z +
1

2
��zÂz�r z� . �12�

The variables are transformed as

x̂ = �P̂r
kx = ��r�rx, �13a�

px = �P̂r
kp̂x − �P̂r

k�x̂ +
��xÂx�r

�P̂r
k

x̂ , �13b�

ẑ = z , �13c�

pz = p̂z + ��zÂz�r ẑ , �13d�

and the y dimension is similarly transformed. Note that x̂ and
ŷ are the so-called reduced coordinates �8,9�. Under the an-
ticipated conditions for the vector potential

��zA��r = 0 and ��yAx�r = − ��xAy�r , �14�

the new Hamiltonian reduces to �Appendix A�

H2 = � 1

�r
�̂ − Âz�

2
+

p̂x
2

2
+	−

�P̂r
k�

�P̂r
k

+
1

P̂r
k

�2Âx

�s�x



r

+ � �xÂy

P̂r
k �

r

2� x̂2

2
+ �x ↔ y in the previous two terms�

+ � �yÂx

P̂r
k �

r

�x̂p̂y − ŷp̂x� +
1

2�r
2�r

4 �x̂� · ��Âz�r
2

+
p̂z

2

2�r�r
3 −

p̂z

�r�r
3 �x� · ��Âz�r +
�2Âz

�s�z



r

ẑ2

2
. �15�

The advantages of this transformation become clear now.
The complication due to acceleration is reduced to a pseudo-
focusing. The kinematic and potential terms are separated,
and the Hamiltonian resumes a familiar form. Note that, until
now, the treatment is generally valid under the conditions in
Eq. �14�.

The third-order Hamiltonian can be worked out using the
reduced coordinates as �Appendix A�

H3 = HC + HG + HL. �16�

The chromatic part reads

HC = −
�r

2�r
p̂z ��p̂x

2 + p̂y
2� + wc�x̂2 + ŷ2��

+
1

�r
2 p̂z� �P̂r

k��
2

�x̂p̂x + ŷp̂y� − ��yÂx�r�x̂p̂y − ŷp̂x�� ,

where

wc = ��P̂r
k�

�P̂r
k
�2

+ � �xÂy

P̂r
k �

r

2

+
��r

2Âz�r

�P̂r
k�3

.

The geometric part reads

HG =
1

P̂r
k
	��̂0

sc�3 + wg
�x̂2 + ŷ2�ẑ

2
− � �2Âr

�z�r
�

r
�x̂p̂x + ŷp̂y�ẑ� ,

where
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wg =
�P̂r

k��

P̂r
k
� �2Âr

�z�r
�

r
− � �3Âz

rf

�z�r2�
r
.

The longitudinal part reads

HL = −
p̂z

3

2�r
4 −

1

2�r�r
3 ��z

2Âz�r ẑ2p̂z − ��z
3Âz

rf�r

ẑ3

6
.

Note that this third-order Hamiltonian was derived with the
fields in the next section in mind. Clearly all terms are rota-
tionally invariant since we have considered only axisymmet-
ric fields.

III. LINEAR FOCUSING AND HAMILTONIAN

In rf photoinjectors there is no dipole field, thus the ref-
erence orbit is straight and ���Az�r=0. The external field
typically consists of an axisymmetric TM01 rf accelerating
field with vector potential �using the real part�

Az
rf = E0 �

n=−�

�
an

�
J0�krnr�ei��t−kzn�s+z�+	0�, �17a�

Ar
rf = iE0 �

n=−�

�
kzn

krn

an

�
J1�krnr�ei��t−kzn�s+z�+	0�, �17b�

and solenoid focusing field

Âmag = �− b̂sy, b̂sx,0� . �18�

Here En is the amplitude of the space harmonic of index n
and an=En /E0; � is the rf frequency, and 	0 is the initial rf
phase from the zero crossing at the origin �the same conven-
tion as in �3,4��. The longitudinal and transverse wave num-
bers of the nth space harmonic �kzn and krn, respectively� are
given by kzn=kz0+2
n /d and krn

2 +kzn
2 =k2= �� /c�2, where d

is the period of the rf structure. J0 and J1 are the Bessel

functions, and r is the radial coordinate. b̂s
= �q /2mc�Bs�0,0 ,s� is the normalized solenoid strength.

Generally the space-charge potential can be complicated.
Here we assume an axisymmetric bunch of charge Q, cen-
tered at the reference particle, whose potential can be written
as �Appendix B�

�0
sc = −

Q

4
�0
�2
�r�z

�g0 + g
x2 + y2

2�r
2 � + O�X4� , �19�

where �r and �z are the transverse and longitudinal beam
sizes whose evolutions need to be determined. �r�z is the
bunch length in the beam frame, and g0�z� and g�z� are geo-
metric form factors that change with time. Since the space-
charge force may have strong nonlinear dependence on z that
may be considered as a parameter in many treatments, we do
not expand the form factors here.

Inserting these fields into Eq. �15�, the linear Hamiltonian
becomes

H2 =
p̂x

2 + p̂y
2

2
+ K

x̂2 + ŷ2

2
−

b̂s

P̂r
k
�x̂p̂y − ŷp̂x� +

p̂z
2

2�r�r
3

+ � �2Âz

�s�z
−

�2Âz
rf

�z2 +
1

P̂r
k
�z

2�̂0
sc�

r

ẑ2

2
, �20�

where the transverse focusing strength K is given by

K�z,s� = −
�P̂r

k�

�P̂r
k

+
1

P̂r
k
��s�rÂr

rf − �r
2Âz

rf�r + � b̂s

P̂r
k�2

+
1

�P̂r
k�2

�x
2�̂0

scr=0. �21�

Note that the two transverse planes are coupled by the sole-
noid through the angular momentum term. This coupling can
be removed by transforming to the Larmor frame that rotates
at one-half of the cyclotron frequency. Such a rotation leaves
all other terms unchanged due to cylindrical symmetry. Here-
after, the angular momentum term will be dropped with the
understanding that the dynamical variables refer to the Lar-
mor frame. Also note that the focusing strength K depends on
z in addition to s through the space-charge form factor
g�z ,s�. The transverse and longitudinal motions are further
coupled implicitly through the bunch sizes.

The rf field contributes the first two terms of the focusing
strength in Eq. �21�. The first one is a pseudofocusing result-
ing from longitudinal acceleration. The second one is due
to the transverse Lorentz force Fr and is equal to
−��rFr�r /�r

2�rmc2 �Appendix C�. The average Lorentz force
has been studied �5,6� and referred to as “ponderomotive
focusing.” However, in the reduced coordinates, the Lorentz
focusing is surprisingly canceled by the �r� term from the
pseudofocusing, which can be written as

−
�P̂r

k�

�P̂r
k

=
1

4
�1 +

2

�r
2�� �r�

�r
2�r

�2

−
�r�

2�r
2�r

. �22�

For the reference particle we have

�r� = Êz =
q

mc2Ez = −
1

c
�t Âz = �r��z − �s�Âz �23�

and �Appendix C�

�r�

2�r
2�r

=
1

�r�r
��s�rÂr

rf − �r
2Âz

rf�r +
1

2�r
3�r

3c
�t Êz. �24�

The leading term cancels the transverse Lorentz focusing ex-
actly. Thus the rf focusing strength in reduced coordinates
can be written as

Krf =
�

4�r
2�r

2 Êz
2 −

1

2�r
3�r

3c
�tÊz, �25�

where �= �1+2/�r
2� /�r

2, which quickly reduces to 1 as the
reference particle becomes relativistic. This is the same as in
Eq. �10� of �9�.
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Since the rf focusing may contain fast oscillations due to
rf waves, one commonly used approximation is to smooth it
out by averaging over a rf period. Note that such an average
is in fact to smooth the Hamiltonian as one may expect.
Assuming the changes �over a rf period� in �r, �r, and accel-
erating rf phase 	r are negligible, the average rf focusing can
then be written as �Appendix C�

K̄rf �
�

4�r
2�r

2���r��
2 +



2
Ê0

2� −
1

2�r
3�r

3kÊ0 cos 	r , �26�

where the average acceleration gradient ��r��= Ê0 sin 	r,

�	r�=�n=1
� �an

2+a−n
2 −2ana−n cos 2	r�, and Ê0=qE0 /mc2.

The term containing  is the so-called ponderomotive focus-
ing, reappearing from the averaged pseudofocusing as a re-

sult of �Êz
2�− �Êz�2, the variance of the accelerating field. The

last term in Eq. �26� is usually much smaller because there is
an extra 1 /�r�r and furthermore the accelerating rf phase is
close to 
 /2. Thus we will not consider this term further in
this paper. Note that, with the smooth approximation, both �r
and �r should be smoothed quantities as well, as will be
assumed in the following sections.

In summary, the total external focusing strength can be
written as

Kext =
�

�r
2�r

2 , �27�

where

��s� = b̂s
2 +

�

4
Êz

2 −
1

2�r�rc
�t Êz

� � qBs

2mc
�2

+ ��r��
2�1

4
+



8 sin2 	r
� , �28�

respectively, from solenoid focusing and ponderomotive rf
focusing. The approximation arises from the smooth opera-
tion with ��1. This approximate expression relates to the
often-used � in �4� as

� = ��r��
2��2 +

1

4
�, �2 �

1

sin2 	r
	

8
+ �Bsc

E0
�2� .

�29�

Note that the approximations used in obtaining this result are
suitable only when particles reach relativistic. After the
smooth operation, ��s� is piecewise constant �neglecting
fringe field�.

The space-charge defocusing strength in Eq. �21� is

Ksc = −
qQg�z,s�

4
�0�r
2�r

3mc2�2
�z�r
2

= −
2�s

�r
3�r

3�r
2 , �30�

where the beam perveance �s= Ig�s ,z� /2IA, the peak current
I=�rcQ /�2
�z, and the Alfvén current IA=4
�0mc3 /q
�17 kA for electrons. Unlike the external focusing, the
space-charge defocusing depends on the beam parameters
and varies significantly along a bunch. A significant excep-
tion is a uniform ellipsoidal bunch for which the form factor
g is independent of z �Appendix C�.

IV. TRANSVERSE BEAM ENVELOPES

Ignoring the longitudinal dynamics in Eq. �20�, the trans-
verse dynamics of each z slice is governed by the simple
Hamiltonian �p̂x

2+ p̂y
2� /2+K�s ,z��x̂2+ ŷ2� /2, whose behavior

is well known, and the beam envelope can be described by
the standard Courant-Snyder parameters with the � function

satisfying �10� ���+K��−1/��
3
=0. The normalized emit-

tance �n is conserved for each slice under this Hamiltonian.
The rms beam size in the reduced variable is �̂=��n�
=��r�r�, where �=�r /�2 represents either �x or �y. Using
�̂, the �-function equation becomes the beam-envelope
equation �̂�+K�̂−�n

2 / �̂3=0. Inserting the above focusing
strength we have

�̂� +
�

�r
2�r

2 �̂ −
�s

�r
2�r

2

1

�̂
−

�n
2

�̂3 = 0. �31�

This is the reduced beam-envelope equation �8�, which is
equivalent to the envelope equation commonly used in pho-
toinjector studies �4�. However, the reduced envelope equa-
tion yields a more satisfactory physical picture �11�.

For a space-charge-dominated beam, as in high-brightness
photoinjectors, the emittance term can be neglected. When �
and �s are independent of s, an obvious solution of the re-
duced beam-envelope equation is given by �̂�= �̂�=0 and

�̂ = �̂inv ���s

�
�� �s

� qBs

2mc
�2

+ ��r��
2�1

4
+



8 sin2 	r
� .

�32�

This is the so-called invariant envelope found obscurely in
�4�, which plays a critical role in the theory of emittance
compensation in photoinjectors.

To better understand the dynamics governed by the re-
duced beam-envelope equation, we note that it can be ob-
tained by an envelope Hamiltonian �12�

H��̂,p�,s� =
p�

2

2
+ V��̂,s� �33�

with a potential

V =
�

�r
2�r

2

�̂2

2
−

�s

�r
2�r

2 ln
�̂

�̂inv

+
�n

2

2�̂2 .

Introducing the parameter

� � � �r�r�n

��s�̂inv
�2

= ��r�r�n

�s
�2

�

= �0, space-charge dominated,

� , emittance dominated,
� �34�

which is the ratio of the emittance term to the space-charge
term �evaluated on the invariant envelope� in the envelope
equation, we can write the potential V as
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V = � �n

�̂inv
�2 1

2�
� �̂2

�̂inv
2 − ln

�̂2

�̂inv
2 + �

�̂inv
2

�̂2 � . �35�

The characteristics of this potential in different regimes are
illustrated in Fig. 1. Solving ��V=0 gives the potential mini-
mum at

�̂� = �̂inv�1

2
+�1

4
+ � =��̂inv, � → 0,

��r�r�n/�� , � → � ,
�

�36�

with a positive second derivative

��
2V��̂�� =

�n
2

��̂inv
4

4

1 + �1 + 4��−1/2 =
�

�r
2�r

2

4

1 + �1 + 4��−1/2 .

�37�

It is current independent in the regimes dominated by either
space charge or emittance ��→0 or �→��.

In the space-charge-dominated regime, ��1, the invari-
ant envelope is an equilibrium solution at the potential mini-
mum. From the potential wells in Fig. 1, clearly the beam
envelope will oscillate around the potential minimum pro-
vided that the parameter � does not change too rapidly. For
small oscillations, the restoring force is given by Eq. �37�
with �=0 for the space-charge-dominated regime. Let the
deviation be ��̂= �̂�z ,s�− �̂inv; the restoring force leads to

��̂� +
2�

�r
2�r

2��̂ = 0. �38�

With �r�1 and �r=�0+�r��s−s0�, the perturbative solution
of the envelope equation around the invariant envelope can
be written as �Appendix D�

�̂ = �̂inv +��r

�0

��̂�0�
cos �

cos�u + �� , �39a�

�̂� = −� 2�

�0�r

��̂�0�
cos �

sin�u + � − �0� . �39b�

Here u=� ln��r /�0� with �=�2� /�r�
2−1/4=�2�2+1/4.

The initial phase angles �0=tan−1�1/2�� and �
=tan−1�1/2�−�0��̂��0� /��r���̂�0��. ��̂�0� and ��̂��0� are
the initial envelope deviations at s0. Thanks to the reduced
coordinates, this general solution resembles the no-
acceleration result commonly used to illustrate emittance
compensation �4�. In fact, the no-acceleration solution can be
obtained from Eq. �39� by taking �r�→0, �r=�0, u

=�2��s /�0, �0=0, and �=−tan−1��0��̂��0� /�2���̂�0��.
Note that ��̂ �thus ��̂ / �̂inv� grows as ��r, therefore this so-
lution applies while �r /�0� ��̂inv /��̂�0��2 cos2 �.

The existence of invariant envelopes requires external fo-
cusing to balance the space-charge defocusing. Thus, in free-
drift regions, a special treatment is needed. The governing
equation now is

�̂� −
�s

�r
2�r

2

1

�̂
= 0, �40�

which can be normalized into the universal form

�� −
1

�
= 0 with � =

�̂

��s/�r�r

, �41�

assuming negligible perveance variations. From the envelope
Hamiltonian, which is a constant of motion now, it is obvious
that

��2 = �0�
2 + 2 ln

�

�0
, �42�

where �0 and �0� are the initial values. The envelope can then
be written as

� = �0 exp� ��2 − �0�
2

2
� = �we��2/2, �43�

which grows symmetrically away from a waist �w=�0e−�0�
2/2

located at ��=0. Equation �42� can be further integrated, us-
ing the waist as the origin for simplicity, as

�s
�2�w

= ± �
1

�/�w dx

2�ln x
, �44�

which cannot be expressed with elementary functions. Ap-
proximate expressions can be obtained by expanding 1/�ln x
around x=1 and term-by-term integration, which gives
�� /�w−1+ �1/12��� /�w−1�3/2+¯. The leading term yields
the familiar quadratic envelope �13�

�

�w
� 1 + � �s

�2�w
�2

. �45�

A much better approximation can be obtained by keeping up
to the second order of � /�w−1 in �s2, which yields

FIG. 1. Potential wells of the envelope Hamiltonian. The invari-
ant envelope is at the bottom. Note that these curves correspond to
�V instead of V; thus the potential V actually is much higher in the
laminar regime and decreases as � increases with beam energy.
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�

�w
� 3�1 + � �s

�3�w
�2

− 2. �46�

Setting �s=s−sw with sw= ±�w�1
�0/�wdx /�2 ln x

� ±�w���0 /�w+2�2 /3−3, the origin shifts from the waist to
arbitrary initial values �0 and �0�, where the sign is chosen
according to the opposite sign of �0�.

V. INVARIANT ENVELOPE AND LINEAR
EMITTANCE COMPENSATION

Through the analysis of the beam-envelope Hamiltonian,
we showed an �approximate� equilibrium solution and the
evolution of nearby envelopes. Here we further emphasize
the physical picture presented by these solutions and discuss
the linear emittance compensation process in high-brightness
photoinjectors.

Due to low thermal emittance from the photocathode and
high charge, electrons evolve in the space-charge-dominated,
quasilaminar regime �4�, where ��1 applies. For example,
consider a beam accelerated near the crest in a standing-
wave structure �thus �1, sin 	r�1, ��1/8, and �
�3��2 /8�, the energy corresponding to �=1 is given by

�r�r =
�s

�n
��

��8

3

�s

���n
, �47�

which is beyond a typical high-brightness photoinjector
�4,14�. In the quasilaminar regime, there is a special exact
solution of the nonlinear beam envelope equation, i.e., the
invariant envelope �̂inv in Eq. �32�. It is an equilibrium solu-
tion at the minimum of the envelope potential well. The �re-
duced� beam size is invariant as the beam propagates, and
more importantly, the phase-space angle �̂inv� / �̂inv=0 is in-
variant across beam slices with different perveance.

In the phase space of the reduced coordinates, the Twiss
parameter ���̂inv� =0, i.e., the invariant envelope corre-
sponds to an upright beam ellipse �with the long axis hori-
zontal and the negligibly small short axis vertical, a line
segment in the zero-emittance limit�. In terms of single-
particle motion, when a beam follows an invariant envelope,
the net focusing strength K=Kext+Ksc=0, i.e., the defocusing
linear space-charge force is canceled by the external focusing
forces �including pseudofocusing due to acceleration�. Thus
all particles simply follow straight trajectories parallel to the
beam axis �otherwise, the beam will diverge�. In other words,
the invariant envelope solution depicts the simplest laminar
flow with straight flow lines parallel to the axis of propaga-
tion; clearly, a generalized Brillouin flow �15� for an accel-
erating beam.

Under linear �i.e., paraxial� approximation, the normal-
ized emittance of each slice is conserved at a low value.
However, due to different space-charge defocusing for differ-
ent beam slices, each slice evolves differently starting from
the same initial conditions at the cathode, which leads to a
spread of phase-space orientations and thus a growth of the
total emittance. The goal of emittance compensation is to
adjust the conditions such that all slices are aligned again at
a sufficiently high beam energy where space-charge forces
are no longer important.

Since all invariant envelopes lie on the coordinate axis in
phase space and stay aligned independent of slice currents, it
is realized in �4� that the invariant envelope is the preferred
mode to propagate a beam, and the desired condition for
emittance compensation is to match all slices onto their in-
variant envelopes. However, due to perveance variation �ex-
cept for a uniform ellipsoidal bunch�, different slices may not
be able to follow their invariant envelopes simultaneously;
thus matching is done in a rms sense. Unmatched slices os-
cillate around their own invariant envelopes according to Eq.
�39�, i.e.,

	 �̂

�̂�
� = 	�̂inv

0
� + R	 ��̂�0�

��̂��0�
� , �48�

where the transfer matrix R is given by Eq. �D6� with �
given by Eq. �D9�. The emittance can be calculated as

�2 = ��̂2���̂�2� − ��̂�̂��2 = det��	 �̂

�̂�
���̂,�̂����

= det�	 ���̂�0�2� ���̂�0���̂��0��
���̂�0���̂��0�� ���̂��0�2�

� + ��̂inv
2 �

�	 R22
2 − R21R22

− R21R22 R21
2 � + ��̂inv��̂�0��	 2R22 − R21

− R21 0
�

+ ��̂inv��̂��0��	 0 R22

R22 − 2R21
�� , �49�

where the angular brackets mean averaging over the slices in
a bunch. A more explicit expression can be obtained but the
result is too messy to be interesting. However, it is important
to note that only the R21 and R22 elements of the transfer
matrix are involved and both are inversely proportional to
��r and thus approach zero as the beam energy increases.
Therefore, as long as all the slices propagate close to their
invariant envelopes, the correlated emittance oscillations will
be damped away and the emittance converges to an
asymptotic value determined by the initial deviations from
the invariant envelopes �the equilibrium�, i.e.,

� →
�r→�

����̂2����̂�2� − ���̂��̂��2�r=�0
. �50�

This is the minimum emittance a photoinjector may achieve
ideally, assuming �n=0. Again, the critical condition in emit-
tance compensation is that all the slices propagate close to
their invariant envelopes with

�̂� = 0, i.e.,
��

�
= −

��r�r��
2�r�r

� −
�r�

2�r
. �51�

Meanwhile, it is important to minimize ��̂ for all slices to
reduce the magnitude of emittance oscillation and to ensure
that all slices evolve close to their invariant envelopes.

As a concrete example, we consider the special case that
all slices are aligned along �̂�=0 initially; then ��̂��0�=0
and �=�0 for all slices, and it is easy to see that
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� = ���̂inv
2 ����̂2� − ��̂inv��̂�2R21 =

�0

��r


sin�� ln
�r

�0
�
 ,

�52�

where the constant

�0 =
2�

��r���0

���̂inv
2 ����̂�0�2� − ��̂inv��̂�0��2,

in which ��̂�0� can be replaced by �̂�0�. Equation �52�
clearly shows that the correlated emittance is damped by ��r
and periodically returns to zero, which is the behavior of an
emittance-compensated beam �4�. External focusing controls
the emittance oscillation through �.

In a split photoinjector, a focused beam reaches a waist in
the drift space before it diverges due to the repulsive space-
charge forces. At the waist, �̂����=0, which is the same as
the condition for matching a beam slice onto an invariant
envelope in the booster. Therefore the beam waist is a natural
location for the booster entrance. From Eqs. �32� and �41�,
all invariant envelopes match onto a single beam-spreading
curve in � with the matching condition �w=�r�r /��
=1/�Kext, i.e.,

��r�r

�w
�2

=
�s

�r�r�w
2 = � � �1

4
+



8 sin2 	r
�����2, �53�

where the left-hand side is given by the parameters of the
rms beam slice at the waist, and the right-hand side is deter-
mined by the booster field. These matching conditions have
been shown to be effective �14�.

Emittance evolution in the drift region of an optimized
split injector has a double-minimum feature first observed in
a simulation study of the Linac Coherent Light Source
�LCLS� injector �16�, which plays an important role in the
design of split photoinjectors. This feature has been attrib-
uted to chromatic effects �14�. Although chromatic effects in
the solenoid may contribute to the slice initial conditions at
the beginning of the drift, the emittance oscillation in the
drift is mainly due to beam spreading governed by Eq. �41�.
To demonstrate this, we analyzed a SPARC photoinjector
design, which is similar to the LCLS injector design. At the
beginning of the drift region, information about each slice
was extracted from the HOMDYN �17� output, then Eq. �41�
was used to numerically track the transverse evolution of all
slices with the longitudinal profile frozen. The resulting
emittance is plotted in Fig. 2 together with the HOMDYN re-
sult. Clearly the W-shaped emittance evolution is mainly due
to beam spreading.

An analytical estimation of the emittance in �� ,��� due to
initial spread of �0 can be obtained from ���0

��
−����0

����0�rms �Appendix E�. Taking the partial derivative
of Eq. �44� with respect to �0 yields ��0

�= ��−��s� /�0 and
��0

��=−s /�0�. Thus the emittance estimation becomes

� = W
���0�rms

��0�avg
, W = ���2 − 1�s − ���. �54�

From W�=2���� /��s−1�=0, we see that the function W has a
minimum Wmin=−s at s=� /��. Therefore the emittance

��W� has two minima where W crosses zero and one local
maximum that is proportional to s, a result that shows the
W-shaped emittance evolution. Figure 3 illustrates such an
estimate for the case shown in Fig. 2. The gray curve is the
function W calculated using � from the numerical solution of
Eq. �41� with initial values equal to the averages of the
slices. The solid line is W. The dashed line is W calculated
with the approximate � in Eq. �46�. The dots are the emit-
tance calculated by tracking individual slices, which has a
large spread in �0� in addition to the spread in �0 that we are
considering. The qualitative agreement confirms our under-
standing that the emittance oscillation is simply due to beam
spreading of the slices, a generic feature of a space-charge-
dominated beam in drift space. It is straightforward to im-
prove the emittance estimation by taking into account the
spread in �0�, which is not pursued here since it is not essen-
tial for the understanding. �See �18� for further discussions.�
Note that, in general, the emittance maxima are not located
at the beam waist, which is the preferred location for match-
ing the beam into a booster.

VI. THIRD-ORDER EFFECTS

In emittance-compensated injectors, all beam slices
propagate close to their invariant envelopes with a small

FIG. 2. Normalized rms emittance of a split-injector design. The
dots are a HOMDYN simulation. The solid line is obtained by advanc-
ing slices extracted from HOMDYN through the drift space with Eq.
�41�, ignoring longitudinal evolution.

FIG. 3. Emittance in �� ,��� normalized by ���0�rms/ ��0�avg for
the case in Fig. 2 with the origin shifted to the beginning of the
drift. The dots are tracking with Eq. �41�. The solid line is the
simple estimate given in Eq. �54�. The dashed line is the same as the
solid one but using the approximation in Eq. �46�.
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spread of phase-space angles around �̂inv� / �̂inv=0; thus all the
terms involving transverse momentum are significantly
smaller compared to the x̂2+ ŷ2 terms in the third-order
Hamiltonian of Eq. �16�, and will be neglected. Otherwise,
there are many more terms than we would like to handle
analytically here. Such a reduction in nonlinearity is another
advantage to propagate slices around their invariant enve-
lopes. Under such conditions, neglecting longitudinal dy-
namics, the third-order Hamiltonian Eq. �16� reduces to

H3 �
��̂0

sc�3

P̂r
k

+
wg

2P̂r
k
�x̂2 + ŷ2�ẑ −

�r
2wc

2
�x̂2 + ŷ2��z, �55�

where �z is the relative deviation of longitudinal kinematic

momentum. In the chromatic term, p̂z / P̂r
k= �pz

− ��zÂz�r ẑ� / P̂r
k=�z+x� · ���Âz�r / P̂r

k+O�X2���z has been

used with ���Âz�r=0. Since the longitudinal variables are
treated as parameters in slice treatment, we replaced the ca-
nonical momentum p̂z with �z. Assuming a longitudinally
symmetric bunch, �zg�z ,s�r=0; thus ��̂0

sc�3=0, i.e., the
space-charge potential does not contribute to the third order.
However, space charges still contribute to the chromatic term

through the vector potential Âz
sc �contained in Âz without the

“rf” superscript�. Note that there is the possibility to cancel
the geometric term due to the rf field with a longitudinally
asymmetric bunch.

To evaluate the coefficients wc and wg, we have, from the
vector potential of the rf field in Eq. �17�,


 �2Âr
rf

�z �r



r
=

Ê0c

2�
�

n=−�

�

ankzn
2 ei�n � Ê0k cos�ks�cos�	r + ks� ,

�56a�


 �2Âz
rf

�r2 

r
= −

Ê0c

2�
�

n=−�

�

ankrn
2 ei�n � 0, �56b�


 �3Âz
rf

�z �r2

r
= i

Ê0c

2�
�

n=−�

�

ankrn
2 kznei�n � 0, �56c�

where �n=�t�s�−kzns+	0 is the rf phase of the reference
particle and 	r=�0 is referenced to the accelerating wave. In
the approximations, we have assumed a 
-mode standing
wave with a0=a−1=1, kzn=k=� /c, and krn=0. The coeffi-
cient wc is similar to the linear focusing strength K in Eq.

�21�. With �P̂r
k� /�P̂r

k=��r�r
� /��r�r=�r� /2�r

2�r and

�r
2Âz

sc / �P̂r
k�3=�r

2�̂0
sc / �P̂r

k�2=Ksc=−2�s /�r
3�r

3�r
2, we have

wc =
1

�r
2�r

2	 �r�
2

4�r
2 + � qBs

2mc
�2

−
2�s

�̂r
2 +

��r
2Âz

rf�r

�r�r
� . �57�

For slices propagating around their invariant envelopes, �̂r
2

��s /�, and thus

wc �
− 1

�r
2�r

2	� qBs

2mc
�2

+


4
� qE0

2mc2�2

+
�r�

2

4
� , �58�

where the relativistic approximation is made in the �r� term,

and ��r
2Âz

rf�r�0 is used. Inserting Eq. �56� in wg we have

wg � �k2 �r�

�r
2�r

cos�ks�cos�	r + ks� . �59�

Here the constant �= Ê0 /k=qE0 /2mc2k, as in �3�.
Now let us estimate the magnitude of these nonlinear

terms. For the chromatic term, we note that wc�−Kext; thus
the chromaticity is approximately −1, and the chromatic fo-
cusing is a factor �z weaker than the external focusing. For
the rf geometric term, wgz /�r�rK

ext��k2�r��z /�r�
��r�

2�	 /�r�=�	 /�r��2+1/4��4�	 /�r, where �	 is the rf
phase spread. Therefore, both the chromatic and rf correc-
tions to the external focusing are typically less than a few
percent �assuming �r�1�. Since there are only a few emit-
tance oscillations in a photoinjector, the overall phase spread
in the envelope oscillations due to the slice-dependent exter-
nal focusing is quite small. Nonetheless, they will contribute
to the residual emittance by hindering perfect alignment of
all slices.

To estimate this emittance degradation, we use the enve-
lope solution Eq. �39� and consider the small variation in
phase resulting from perturbations to the focusing strength �
and thus � in u �other � variations, such as in the initial
amplitude, are neglected for simplicity�. We consider the
perfectly compensated case where all slices are aligned ini-
tially along �̂r�=0 with �=�0. Without nonlinear perturba-
tions, the emittance evolution is given by Eq. �52�. Assuming
that the variation �� �due to energy spread or rf phase
spread� is uncorrelated with the envelope deviation ��̂r,
the correction to the emittance can be estimated with
�̂r���̂r�− �̂r����̂r����rms. Inserting ���̂r�−��r /�0���̂r�0� /
cos �0�sin�u+�0���u and ���̂r��−�2� /�0�r���̂r�0� /
cos �0�cos�u���u, we have

�� =� 2�

�0�r

 ��̂r�0�

cos �0
��̂inv cos u +��r

�0
��̂r�0�� �u

��

����rms

�� 2�

�0�r

u cos u

cos �0

1

�

��

��

��̂inv�rms���̂r�0��rms����rms

=
2���̂inv�rms���̂r�0��rms

��r���0�r

����rms

���r��
2 u cos u , �60�

where the second term in large parentheses is dropped since
it is much smaller than the first one when Eq. �39� holds. The
first factor in this expression can be identified with �0 /��r of
Eq. �52� if ��̂inv��̂r�0�� can be neglected. The second factor
is approximately �� /�, which is less than a few percent. For
each emittance oscillation, u increases by 
. Therefore, for a
few emittance oscillations, this correction is much smaller
than Eq. �52�, and becomes significant only when sin u�0
and cos u�1 �especially when adding them quadratically�.
In other words, it contributes to the minimum emittance but
does little to the overall emittance oscillation due to space
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charge. Besides the factor cos u, ��� ln��r /�0� /��0�r,
which grows quickly to a maximum 2/e�0 at �r=e2�0 and
then slowly decreases. Thus, replacing u cos u /��0�r
with � /�0, we obtain the magnitude of ��
��2� /�r���0

2���̂r�0� / �̂inv���� / ���r��
2�. As an example, for a

standing wave structure with �r�=100, �2=1/8, initial rms
beam size �0=1 mm, 10% envelope mismatch, and 1% �
variation, we have ���0.1 mm mrad. However, things
could be much worse if we loosen the parameters �especially
in the early part of a photoinjector, where slices may be away
from equilibrium�.

Since the wg term depends differently on s, the envelope
solution Eq. �39� and the above treatment are inadequate. For
a rough estimate, one might ignore the cosine factors or re-
place them with the slowly varying part cos 	r /2, which ap-
proaches zero if the final rf phase is 
 /2. We will not pursue
this subject further here.

VII. CONCLUDING REMARKS

A general Hamiltonian suitable for perturbative analysis
of rapidly accelerating beams is derived, which is mostly
decoupled and has a familiar form. Based on the Hamil-
tonian, we presented a systematic and self-sufficient treat-
ment of beam dynamics in rf photoinjectors. Our analysis
provides an improved account of emittance-compensation
theory. Efforts are made to point out various approximations
used in the analysis for better understanding the limitations
and for further improvements. Clearly, with an additional
scalar potential �in Eq. �21� in particular� for the static elec-
tric field near the cathode, our analysis and emittance com-
pensation apply to dc photoinjectors as well. Moreover, in
addition to the solenoidal focusing considered in this paper, a
sector of �skew� quadrupoles may be added to create a 
 /2
phase difference in the two transverse planes for generating a
flat beam. It is straightforward to extend our analysis for
such an injector as long as there is no overlap between the
solenoids and quadrupoles. However, a magnetized beam
with large angular momentum may not be space-charged
dominated any longer. Further investigations are needed to
incorporate transverse and longitudinal coupling and to ad-
dress the question of minimum emittance achievable in such
a system, which requires more adequate treatment of the
nonrelativistic beam close to the cathode and better account
of the emittance compensation process.
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APPENDIX A: TERMS IN THE HAMILTONIAN

This appendix facilitates the calculations in Eqs. �7�, �15�,
and �16�.

The first-order term in Eq. �7� can be written as

H1 =
1

�r
�x · ��̂�r + x · P̂r� − Xr� · p + P̂r

k · �1

= − p · �Xr� −
Pr

k

Pr
k� + x · �P̂r� +

q � �

�rmc2� −
qvr · ��A�1

�rmc2

=
x

�rmc2 · �Ṗr + q � � − q � �vr · A��

=
x

�rmc2 · �Ṗr
k + q��tA + vr · �A + �� − ��vr · A���

=
x

�rmc2 · �Ṗr
k + q��tA + ��� − qvr � �� � A�� ,

where the overdot means d /dt and vr is the velocity of the
reference particle. All the differentiations are evaluated at the
reference particle. We see that the vanishing of the first-order
Hamiltonian is equivalent to vanishing of the square-bracket
in the last expression, which is nothing but the Lorentz equa-
tion for the reference particle.

Terms in Eq. �15� can be calculated as follows. From �

= �p−�Â� / P̂r
k and the canonical transformation in Eq. �13�,

we have

�x =
1

�P̂r
k
�	 p̂x −

�P̂r
k�

�P̂r
k

x̂� − 	 �Âx

�P̂r
k

− � �xÂx

P̂r
k �

r

x̂�� ,

�z =
1

P̂r
k
�p̂z − ��Âz − ��zÂz�rẑ�� .

�y can be obtained from �x by switching x and y. The vector
potential terms contain various orders. At the first order, with

the field property ��zÂ��r=0, we have

��P̂r
k�Âx − ��xÂx�r x̂�1 = ��yÂx�rŷ ,

��Âz − ��zÂz�r ẑ�1 = x� · ���Âz�r .

Thus the first-order � becomes

��x�1 =
1

�P̂r
k
�	 p̂x −

�P̂r
k�

�P̂r
k

x̂� − � �yÂx

P̂r
k �

r

ŷ� ,

��z�1 =
1

P̂r
k
�p̂z − �x� · ��Âz�r� .

With these, the second-order kinematic term in the Hamil-
tonian becomes
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P̂r
k

2
���

2 +
1

�r
2�z

2�
2

=
p̂x

2

2
−

�P̂r
k�

�P̂r
k

x̂p̂x +��P̂r
k�

�P̂r
k�
�2

x̂2

2

+
�P̂r

k�

�P̂r
k
� �yÂx

P̂r
k �

r

x̂ŷ − � �yÂx

P̂r
k �

r

ŷp̂x + � �yÂx

P̂r
k �

r

2
ŷ2

2

+ �x ↔ y� +
1

2�r�r
3 �p̂z − �x� · ��Âz�r�2

=
p̂x

2

2
−

�P̂r
k�

�P̂r
k

x̂p̂x +	��P̂r
k�

�P̂r
k
�2

+ � �xÂy

P̂r
k �

r

2� x̂2

2

+ �x ↔ y in previous terms� + � �yÂx

P̂r
k �

r

�x̂p̂y − ŷp̂x�

+
1

2�r�r
3 �p̂z − �x� · ��Âz�r�2.

The field property ��yÂx�r=−��xÂy�r has been used in the last
step.

The canonical transformation results in extra second-order
terms from the generating function F2, which can be written
as

�sF2 =
�P̂r

k�

�P̂r
k

x̂p̂x − 	�P̂r
k��

2P̂r
k

−
 1

P̂r
k

�2Âx

�s�x

r

� x̂2

2

+ �x ↔ y� +
�2Âz

�s�z



r

ẑ2

2
.

The new second-order Hamiltonian in Eq. �15� is a combi-
nation of this with the above kinematic terms, as well as the
potential terms. The coupling terms such as x̂p̂x are removed
by design.

To evaluate the second-order potential terms and the
third-order kinematic terms, we need the expression for the

second-order vector potential Â2. For the field under consid-
eration, given by Eqs. �17�–�19� we have

�Âx�2 =
1

�P̂r
k
� �2Âr

�z�r
�

r
x̂ẑ , �Ây�2 =

1

�P̂r
k
� �2Âr

�z�r
�

r
ŷẑ ,

�Âz�2 =
��r

2Âz�r

P̂r
k

x̂2 + ŷ2

2
+ ��z

2Âz�r
ẑ2

2
.

The transverse components are due to the rf field only while
the longitudinal components are from rf and space charges.

The second-order potential terms in the Hamiltonian can
be written as

� 1

�r
�̂ − Âz�

2
= � �̂0

sc

�r�r
− Âz

ext�
2

=
��̂0

sc�2

�r�r
− � �r

2Âz
rf

P̂r
k �

r

x̂2 + ŷ2

2
− ��z

2Âz
rf�r

ẑ2

2
.

The third-order potential terms are

� 1

�r
�̂ − Âz�

3
= � �̂0

sc

�r�r
− Âz

ext�
3
,

where

�Âz
ext�3 = ��z

3Âz
rf�r

ẑ3

6
+

1

P̂r
k

�3Âz

rf

�z�r2

r

�x̂2 + ŷ2�ẑ
2

is from the rf field.
The third-order kinematic term can be calculated, with

�2=−Â2 / P̂r
k and the above expressions, as

P̂r
k

2
���

2 +
1

�r
2�z

2�
3

= P̂r
k	����1 · ����2 +

1

�r
2 ��z�1��z�2�

=
1

P̂r
k
� �2Âr

�z�r
�

r

�	�P̂r
k�

�P̂r
k

�x̂2 + ŷ2� − �x̂p̂x + ŷp̂y�� ẑ

−
1

�r�r
3	��r

2Âz�r

P̂r
k

x̂2 + ŷ2

2
+ ��z

2Âz�r
ẑ2

2 � p̂z.

Here we have assumed ���Az�r=0, i.e., there is no trans-
verse dipole field.

APPENDIX B: SPACE-CHARGE POTENTIAL

Here we present a brief overview of the space-charge po-
tential considered in this work following �19�. For an ellip-
soidal symmetric bunch with charge density

�e�x,y,z� = �
0

�

ds f�s���s −
x2

a2 −
y2

b2 −
z2

c2� , �B1�

where f is some density profile, the scalar potential can be
written as �19�

��x,y,z� = −
abc

4�0
�

0

� dt

R�t��0

S�t�

ds f�s� , �B2�

with

R�t� = ��t + a2��t + b2��t + c2� ,

S�t� =
x2

a2 + t
+

y2

b2 + t
+

z2

c2 + t
.

Expanding � around the axis x=y=0 to the third order, we
have
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� = −
abc

4�0
�

0

� dt

R�t���0

z2/�c2+t�
f�s�ds +

f� z2

c2 + t
�

a2 + t
x2

+

f� z2

c2 + t
�

b2 + t
y2 + ¯ � . �B3�

There are no odd-order terms due to symmetry.
For an axisymmetric Gaussian bunch of charge Q, rms

width �r, and length �z,

f�s� =
Q


3/2abc
e−s with a2 = b2 = 2�r

2, c2 = 2�z
2.

The scalar potential becomes

� = −
Q

4
�0
�2
�z

	g0 + g
x2 + y2

2�r
2 + O�X4�� , �B4�

where

g0�z� = �
0

�

d�
1 − e−z2/2�z

2�1+A2��

�1 + ���1 + A2�
,

g�z� = �
0

�

d�
e−z2/2�z

2�1+A2��

�1 + ��2�1 + A2�
,

and A=a /c=�r /�z is the bunch aspect ratio. Note that g is
the same geometric form factor as in �4�. When applied to
the beam frame, �z should be replaced by �r�z due to the
relativistic effect.

For a uniformly distributed ellipsoidal bunch �water-bag
model with constant f inside�, Eq. �B2� is clearly a linear
function of x2, y2, and z2 inside the bunch with constant
coefficients along the bunch. Thus, the space-charge force is
completely linear and has the same transverse defocusing
strength for all slices, which is ideal for preserving beam
emittance and getting around emittance compensation. More
explicitly, f�s�=3Q /4
abc inside the ellipsoid, and, for the
axisymmetric bunch with a=b,

�inside = −
3Q

16
�0c
�g0 + g

x2 + y2

a2 � , �B5�

where

g0 = �
0

� �z2/c2�d�

�1 + ���1 + A2��3/2 , g = �
0

� d�

�1 + ��2�1 + A2�
.

These integrals can be worked out. Setting c→� gives g0
=0, g=1, and the expected simple potential inside a uniform
cylinder beam �=−�� /4
�0��x2+y2� /a2. The line charge
density � relates to Q via Q=4�c /3.

We see that, with proper form factors, Eq. �19� covers,
either exactly or as third-order approximations, most bunch
models considered in photoinjectors.

APPENDIX C: SMOOTHED RF FOCUSING

The transverse Lorentz force due to the rf field is given by

Fr = q�E + v � B� = q�Er − vzB�� = ��rFr�rr + ¯ ,

�C1�

where

��rFr�r = q�r�− �tAr − �rc��zAr − �rAz��

= q�rc�r���z − �s�Ar − ��zAr − �rAz��

= − �rmc2��s�rÂr − �r
2Âz�r . �C2�

Therefore, the second term in Eq. �21� represents the trans-
verse Lorentz force. It usually contains fast rf oscillations.
The average Lorentz force has been studied �5,6� and re-
ferred to as “ponderomotive focusing,” which is a second-
order effect. Note that the Lorentz focusing expressions used
in both references are not quite right.

In reduced coordinates, in addition to the Lorentz force,
there is a pseudofocusing, Eq. �22�, due to acceleration. Sur-
prisingly, its leading term results from �r� and cancels the
Lorentz focusing exactly. To show this, i.e., Eq. �24�, we start
from Eq. �23� and using the Coulomb gauge condition
� ·A=0 and the wave equation ��2− �1/c2��t

2�Az=0. For the
reference particle, these two conditions yields 2�rAr+�zAz
=0 and �2�r

2+�z
2− �1/c2��t

2�Az=0, respectively. Thus

�r� = � 1

�c
�t + �z��r� = −

1

�c2�t
2Âz + �z����z − �s�Âz�

= −
1

�c2�t
2Âz + �� 1

c2�t
2 − 2�r

2�Âz + 2��s�rÂr

= −
1

��2c2�t
2Âz + 2���s�rÂr − �r

2Âz� . �C3�

All quantities are for the reference particle. The last term will
cancel the Lorentz focusing. Thus the total rf focusing is
given by the residual pseudofocusing Eq. �25�.

Now let us compute the average focusing strength in Eq.
�26�. From Eq. �17� the longitudinal rf field seen by the
reference particle is

Êz = −
1

c
�t Âz = Im�Ê0 �

n=−�

�

anei�n� = Ê0 �
n=−�

�

an sin �n,

�C4�

where the phase for the nth spatial harmonic �n=�t�s�
−kzns+	0=−2nk0s+�t−k0s+	0=−2nk0s+	r, and k0 is the
wave number of the fundamental accelerating wave. For syn-
chronized acceleration, 	r is roughly constant �at relativistic
energy�; thus the average longitudinal field and its time de-
rivative become

�Êz� � Ê0 sin 	r and ��t Êz� � �Ê0 cos 	r . �C5�

Note that in our normalization a0=1, corresponding to the
fundamental accelerating wave. The square of the field can
be averaged as
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�Êz
2� = Ê0

2 �
m,n=−�

�

aman�sin �m sin �n�

� Ê0
2 �

n=−�

�
1

2
�an

2 − ana−n cos 2	r� = Ê0
2�sin2 	r +



2
� ,

�C6�

where

 � �
n=1

�

�an
2 + a−n

2 − 2ana−n cos 2	r�

= �
n=0

�

�an
2 + an+1

2 − 2anan+1 cos 2	r� . �C7�

The last expression is for a standing wave structure with
a−�n+1�=an

*. The amplitudes of the space harmonics are as-
sumed to be real, i.e., the origin is located at a symmetric
point of the rf structure. Insert Eqs. �C6� and �C5� into the
average of Eq. �25�, which yields the smoothed rf focusing
strength Eq. �26�, assuming �r and �r can be replaced with
their averaged values and taken out of the average.

To relate better to the expressions in the literature, espe-
cially �4–6�, here we give the on-axis electric field and fo-
cusing strength expressions using a different labeling. For a

-mode standing wave structure, Eq. �C4� can be written as

Ez = E0 Im� �
n=−�

�

anei�−2nks+	r��
= 2E0 Im��

n=0

�

anei�ks+	r� cos�2n + 1�ks�
= E0�

n=0

�

an cos��2n + 1�ks�sin�ks + 	r� . �C8�

Note that the amplitude of the accelerating electric field E0
=2E0, i.e., twice the amplitude of the fundamental harmonic
because the forward and backward waves may add up con-
structively. The normalized field amplitude reads �note the
extra factor of 2�

Ê0 �
qE0

mc2 =
qE0

2mc2 = �k , �C9�

where � is the dimensionless field strength used in �3�.
Relabeling the coefficients with an=a�n−1�/2, we can write

the electric field as

Ez = E0 �
n=odd

an cos�nks�sin�ks + 	r� , �C10�

and the  in smoothed ponderomotive focusing as

 = �
n=odd

�an
2 + an+2

2 − 2anan+2 cos 2	r� . �C11�

These are the same as in �4,5�, except for a different refer-
ence phase in �4�, provided that an=0 for even n.

APPENDIX D: TRANSFER MATRIX OF A RF CAVITY

For a relativistic particle passing through a TM01-mode rf
cavity, from Eqs. �20�, �27�, and �29�,

x̂� +
�

�2 x̂ = 0, � = ��2�1

4
+



8 sin2 	r
� . �D1�

Hereafter subscripts referring to the reference particle are
dropped. One way to solve this homogeneous differential
equation is to seek independent solutions of the form ��. It is
more interesting to turn the equation of motion into

d2x

du2 + x = 0, �D2�

by using u�� ln �� /�0� with ���0 under the smooth ap-
proximation, where

� �� �

��2 −
1

4
= �/8 sin2 	r , �D3�

and �0 is an initial energy. The solution is a rotation

	x

ẋ
� = 	 cos u sin u

− sin u cos u
�	x0

ẋ0
� . �D4�

Here the overdot stands for d /du. Since p̂= x̂�=���x+��x�
= ��� /����x /2+�ẋ�, the transformation between the coordi-
nates is

	x

ẋ
� = �

1
��

0

− 1

2���

��

���
�	 x̂

p̂
� . �D5�

Thus, through a similarity transformation, the transfer matrix
in �x̂ , p̂� becomes

��
�

�0
�cos u −

1

2�
sin u� ��0�

���
sin u

−
���
��0�

�1 +
1

4�2�sin u ��0

�
�cos u +

1

2�
sin u� � .

�D6�

It is valid inside and outside a cavity with hard-edge fringe,
i.e., there are no extra kicks, since the canonical coordinates
are continuous across the edges �impulse approximation�.

To see that it is the same transfer matrix as in �6�, note
that, outside the cavity �x̂ , p̂�=���x ,x��; thus by scaling the
canonical transfer matrix with ��i at the entrance with initial
energy �i=�0 and with 1/�� f at the exit with final � f, we
have the transfer matrix in �x ,x�� as
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� cos u −
1

2�
sin u

�i

���
sin u

−
���

� f
�1 +

1

4�2�sin u
�i

� f
�cos u +

1

2�
sin u� � ,

�D7�

which is the same as Eq. �13� of �6� except for a couple of
apparent typos. Note that it is more complicated to cross
edges in �x ,x��. At the inside and outside of the edges, x̂�

=����x+��� xin� =��� xout� ; thus x� must experience an im-

pulse kick of magnitude ����x /���= ��� /2�2��x
���� /2��x to cross an edge. It is negative at the entrance
and positive at the exit. In other words, there are fringe ma-
trices in �x ,x�� that read

	 1 0

− ��/2�i 1
� and 	 1 0

��/2� f 1
� �D8�

at the entrance and the exit, respectively.
Clearly, the evolution of the envelope deviation, Eq. �38�,

is also given by the same transfer matrix Eq. �D6� with

� =� 2�

��2 −
1

4
=�2�2 +

1

4
. �D9�

From the transfer matrix, we can write

��̂r =� �

�0
��̂r�0�	cos u − � 1

2�
−

�0��̂r��0�
�����̂r�0�

�sin u�
=� �

�0

��̂r�0�
cos �

cos�u + �� , �D10�

where the symbols are defined as before. ��̂r� can be obtained
similarly or by differentiating the above expression.

APPENDIX E: EMITTANCE CALCULATION

First of all, clearly the rms emittance computed with the
reduced coordinates is the normalized emittance in phase
space, which is conserved during acceleration if all the forces
are linear.

In the laminar regime, the rms emittance � of a bunch can
be computed via

� = ���̂2���̂�2� − ��̂�̂��2, �E1�

where the angular brackets mean averaging over the slices in
a bunch. In general, such a computation could be rather
messy �18�. To obtain a simple approximation, we linearize
the dependence on, say, current around the peak current Ip, as
�̂�I�� �̂�Ip�+�I�̂�I and �̂��I�� �̂��Ip�+�I�̂��I, with which
the emittance can be expressed as

� = �̂�I�̂� − �̂��I�̂Ip
�Î = �̂�Ip�2
 �

�I
� �̂�

�̂
�


Ip

�Î , �E2�

where �Î stands for the standard deviation from Ip. Note that
this approximation is the same as the commonly used two-
slice emittance

� =
1

2
�̂+�̂−� − �̂−�̂+� =

��

2
�+�−� − �−�+� , �E3�

provided that we let �̂+= �̂Ip
and �̂−= �̂Ip

+�I�̂�I, i.e., �I�̂

= ��̂−− �̂+� /�I and �Î=�I /2.
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