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Recursive solution for beam dynamics of periodic focusing channels

Chun-xi Wang
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, lllinois 60439

Kwang-Je Kim
University of Chicago, 5270 South Ellis Avenue, Chicago, lllinois 60637
and Argonne National Laboratory, 9700 South Cass Avenue, Argonne, lllinois 60439
(Received 12 October 2000; published 18 April 2001

We present recursive analysis for beam dynamics of periodic focusing channels based on the Fourier
coefficients of the focusing function. Formulas for orbit stability and the envelope function are derived. The
results should be useful for numerical calculation and for developing analytical understanding of channels
employing extended focusing elements. Applications to muon ionization cooling channels are discussed.
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I. INTRODUCTION d2X(

s)
+K(s)x(s)=0. (D)
Periodic focusing channels serve important functions in

particle accelerators, for example, as a beam transport line

between two accelerator sections or as a special beam MBerex is the transverse displacement of a particle aiwits
nipulation station for cooling1—4]. In designing a channel, P P

it is necessary to have an efficient method to compute thfngi;udinal cqordinateK(s), referred to as_the focusing
beam properties starting from the arrangement of the focugunction, describes the arrangement of focusing elements and
ing elements. For high-energy accelerators employing quad$ @ssumed to be periodic with a peribdK(s+L)=K(s).
rupole magnets, the focusing elements can usually be rd=0r @ particle of charge and longitudinal momenturps,
garded as simple lenses. The beam dynamics analysis c&f{S) =0Bi(s)/ps in a quadrupole channel of field gradient
then be based on the manipulation of a few matricds  Bi(S) and K(s)=[qBs(s)/2ps]® in a solenoid channel of
However, this approach does not work for other cases; aan-axis fieldBg(s). The solution of Eq(1) is conveniently
important example is the solenoidal focusing channel proparametrized in the Floquet form(s)=eB(s) cogiAs)
posed recently for ionization cooling of muon beafss, +¢]. Here e and ¢ are constants specifying a particular
where the solenoidal field extends the whole length of thearticle within a beamg(s) is a periodic function referred to

channel. In this paper we present a systematic treatment %fs the envelope function, amf{s)zfgdgﬁ(g) is the phase

the beam dynamics in general periodic channels using th . .
perturbation technique, derive formulas for orbit stability andgdvance. The phase advance in one pegodiy(L) and the

envelope function, and discuss applications to the solenoidzﬁnveIOpe functions are quantities of fundamental impor-

focusing channels considered for muon cooling. Some ad@nce in beam physicg. reflects the basic frequency of the

pects of our treatment exist in the literature. However, ouSYStem and(s) gives the scale and tredependent profile
analysis is more systematic, yields results, and connects ®f the beam size. -
the established results on Hill's equation, studied by Hill in Computations ofw, 8, and other quantities are usually
his 1877 memoir on the motion of the lunar perigégand carried out by constructing the transfer matRdefined as
continued by otherg7—9]. As far as we are aware, however, follows:
these results have not been properly appreciated in the beam
physics community until now

Although this paper is on beam dynamics in accelerators,
it deals essentially with the stability and oscillation ampli-
tude of an anharmonic oscillator with periodic restoring
force. An anharmonic oscillator is a basic model for numer-
ous physical systems. Therefore, the presented mathematiceffe elements oR are
technique and results should be useful beyond linear optics
in accelerators. Knowledge of beam optics is not necessary
to appreciate these results, and we made an effort to be peda- R(s)=
gogical.

x(s) x(0)

x'(0)]° @

=R(s)

x'(s)

C(s) S(s)

C'(s) S'(s)] ®

Il. THEORY
Here, the prime indicates differentiation with respectsto

A. Standard formalism The “cosinelike” orbit C(s) and the “sinelike” orbit S(s)
Let us briefly summarize the standard approach for bearare special solutions of Eql) satisfying the initial condi-
dynamics analysis of a periodic focusing channel. The equaionsC(0)=1, C’'(0)=0, S(0)=0, andS'(0)=1. In terms
tion for transverse motion ifl] of ¢, B, anda=— B’(s)/2, the transfer matrix is
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%[coswr a(0)siny] VB(0)B(s)siny
R($)= : (@)
—a(O)—a(S) cosy —1+a(0)a(s) siny 'B(O)[co&p (s)siny]
- — ] -
VB(0)B(s) VB(0)B(s) B(s)
|
Let the trace of the one-period matrix be portant sinceyd, is the fundamental frequency. The vari-

able part, denoted by the symbd(s), may be regarded as
small in the sense that its average vanishes, suggesting that
Eqg. (1) may be solved iteratively by writing it in the follow-

A=TrR(L)=C(L)+S'(L). (5)

The quantityA is important since it enters into the stability

criteria of the motion in a channel. The motion is stable ifing form [9]:
and only if[10] d2x
—— + Fx=— Hs)X. 11
A|<2. 6) dg2 o (s) (3
For stable motion, the one-period phase advande then  The solution of the formx=3;_ox is determined from the
given by recursive relations
A Xo+ FoXo=0 and X+ FoX,= — IX,_, for k=1
— 0T UoXp kT UoXk k—1 =1,
CcoSsu 5 (7) (12)
The value of the envelope function g0 is given by where the dots indicate differentiation with respect tdni-

tial conditions forxq(s) are chosen to be the same as those
g forx(s), while xk(0)=>;<ck(0)=0 for k>0. The two indepen-

dent solutionau(s) ==, _qux(s) anduv(s) ==, _qv(s) sat-
isfying the initial conditionsu(0)=1 and U(0)=0 and
v(0)=0 andv(0)=1, respectively, are given by the follow-
ing recursive relations:

1

B(0)= SN
The value of$3(s) at an arbitrarys can be obtained by con-
structing a transfer matrix from the poistto s+ L.

Explicit calculation is greatly simplified when the focus-
ing elements can be considered as simple lenses. The one- Sin(VTgs)
period transfer matrix can then be obtained by multiplying a Ug(s)=cog \/?09) and Uo(g):—o@, (13
small number of simple matrices representing focusing ele- \/15}_0
ments and free spaces. Unfortunately, this simplification is
not applicable for channels consisting of extended focusing s —_—— — —_ —
elements, as in the case of solenoidal focusing. U(s)=— fo vo(s—s)F(s)Uk-1(s)ds, (14)

B. Recursive solution

vk<s>=—f:vo(e—?ﬁ(?)vk_l(?)dZ (15)

To develop a more general approach, we begin by ex-
panding the focusing function in Fourier series as follows:

E

The solutions in thes variable are then given by a simple

2 rescaling

K(s)= 2 9,2 =90+(s). (9)

n=—o

L
C(s)=u(s) and S(s)=—uv(s). (16)
Here T
s=ms/L, (100  This completes the discussion of the general procedure for
computing theR matrix and other beam dynamics quantities
is the scaled variable with periodr. Note thatd,, ands are recursively, based on the Fourier coefficients of the focusing
dimensionless. Sinck(s) is real, % =9_,, where9* is  function.

the complex conjugate of,.* The constant pard, is im-
C. Stability criteria

For more explicit results, let us work out the recursive
YIn literature for Hill's equation, it is often assumed thé¢s) is ~ expansion to some low orders. Consider first the trace
an even function irs, implying thatd,, are real. We will not need )
this assumption here. A=u(m)+v(m)=Ag+ A1+ A+ A3+, ... . (17
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The zeroth-order termj is easy to get from Eq13) as The first-order ternd\ ; vanishes because it can be reduced to
an integral over one period of the functidh i.e.,
Ao=2 cog o), 19 ¢ P o

while A, is, in view of Egs.(14),(15), _sin({Bom) [ B
Al——Tofo ﬁ(G)dG—O. (20)

Ay=— f;dg ) vo(m—3)U—1(s) + Uo(T—S)vK—1(s)].

(199  The second-order termy, is equal to the integral

foﬂdq 29(9)f:d?b(g—)vo(;—?)[uo(w—e)uo@+uo(w—q>vo(s_)]

_ Jﬁdgfgd???(s)ﬁ(s_)sﬂ\/I?—O(Q_G)]Sg[ fo(m=s+9)]
0 0 0

1

~ o~ ™ S — . o
=— ﬁmﬁnf dgf ds e2"se?M™ gin .. . Isin - - - ]. (21)
Do mA=—e 0 0

Here and in the followingd,, is defined to bed,= 9, for n#0 andd,=0. In the Appendix we show that the terms with
m+ —n in the above sum cancel out. Computifig by collecting the contributions from the= —n terms and adding t4,
we obtain the following simple expression farvalid to the second order:

7SI < |42

A=2 cog\Oym)+
£\ Dom) N

+, ., (22

At this point we remark that an exact expressionfowas obtained by Hill in terms of an infinite determinant as follows
[6,7]:

A=2—-4sir?

gJEJD. 23)

HereD is an infinite determinant, known as Hill's determinant, given b¥|

. 9. O, V.5 D,
99—16 09—16 0o—16 ¥o—16
9, ) 9, O, O,
o—4 Jo—4 Vo—4 o4
D= R ke 1 0o 92| (24)
99—0 Jo—0 9o—0 Jo—0
9y 9, 9, ) 9,
9o—4 09-4 o—4 o4
94 94 9, 9, .
90— 16 0,—16 9o—16 §—16

This determinant can be expanded in a power seri¢§jh. Inserting the result into E¢23), one obtain\ as a power series
in {Y,}, which is in fact identical to the recursive solution found above. Indeed, it is not difficult to verify the second-order
result Eq.(22) by expanding the Hill's determinant. It turns out that explicit expressiond ofor k>2 are more easily

obtained by expanding the Hill's determinant than by carrying out the integrals in the recursive method. The third-order term
is [9]
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TSIOom < RO, 9%, ) (MP+n?+mn—39)

= (25
T4, miL (9-m?) (90— n?[Fo—(m+n)?]
|
Here the symbol Re implies taking the real part. s I (=) Tsin( VO
We note the important role of the dimensionless fre-v(7)=— 2 9 j i2ns Dol ;)] n(ydos)

quency 9, in determining the general character of the n=-e 0
beam transport properties in periodic channels. Equagan : o
indicates that the stability condition E@) could be violated = sin( \/—OW) Rze[ 0] . (27)
when \9,~n for any integern, implying that the motion Vo =1 n?—

becomes unstable. This is referred to as nhe resonance
since the one-period phase advance becomes The
strength of thenw resonance depends on the magnitude o

Adding these contributions, the envelope functiosat to
tfirst order becomes

the coefficientd,,. From Eq.(22), assuming that the corre- |_ sin( /9 \/—77) Re ﬁn]
sponding harmonics are not too weak, the stability bound- ~ B(0)=— \/— ) —1‘} voeea|. (28)
aries are roughly given by sinu n=1nt= Y
19 5 9.2 The calculation of3(sy) at an arbitrary locatios, is similar
\/_Nn_ Ll (26)  tothe above except that we need to move the period from the
16 9o interval O<s<L to s;=<s=<s,+ L. Accordingly, the Fourier

coefficient 9, in Eq. (9) is replaced byd,e'?"s0, wheres,
=mSy/L. It then follows that the expression f@(s) is sim-
ly obtained from the right-hand side of E(®8) by the
eplacementd,— &,e'2"s:

L sm(\/—w)

D. Envelope functi Bls)=— JIasinu
nvelope tunction T S||"|IL,L

The stability as a function of/i)_o can be translated to the
stability as a function of other physical parameters of th
system, such as the particle momentum or the rms fiel
strength.

* Rq:,l?neianS/L] .
n2— 9,

I
[

n
We now turn our attention to the envelope functjé(s). 29
To computeB(0) from Egs.(8,16), we need to findv ()

=3,_ovk(m). The zeroth-order termy() is given in Eq.  We have also computed the second-order correg@ionAf-
(13), andv () can be worked out using E¢L5) as ter some algebrédone with Mathematica®):

(8)= LSIn(\/—’W)l 77001(\/—77) DAL N
Pa T 9gsinu 4 Vo n=1n’—19, mn-1

(m2+mn+ n2_300)Rq,&mﬁnei2(m+n)wsﬂ]
(M?=9)(n?= Jo)[ (M+n)?= 9]

(m?2—mn+ n2—3ﬁo)Rdﬁmﬁ§ei2(m")”S/L]H 30
(M?=80)(n*= 9o)[ (M—n)?— ] '
|
Note thatB, contributes a constant term lenge is to reduce the beam emittariceoling to a useful
level before a significant amount of muons decay. lonization
VOom(n2— dg)cot o) — (N2—39) energy loss of muons in materials is the only known process

Elﬂlz

' that is sufficiently fast for this purpose. However, multiple
31) scattering tends to enlarge beam emittatfeating and its

effect is proportional to the beam size. Thus, a muon beam

in the square bracket of E(R9). The constant term iB(s) has to be tightly focused during cooling. Channels with con-
could be important for optimization since it determines thetinuous solenoidal focusing are the major candidates. Since

averageg value. the canonical angular momentum will build up in a unipolar
solenoid cooling channel, the on-axis field polarity must be

Ill. APPLICATION EXAMPLES changed[14,12. One type of design is to have the field

periodically switched. A natural thought along this line is the

The possibility of muon colliders or neutrino factories has“FOFO” channel, whose on-axis field varies sinusoidally
received much attention recenfly,12,13. The biggest chal- [15]. In order to reach smaller beta function at absorbers and

4 9o(n?—9y)?
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(a)
61 —exact 5 -
) ---3rd order 0.5 . -—-1st order ,
i . 0.4 >, eee2nd order /
4; i 2nd order = L exact ‘
aie - 0.3 \
2 e o \
0 i
M8 N\ . 0.1
ol ML IS stable region
MELan ~—— N
e § unstable region 0.1 0.2 0.3 0.4 0.5
-4 5'5 e s (m)
u l
sl t|[48 & B
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 (b)
Ps (GeVic
s ( ) 0.2
FIG. 1. Stability boundaries of a “SuperFOFO” channel. 0.150 £ 77NN
L . E 0.1 / ——1st order k
larger momentum acceptance, variations are derived from the C=% ! eee2nd order
simple FOFO channel. Here, two examples are discussed 0.057 —exact
briefly to show the accuracy of our approximate formulas. / T 03 03 04 ‘0 .
Understanding of channel behavior obtained from analytical : s (m)' )
analysis is mentioned; however, it is not our focus here, and
thus, not meant to be comprehensive. FIG. 3. 8 functions of a SuperFOFO channel(@ the first and
For periodic solenoid channels (b) the second passbands.
2
ﬁo=( qL ) (BZ> o (32) boundaries and reveals the accuracy of the approximate for-
2mpg) o STenePene mulas. We also indicated the unperturbed locatiqhy(

=n) of the n7 resonance with vertical lines. Note that the
Here, the angular brackets denote taking the average ovéhird-order approximation ofA reproduces reasonably well
one period. From Eqg26), (32), the width of the unstable the particularly interesting first two passbandggt 0.2 and
region, stopband in relative momentum is aboyt,,/ 9. 0.1 GeV/e=ps=0.14 GeV/c. In the “fast-field-flip” chan-
For a FOFO channel, the focusing functioK(s) nel proposed by Balbekop 7], the coefficientsfor a 200
= (qB mal2ps) *sirf(ms/L)~1—cos(2), thus the only har- MeV/c muon and magnetic period of 5.19)mare
monic content i§9 ., /90| =1/2. This is large and results in {&,,d+q, ...,9:+14=1{3.8186, —0.0039, —0.0047,
small momentum acceptance. To improve performance;-0.0060, —0.2239, —0.3203, —0.3345, —0.2976,
more harmonics are added. —0.2383, —0.1759, —-0.1212, —-0.0783, —0.0477,

In a “superFOFO” channel considered at Lawrence Ber-—0.0272,—0.0146. Note that the higher-order coefficients
keley National Laboratory16], B¢(s) =B .,/1.7[ sin(zms/L) are strongly suppressed and thus yield better momentum ac-
+1.1sin(5rs/L)+0.2 sin(5rg/L)] and its Fourier coefficients ceptance. The corresponding stability calculation is shown in
¥, at ps=100 MeV/c are{dy, 9.1, ...,9:5;={2.681, Fig. 2. Notice the second-order formula E§2) works ex-
0.977,—1.072,—0.959, —0.262, —0.024. Scaling the co- tremely well due to the weakness of the harmonics. The fig-
efficients by 1|b§, in Fig. 1 we plotA as a function ofg in ure demonstrates clearly that théh stopband width is pro-
various approximations. The figure exhibits the stabilityportional to |9,|. Due to the smallness of the first three

harmonics, ther resonance barely exists, and the and

i 37 resonances are completely suppressed.

5 h Optimizing the envelope functioB(s) by a suitable ar-
rangement of focusing elements is one of the most important

I —exact
1 -- 2nd order
12-55 orger
P --- 2nd order
<0 g 0.64 Tt dxact
C
-1 g Z 0.635
-2 o stable region = 0.63
IS IS R  unstable region 0.625
0 0.2 0.4 0.6 0.8
Ps (GeVic) / 0.5 1 1.5 2 2.5
. . , : . s (m)
FIG. 2. Stability boundaries of a fast-field-flip solenoidal
channel. FIG. 4. B function of a fast-field-flip solenoidal channel.
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tasks in accelerator design. The simplicity of E2P) should APPENDIX
make it a useful tool for this task. In order to reduce the .
beam size, th@(s) should in general be small. This require- If we let w= /9o, Eq. (21) gives
ment is especially critical for the ionization cooling of muon

beams: the overalB value should be small in order to be 1 ~ i2ne Ai2me
able to transport the large emittance beam; the miningum Az_zw m, g,x I J dgj ds e'”e
should be at the absorber locations and be as small as pos- o

sible in order to minimize the heating due to multiple scat- X[coswm—CcoSw(7m—2s+2s)].

tering[18,12. The form of Eq.(29) already suggests a few
general strategies for obtaining a sm@ls): (1) shorter pe-  The first term, containing casm, becomes
riod; (2) stronger field(resulting in largerd, and higher-
order passhand(3) larger phase-advance term ginand(4) o
larger harmonics to cancel the unity term within the brackets COS“”TJ f ds > :lr}m;,neiz(nwm?)
of Eq. (29). Furthermore, it is helpful to make E(1) nega-
tive and as large as possible. Note that these strategies are "
often in conflict with the constraint of orbit stability and COS“”TJ j ds D B, B,e20stm) |2
available magnetic field strength.

Figures 3a) and 3b) are plots of theB functions for the
superFOFO channel in the first and second passbapds ( =0.
=200 and 120 MeY, respectively. We see that the second-
order formula gives a reasonable approximation in this casédere, the change of the integration limit is valid since the
Figure 4 shows a similar plot for the case of the fast-flipjntegrand is symmetric abogtands.
channel in the second momentum passbangs ( The second term yields
=300 MeV). Due to the suppression of harmonics, the first-
order formula is already quite accurgte. N _ Ar=1(w)+1(-w),

We have demonstrated the applicability of the approxi-
mate formulas to solenoid channels for muon ionization
cooling, obtained insight into a channel’s performance, and\'here
provided useful design guidelines. However, reaching a good

m,n=—o

mn=—x

design is much more involved and is a subject beyond thi?(w _ e'er i 5 Jwdgfgdg—eiz(n—w)eeiZ(m-*—w)g_
paper. P o, ;
eim
IV. CONCLUSION = 4w P mf dg[el2(m+n)s
To conclude, we developed a systematic treatment of —el2(ne)s]

beam dynamics in periodic focusing channels. A general for-

mula is given for theg function. Also we have rederived The first integrand gives zero unless+n=0, while the

approximate formulas for the trace of the one-period transfesecond integrand leads to an asymmetric forrmiand thus
matrix, which exist in the mathematical literature but havedoes not contribute td,. Therefore, we have
not been appreciated in the beam physics community. For-

mulas for other quantities can be derived similarly. These o - Ciwm
results, especially Eq&22) and(29), should be important for AT D 1€ L8
analyzing and optimizing periodic focusing channels that are 2 420 2iln-0 nto
the basic building blocks in accelerators, particularly for 5

cases where thin lens approximation fails. A I

=— [wSinwm—in cosw].
4w? n==x n?—?
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