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Abstract

A singular value decomposition (SVD)-enhanced Least-Square fitting technique is discussed. By automatic identifying, ordering, and

selecting dominant SVD modes of the derivative matrix that responds to the variations of the variables, the converging process of the

Least-Square fitting is significantly enhanced. Thus the fitting speed can be fast enough for a fairly large system. This technique has been

successfully applied to precision PEP-II optics measurement in which we determine all quadrupole strengths (both normal and skew

components) and sextupole feed-downs as well as all BPM gains and BPM cross-plane couplings through Least-Square fitting of the

phase advances and the Local Green’s functions as well as the coupling ellipses among BPMs. The local Green’s functions are specified

by 4 local transfer matrix components R12, R34, R32, R14. These measurable quantities (the Green’s functions, the phase advances and

the coupling ellipse tilt angles and axis ratios) are obtained by analyzing turn-by-turn Beam Position Monitor (BPM) data with a high-

resolution model-independent analysis (MIA). Once all of the quadrupoles and sextupole feed-downs are determined, we obtain a

computer virtual accelerator which matches the real accelerator in linear optics. Thus, beta functions, linear coupling parameters, and

interaction point (IP) optics characteristics can be measured and displayed.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

For a system with sufficient known constraints and
specific quantities that can be accurately measured, one
may be able to build a computer model that can simulate
the system. One needs to identify efficient variables as
inputs to the model that can generate response outputs that
are to be identified to be equal to their corresponding
system-measured specific quantities. This requires training
process that re-identifies new efficient variables and
eliminates degenerate or unnecessary (low efficient) vari-
ables through Least-Square fitting of those well-chosen
responses from the model to those corresponding measured
quantities. In many occasions, this training process may
also involve identifying new responses with measurable
corresponding quantities from the system. To interpret the
e front matter r 2005 Elsevier B.V. All rights reserved.
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above in short, one can have a simple mathematical
formulae,

~Y ð~X Þ ¼ ~Y m (1)

where all variables are represented by an array (a vector)
~X ; responses and their corresponding measurable quan-
tities are represented by an array ~Y and an array ~Y m,
respectively. Note that ~Y is the response to the ~X and
therefore is a vector function of ~X as is explicitly shown in
the equation. Also note that the array length of ~Y and ~Y m

must be the same and must be larger than the array length
of ~X to avoid any degeneracy. Indeed, the array length of
~Y is preferred to be significantly larger than the array
length of ~X to make sure an over determined Least-Square
fitting for adding on accuracy and most of the time adding
on convergence, too. The Least-Square fitting is to update
~X through iteration such that the residual of ~Y ð~X Þ � ~Y m

converge to a minimum that is sufficiently small.
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2. The SVD-enhanced Least-Square fitting

To perform Least-Square fitting, let us first denote the
iteratively updated or the initially reasonably guessed
variable values to be ~X 0 and let ~X ¼ ~X 0 þ ~x. Then, after
performing Taylor expansion of ~Y ð~x0 þ ~xÞ, Eq. (1) can be
written as:

Y ð~X Þ ¼ Y ð~X 0 þ ~xÞ ¼ ~Y ð~X 0Þ þM~xþ~Zð~xÞ ¼ ~Y m (2)

where the Taylor expanded nonlinear term ~Zð~xÞ is much
smaller than the linear term M~x and finally becomes
negligible once ~X 0 is getting close to ~X (and so ~x is very
small) through convergent Least-Square fitting iterations.
Thus, for fitting iteration purpose, Eq. (2) can be written as

M~x ¼ Y m � Y ð~X 0Þ ¼
~b (3)

where ~b is the residual after a given fitting iteration. The
task is to take a limited fitting iterations to achieve a small
enough residual ~b.

If one were to consider the regular Least-Square fitting,
then each iterative equation would be simply

~x ¼ ðMTð~X 0ÞMð~X 0ÞÞ
�1MTð~X 0Þ

~b

where ~X 0 and ~b are updated from the last iteration by
taking ~X 0 ¼ ~X 0 þ ~x and ~b ¼ Y m � Y ð~X 0Þ: However, such
regular Least-Square fitting cannot take care of degen-
eracies that ultimately cause the iteration to diverge. To
overcome the degeneracy effect, we consider an SVD-
enhanced Least-Square fitting by identifying and eliminat-
ing those degeneracy modes in the iteration so as to always
get a convergent iteration process. In practice, by identify-
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Fig. 1. Four independent orbits extracted from PEP-II LER BPM buffer dat

extracted from beam orbit excitation at the horizontal tune while the other tw
ing the dominant SVD modes, we actually select those
efficiently convergent modes for an optimized converging
iterations.
Let us perform a singular value decomposition for the

derivative matrix M as follows:

M ¼ ULVT, (4)

where L is the singular value diagonal matrix with singular
values, ~l, given in an order from a large to a small
magnitude. Then the Least-Square fitting solution becomes

~x ¼ VL�1UT~b ¼
Xn

i¼1

1

li

ð~Vi
~U
T

i Þ
~b. (5)

Since the larger singular modes of MTM, which is
proportional to l2i , are more efficient, the SVD modes are
re-arranged in the order of the magnitudes of l3i ~U

T

i
~b. The

first kon modes are automatically tested for efficiency and
then chosen for each iteration or sub-iteration, i.e.

~x ¼
Xk

j¼1

1

lj

ð~V j
~U
T

j Þ
~b.

We have successfully applied such an SVD-enhanced
Least-Square fitting to the study of PEP-II optics
measurement.

3. Application to PEP-II optics measurement

With the above SVD-enhanced Least-Square fitting
technique applied for PEP-II optics studies, we consider
all quadrupole strengths and sextupole feed-downs in the
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a taken on January 13, 2004. The first two orbits ðx1; y1Þ and ðx2; y2Þ are
o orbits ðx3; y3Þ and ðx4; y4Þ are from excitation at the vertical tune.
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Fig. 2. Typical plots for comparing measured beta functions from the virtual accelerator (red color) to those of the designed lattice (blue color) for PEP-II

LER on January 13, 2004. The top two plots show the beta functions for the whole ring and then the bottom plots for beta functions at IP, which show the

b�’s and the waists.

–1 – 0.5 0 0.5 1
–10

0

10

20

30

til
t a

ng
le

 1
 (

de
g)

θ
1
 = 0.4866 degree*

–1 –0.5 0 0.5 1
–20

0

20

40

til
t a

ng
le

 2
 (

de
g) θ

2
 = 33.7492 degree*

–1 – 0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

(b
/a

) 1

(b/a)
1
 = 0.015611*

–1 – 0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

(b
/a

) 2

(b/a)
2
 = 0.44959*

Fig. 3. Typical plots to show IP linear coupling characteristics. The eigen-mode ellipses’ tilt angles (top plots) and axis ratios (bottom plots) are compared

between measurement (red) and the design lattice (blue).
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lattice model as well as all BPM gains and BPM cross-
plane couplings as variables, i.e., the ~X . ~Y ð~X Þ, the to-be-
calculated responses from the lattice model, are the Local
Green’s functions [1], the phase advances [2] as well as the
eigen-mode coupling ellipses tilt angles and axis ratios
among BPMs [3], ~Y m, the corresponding measurable
quantities, are derived from orbit measurement using a
model-independent analysis (MIA) [4]. Once the lattice
model is fitted to the orbit measurement, we call this lattice
model the computer virtual accelerator which matches the
real accelerator in linear optics. To obtain the ~Y m, i.e., the
Local Green’s functions represented by the matrix compo-
nents, R12;R14;R32;R34, the phase advances, and the eigen-
mode coupling ellipses tilt angles and axis ratios among
BPM locations, we make two resonance excitations at the
horizontal and vertical tunes, respectively, to obtain two
pairs of Fourier conjugate (Cosine-like and Sine-like)
orbits, one pair (two orbits) for the horizontal-tune
resonance excitation and the other pair for the vertical-
tune resonance excitation as shown in Fig. 1 for a typical
sample from PEP-II Low-Energy Ring (LER). The Y m are
derived from these 4 independent linear orbits. Since the
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Fig. 4. Typical plots to show linear coupling characteristics for the whole ring. The eigen-mode ellipses’ tilt angles (top plots) and axis ratios (bottom

plots) are compared between measurement (red) and the design lattice (blue) at all double-view BPM locations.

Y.T. Yan, Y. Cai / Nuclear Instruments and Methods in Physics Research A 558 (2006) 336–339 339
linear optics is determined by 4 independent linear orbits,
we have a complete set of constraints for the SVD-
enhanced Least-Square fitting to determine the computer
virtual accelerator. Fig. 2 shows a typical set of PEP-II
linear optics measured with this SVD-enhanced Least-
Square fitting, where the beta functions of the PEP-II LER
for the whole ring are calculated from the fitted virtual
accelerator comparing with the original ideal lattice model.
The beta beating shown are subsequently corrected by first
correcting the virtual accelerator and then applied to the
real accelerator [5].Fig. 2 also shows the beta function and
the waist shifts at IP. The other IP optics characteristics,
i.e., the linear coupling parameters (eigen-mode ellipse tilt
angles and axis ratios at IP) are shown in Fig. 3. These IP
optics measurements provide valuable information about
geometrical process of the e+–e� collisions that helps
subsequent adjustment of the IP optics. The linear coupling
parameters, the eigen-mode ellipses’ tilt angles and axis
ratios at double-view BPM locations around the whole ring
are shown in Fig. 4.

4. Summary

We have developed a mature SVD-enhanced Least-
Square fitting that has been successfully applied in the
PEP-II linear optics studies as proved by improvement of
the PEP-II optics [5]. The success basically comes from
three key points: (a) the SVD-enhances Least-Square fitting
can avoid degeneracies and has a fairly fast convergent rate
allowing for application to a fair large system such as the
PEP-II ring as a whole; (b) the PEP-II ring has a
reasonable amount of BPMs allowing for extracting
sufficient physical quantities for fitting; and (c) the linear
Green’s functions between any two BPMs can provide even
more fitting constraints that add significantly on the
convergence.
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