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The RF Cavity

¢ E-field 1s induced across gap, similar to a
parallel plate capacitor in a CRT.

¢ Each time particle traverses this gap, it sees
a potential difference and 1s accelerated.

* As APS Booster 1s circular, the particles
traverse through the cavity many times,
until they reach the desired 7GeV energy.
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.
RF Cavity

¢ RF cavity looks like a tuned L-C circuit to
the PSU.

« w=V1/LC

 d adjusted to particles
velocity v=Pc¢, and its
resonant frequency w,.

» E-field accelerates particle
during its transit time.

Lecture 7/3
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RF Cavity

@ Metamorphosis of L-C circuit into an
accelerating cavity:
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# H-field reaches maximum at cavity equator.
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APS SR RF Cavity
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RF Cavity

¢ Cavity has a huge natural inductance L.

¢ By tuning the capacitance C to cancel L, a
near pure resistance, often referred to as
shunt resistance R , can be achieved.

¢ Only when the L and C cancel, maximum
power 1s transferred to the cavity.
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RF Bucket

W When beam 1s captured by the RF system, it
1s contained 1in an RF Bucket

I Since the cavity 1s a resonating structure at
a specific RF frequency, standing waves are
generated within the structure.

m These standing wave “pockets” are the RF
buckets.

i These buckets do not have to contain beam
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RF Bucket

# If the RF bucket contains beam, then the
particles contained within the bucket 1s
referred to as a bunch.

# Harmonic number (h) describes the number
of bunches in an accelerator.

# For the APS:
— h=1296 for the Storage Ring.
— h=432 for the Booster.
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Low Level RF (LLRF)

m LLRF provides the RF frequency used for
acceleration.

 Also takes care of the correct phasing, so
that the traversing bunches, through the
cavity, see an accelerating voltage (V,..).

k Consider a synchronous particle, which sees
the same V___ at each consecutive turn.
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Low Level RF (LLRF)

Synchronous Particle
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Synchrotron Oscillations

# This oscillation about the synchronous
particle 1s termed; Synchrotron oscillation.

# Particles undergoing synchrotron
oscillations will either have:

— large enough energy/phase errors that they are
lost by the RF.

— they will continue with their synchrotron
oscillations until they are damped.
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Synchrotron Oscillations

¢ Synchrotron oscillations have the effect of

spreading out the particles in the stable region
of the RF bucket.

¢ Increasing the longitudinal emittance.
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How Much RF Is Needed?

b RF must:

— Provide the voltage to accelerate the Beam,
providing a good lifetime and reasonable
energy acceptance.

— Replace the energy lost by the Beam due to
synchrotron radiation.
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Energy Loss due to Bending Magnets

4
Energy Loss/Turn, Ub _ 88.5 L, 0
P

where:

E_ = Beam Energy (GeV),

p = Magnet Bending Radius (m).
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Energy Loss due to Insertion Devices

Energy Loss from ID/Turn,

U, =0.633E “B’l

l

where:
B = Field Strength (T),
E_ = Beam Energy (GeV),

[ = length of the device (m).
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Total Energy Loss

U, = Uy + Uy

0,

where:
U, 1s the total Energy Loss / Turn
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APS Example: U,

@ Storage Ring Energy =7.0 GeV
@ Magnet Bending Radius =38.96 m

Therefore U, =5.45 MeV
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APS Example: U,, Undulators

@ Storage Ring Energy =7.0 GeV
@ Undulator Field =085T

@ Undulator Length =2.4m

@ Therefore U, from Undulator = 54 keV

@ Max U, from Undulators =1.25 MeV
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APS Example: U,

@ U, = 5.45 MeV/turn
@ U, Undulators = 1.25 MeV/turn

U =5.45+1.25=6.7 MeV/turn
P———e
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APS Example: Power Losses

Energy Loss = U, x I

Energy Loss for 100 mA due to Bending Magnets
1s 545 kW.

Energy Loss for 100 mA due to Insertion Devices
is 125 kW.

Total Energy loss to be made up by the RF system
1s 670 kW.
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Acceleration Voltage

The voltage required to accelerate the beam 1s

V,= KU,

where K is the Overvoltage
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Overvoltage

K is determined by :

the Quantum Lifetime, 7,

the Energy Acceptance, £, /E,
the TOUSCHEK Lifetime, 7,
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APS Example: RF Required

For the APS K oc 1.42,
- = V,=9.5 MV, assuming the Etfective Shunt
Impedance of each cavity 1s 5.6 MQJ.

The power to accelerate the beam 1s
642 kW

Making the total RF power

for the APS 1.3 MW
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Why use Wave guide?

Two transmission line options:
— Coaxial.

— Wave guide.
Coaxial transmission line:

— has no cut-off frequency 1n its normal TEM
mode, and can be used down to DC.

— power handling capabilities tail off at high
frequency.
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Why use Wave guide?

@ Wave guide transmission line:

— has a limited transmission bandwidth which 1s
dependent on the wave guide dimensions.

— lower the frequency, the larger the wave guide.

— power handling capabilities are better c.f. coax,
at high frequency.
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Wave guide vs. Coaxial

Attenuation 1s comparable.

At 352 MHz,

— Wave guide has better power handling capability.

— coaxial power capability 1s below APS
requirements, even at large diameters (9 3/16).

". Wave guide 1s the best choice.

onceptual RF and Microwave Fall 2002 - ANL Lecture 7/26



Advanced Photon Source
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Beam Current

1 - Operating area
Beam Current 4 : !

Temperature-Limited
Area

Space Charge-Limited
Area

Heater Voltage ( Cathode Temperature )
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Klystron: Cavities
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Higher Order Modes (HOMs)

i Cavity geometry dictates the e-m field
distribution.

i Cavity will not only resonate at the desired
fundamental frequency, but also at other
higher order frequencies.

i These HOM’s can only be excited in the
cavity if the beam contains that frequency.
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Instabilities
Main types of beam instability:

— Robinson (longitudinal + transverse)
— Coupled-bunch (longitudinal + transverse)
— Microwave (longitudinal only)

— Head-tail (longitudinal + transverse)

— Negative Mass (longitudinal only)

Robinson Microwave
Coupled-bunch Negative Mass

< >

Internal motion in a bunch

Macro-particle type
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Robinson Instability

The most basic instability.

A growing oscillation (long and/or trans) of
a beam as a whole, when 1t interacts with an
impedance source.

JE T
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Coupled Bunch Instability (CBI)

If there 1s more than one bunch (M bunches)
In a ring;:
— Robinson 1nstabilities may be coupled (synchronised) and

the whole bunches may oscillate together in a certain
pattern.

When they are coupled:

— M independent oscillation patterns.
— Equal oscillation amplitude for all bunches

CBIs driven by cavity HOMs.
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Combating HOMs

@ Elimination at the design stage
@ Feedback systems

@ Temperature control

@ Harmonic separation of cavities
@ Gapped beam

@ Damping wigglers
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Cavity HOM Dampers

. Altemative
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Fig. 5-95. Low-power test model of prototype PEP-II RF cavity.
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Fig. 5-97. Modes measured in the low-power test cavity from 0.4-1.4 GHz, (a) without
damping, (b) with three damping waveguides. (Labels refer to modes in Tables 5-35 and
5-36).
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Super conducting Technology
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Superconductivity

Superconductivity is a phenomenon observed in several metals and
ceramic materials. When these materials are cooled to temperatures
ranging from near absolute zero ( 0 degrees Kelvin, -273 degrees
Celsius) to liquid nitrogen temperatures ( 77 K, -196 C), their electrical
resistance drops with a jump down to zero.

Non-superconductive

Metal -.\

~fp== Superconductor

Resistance

0K Tc Temperature

The temperature at which electrical resistance 1s zero 1s called the
critical temperature (T )
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Superconductivity

Some background .....

Electrical resistance in metals arises because electrons moving through the metal
are scattered due to deviations from translational symmetry. These are produced
either by impurities, giving raise to a temperature independent contribution to the
resistance, or by the vibrations of the lattice in the metal.

In a superconductor below its critical temperature, there is no resistance because
these scattering mechanisms are unable to impede the motion of the current
carriers. As a negatively-charged electron moves through the space between
two rows of positively-charged atoms, it pulls inward on the atoms of the lattice.
This distortion attracts a second electron to move in behind it.

An electron 1n the lattice can interact with another electron by exchanging an
acoustic quanta called phonon. Phonons in acoustics are analogous to photons
in electromagnetic. The energy of a phonon is usually less than 0.1 eV (electron-
volt) and thus is one or two orders of magnitude less than that of a photon.
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Superconductivity
"
- Phonon

___—r o
e_ \
The two electrons form a weak attraction, travel together in a pair and encounter
less resistance overall. In a superconductor, electron pairs are constantly
forming, breaking and reforming, but the overall effect is that electrons flow

with little or no resistance. The current is carried then by electrons moving in
pairs called Cooper pairs.

© © © ©
© © © ©
© © © ©

© © © ©
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Performance History
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Cavity Q-Factor (Q,)

The Q-factor i1s an important figure of
merit for accelerating structures.

w U
Qo o P

diss

Relates the stored energy (U) 1n a structure
against the energy lost per RF period (P, ).

onceptual RF and Microwave Fall 2002 - ANL Lecture 7/41



Cavity Q-Factor (Q,)

Total energy in the cavity defined as:

U= %,u_l H dv= %gi E| dv
Furthermore:
Fss = %RSJ H ‘2dS R. = Surface Resistance (Q)
Hence: S
o,u, ||H[ dv
© 7 R | VHfds
s
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Geometry Factor (G)
Q, can then be written as:
0 o G=0R
= — r —
o RS 0 o S

G depends on the cavity shape and not its size.

Very useful for comparing different cavity shapes,
irrespective of their size and wall materials.

Note:
The Q-factor does vary with cavity size, owing to
the frequency dependence of R..
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Shunt Impedance (R)

Ideally want the R, to be large for the accelerating
mode, so that P, 1s minimised.

Particularly important for copper cavities,
as wall dissipation 1s major 1ssue.

Can now relate R to Q.
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R0,

0,

Taking the ratio gives:

RO — VCIQC"C
QO a)OU

Which 1s independent of both the cavity
shape and also R..

In NC cavities, the R /Q_ 1s maximised by
using a small beam tube.
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R O/Q 0,

R /O, further enhanced by making geometry

re-entrant.

NC shape

Lowers the H-field in the
equator region =

reduced P,
2
Remember: RO = Ve
2 P diss

onceptual RF and Microwave Fall 2002 - ANL Lecture 7/46



HOMR /O,

R /Q, also increased for HOMs.

— beam interacts more strongly with HOMs.
— degrading beam quality + maximum possible
charge/bunch.
For SC cavities:

— R.~100,000 times less than NC.
- P

diss
— ..can have large beam tubes.
— reduced HOM R _/Q is a big advantage!

no longer a major 1ssue.
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SRF Fundamentals

Nb 1s the material of choice for SC cavities, as 1t
has the highest T_ of all pure metals.

H

SC phase

NC phase

GonceptugLRF and Microwave Fall 2002 _ANL—
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Surface Resistance R,

SC process = condensation of charge
carriers into Cooper Pairs.

At T=0K, all charge carriers are condensed
(SCO).

At 0> T <T_ most carriers are paired,
fraction are unpaired.

At T=T_, no carriers are paired (NC).
Pairs move frictionlessly through material.
Defined as London Two Fluid Model.
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Surface Resistance R,
DC fields:

— at T<T_, pairs carry all the current.
— electrical resistance vanishes, R =0Q.

RF fields:
— dissipation does occur for 0 > T <T..
— albeit very small c.f. NC state, R <10nQ.

— for RF currents to flow, RF fields penetrate into
material wall by skin depth o:
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Multipacting

Early limitation = e~ emitted from the RF
surface follows trajectory and impacts back
on the surface a number of RF cycles after
emission Resonant process.

Impacting e frees further e- which repeat
the cycle = Avalanche condition

Cure, make cavity geometry elliptical,

forcing ejected e to equator and minimum
E-field
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Thermal Breakdown

Temperature of part (or all) of surface exceeds T,
dissipating all stored energy.

Localised effect = surface defect has higher R..

Quench occurs when surrounding material cannot
dissipate the increased thermal load.

High RRR = less defects or higher purity.
(RRR =Residual Resistivity Ration)

Ratio of bulk resistivity at room temperature to NC resistivity at 4.2K
A measure of purity and thermal conductivity of the niobium
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Thermal Breakdown

Quench!

Low RRR

Defect Defect
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Advantages of SRF

Improved beam quality c.f. NC technology:
— P, is much less, as R, ~10° lower.
— Higher E,___ for less power = more efficient.
— Significantly better HOM damping.
— Reduced cavity-beam interaction:
* larger beam tubes.

* don’t need as many accelerating cells.
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However .....

Cavities require refrigerator cooling:

— total power saving does not reflect ~10°.

— more like 10°, when include fridge efficiency.
Beam loading of SC cavity:

— requires more stringent control of cavity phase
and amplitude.

— microphonics due to high E___.
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SRF Voltage Trend
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Vertical Testing
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Accelerating Gradient

Advanced Photon Source
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Py Q vs.E,.
(High Power Processing)
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POy Qvs. E,
(High Power Processing)
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Advanced Photon Source Layout of the LEP tunnel including future LHC infrastructures.
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Future Muon Collider
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Conclusions

SRF limitations are being overcome.
SRF gradients increasing.

Surface E-fields approaching fundamental
limits are being achieved.

SRF operational experience now available,
CEBAF, CERN, Cornell, and KEKB.

Installed SRF voltage around the world’s
accelerators 1s increasing exponentially!
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