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Abstract

Ionization cooling is the best-known cooling mechanism for the envisioned muon colliders and neutrino factories. In

this paper, using the moment-equation approach, we present a linear theory of ionization cooling dynamics in 6D phase

space in a quadrupole focusing channel. A simple set of differential equations that governs the evolution of both the

transverse and longitudinal emittances is derived, and closed-form solutions are given. Two new significant heating

processes have been identified. This theory is analogous to the standard linear theory in electron storage rings. Multiple

scattering integrals and energy straggling integrals, quantities like the synchrotron radiation integrals, are introduced to

specify the cooling process and the equilibrium emittances in a periodic cooling channel.
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1. Introduction

Ionization cooling channels are being developed
to reduce the transverse and longitudinal emit-
tances of a muon beam for envisioned neutrino
factories and muon colliders [1–4]. Ionization
cooling is achieved by reducing the muons’
momenta through ionization energy loss in absor-
bers and replenishing the momentum loss only in

the longitudinal direction through RF cavities.
This mechanism can effectively reduce the trans-
verse emittance of a muon beam in the same way
as radiation damping does to an electron beam. To
obtain longitudinal cooling, dispersion is intro-
duced to spatially separate muons of different
longitudinal momenta, and a wedged absorber is
used to reduce the momentum spread. Such a
longitudinal cooling scheme is called ‘‘emittance
exchange’’ because the longitudinal cooling is
achieved at the expense of transverse heating or
a reduced transverse cooling rate.
Ionization cooling in a quadrupole channel has

been discussed extensively by many authors,
especially Neuffer [4,5], for both transverse cooling
and longitudinal cooling through emittance
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exchange. Although the basic physics is well
understood, a consistent 6D theory analogous to
electron ring theory has been lacking. In this
paper, we present such a linear theory for 6D
ionization cooling of a matched beam using the
moment-equation approach. We adopt this ap-
proach because: (a) the second moments of beam
phase-space distribution contain most of the
important beam properties such as rms beam size
and angular divergence, (b) the evolution equa-
tions of the second moments close on themselves
for linear dynamics that often dominate beam
evolution, and (c) it is equivalent to solving the
linearized Fokker–Planck equation. There are 21
independent second moments for 6D phase space.
In general, it is nontrivial to analytically solve such
a large number of moment equations. Nonetheless,
analytical solutions for a quadrupole ionization
cooling channel can be worked out in analogy to
the standard theory for electron storage rings. In
fact, to a large extend, we adapted the electron
radiation damping theory for the muon ionization
cooling.
This paper is the result of our effort to address

longitudinal ionization cooling theory by general-
izing our successful treatment of solenoidal trans-
verse ionization cooling channels [6]. Because the
dynamics in a solenoidal channel is complicated by
the Larmor rotation, we choose quadrupole
channels, which are the simplest, for investigating
the emittance exchange scheme. This exercise
illuminates the beam dynamics of longitudinal
ionization cooling. Two new significant heating
processes have been found, which are important
for longitudinal cooling channel designs.

2. Single-particle dynamics

The dominant forces on the muons are from the
electromagnetic field of the focusing channel, i.e.,
the focusing quadrupoles, bending dipoles, and the
longitudinal focusing from RF cavities. This
Hamiltonian part of the muon beam dynamics is
exactly the same as the quadrupole channels in
storage rings and is well described by the Courant–
Snyder theory [7]. We consider an idealized
uncoupled quadrupole channel with quadrupole

strength KðsÞ; horizontal bending radius rðsÞ; and
RF focusing strength V ðsÞ: Using the standard
Frenet–Serret coordinates fx; y; sg; the linear
Hamiltonian can be written as

H ¼
1

2
P2

x þ KðsÞ þ
1

r2

� �
x2

� �
þ
1

2
P2

y � KðsÞy2
h i

�
xd
rðsÞ

þ
1

2

1

g20
d2 þ V ðsÞz2

� �
; ð1Þ

where fx;Pxg; fy;Pyg are the horizontal and
vertical canonical variables, and fz; dg are the
longitudinal canonical variables representing the
relative longitudinal position and momentum
deviation d ¼ ðP � P0Þ=P0 from the nominal
momentum P0: We assume a constant nominal
momentum, i.e., there is no net acceleration for the
reference particle in the cooling channel. g0 is the
Lorentz factor of the reference particle. The 1=r2

term arises from the sector-bend focusing.
The primary dissipative and diffusive forces that

give the cooling and heating effects are due to the
muons’ interaction with the material, i.e., inelastic
and elastic scattering from the absorber atoms.
Both processes are stochastic in nature and cannot
be treated with ordinary equations of motion.
Similar to radiation damping, the ionization
energy loss during inelastic scattering results in
an average damping force on a muon that is in
opposite direction and proportional to the muon
momentum. The elastic scattering does not pro-
duce an average force. Both processes yield
diffusive (heating) effects known as energy strag-
gling and multiple scattering. All these effects can
be treated with stochastic differential equations.
The single-particle equations of motion are

dx

ds
¼ Px

dPx

ds
¼ �KxðsÞx þ

d
rðsÞ

� ZðsÞPx þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
wðx; sÞ

p
xMSx ðsÞ

dy

ds
¼ Py

dPy

ds
¼ �KyðsÞ y � ZðsÞPy þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
wðx; sÞ

p
xMSy ðsÞ
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dz

ds
¼

d
g20

�
x

rðsÞ
dd
ds

¼ �VðsÞz � ð@xZÞx þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wdðx; sÞ

p
xESz ðsÞ: ð2Þ

Here Kx ¼ K þ 1=r2 and Ky ¼ �K are the mag-
netic focusing strengths, ZðsÞ ¼ ð1=pvÞðdE=dsÞ is a
positive quantity characterizing the cooling force
from energy loss, wðx; sÞ ¼ ð13:6MeV=pvÞ2ð1=LradÞ
is the projected mean-square angular deviation per
unit length due to multiple scattering and Lrad is
the radiation length of absorbers, wd is the mean-
square relative energy deviation per unit length
due to energy straggling, and xMSx ðsÞ; xMSy ðsÞ and
xESz ðsÞ are uncorrelated unit stochastic quantities
describing the fluctuating forces due to multiple
scattering and energy straggling, respectively. We
assume that these stochastic quantities are domi-
nated by Gaussian white noise that satisfy
the properties /xiðsÞS ¼ 0 and /xiðsÞxjð%sÞS ¼
dijdðs � %sÞ for the ensemble average /?S: The x

dependence of the diffusion terms and the @xZ term
is due to the wedged absorber in the horizontal
direction for emittance exchange. For simplicity,
we treat a uniform density wedged absorber as a
uniform thickness absorber with increasing den-
sity. w and wd depend on x through this density
variation. Here, we also neglect the weak momen-
tum dependence of ionization energy loss. Without
the material terms containing Z’s and w’s, the
equations of motion are a direct result of the
Hamiltonian equation (1).

3. Beam-moment equations

Fokker–Planck equations are often derived
from stochastic differential equations to solve for
average phase-space distribution. When the forces
are linear, the Fokker–Plank equation results in
closed-form second-order moment equations for
the phase-space distribution. Since our interest
here is linear cooling dynamics, we derive the
moment equations directly from the equations of
motion in Eq. (2), by using Eq. (2.42) of Ref. [8] or
by straightforward differentiation.
Because the two transverse planes are decoupled

and the dynamics of the vertical plane is the same

as the dynamics of the horizontal plane if we set
the bending radius to infinity and dispersion to
zero, it is sufficient to treat only the x–z phase-
space dynamics. After some algebra, we obtained
the following equations for the 10 second-order
beam moments in 4D phase space:
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1

g20
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1
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/xPxS
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1

rðsÞ
/zdS� ZðsÞ/zPxS

/PxdS0 ¼ � KxðsÞ/xdS� V ðsÞ/zPxS

þ
1
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/d2S� ZðsÞ/PxdS

� ð@xZÞ/xPxS: ð3Þ

Hereafter /?S denotes phase-space averaging
and a prime denotes differentiation with respect to
s: Note that, although the stochastic terms depend
on x; there is no @xw in the moment equations
because the stochastic terms in the equations of
motion do not have an x component. Further-
more, assuming that the absorber wedges are
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linear and cover the whole beam,

/wðx; sÞS ¼ wjx¼0 þ ð@xwÞ/xSþ
1

2
ð@2xwÞ/x2S

þ ? ¼ wðsÞ: ð4Þ

Thus /wðx; sÞS and /wdðx; sÞS in Eq. (3) can be
replaced with their on-axis values wðsÞ and wdðsÞ:
The above moment equations are fully coupled

and look formidable. However, it is well known
that the Hamiltonian part of the transverse and
longitudinal dynamics can be decoupled by
employing the dispersion function Dx given by
the equation [8]

D00
x þ KxðsÞDx ¼

1

rðsÞ
: ð5Þ

Using the dispersion function and assuming the
RF cavities are in dispersion-free regions, the
transformation

x ¼ #xb þ DxðsÞd; Px ¼ #Pxb þ D0
xðsÞd;

z ¼ #z � D0
x #xb þ Dx

#Pxb ; d ¼ #d ð6Þ

will decouple the betatron motion f #xb; #Pxbg and
the synchrotron motion f#z; #dg: In the following we
may drop the 4 or the subscript b to simplify the
notation.
Using the moment equation (3), the transforma-

tion equation (6), the dispersion equation (5), and
the dispersion-free condition that the RF cavities
locate at zero-dispersion regions, after some
tedious but straightforward algebra, the moment
equations in terms of the betatron and synchro-
tron variables become

/ #x2S0 ¼ 2/ #x #PxSþ 2ð@xZÞDx / #x2S

þ 2ð@xZÞD2
x/ #xdSþ D2

xwdðsÞ

/ #x #PxS0 ¼/ #P2
xS� K1/ #x2S� Z�/ #x #PxS

� Z�D0
x / #xdSþ ð@xZÞD2

x/ #PxdS

þ DxD0
x wdðsÞ

/ #P2
xS

0 ¼ � 2K1/ #x #PxS� 2Z/ #P2
xS

� 2Z�D0
x/ #PxdSþ wðsÞ þ ðD0

xÞ
2 wdðsÞ

/#z2S0 ¼ 2I1 /#zdSþ 2ZDx/ #Px #zSþ D2
x wðsÞ

/ #zdS0 ¼ I1/d2S� V/ #z2S� ð@xZÞDx /#zdS

� ð@xZÞ/ #x#zSþ ZDx/ #PxdS

/d2S0 ¼ � 2V/ #zdS� 2ð@xZÞDx/d2S

� 2ð@xZÞ/ #xdSþ wdðsÞ

/ #x#zS0 ¼/#z #PxSþ I1/ #xdSþ ð@xZÞDx/ #x#zS

þ ð@xZÞD2
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x/d2S� DxwdðsÞ
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� Z�D0
x/#zdSþ ZDx/ #P2
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Here K1 
 Kx � ð@xZÞD0
x; I1 
 1=g20 � Dx=rþ

ZDxD0
x; and Z7 
 Z7ð@xZÞDx: Despite the appear-

ance, these equations are simpler than Eq. (3) since
the transverse and longitudinal parts are de-
coupled if we neglect the material terms containing
Z’s and w’s. These terms are small and can be
treated as perturbation, as has been shown in
solenoidal transverse cooling channels [6].

4. Beam-envelope equations

We now introduce beam emittances and envel-
ope functions, which characterize the density and
shape of beam phase-space distribution. For a
matched beam, the envelope functions are deter-
mined by the lattice functions characterizing the
focusing channel. Similar to the electron ring
theory, we introduce the transverse and long-
itudinal envelope functions as

/x2bS /xbPxbS

/xbPxbS /P2
xb
S

" #

 ex

bx �ax

�ax gx

" #
ð8Þ

and

/#z2S /#zdS

/ #zdS /d2S

" #

 ez

bz �az

�az gz

" #
: ð9Þ
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We also introduce a new emittance ec for the cross-
space between the transverse and longitudinal
phase space as

/xb #zS /xbdS

/#zPxbS /PxbdS

" #

 ec

bc �ac
�ac gc

" #
cos f

 

þ
0 1

�1 0

" #
sinf

!
: ð10Þ

In all three cases, we require that the emittance
square is equal to the determinant of the corre-
sponding moment blocks and bg� a2 ¼ 1: Insert-
ing these envelope functions into the moment
equations, one could obtain a set of differential
equations for the emittances and envelope func-
tions that is equivalent to the set of moment
equations. However, the exact envelope equations
are too complicated and not very useful. Instead,
we will focus on a much simpler but sufficiently
good approximation similar to the analysis of the
transverse solenoidal cooling channel. The key is
that the muons’ interaction with material is weak
and only the first-order material terms need to be
retained [6].
As a zero-order approximation, we consider the

case without dissipative and diffusive forces from
the material. Dropping the material terms from the
moment equations, it can be shown that

e0x ¼ e0z ¼ e0c ¼ 0

b0x ¼ �2 ax

a0x ¼ Kxbx � gx

b0z ¼ �2Iaz

a0z ¼ Vbz � Igz

b0c ¼ �ð1þ IÞ ac þ ðbcf
0 � 1þ IÞ tan f

a0c ¼
1
2
ðKx þ V Þ bc �

1
2
ð1þ IÞgc þ ac tan ff0

f0 ¼ 1
2
ðKx � V Þ bc þ ð1� IÞ gc

 �

: ð11Þ

Here I ¼ 1=g20 � Dx=r is negative of the usual slip
factor. All three emittances are conserved as
expected. However, unlike ex and ez that can have
any values for a matched beam ec ¼ 0: This is
important and is the main motivation to introduce
ec: The envelope functions bc; ac; and f are not of
much interest here since we assume a matched
beam.

Even considering the material effects, the lattice
functions determined by Eq. (11) still provide a
good approximation of the beam-envelope func-
tions of the phase-space distribution. However, the
beam emittances will be changed considerably by
the cooling in the material. To examine the cooling
process, we study the first-order perturbation of
material effects on the emittances. The calculation
of the emittance change rate can be considerably
simplified by a simple but important observation:

e0 ¼
X

fmaterial term containing Z or wg � feg

� fb; a; etc: if anyg: ð12Þ

Thus, to the first-order material effects, only zero-
order emittances and envelope functions are
required for calculating the emittance change rate.
Therefore, it is sufficient to use Eq. (11) to
determine the envelope functions. Using the
moment equations in Eq. (7) to compute
gx/ #x2S0 þ 2ax/ #x #PxS0 þ bx/ #P2

xS
0 and gz/#z2S0 þ

2az/#zdS0 þ bz/d2S0 yield e0x and e0z as

e0x ¼ �½ Z� ð@xZÞDx
ex þ 1
2
bxwþ

1
2
Hxwd ð13Þ

and

e0z ¼ �½@dZþ ð@xZÞDx
ez þ 1
2
bzwd þ

1
2
gzD2

xw ð14Þ

where Hx 
 gxD2
x þ 2axDxD0

x þ bxD02
x : Here, for

completeness, we added the usually weak term @dZ
due to the momentum dependence of ionization
energy loss. This term is obvious and has been
consistently treated in moment equations although
it has not been presented in our previous
equations. The change rate for ec is complicated
but it has the form e0c ¼ f?g sin fþ f?g cos f:
Thus averaging over f leads to e0cC0:

5. Emittance evolution and equilibrium emittances

Eqs. (13) and (14) are the key equations
governing the emittance evolution in the ionization
cooling process. They are simple and not coupled
at all. In case the dispersion is zero, these
equations reduce to the well-known equations for
a straight transverse quadrupole cooling channel
[5]. The emittance exchange is achieved by the
term ð@xZÞDx: It increases the longitudinal cooling
rate and reduces the transverse cooling rate by the
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same amount, a reflection of Robinson’s theorem
of radiation damping. The two indispensable
ingredients for emittance exchange, dispersion Dx

and wedged absorber represented by @xZ; show up
here in a simple product. The third term in the
transverse equation is the well-known heating term
due to multiple scattering. The bzwd term to the
longitudinal emittance is the bxw term to the
transverse emittance. The last terms in both
equations have not been addressed in the litera-
ture. Both are extra heating terms and need to be
carefully controlled in cooling channel design. The
Hx is a familiar term in radiation damping theory.
It characterizes the heating due to energy strag-
gling. The gzD2

x term is similar to the multiple
scattering term except that the beam size is due to
the spatial spread from the energy fluctuation
(note that gzD2

xez ¼ D2
xs

2
d).

Although the coefficients of the four heating
terms look different, they are easy to understand
from a common feature: each term is a noise
contribution to the invariant /gq2 þ 2aqp þ bp2S
of the phase space ðq; pÞ: For example, energy
straggling results in energy fluctuation s2dpwd;
which leads to fluctuations in both position and
momentum of the transverse phase space through
the dispersion Dx and D0

x: Thus it contributes the
term Hxwd to the transverse invariant. Therefore,
the Hx is just a reflection of the invariant
structure. Similarly, the multiple scattering results
in a momentum fluctuation s2Px

pw; which leads to
longitudinal position (but no energy) fluctuation
through Dx: Thus it contributes the term gzD2

x w to
the longitudinal invariant.
Since the two emittance equations are not

coupled and both are first-order inhomogeneous
differential equations, they can be integrated to a
closed form

eðsÞ ¼ eð0Þe�
R s

0
Lð%sÞ d%s þ e

�
R s

0
Lð%sÞ d%s

�
Z s

0

d%s e

R %s

0
Lð*sÞ d*s Xð%sÞ: ð15Þ

For transverse emittance, the cooling and heating
rates are

LðsÞ ¼ Z� ð@xZÞDx; XðsÞ ¼ 1
2
bxwþ

1
2
Hx wd:

ð16Þ

For longitudinal emittance

LðsÞ ¼ @dZþ ð@xZÞDx;

XðsÞ ¼ 1
2
bzwd þ

1
2
gzD2

xw: ð17Þ

All these cooling and heating rates can be
calculated with given lattice functions and absor-
ber properties, thus the emittance evolution of a
matched beam in a quadrupole channel can be
computed using the closed-form solutions. For a
sufficiently long cooling channel, the beam emit-
tances approach certain equilibrium values given
by the second term of Eq. (15).
In case of periodic cooling channels, the

emittance evolution can be characterized by
integrals over one period. Let l be the period
length, then Eq. (15) can be written as

eðmlÞ ¼ e�mGðlÞeð0Þ þ fe�ðm�1ÞGðlÞ

þ e�ðm�2ÞGðlÞ þ?þ 1gWðlÞ

¼ e�mGðlÞeð0Þ þ
1� e�mGðlÞ

1� e�GðlÞ WðlÞ; ð18Þ

where

GðsÞ ¼
Z s

0

Lð%sÞ d%s and

WðsÞ ¼ e�GðsÞ
Z s

0

eGð%sÞXð%sÞ d%s: ð19Þ

From Eq. (18), the cooling process is clear. The
initial emittance eð0Þ is exponentially damped
while extra emittance WðlÞ is generated in each
period and then damped by a factor e�GðlÞ in each
of the succeeding periods. As m-N; assuming a
positive damping rate, an equilibrium will be
reached with equilibrium emittance given by

eðNÞ ¼
WðlÞ

1� e�GðlÞC
WðlÞ
GðlÞ

: ð20Þ

Similar to synchrotron radiation integrals, we
introduce a set of integrals to specify the ionization
cooling process:

z1 ¼
Z l

0

ds ZðsÞ ð21Þ

z3 ¼
Z l

0

ds @xZDx ð22Þ
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z4 ¼
Z l

0

ds @dZ ð23Þ

W1 ¼
1

2
e
�
R l

0
½Z�ð@xZÞDx
 d%s

Z l

0

ds e

R s

0
½Z�ð@xZÞDx
 d%sbxw

C
1

2

Z l

0

dsbxw ð24Þ

W2 ¼
1

2
e
�
R l

0
½@dZþð@xZÞDx
 d%s

�
Z l

0

ds e

R s

0
½@dZþð@xZÞDx
 d%sbzwd

C
1

2

Z l

0

ds bzwd ð25Þ

W3 ¼
1

2
e
�
R l

0
½Z�ð@xZÞDx
 d%s

Z l

0

ds e

R s

0
½Z�ð@xZÞDx
 d%sHxwd

C
1

2

Z l

0

dsHxwd ð26Þ

W4 ¼
1

2
e
�
R l

0
½@dZþð@xZÞDx
 d%s

Z l

0

ds e

R s

0
½@dZþð@xZÞDx
 d%sgzD2

xw

C
1

2

Z l

0

ds gzD
2
xw: ð27Þ

To avoid confusion with radiation integrals and be
consistent with our notations for solenoidal cool-
ing channels, we used z and W instead of I for
these integrals. The ionization integrals z’s char-
acterize the cooling rates. z1 and z2 have been used
for solenoidal channels [6].W’s give the emittance
generated in one period by the four different
heating mechanisms. Multiple-scattering integrals
W1 andW4 give multiple-scattering heating to the
transverse and longitudinal emittances, respec-
tively. Similarly W2 and W3 may be referred to
as energy-straggling integrals.
In terms of these integrals, the equilibrium

emittances can be expressed as

eNx C
W1 þW3

z1 � z3
and eNz C

W2 þW4

z3 þ z4
: ð28Þ

Evolution towards this equilibrium is described
by Eq. (18). The damping times tx and tz simply

read

1

tx

¼
vu

l
ðz1 � z3Þ and

1

tz

¼
vu

l
ðz3 þ z4Þ ð29Þ

where vu is the muon’s velocity. The transverse and
longitudinal cooling lengths tx;zvu are lðz1 � z3Þ
and lðz3 þ z4Þ:
To get a sense of the importance of the new

heating terms W3 and W4; let us compare them
with the more familiar terms W1 and W2:
Roughly speaking, the parameters considered in
current cooling channel designs are around
w=wdC5–10, bxC0:25 m; DxC0:5 m; HxC1;
bzB0:5 m; and gzB2: Thus W3 will probably be
comparable but smaller than the well-known
transverse heating term W1: However, longitudi-
nal heating due to multiple scattering, W4; can
be larger than the energy-straggling term W2;
especially if longitudinal focusing is strong.
Since the two new heating terms depend quad-
ratically on the dispersion, they could get
much worse if the dispersion becomes too large.
On the other hand, efficient longitudinal cooling
requires a large dispersion. Therefore, dispersion
needs to be carefully optimized for longitudinal
cooling.

6. Conclusion and discussions

We have developed a linear theory for trans-
verse and longitudinal ionization cooling of a
matched beam in a quadrupole channel. Simple
emittance evolution equations are obtained.
Various cooling and heating effects are system-
atically deduced and new heating terms are
identified. Multiple-scattering and energy-strag-
gling integrals are introduced to characterize these
effects. Although quadrupole channels may not be
the best choice for muon cooling, this simple
theory illustrates many common features of
ionization cooling and should be useful for
theoretical understanding of ionization cooling
dynamics.
A general theory on beam equilibrium emit-

tances in electron rings was derived by Ruggiero
et al. [9] based on the linearized Fokker–Planck
equation. Applied to our ionization cooling
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problem, the dissipation matrix A and noise
matrix B in that paper are, respectively,

A ¼

0 0 0 0

0 Z 0 0

0 0 0 0

@xZ 0 0 @dZ

2
6664

3
7775 and

B ¼

0 0 0 0

0 w 0 0

0 0 0 0

0 0 0 wd

2
6664

3
7775: ð30Þ

We then confirmed the equilibrium emittances in
Eq. (28).
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