
Fundamentals of
Digital Signal Processing,

with Applications to Accelerators

John Carwardine
Frank Lenkszus

Rob Merl

5/2/02

1999 / Ph 518: Fundamentals of Digital Signal Processing, with Applications to Accelerators

Table of Contents

Lecture 1 – Discrete-Time Signals and Systems

Lecture 2 – Sampling and Reconstruction

Lecture 3 – Discrete Fourier Transform

Lecture 4 – The z-Transform

Lecture 5 – Digital Filters I

Lecture 6 – Digital Filters II

Lecture 7 – System Realizations

Lecture 8 – Finite Word-Length Effects

Lecture 9 – DSP Tips and Techniques

Lecture 10 – Advanced Sampling Techniques

Lecture 11 – The APS Fast Orbit Feedback System

Lecture 12 – The APS BPM Digital Front-End

Lab 1 – Sampling

Lab 2 – Discrete Fourier Transform

Lab 3 – Discrete-Time Systems

Lab 4 – FIR Filters

Lab 5 – IIR Filters

Lab 6 – Word-Length Effects

Appendix

Copyright Notice
Whenever reproducing any material from these notes, please acknowledge the source, for example:
“extracted from Lecture Notes for Fundamentals of Digital Signal Processing with Applications to
Accelerators, J. Carwardine, F. Lenkszus, R. Merl, 1999.”

1

USPAS ‘99 - Fundamentals of Digital Signal Processing D-T Signals and Systems - John Carwardine

4/30/02

Discrete-Time Signals and Systems

John Carwardine

2

USPAS ‘99 - Fundamentals of Digital Signal Processing D-T Signals and Systems - John Carwardine

4/30/02

Discrete-Time Signals and Systems

• Introduce notation associated with discrete-time signal processing.
• Description of elementary discrete-time signals.
• Properties of discrete-time LTI systems.
• Difference equation representation and block-diagram representation of

discrete-time systems.
• General description of causal, discrete-time LTI systems.
• Discrete-time convolution.

• Relevant sections in Mitra: 2.1-2.5

3

USPAS ‘99 - Fundamentals of Digital Signal Processing D-T Signals and Systems - John Carwardine

4/30/02

Discrete-Time vs Continuous-Time

• By contrast, discrete-time signals are functions of an integer-valued index (eg n, m, k)
• The signals have no meaning for non-integer values of the independent variable.

t
0

xa(t)

• Continuous-time signals are functions of a continuous-valued independent variable t.
• They exist at all values of t.

n
-1 0 1

2
-2-3-4

3 4

x[-3]
x[1]

x[n]

• We will try to follow the convention of representing a continuous-time signal with (), eg
x(t), and discrete-time signals with [], eg x[k].

4

USPAS ‘99 - Fundamentals of Digital Signal Processing D-T Signals and Systems - John Carwardine

4/30/02

Discrete-Time Signals

• Discrete-time signals may be inherently discrete-time (eg turn-by-turn beam position at
one monitor).

• Or may have originated from the sampling of a continuous-time signal.

t
-T 0

T 2T
-2T-3T-4T

xa(-3T) xa(T)

xa(t)
3T 4T

• Sampled-data signals are assumed to have been sampled at periodic intervals T.
• The sampling rate must be sufficiently high to extract all the information in the

continuous-time signal, otherwise aliasing occurs.

• Later on, we will discuss issues relating to amplitude quantization associated with
representing discrete-time signals digitally, but in general we assume that discrete-time
signals are continuously-valued.

5

USPAS ‘99 - Fundamentals of Digital Signal Processing D-T Signals and Systems - John Carwardine

4/30/02

Elementary Discrete-Time Signals

n0

n
0





=
0
1

][nδ
0
0

≠
=

n
n





=
0
1

][nu
0
0

<
≥

n
n

Unit impulse

Unit step

∑
=

−=
n

k
knnu

0
)(][δ]1[][][−−= nununδ

The unit step and unit impulse are related as follows

6

USPAS ‘99 - Fundamentals of Digital Signal Processing D-T Signals and Systems - John Carwardine

4/30/02

Less-Elementary Discrete-Time Signals

nanx =][

Real Exponential

n

)sin(][φω += nnx o

Sinusoid

Note thatωo must be a
rational multiple of π for
x[n] to be periodic.

n n

n n

1<a 1>a

01 <<− a 1−<a
atetx −=)(

C-T equivalent:

7

USPAS ‘99 - Fundamentals of Digital Signal Processing D-T Signals and Systems - John Carwardine

4/30/02

Less-Elementary Discrete-Time Signals (cont)

0 10 20 30 40 50

0

0.5

1

n

0 10 20 30 40 50
-0.4
-0.2

0
0.2
0.4
0.6

n

Real Part

Imaginary Part

0 10 20 30 40 50
0

0.5

1

n

0 10 20 30 40 50
-π

0

+π

n

Magnitude

Phase

Complex Exponential

)]sin()[cos(][)(φωφωσωσφ +++⋅=⋅= + njneeenx oo
nnjj ooo

)(oo jj eea ωσφ +⋅=nanx =][where

ie

phase=φ

damping=σ
frequency=ω

8

USPAS ‘99 - Fundamentals of Digital Signal Processing D-T Signals and Systems - John Carwardine

4/30/02

Discrete-Time Frequency Units

• Consider the continuous-time sinusoid with continuous-time frequency fc

• Sampling this at intervals T (=1/Fs) results in the discrete-time sequence

()

()nA

nAn
F

A

TnAnx

d

s

c

s

c

c

⋅⋅=









⋅

Ω
Ω⋅⋅=








⋅Ω⋅=

Ω⋅=

ω

π

cos

2coscos

cos][

ss

n
F
n

nT
Ω

== π2
Tc

s

c
d Ω=

Ω
Ω⋅

=
π

ω
2

)cos()2cos()(tAtfAtx cca Ω⋅=⋅= π

where,

• The units of the discrete-time frequency ωd are radians per sample, or simple radians,
with range

πωπ <<− d πω 20 << dor

and

9

USPAS ‘99 - Fundamentals of Digital Signal Processing D-T Signals and Systems - John Carwardine

4/30/02

Discrete-Time Frequency Units (cont)

• How would we determine the continuous-time frequency associated with the discrete-
time sequence below?

• If we are not given the sampling frequency, we can do no better than to determine the
frequency in terms of cycles/sample. In this example, each sinusoid has 10 samples, so
the discrete-time frequency is 0.1 cycles/sample.

• Examples

Continuous-time Discrete-time
Cycles/sec Radians/sec

Sampling
frequency Cycles Radians

100Hz 200π 1000Hz 0.1 π/5
1Hz 2π 2Hz 0.5 π

n

10

USPAS ‘99 - Fundamentals of Digital Signal Processing D-T Signals and Systems - John Carwardine

4/30/02

Discrete-Time Systems

• A system receives one or more inputs, and generates one or more outputs that are
somehow dependent on the input(s).

• We will deal exclusively with single-input, single-output systems.

][2][nxny =

]2[][−= nxny

][][2 nxny =

Examples T{.}= Gain of 2

T{.} = 2-sample delay

T{.} = Instantaneous power

T{.} y[n]x[n]

11

USPAS ‘99 - Fundamentals of Digital Signal Processing D-T Signals and Systems - John Carwardine

4/30/02

w[n]

Causal, Linear, Time-Invariant Systems

• A system is linear, if the output scales linearly with the input

][][]}[][{ 2121 nynynxnxT +=+

][]}[{ 22 nynxT =

][]}[{ 11 nynxT =If

and

then

• If two cascaded systems are both linear, then the output does not depend on the order
that the two systems appear

]}[{{]}[{{]}[{][21122 nxTTnxTTnwTny ===

T1{.} y[n]x[n] T2{.}

12

USPAS ‘99 - Fundamentals of Digital Signal Processing D-T Signals and Systems - John Carwardine

4/30/02

Causal, Linear, Time-Invariant (LTI) Systems (cont)

• If the input to a time-invariant system is time-shifted by an arbitrary amount, then the
output is shifted by the same amount

][]}[{ nynxT =If

][]}[{ knyknxT −=−then

• The output of a causal system depends only on present and past inputs and outputs.

]2[2]1[3][][−−−+= nxnxnxny

]1[2][3]1[][−−++= nxnxnxny

Causal

Non-causal

• Which of the following systems are linear and/or time-invariant and/or causal?

]2[][][−+= nBxnAxny

]2[][nxny =

][][2 nxny =

][2][nxny −−=

CnAxny +−=]3[][

]12[][+= nxny

13

USPAS ‘99 - Fundamentals of Digital Signal Processing D-T Signals and Systems - John Carwardine

4/30/02

Basic Operations on Signals

X

x2[n]

x1[n] y[n]

Σ

x2[n]

x1[n] y[n]

UD y[n]x[n]

a
y[n]x[n]

Adder Multiplier

ProductUnit Delay

][][nxany ⋅=

][2][1][nxnxny ⋅=

][2][1][nxnxny +=

]1[][−= nxny

14

USPAS ‘99 - Fundamentals of Digital Signal Processing D-T Signals and Systems - John Carwardine

4/30/02

Representing Discrete-Time Systems

• Consider the following block diagram

• The output y[n] difference equation is

Σ

UD

-1.5

x[n]

x[n-1]

y[n]

1 -0.5

UD x[n-2]

]2[5.0]1[5.1][][−−−−= nxnxnxny

• The impulse response sequence is
therefore

{ }5.0,5.1,1][−−=nh

• This is a Finite Impulse Response (FIR)
system.

Μ
0]1[

1]0[

=
=

x

x

Μ
0]1[5.0]2[5.1]3[]3[

5.0]0[5.0]1[5.1]2[]2[
5.1]1[5.0]0[5.1]1[]1[
1]2[5.0]1[5.1]0[]0[

=−−=
−=−−=

=−−−=
=−−−−=

xxxh
xxxh
xxxh

xxxh

So,

• To compute the impulse response, we
make x[n] a delta function, ie

15

USPAS ‘99 - Fundamentals of Digital Signal Processing D-T Signals and Systems - John Carwardine

4/30/02

Recursive Systems

]1[5.0][

25.0
]1[5.0]1[25.0]2[5.0]2[

5.0
]0[5.0]0[25.0]1[5.0]1[

5.0
]1[5.0]1[25.0]0[5.0]0[

−=

=
++=

=
++=

=
−+−+=

kykh

yh

yh

yh

Μ

δδ

δδ

δδ
Σ

UD

0.5

x[n]

y[n-1]

y[n]

0.25

UD x[n-1]

0.5

]1[5.0]1[25.0][5.0][−+−+= nynxnxny

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

n

First nine points of the impulse response

• The following system is recursive (it uses past output values in the computation of the
present output value).

• This is an Infinite Impulse Response
(IIR) system.

• The difference equation is

• The impulse response is

16

USPAS ‘99 - Fundamentals of Digital Signal Processing D-T Signals and Systems - John Carwardine

4/30/02

General Description of LTI Systems

• All LTI systems can always be represented by constant-coefficient difference equations
of the form

∑∑
−

=
−−

−

=
−=

1

1
][

1

0
][][

N

k
knykb

M

k
knxkany

Σx[n] y[n]

UD

UD

UD

UD

UD

UD

a0

a1

a2

aM-1

b1

b2

bN-1

• The two common realizations of this general difference equation are

Direct-Form Canonical Form

x[n] y[n]

UD

UD

UD

a0

a1

a2

aM-1

b1

b2

bN-1

ΣΣ

17

USPAS ‘99 - Fundamentals of Digital Signal Processing D-T Signals and Systems - John Carwardine

4/30/02

Discrete-Time Convolution

• Consider the system described by the following block diagram

• The difference equation is

]3[]2[]1[][][3210 −+−+−+= nxanxanxanxany

• And from previous discussion, we can deduce that the impulse response sequence is

}3,2,1,0{][aaaanh =

Σ

UDx[n]

y[n]

a0

UD UD

a1 a2 a3

18

USPAS ‘99 - Fundamentals of Digital Signal Processing D-T Signals and Systems - John Carwardine

4/30/02

Discrete-Time Convolution (cont)

• Since in this case, the impulse response sequence and the system coefficients are one
and the same, we can replace the coefficients by the impulse response sequence

• The difference equation is now given by

]3[]3[]2[]2[]1[]1[][]0[][−+−+−+= nxhnxhnxhnxhny

Or equivalently

∑
=

−=
3

0
][][][

k
knxkhny

• This is the convolution equation for a general 4-coefficient FIR system

Σ

UDx[n]

y[n]

h[0]

UD UD

h[1] h[2] h[3]

19

USPAS ‘99 - Fundamentals of Digital Signal Processing D-T Signals and Systems - John Carwardine

4/30/02

Discrete-Time Convolution Example

• Convolve the following input and impulse response sequences

}5.0,1,1,5.0{][=nh,...}0,0,3,2,1,1{][−=nx

5.1)3(5.0)0(1)0(1)0(5.0]6[
4)2(5.0)3(1)0(1)0(5.0]5[

5.4)1(5.0)2(1)3(1)0(5.0]4[
3)1(5.0)1(1)2(1)3(5.0]3[

1)1(1)1(1)2(5.0]2[
5.0)1(1)1(5.0]1[

5.0)1(5.0]0[

=+++=
=+++=

=−+++=
=+−++=

=+−+=
=+−=

==

y
y
y
y
y
y
y

Σ

UDx[n]

y[n]

UD UD

0.5 1 1 0.5

∑
=

−=
3

0
][][][

k
knxkhny

Computing the output point-by-point, we get

0

∗
x[n]

h[n]
y[n]

0

0

x(0)

x(1)

x(2)x(3)

20

USPAS ‘99 - Fundamentals of Digital Signal Processing D-T Signals and Systems - John Carwardine

4/30/02

IIR Convolution Example

• Convolve the following signal and causal impulse response

,...}0,1,3,2{][=nx nnh)9.0(][=

∑∑
∞

−∞=
−=

∞

−∞=
−=

k
knxk

k
knxkhny][)9.0(][][][

• Now x[n] is non-zero only for 0 ≤ n ≤ 2, and h[n] is non-zero only when n ≥ 0, so we
only need consider the cases when

2)(0 ≤−≤ kn 0≥kand

• For n=0, only k=0 is valid, so we get

2]0[)1(]0[0)9.0(]0[=== xxy
• For n=1, both k=0, and k=1 satisfy the limits, so

8.4)2)(9.0()3)(1(]0[1)9.0()1(0)9.0(]1[=+=+= xxy

Μ

81.02)9.0(]2[

9.01)9.0(]1[

10)9.0(]0[

==

==

==

h

h

h

21

USPAS ‘99 - Fundamentals of Digital Signal Processing D-T Signals and Systems - John Carwardine

4/30/02

IIR Convolution Example (cont)

• For n=3, we find that k=1, k=2 and k=3 are valid, so

• For n=2, both k=0, k=1 and k=2 are valid, so

32.5)2)(81.0()3)(9.0()1)(1(]0[2)9.0(]1[1)9.0(]2[0)9.0(]2[=++=++= xxxy

788.4)2)(729.0()3)(81.0()1)(9.0(]0[3)9.0(]1[2)9.0(]2[1)9.0(]3[=++=++= xxxy

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

Time-step

• The first 20 points are plotted below

22

USPAS ‘99 - Fundamentals of Digital Signal Processing D-T Signals and Systems - John Carwardine

4/30/02

Homework Problems

• Complete the following problems from Mitra:

– 2.12 (a) and (d) [See p.53 of Mitra] [Pick one of the possible solutions]
– 2.13 (a), (c), (e) [See p.53 of Mitra]
– 2.18 [See sections 2.1.3, 2.2.2 of Mitra]
– 2.21 [See section 2.4.1 of Mitra]
– 2.26 (a) [See section 2.5.1 of Mitra]
– 5.2 [See Example 5.1 p.289 of Mitra]
– 5.3 [See Example 5.1 p.289 of Mitra]

• Show all workings.
• Homework is due by 1:30pm Tuesday.

1

USPAS ‘99 - Fundamentals of Digital Signal Processing Sampling and Reconstruction - John Carwardine

4/30/02

Sampling and Reconstruction

John Carwardine

2

USPAS ‘99 - Fundamentals of Digital Signal Processing Sampling and Reconstruction - John Carwardine

4/30/02

Sampling and Reconstruction

• Key elements of sampling and reconstruction.
• Ambiguity of sampled data signals (aliasing).
• Frequency-domain view of sampling.
• Shannon’s sampling theorem.
• Anti-alias filters.
• Signal reconstruction.
• The zero-order hold.

3

USPAS ‘99 - Fundamentals of Digital Signal Processing Sampling and Reconstruction - John Carwardine

4/30/02

Key Elements of Sampling and Reconstruction

Sampling

continuous-time
signal

t

analog sampling
analog-digital
conversion

DSP Operations
t n

Reconstruction

DSP Operations

digital-analog
conversion

reconstruction
continuous-time

signal

tn t

• A continuous-time signal is sampled at discrete time intervals and subsequently
converted to a sequence of digital values for processing.

• The sequence of digital values is converted into a series of impulses at discrete time
intervals before being reconstructed into a continuous-time signal.

4

USPAS ‘99 - Fundamentals of Digital Signal Processing Sampling and Reconstruction - John Carwardine

4/30/02

Ambiguity of Sampled-Data Signals

• Which continuous-time signal does this discrete-time sequence represent?

• Knowing the sampling rate, is not enough to uniquely reconstruct a continuous-time
signal from a discrete-time sequence.

• The uncertainty is a result of aliasing.

5

USPAS ‘99 - Fundamentals of Digital Signal Processing Sampling and Reconstruction - John Carwardine

4/30/02

Mathematical Explanation of Aliasing

• Consider the continuous-time sinusoid described by the expression

)2sin()(φπ += fttx

• Sampling this at intervals T results in the discrete-time sequence

)sin()2sin(][φωφπ +=+= ndfTnnx

• Since the sequence is unaffected by the addition of any integer multiple of 2π, we can
write x[n] as

]2sin[

)22sin(][

φπ

φππ

+





 ±=

+±=

n
Tn
m

fT

mfTnnx

• This must hold for any integer m, so let’s pick integer values of m/n and replace the ratio
by another integer k. We’ll also replace 1/T by the sampling rate Fs, giving

()]2sin[][φπ +±= nskFfTnx

• The implication is that when sampling at a frequency Fs, we cannot distinguish between
f, and a frequency f±kFs where k is an integer.

6

USPAS ‘99 - Fundamentals of Digital Signal Processing Sampling and Reconstruction - John Carwardine

4/30/02

Frequency-Domain View of Sampling

• Consider the sampling process as a time-domain multiplication of the continuous-time
signal xc(t) with a sampling function p(t), which is a periodic impulse function

xc(t)

p(t)

xs(t)

() ∑
∞

−∞=
−=

k
kTttp)(δ

)()()(tptcxtsx ⋅=

7

USPAS ‘99 - Fundamentals of Digital Signal Processing Sampling and Reconstruction - John Carwardine

4/30/02

Frequency-Domain View of Sampling (cont)

• The time-domain and frequency-domain representation of the two signal is shown below

xc(t)

p(t)

Xc(f)

P(f)

t

t

f

f
-Fs-2Fs Fs 2Fs0

Ts (=1/Fs)

t f
-Fs-2Fs Fs 2Fs0

xs(t) Xs(f)

• The frequency-domain representation of the sampled-data signal is the convolution of
the frequency domain representation of the two signals, resulting in

8

USPAS ‘99 - Fundamentals of Digital Signal Processing Sampling and Reconstruction - John Carwardine

4/30/02

Shannon’s Sampling Theorum

• This leads to Shannon's Sampling Theorem, which states
A band limited continuous-time signal, with highest frequency BHz can be
uniquely recovered from its samples provided that the sampling rate Fs is greater
than 2B samples per second.

• Provided the sampling rate is more than twice the signal bandwidth, the image spectra
do not overlap in frequency space.

t f
-Fs-2Fs Fs 2Fs0

xs(t) Xs(f)

B-B
Fs-B Fs+B

9

USPAS ‘99 - Fundamentals of Digital Signal Processing Sampling and Reconstruction - John Carwardine

4/30/02

Three Cases of Sampling

• Signal is band-limited
• Fs>2B

B0-B Fs-B-Fs+B-Fs Fs

-2Fs -Fs 0 Fs 2Fs
Fs/2-Fs/2

-Fs 0 Fs
Fs/2-Fs/2

Continuous -time spectrumImage at -Fs

Image at +Fs

Resulting (aliased) spectrum

• Signal is band-limited
• Fs<2B

• Signal is not band-limited

10

USPAS ‘99 - Fundamentals of Digital Signal Processing Sampling and Reconstruction - John Carwardine

4/30/02

Anti-Alias Filters

• Since aliasing will occur in all real systems, anti-alias filters are used to reduce the
effect to acceptable levels.

• An ideal anti-alias filter would pass, unaffected, all frequencies below the folding
frequency, but attenuate to zero all frequencies above the folding frequency.

-Fs 0 Fs
Fs/2-Fs/2

Ideal Filter

Original Spectrum

Filtered Spectrum

• To compute the impulse response of this idealized anti-alias filter, we can take the
inverse Fourier transform of its frequency response.

∫
∞
∞−= dfftjefHth π2)()(

11

USPAS ‘99 - Fundamentals of Digital Signal Processing Sampling and Reconstruction - John Carwardine

4/30/02

Impulse Response of the Ideal Anti-Alias Filter

• Computing the inverse Fourier transform...

()tsF
t

tFj
e

tFj
e

tj

F

F
ftje

tj

dfF
F

ftje

dfftjefHth

ss

s

s

s

s

π
π

ππ

π

π
π

π

π

sin
2
1

2
2

2
2

2
1

2

2
2

2
1

2
2

2

2)()(

=















 −
−=

−



=

−=

∞
∞−=

∫

∫
()

Tt
Tt

T
th

⋅
⋅

=
π

πsin
2
1

)(

-5T -4T -3T -2T -T 0 T 2T 3T 4T 5T

0

1

time

• Using the substitution Fs=1/T, we get

This is a doubly-infinite sinc function

• Practical anti-alias filters will be discussed later in the class.

12

USPAS ‘99 - Fundamentals of Digital Signal Processing Sampling and Reconstruction - John Carwardine

4/30/02

Signal Reconstruction

• Converting the discrete-time samples to a series of weighted impulses would result in a
replicated spectrum, with images appearing at multiples of the sampling frequency

f
-Fs Fs0

X s(f)

2Fs-2Fs

f
-Fs Fs0 2Fs-2Fs

spectral images eliminated by
the reconstruction filter

ideal lowpass
reconstruction filter

• Once again, the process is to band-limit the continuous-time signal with a filter.

n t

xd [n] xc(t)

13

USPAS ‘99 - Fundamentals of Digital Signal Processing Sampling and Reconstruction - John Carwardine

4/30/02

Zero-Order Hold

• The most common reconstruction filter is the zero-order hold that is found on most D/A
converters. The output is held constant until the next output sample arrives.

t

original c-t signal

zero-order-hold
output

discrete-time impulses

• The impulse response of the ZOH is

()


 ≤≤

=
otherwise

Tt
th

0
01

0 T

14

USPAS ‘99 - Fundamentals of Digital Signal Processing Sampling and Reconstruction - John Carwardine

4/30/02

Frequency Response of the Zero Order Hold

()






 −−

−
=






 −−=





 −

−
=

∞
∞−

−= ∫

fTjefTje
fj

Tje

fTje
fj

Tfte
fj

dtftjethfH

ππ
π

π

π
π

π
π

π

2

21
2
1

0
2

2
1

2)(

()







−=
fT

fTTfjTefH
π

ππ sin22)(

• The frequency response is evaluated
by taking the Fourier transform of
the impulse response

0 Fs/2 Fs 2Fs 3Fs
0

1

frequency

← Ideal response

← ZOH response

• This can be manipulated to give

Frequency Response of Zero Order Hold

5/1/02

Discrete Fourier Transform - Frank Lenkszus

1

USPAS ‘99 - Fundamentals of Digital Signal Processing

The Discrete Fourier Transform

Frank Lenkszus

5/1/02

Discrete Fourier Transform - Frank Lenkszus

2

USPAS ‘99 - Fundamentals of Digital Signal Processing

Outline

• The DFT
• Example Calculation
• Magnitudes of DFT Lines
• DFT Frequency Axis
• DFT Properties
• DFT of Common Functions
• Discrete Time Fourier Transform (DTFT)
• Leakage
• Windows
• Signal Detection
• Zero Padding
• Processing Gain
• FFT

5/1/02

Discrete Fourier Transform - Frank Lenkszus

3

USPAS ‘99 - Fundamentals of Digital Signal Processing

Time <> Frequency

Fourier Transform

Fourier Series

Discrete Time
Fourier Transform

Discrete Fourier
Transform

5/1/02

Discrete Fourier Transform - Frank Lenkszus

4

USPAS ‘99 - Fundamentals of Digital Signal Processing

Discrete Fourier Transform

• DFT Origin - Fourier Transform

• The DFT is used to determine the frequency content of discrete signal sequences.
• In practice, signals are sampled at discrete times - a discrete signal sequence
• Assume a signal is sampled at regularly spaced time intervals T, N times

– We obtain the sequence of N numbers:

– Where {} denotes the entire sequence as opposed to a single value x(nt)
• In general the DFT produces a sequence of N complex values:

– Where is radian frequency
– The sampling rate is,
– Therefore: is the delta frequency between s - the frequency

resolution

∫
∞

∞−

−= dtetxjX tjωω)()(

∫
∞

∞−
= ωω

π
πω dejXtx tj 2)(

2
1

)(

))1(().......2(),(),0()}({ TNxTxTxxntx −=

])1[(],......2[],[],0[]}[{ Ω−ΩΩ=Ω NXXXXkX

NTπ2=Ω

Tf s
1=

N
f sπ2=Ω][kX

5/1/02

Discrete Fourier Transform - Frank Lenkszus

5

USPAS ‘99 - Fundamentals of Digital Signal Processing

Discrete Fourier Transform

• Represents the amplitude and phase of a sinusoid with a frequency of
radians/second

• The series of frequencies may be thought of analysis frequencies
– Now

– From this we can write:

– Where are the N analysis frequencies of the DFT.
– k=0 corresponds to DC or the average value of the input sequence
– k=1, fanalysis(1)=fs/N is the lowest (other than DC) analysis frequency
– k=N-1, fanalysis(N-1)=fs(N-1)/N is the highest analysis frequency - just below fs

• {X[k]} is in general a series of complex numbers, thus the kth harmonic may be
represented as:

• where R[k] is the real part and I[k] is the imaginary part

)(ΩkX Ωk

Ωk

NkfNT
kk sππ 22 ==Ω

Nkfkf sanalysis =][1,.....1,0 −= Nk

][kf analysis

][][][kjIkRkX +=

5/1/02

Discrete Fourier Transform - Frank Lenkszus

6

USPAS ‘99 - Fundamentals of Digital Signal Processing

The DFT Equation

• The DFT Equation:
– Complex form:

– Rectangular form (from Euler’s relationship)

• Note that neither form of the DFT equation includes the sampling frequency or period
– Given the DFT, need to know the sampling frequency to compute analysis

frequencies.
• The inverse DFT:

1.....,1,0 ,][][
1

0

2 −== ∑
−

=

− NkenxkX
N

n

Nknj π

1,.....1,0 ,)]2sin()2][cos([][
1

0

−=−= ∑
−

=

NkNknjNknnxkX
N

n

ππ

10 ,][
1

][
1

0

2 −≤≤= ∑
−

=

NnekX
N

nx
N

k

Nk nj π

5/1/02

Discrete Fourier Transform - Frank Lenkszus

7

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Magnitude and Phase

• X[k] in general a complex value:

– Magnitude

– Phase

2
122])[][(][kIkRkX +=






= −

][
][tan][1

kR
kIkθ

][][][kjekXkX θ=

5/1/02

Discrete Fourier Transform - Frank Lenkszus

8

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

• Consider the following signal:

– The signal consists of a sine wave, a cosine wave and a phase-shifted sine wave at
1.0 kHz, 2.0 kHz and 3.0kHz respectively.

)5.030002sin(5.0)20002cos(75.0)1000*2sin(0.1)(+∗∗+∗∗+∗= ttttx πππ

5/1/02

Discrete Fourier Transform - Frank Lenkszus

9

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

• Let’s pick a sample frequency of 8kHz and collect 16 samples.

• So our analysis frequencies are:
0.0,0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5,7.0
,7.5

kHzNff s 5.0168000 ===∆ 1....,2,1,0, −=∆= NkfkequenciesAnalysisFr

5/1/02

Discrete Fourier Transform - Frank Lenkszus

10

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

+⋅⋅−⋅⋅
=

)]16002sin()16002][cos(0[
]0[

ππ jx
X

+⋅⋅−⋅⋅)]16012sin()16012][cos(1[ππ jx
+⋅⋅−⋅⋅)]16022sin()16022][cos(2[ππ jx
+⋅⋅−⋅⋅)]16032sin()16032][cos(3[ππ jx
+⋅⋅−⋅⋅)]16042sin()16042][cos(4[ππ jx
+⋅⋅−⋅⋅)]16052sin()16052][cos(5[ππ jx
+⋅⋅−⋅⋅)]16062sin()16062][cos(6[ππ jx
+⋅⋅−⋅⋅)]16072sin()16072][cos(7[ππ jx
+⋅⋅−⋅⋅)]16082sin()16082][cos(8[ππ jx
+⋅⋅−⋅⋅)]16092sin()16092][cos(9[ππ jx

+⋅⋅−⋅⋅)]160102sin()160102][cos(10[ππ jx
+⋅⋅−⋅⋅)]160112sin()160112][cos(11[ππ jx
+⋅⋅−⋅⋅)]160122sin()160122][cos(12[ππ jx
+⋅⋅−⋅⋅)]160132sin()160132][cos(13[ππ jx
+⋅⋅−⋅⋅)]160142sin()160142][cos(14[ππ jx

)]160152sin()160152][cos(15[⋅⋅−⋅⋅ ππ jx

1,.....1,0),2sin()2][cos([][
1

0

−=−= ∑
−

=

NkNknjNknnxkX
N

n

ππ

5/1/02

Discrete Fourier Transform - Frank Lenkszus

11

USPAS ‘99 - Fundamentals of Digital Signal Processing

X[0] =
+ 0.989713 * 1.000000 -j * 0.989713 * 0.000000
+ 0.847877 * 1.000000 -j * 0.847877 * 0.000000
+ -0.188791 * 1.000000 -j * -0.188791 * 0.000000
+ 1.186882 * 1.000000 -j * 1.186882 * 0.000000
+ 0.510287 * 1.000000 -j * 0.510287 * 0.000000
+ -0.847877 * 1.000000 -j * -0.847877 * 0.000000
+ -1.311209 * 1.000000 -j * -1.311209 * 0.000000
+ -1.186882 * 1.000000 -j * -1.186882 * 0.000000
+ 0.989713 * 1.000000 -j * 0.989713 * 0.000000
+ 0.847877 * 1.000000 -j * 0.847877 * 0.000000
+ -0.188791 * 1.000000 -j * -0.188791 * 0.000000
+ 1.186882 * 1.000000 -j * 1.186882 * 0.000000
+ 0.510287 * 1.000000 -j * 0.510287 * 0.000000
+ -0.847877 * 1.000000 -j * -0.847877 * 0.000000
+ -1.311209 * 1.000000 -j * -1.311209 * 0.000000
+ -1.186882 * 1.000000 -j * -1.186882 * 0.000000
= -0.000000 0.000000j

DFT Example

All the imaginary terms are zero.
The real term is merely the sum of all the numbers in the sequence .

This corresponds to N times the average value of {x[n]}.

5/1/02

Discrete Fourier Transform - Frank Lenkszus

12

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

+⋅⋅−⋅⋅
=

)]16102sin()16102][cos(0[
]1[

ππ jx
X

+⋅⋅−⋅⋅)]16112sin()16112][cos(1[ππ jx
+⋅⋅−⋅⋅)]16122sin()16122][cos(2[ππ jx
+⋅⋅−⋅⋅)]16132sin()16132][cos(3[ππ jx
+⋅⋅−⋅⋅)]16142sin()16142][cos(4[ππ jx
+⋅⋅−⋅⋅)]16152sin()16152][cos(5[ππ jx
+⋅⋅−⋅⋅)]16162sin()16162][cos(6[ππ jx
+⋅⋅−⋅⋅)]16172sin()16172][cos(7[ππ jx
+⋅⋅−⋅⋅)]16182sin()16182][cos(8[ππ jx
+⋅⋅−⋅⋅)]16192sin()16192][cos(9[ππ jx

+⋅⋅−⋅⋅)]161102sin()161102][cos(10[ππ jx
+⋅⋅−⋅⋅)]161112sin()161112][cos(11[ππ jx
+⋅⋅−⋅⋅)]161122sin()161122][cos(12[ππ jx
+⋅⋅−⋅⋅)]161132sin()161132][cos(13[ππ jx
+⋅⋅−⋅⋅)]161142sin()161142][cos(14[ππ jx

)]161152sin()161152][cos(15[⋅⋅−⋅⋅ ππ jx

5/1/02

Discrete Fourier Transform - Frank Lenkszus

13

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

X[1] =
+ 0.989713 * 1.000000 -j * 0.989713 * 0.000000
+ 0.847877 * 0.923880 -j * 0.847877 * 0.382683
+ -0.188791 * 0.707107 -j * -0.188791 * 0.707107
+ 1.186882 * 0.382683 -j * 1.186882 * 0.923880
+ 0.510287 * 0.000000 -j * 0.510287 * 1.000000
+ -0.847877 * -0.382683 -j * -0.847877 * 0.923880
+ -1.311209 * -0.707107 -j * -1.311209 * 0.707107
+ -1.186882 * -0.923880 -j * -1.186882 * 0.382683
+ 0.989713 * -1.000000 -j * 0.989713 * 0.000000
+ 0.847877 * -0.923880 -j * 0.847877 * -0.382683
+ -0.188791 * -0.707107 -j * -0.188791 * -0.707107
+ 1.186882 * -0.382683 -j * 1.186882 * -0.923880
+ 0.510287 * -0.000000 -j * 0.510287 * -1.000000
+ -0.847877 * 0.382683 -j * -0.847877 * -0.923880
+ -1.311209 * 0.707107 -j * -1.311209 * -0.707107
+ -1.186882 * 0.923880 -j * -1.186882 * -0.382683
= -0.000000 -0.000000j

5/1/02

Discrete Fourier Transform - Frank Lenkszus

14

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

+⋅⋅−⋅⋅
=

)]16202sin()16202][cos(0[
]2[

ππ jx
X

+⋅⋅−⋅⋅)]16212sin()16212][cos(1[ππ jx
+⋅⋅−⋅⋅)]16222sin()16222][cos(2[ππ jx
+⋅⋅−⋅⋅)]16232sin()16232][cos(3[ππ jx
+⋅⋅−⋅⋅)]16242sin()16242][cos(4[ππ jx
+⋅⋅−⋅⋅)]16252sin()16252][cos(5[ππ jx
+⋅⋅−⋅⋅)]16262sin()16262][cos(6[ππ jx
+⋅⋅−⋅⋅)]16272sin()16272][cos(7[ππ jx
+⋅⋅−⋅⋅)]16282sin()16282][cos(8[ππ jx
+⋅⋅−⋅⋅)]16292sin()16292][cos(9[ππ jx

+⋅⋅−⋅⋅)]162102sin()162102][cos(10[ππ jx
+⋅⋅−⋅⋅)]162112sin()162112][cos(11[ππ jx
+⋅⋅−⋅⋅)]162122sin()162122][cos(12[ππ jx
+⋅⋅−⋅⋅)]162132sin()162132][cos(13[ππ jx
+⋅⋅−⋅⋅)]162142sin()162142][cos(14[ππ jx

)]162152sin()162152][cos(15[⋅⋅−⋅⋅ ππ jx

5/1/02

Discrete Fourier Transform - Frank Lenkszus

15

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

X[2] =
+ 0.989713 * 1.000000 -j * 0.989713 * 0.000000
+ 0.847877 * 0.707107 -j * 0.847877 * 0.707107
+ -0.188791 * 0.000000 -j * -0.188791 * 1.000000
+ 1.186882 * -0.707107 -j * 1.186882 * 0.707107
+ 0.510287 * -1.000000 -j * 0.510287 * 0.000000
+ -0.847877 * -0.707107 -j * -0.847877 * -0.707107
+ -1.311209 * -0.000000 -j * -1.311209 * -1.000000
+ -1.186882 * 0.707107 -j * -1.186882 * -0.707107
+ 0.989713 * 1.000000 -j * 0.989713 * -0.000000
+ 0.847877 * 0.707107 -j * 0.847877 * 0.707107
+ -0.188791 * 0.000000 -j * -0.188791 * 1.000000
+ 1.186882 * -0.707107 -j * 1.186882 * 0.707107
+ 0.510287 * -1.000000 -j * 0.510287 * 0.000000
+ -0.847877 * -0.707107 -j * -0.847877 * -0.707107
+ -1.311209 * -0.000000 -j * -1.311209 * -1.000000
+ -1.186882 * 0.707107 -j * -1.186882 * -0.707107
= -0.000000 -8.000000j

At least we have a nonzero result. This should have been expected.

Remember that X[2] corresponds to or 1.0 kHz.5.02 ∗=∆∗ fk

5/1/02

Discrete Fourier Transform - Frank Lenkszus

16

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

• The following table summarizes our results.
k freq(kHz) Real X[k] Imag X[k]
00 0.000 -0.000000 0.000000
01 0.500 -0.000000 -0.000000
02 1.000 -0.000000 -8.000000
03 1.500 -0.000000 -0.000000
04 2.000 6.000000 -0.000000
05 2.500 0.000000 0.000000
06 3.000 1.917702 -3.510330
07 3.500 0.000000 -0.000000
08 4.000 0.000000 0.000000
09 4.500 0.000000 0.000000
10 5.000 1.917702 3.510330
11 5.500 0.000000 -0.000000
12 6.000 6.000000 0.000000
13 6.500 -0.000000 0.000000
14 7.000 -0.000000 8.000000
15 7.500 -0.000000 0.000000

The 1kHz term (sin) is purely imaginary
The 2kHz term (cos) is purely real
The 3kHz term (phase shifted sin) is complex.
The nth and N-n terms are complex conjugates.

5/1/02

Discrete Fourier Transform - Frank Lenkszus

17

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

5/1/02

Discrete Fourier Transform - Frank Lenkszus

18

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

k freq(kHz) Magnitude Angle (radians)
00 0.000 0.000000 0.000000
01 0.500 0.000000 0.000000
02 1.000 8.000000 -1.570796
03 1.500 0.000000 0.000000
04 2.000 6.000000 -0.000000
05 2.500 0.000000 0.000000
06 3.000 4.000000 -1.070796
07 3.500 0.000000 0.000000
08 4.000 0.000000 0.000000
09 4.500 0.000000 0.000000
10 5.000 4.000000 1.070796
11 5.500 0.000000 0.000000
12 6.000 6.000000 0.000000
13 6.500 0.000000 0.000000
14 7.000 8.000000 1.570796
15 7.500 0.000000 0.000000

DFT Magnitude and Angle

Things to notice:
The magnitudes are 8 (N/2) times the peak value of the original sine/cosine waves.
For the nth and N-n terms, the magnitudes are equal and the phases are inverted.

5/1/02

Discrete Fourier Transform - Frank Lenkszus

19

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

5/1/02

Discrete Fourier Transform - Frank Lenkszus

20

USPAS ‘99 - Fundamentals of Digital Signal Processing

Magnitude of DFT Lines

• Magnitudes are proportional to N
– For a real input signal of amplitude A0 with an integral number of cycles over N

input samples, the output magnitude, Mr , for that signal is:

– We get N/2 instead of N, because for each input component we get a pair of
complex conjugate DFT outputs, corresponding to the input frequency and it’s
image.

– Similarly, for a complex input (i.e.,) with an integral number of cycles
over N samples, the output magnitude, Mc , the DFT magnitude is:

– If the input has a DC component, D0 , then the magnitude of the line in the DFT is:

20 NAM r =

tjeA ω
0

NAMc 0=

NDX 0]0[=

5/1/02

Discrete Fourier Transform - Frank Lenkszus

21

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Frequency Axis

• The DFT output values have a frequency spacing (resolution) of
– Recall that the DFT output is just a sequence of numbers.

• So how do we know what frequency a particular line in the DFT corresponds to? To
figure this out we need to know the original sample frequency fs. Then we can compute
the frequency of the kth line as:

• If we don’t know the sampling frequency, then we can consider the DFT in terms of
normalized (to fs) frequency

– Now recalling the DFT equation:

– where we set . Then the range 0≤k ≤ N/2 corresponds to frequencies
whereas the range corresponds to . The latter range is
equivalent to . Therefore, the first N/2 values of frequencies correspond
to positive frequencies and the remaining values correspond to negative
frequencies. The point k= 0 always corresponds to zero frequency and k = N/2 (for
even N) corresponds to When plotting {X[k]}, positive frequencies are to
the left and negative frequencies are to the right – just the opposite of normal
convention.

Nfs

N
kfkXFrequency s=])[(

1.....,1,0,][][][
1

0

][
1

0

2 −=== ∑∑
−

=

−
−

=

− NkenxenxkX
N

n

kjn
N

n

Nknj θπ

N
k

k
π

θ
2

][= πθ ≤≤0
πθπ 2<≤12 −≤≤ NkN

0<≤− θπ

.πθ ±=

5/1/02

Discrete Fourier Transform - Frank Lenkszus

22

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Properties

Property
 { } { }][][kXnx

DFT

→ { } { }][][kYny
DFT

→
Periodic with period N][nx)()(kXNkX =+

Symmetry
(For Real Signals)

][nx [] [])(Re)(Re kXkNX =−
[] [])(Im)(Im kXkNX −=−

Linearity { } { }][][nybnxa ∗+∗ { } { }][][kYbkXa ∗+∗

Circular Shift by L]mod)[(NLnx −][2 kXe NkLj π−

Circular Frequency Shift by L
(Modulation)

][2 nxe NLnj π−]mod)[(NLkX −

Multiplication][][nynx ∑
−

−
1

]mod)[(][
1 N

m

NmkYmX
N

Circular Convolution ∑
−

−
1

]mod)[(][
m

m

Nmnymx][][KYkX

Conjugation][nx]mod)[(NkNX −

Parseval’s Theorem
][

1

0

2 nx
N

n
∑

−

=
∑

−

=

1

0

2][1 N

n

kX
N

5/1/02

Discrete Fourier Transform - Frank Lenkszus

23

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT of Common Functions

• DFT Table
Name Function DFT

Impulse





=
0
1

][nx
,
,

11
0

−≤≤
=

Nn
n 1][=kX , 10 −≤≤ Nk

All Ones 1][=nx , 10 −≤≤ Nn





== ∑
−

=

−

,0
,

][
1

0

2 N
ekX

N

n

Nknj π
11

0
−≤≤

=
Nk

k

Phase Shifted Cosine (General Case))cos(][00 φθ += nnx , 10 −≤≤ Nn

where πθ ≤≤ 00 .
∑

−

=

−+=
1

0

2
00)cos(][

N

n

NknjenkX πφθ

)
2

()
2

(0

0
0

0

0
0

1

1
5.0

1

1
5.0

N
k

j

Nj
j

N
k

j

Nj
j

e

e
e

e

e
e

π
θ

θ
φ

π
θ

θ
φ

+−

−
−

−
−

−
+

−

−
=

Phase Shifted Cosine (Special Case)
For the case where 0θ is an integer multiple of

Nπ2
,

)cos(][00 φθ += nnx , 10 −≤≤ Nn

N
mπ

θ
2

0 = 







= −

0
5.0
5.0

][0

0

φ

φ

j

j

Ne
Ne

kX ,

otherwise
mNk

mk
−=

=

Phase Shifted Sine (Special Case)
For the case where 0θ is an integer multiple of

Nπ2
,

)sin(][00 φθ += nnx ,
10 −≤≤ Nn

N
mπ

θ
2

0 =









−=
−−

−

0
5.0
5.0

][
)2(

)2(

0

0

πφ

πφ

j

j

Ne
Ne

kX ,
otherwise

mNk
mk
−=

=

5/1/02

Discrete Fourier Transform - Frank Lenkszus

24

USPAS ‘99 - Fundamentals of Digital Signal Processing

Discrete Time Fourier Transform (DTFT)

• The Discrete-Time Fourier Transform is the continuous Fourier Transform of a discrete
time sequence.

• The Fourier transform X(ω) of a sequence, x[n] is a continuous function of ω
• X(ω) is a periodic function with period 2π

• Recalling the equation for the DFT

• We can see that X[k] and X(ω) are related by:

• That is X[k] is a sampling of X(ω) at the points
• The normalized discrete-time frequency ωk corresponding to DFT bin number k is

∑
∞

−∞=

−=
n

njenxX ωω][)(

10,][][
1

0

2 −≤≤= ∑
−

=

− NkenxkX
N

n

Nknj π

NkXkX πωω 2)(][== , 10 −≤≤ Nk

Nkk πω 2=

Nkπω 2=

x[n] X(ω)

5/1/02

Discrete Fourier Transform - Frank Lenkszus

25

USPAS ‘99 - Fundamentals of Digital Signal Processing

Discrete Time Fourier Transform (DTFT)

• The DFT of a function is a sampling of the Fourier Transform of that function
• DFT samples of Fourier Transform are at

Fourier Transform
X(ω)

Circles are DFT (samples)
X[n]

Nkπω 2=

5/1/02

Discrete Fourier Transform - Frank Lenkszus

26

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Leakage

• In general, except in carefully contrived cases, the DFT yields only an approximation of
the true spectrum of the input signal before sampling.

• The DFT provides an exact representation of a frequency component only if it’s exactly
equal to one of the analysis frequencies:

• The DFT can not provide an exact representation of frequency components that lie
between analysis frequencies

Nkf s /

5/1/02

Discrete Fourier Transform - Frank Lenkszus

27

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Leakage

2 kHz sine wave sampled at 8 kHz

Integral number of cycles over sampling interval

5/1/02

Discrete Fourier Transform - Frank Lenkszus

28

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Leakage

1.75 kHz sine wave sampled at 8 kHz

Nonintegral number of cycles over sampling interval

5/1/02

Discrete Fourier Transform - Frank Lenkszus

29

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Leakage

• Leakage occurs when an input signal has frequencies that are not exactly equal to
analysis frequencies.

• The DFT assumes that the input signal is periodic with a period equal to the sampling
interval.

– When the input does not repeat exactly with a period equal to the sampling interval
a discontinuity exists at the sample interval boundaries

• This discontinuity implies that frequencies components exist at all frequencies

5/1/02

Discrete Fourier Transform - Frank Lenkszus

30

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Leakage

5/1/02

Discrete Fourier Transform - Frank Lenkszus

31

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Leakage

• Consider an infinitely long sinusoidal sequence of normalized frequency :

• Use Euler’s formula to express the above as:

• We can get the Fourier Transform (DTFT) of y[n] by using the following relation:

• Using the above, the Fourier Transform (DTFT) of y[n] is:

• Y(ω) is a periodic function of ω with a period of 2π containing two impulses in each
period.

– In the frequency range -π ≤ ω ≤ π, there is an impulse at ω= ω0 of complex
amplitude πejφ and an impulse at ω= -ω0 with a complex ampitude πe-jφ

)cos(][0 φω += nny

)(
2
1

][)()(00 φωφω +−+ += njnj eeny

∑
∞

−∞=

± +→
k

DTFT
nj ke)2(2 0

)(0 πωωπδω µ

))2()2(()(00 kekeY j

k

j πωωδπωωδπω φφ ++++−= −
∞

−∞=
∑

Mitra Table 3.1 p.126

5/1/02

Discrete Fourier Transform - Frank Lenkszus

32

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Leakage

• To analyze y[n] with the DFT, we use a finite length version:

• This is equivalent to multiplying the original infinite length sequence, y[n], by a finite
length rectangular window w[n]:

• That is:

)cos(][0 φω += nnx , 10 −≤≤ Nn



 −≤≤

=
otherwise

Nn
nw

 ,0

10 ,1
)(

][][][nynwnx =

5/1/02

Discrete Fourier Transform - Frank Lenkszus

33

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Leakage

• Multiplication in the time domain is equivalent to convolution in the frequency domain.
• The DTFT of w[n] is:

• The function is called the Dirichlet kernel
• Properties of the Dirichlet kernel:

– It’s maximum value is N at ω=0
– The zeros nearest to the origin are at ω = ± 2π/N. The region between these two

zeros is called the Main Lobe.
– Additional zeros occur at θ=±2mπ/N, m= ± 2, ± 3,···. There is a maximum or

minimum between every pair of zeros at approximately θ= ± (2m+1)π/N. These
regions are called side lobes.

– The highest side lobe (absolute value) occurs at θ= ± 3π/N and it’s value (for large
N) is approximately 2N/3π/ . The ratio of this side lobe to the main lobe height is
about –13.5dB.

2)1(
1

0)2sin(
)2sin(

1
1

)(−−
−

−−

=

− =
−
−

== ∑ Nj
j

NjN

k

jk e
N

e
e

eW ω
ω

ω
ω

ω
ω

ω

)2sin(
)2sin(

),(
ω

ω
ω

N
ND =

5/1/02

Discrete Fourier Transform - Frank Lenkszus

34

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Leakage

π-π

5/1/02

Discrete Fourier Transform - Frank Lenkszus

35

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Leakage

5/1/02

Discrete Fourier Transform - Frank Lenkszus

36

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Leakage

• Now we can perform the convolution to obtain the Fourier Transform of x[n]

• Recalling that:

• Observing that Y(ω) is a pair of delta functions in the range of -π to π, the convolution
integral reduces to :

• Thus the Fourier Transform of the windowed sequence x[n] is a sum of the frequency
shifted and amplitude scaled Fourier Transforms W(ω) of the window w[n] with the
amount of the frequency shifts given by ±ω0

µµωµ
π

ω
π

π
dWYX)()(

2
1

)(−= ∫−

)(
2
1)(

2
1)(00 ωωωωω φφ ++−= − WeWeX jj

))2()2(()(00 kekeY j

k

j πωωδπωωδπω φφ ++++−= −
∞

−∞=
∑

5/1/02

Discrete Fourier Transform - Frank Lenkszus

37

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Leakage

FourierTransform of windowed discrete sine wave

5/1/02

Discrete Fourier Transform - Frank Lenkszus

38

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Leakage

• Recall the relation between an N-point DFT of a sequence and it’s Fourier Transform
(DTFT):

• The N-point DFT, X[n], of x[n] is the N-point sample of the Fourier Transform of x[n],
X(ω).

– The samples are taken at Nkπω 2=

NkXkX πωω 2)(][== , 10 −≤≤ Nk

Sampled Fourier Transform Sampled Fourier Transform

5/1/02

Discrete Fourier Transform - Frank Lenkszus

39

USPAS ‘99 - Fundamentals of Digital Signal Processing

Windows

• The rectangular window leads to distortions in the DFT output
• The distortions are of two types.

– Smearing due to the finite width of the main lobe. This causes a loss of resolution.
Any impulse like feature in Y(θ) (such as that due to a sine or cosine wave) will
have a width of approximately ±2π/N in the spectrum of the rectangular-windowed
signal {x[n]}. Periodic components separated by less than 2π/N will overlap.

– Interference:the side lobes of one signal component will interfere with the main
lobe of other components. This becomes a particular problem when there are weak
signals in the presence of strong signals. This effect is worse when the weak
component’s frequency is an odd multiple of π/N of the strong component.

• There are other windows that have smaller side lobe magnitudes which leads to a
reduction in leakage.

• The strategy embodied in these windows is to force beginning and end of input
sequence to go smoothly to the same amplitude value.

5/1/02

Discrete Fourier Transform - Frank Lenkszus

40

USPAS ‘99 - Fundamentals of Digital Signal Processing

Example Windows

Retangular Triangular Hanning

Hamming Blackman Kaiser α=3.0

5/1/02

Discrete Fourier Transform - Frank Lenkszus

41

USPAS ‘99 - Fundamentals of Digital Signal Processing

Windows
Window
Type

Equation
10),(−≤≤ Nnnw

Coherent
Gain
Normalized
by N

Peak
Sidelobe
Amplitude
(dB)

Sidelobe
Roll-Off
(dB/Oct)

Equiv
Noise
BW
(Bins)

6-dB
BW
(Bins)

Scallop
Loss
(dB)

Rectangular 1
1 -13 -6 1.00 1.21 3.92

Bartlett
(Triangular)

1
2

1
2

1
−

−
−

−
N

N
n

0.5 -27 -12 1.33 1.78 1.82

Hanning








−
−

1
2

cos1
2
1

N
nπ

0.5 -32 -18 1.23 1.65 2.10

Hamming

1
2

cos46.054.0
−

−
N

nπ
0.54 -43 -6 1.36 1.81 1.78

Blackman

1
4

cos08.0
1

2
cos5.042.0

−
+

−
−

N
n

N
n ππ

0.42 -58 -18 1.73 2.35 1.10

Kaiser

[]πα

πα

0

2

0 2
12

1

I

Nn
I


















 +−

−

5.3

0.3

5.2
0.2

=
=
=
=

α
α
α
α

37.0
40.0

44.0

49.0

82
69

57

46

−
−
−
−

6
6

6

6

−
−
−
−

93.1
80.1

65.1

50.1

57.2
39.2

20.2

99.1

89.0
02.1

20.1

46.1

Dolph-
Chebyshev

The window function is the INVERSE DFT of:

1)cos(,)cos(arccos)1(cosh

1)cos(,)cos(arccos)1(cos

>











−

≤











−

N
n

N
n

hN

N
n

N
n

N

π
β

π
β

π
β

π
β

0.4

5.3

0.3
5.2

=
=
=
=

α
α
α
α

where: [])10(arccos)1(cosh 1 αβ hN −−=

42.0

45.0

48.0
53.0

80

70

60
50

−
−
−
−

0

0

0
0

73.1

62.1

51.1
39.1

31.2

17.2

01.2
85.1

10.1

25.1

44.1
70.1

Ref: Harris, F. J., “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform”, Proceedings of the IEEE, Vol.66, No.1, January 1978, pp 51-83

5/1/02

Discrete Fourier Transform - Frank Lenkszus

42

USPAS ‘99 - Fundamentals of Digital Signal Processing

Windows

5/1/02

Discrete Fourier Transform - Frank Lenkszus

43

USPAS ‘99 - Fundamentals of Digital Signal Processing

Selecting a Window

• Goals:
– Have as narrow a main lobe as possible
– Have side lobes that are as low as possible

• But reducing side lobe amplitude results in broader main lobe
– Therefore, selecting a window is a trade-off between main lobe widening

(resolution), maximum side lobe amplitude and side lobe amplitude roll-off
– In selecting a window, the following should be considered (for a given size DFT):

• What’s the closest spacing between two tones of interest.
• What’s the relative amplitude of the two tones.

5/1/02

Discrete Fourier Transform - Frank Lenkszus

44

USPAS ‘99 - Fundamentals of Digital Signal Processing

Signal Detection

5/1/02

Discrete Fourier Transform - Frank Lenkszus

45

USPAS ‘99 - Fundamentals of Digital Signal Processing

Signal Detection

Rectangular

Triangular

Hanning Hamming

5/1/02

Discrete Fourier Transform - Frank Lenkszus

46

USPAS ‘99 - Fundamentals of Digital Signal Processing

Signal Detection

Blackman Kaiser α=2.0

Kaiser α=3.0

5/1/02

Discrete Fourier Transform - Frank Lenkszus

47

USPAS ‘99 - Fundamentals of Digital Signal Processing

Zero Padding

• What is the effect to adding zeros to the end of a sequence (Zero Padding)?
• Consider:

• Then the DFT is:

• Comparing to the Fourier Transform of a discrete-time signal (DTFT)

• We observe: where

• DFT of the zero stuffed sequence is a sampling of the Continuous Fourier Transform of
the sequence at M equally spaced frequency points in the range [0, 2π] . Since M>N,
we’ve increased the resolution of our sampling of the Fourier Transform.

1

10

,0

],[
][

−≤≤
−≤≤





=
MnN

Nnnx
nx

∑∑
−

=

−
−

=

− ==
1

0

2
1

0

2][][][
N

n

Mknj
M

n

Mknj enxenxkX ππ where 10 −≤≤ Mk

∑
∞

−∞=

−=
n

njenxX θθ][)(

()][][kXkX θ= 10,
2

][−≤≤= Mk
M

k
k

π
θ

5/1/02

Discrete Fourier Transform - Frank Lenkszus

48

USPAS ‘99 - Fundamentals of Digital Signal Processing

Zero Padding

5/1/02

Discrete Fourier Transform - Frank Lenkszus

49

USPAS ‘99 - Fundamentals of Digital Signal Processing

Zero Padding

5/1/02

Discrete Fourier Transform - Frank Lenkszus

50

USPAS ‘99 - Fundamentals of Digital Signal Processing

Cautions on Zero Padding

• Magnitude of DFT result depends on the original sequence length, not the padded length
• Apply window function to original sequence – not zero stuffed sequence.

– If the window function is applied to the zero stuffed sequence, part of the window
will be zeroed out and the resultant DFT will be distorted

5/1/02

Discrete Fourier Transform - Frank Lenkszus

51

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Processing Gain

• Processing Gain is usually defined as:

– Output Signal-to-Noise Ratio (SNR) to input Signal-to-Noise Ratio
– SNR is the signal power level over the average noise power level
– w[n] is the window function

• As defined above, the value of Processing Gain scales with window length N
– Processing Gain can also be defined as:

• The DFT output SNR increases with N
– DFT signal magnitude scales by N, while output noise scales by √N

– SNR increases by 3 dB each time N is doubled

∑
∑ 









==

n

n

ii

oo

nw

nw

NS
NS

PG
][

][

2

2

∑
∑ 









==

n

n

ii

oo

nwN

nw

NNS
NS

PG
][

][

2

2

()MNLogSNRSNR MN 1010+=

5/1/02

Discrete Fourier Transform - Frank Lenkszus

52

USPAS ‘99 - Fundamentals of Digital Signal Processing

Averaging Multiple DFTs

• Because in general, addition is faster than multiplication, (not true for some modern
floating point DSPs), several smaller DFTs can be averaged to increase signal detection
sensitivity in less time than computing a large DFT

• Two cases:
– Incoherent: average corresponding bin magnitudes of multiple DFTs

• Reduces the noise fluctuations in the DFT (output noise variance), but does
not reduce average noise power. Averaging magnitudes, so average noise
power can never go to zero

• The reduction in output noise variance for averaging k DFTs is:

– Coherent integration: separately average corresponding real and imaginary
components of multiple DFTs.

• Can also reduce average noise power. BUT, SNR of averaged DFT will
decrease, if the signal of interest has random phase in successive DFTs

kgleDFT

kDFTs 1
2
sin

2

=
σ

σ

5/1/02

Discrete Fourier Transform - Frank Lenkszus

53

USPAS ‘99 - Fundamentals of Digital Signal Processing

FFT

• Computational Complexity of the DFT
– The DFT takes N2 complex multiplications and N(N-1)complex additions

• So for N=1024, it takes 106 multiplications and additions!
• There is considerable redundancy in the DFT equations

5/1/02

Discrete Fourier Transform - Frank Lenkszus

54

USPAS ‘99 - Fundamentals of Digital Signal Processing

FFT Derivation Summary

• We can reduce the computational load by splitting the input sequence in to odd and even
indexed values and computing the DFTs of these two sequences.

• The resulting DFTs can be combined to obtain the DFT of the original N point
sequence.

• This process can be repeated recursively; i.e, continue to split the sequences into odd
and even indexed sequences and compute the DFTs.

• This process is repeated until we wind up with just 2 (hence the name radix-2 FFT)
values in our sequences.

– We’ll wind up with sequences of two input values.
• We compute the DFT of each of these sequences and recombine them to

finally obtain the DFT of the original input.

5/1/02

Discrete Fourier Transform - Frank Lenkszus

55

USPAS ‘99 - Fundamentals of Digital Signal Processing

FFT

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

0
8W

1
8W

2
8W

3
8W

4
8W

5
8W

6
8W

7
8W

Full Decimation in Time FFT Implementation of 8-
point DFT

0
4W

1
4W

2
4W

3
4W

3
4W

2
4W

1
4W

0
4W

A(0)

A(1)

A(2)

A(3)

B(0)

B(1)

B(2)

B(3)

1

-1

1

-1

1

-1

1

-1

5/1/02

Discrete Fourier Transform - Frank Lenkszus

56

USPAS ‘99 - Fundamentals of Digital Signal Processing

FFT Hints

• For N-point FFT:
– Collection time =
– Frequency Resolution =

• For radix-2 FFT input sequence must be integral power of 2 , if it isn’t:
– Truncate input series or zero-pad it
– If window function is used, zero-stuff after applying the window.

• Apply window before zero padding.
– Zero padding and then windowing, distorts the resultant window and increases

leakage.
• Detecting aliasing

– Are there significant spectral components at frequencies near fs/2?
– Are there spectral lines whose frequencies depend on the value of fs?

sf
N

N
f s

5/1/02

Discrete Fourier Transform - Frank Lenkszus

57

USPAS ‘99 - Fundamentals of Digital Signal Processing

FFT - Interpreting Results

• Because of the way we’ve defined the DFT, all the magnitudes are inherently multiplied
by N for complex inputs and N/2 for real inputs, so we divide our FFT magnitudes by N
for complex inputs and N/2 for real inputs.

• An additional correction is required if we windowed our input. Each magnitude value
should be divided by the window function processing loss factor.

5/1/02

Discrete Fourier Transform - Frank Lenkszus

58

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Revisited

• Let where f = 2kHz

θθθ sin5.0cos5.05.0 +−=− jje j

ftπθ 2=

θθθ sin5.0cos5.05.0 +=− jje j

θθθ sin5.05.0 =+− − jj jeje

DFT

DFT

DFT

Upper half of DFT is redundant with lower half only for real input
signals!

Real Part

Imaginary
Part

Real Part

Imaginary
Part

Real Part

Imaginary
Part

5/1/02

Discrete Fourier Transform - Frank Lenkszus

59

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Lecture

• Unused Slides

5/1/02

Discrete Fourier Transform - Frank Lenkszus

60

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

X(3) =
+ 0.989713 * 1.000000 -j * 0.989713 * 0.000000
+ 0.847877 * 0.382683 -j * 0.847877 * 0.923880
+ -0.188791 * -0.707107 -j * -0.188791 * 0.707107
+ 1.186882 * -0.923880 -j * 1.186882 * -0.382683
+ 0.510287 * -0.000000 -j * 0.510287 * -1.000000
+ -0.847877 * 0.923880 -j * -0.847877 * -0.382683
+ -1.311209 * 0.707107 -j * -1.311209 * 0.707107
+ -1.186882 * -0.382683 -j * -1.186882 * 0.923880
+ 0.989713 * -1.000000 -j * 0.989713 * 0.000000
+ 0.847877 * -0.382683 -j * 0.847877 * -0.923880
+ -0.188791 * 0.707107 -j * -0.188791 * -0.707107
+ 1.186882 * 0.923880 -j * 1.186882 * 0.382683
+ 0.510287 * 0.000000 -j * 0.510287 * 1.000000
+ -0.847877 * -0.923880 -j * -0.847877 * 0.382683
+ -1.311209 * -0.707107 -j * -1.311209 * -0.707107
+ -1.186882 * 0.382683 -j * -1.186882 * -0.923880
= -0.000000 -0.000000j

5/1/02

Discrete Fourier Transform - Frank Lenkszus

61

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

X(4) =
+ 0.989713 * 1.000000 -j * 0.989713 * 0.000000
+ 0.847877 * 0.000000 -j * 0.847877 * 1.000000
+ -0.188791 * -1.000000 -j * -0.188791 * 0.000000
+ 1.186882 * -0.000000 -j * 1.186882 * -1.000000
+ 0.510287 * 1.000000 -j * 0.510287 * -0.000000
+ -0.847877 * 0.000000 -j * -0.847877 * 1.000000
+ -1.311209 * -1.000000 -j * -1.311209 * 0.000000
+ -1.186882 * -0.000000 -j * -1.186882 * -1.000000
+ 0.989713 * 1.000000 -j * 0.989713 * -0.000000
+ 0.847877 * 0.000000 -j * 0.847877 * 1.000000
+ -0.188791 * -1.000000 -j * -0.188791 * 0.000000
+ 1.186882 * -0.000000 -j * 1.186882 * -1.000000
+ 0.510287 * 1.000000 -j * 0.510287 * -0.000000
+ -0.847877 * -0.000000 -j * -0.847877 * 1.000000
+ -1.311209 * -1.000000 -j * -1.311209 * 0.000000
+ -1.186882 * -0.000000 -j * -1.186882 * -1.000000
= 6.000000 -0.000000j

Note that X(4) is purely real and the magnitude is “6”.

5/1/02

Discrete Fourier Transform - Frank Lenkszus

62

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

X(5) =
+ 0.989713 * 1.000000 -j * 0.989713 * 0.000000
+ 0.847877 * -0.382683 -j * 0.847877 * 0.923880
+ -0.188791 * -0.707107 -j * -0.188791 * -0.707107
+ 1.186882 * 0.923880 -j * 1.186882 * -0.382683
+ 0.510287 * 0.000000 -j * 0.510287 * 1.000000
+ -0.847877 * -0.923880 -j * -0.847877 * -0.382683
+ -1.311209 * 0.707107 -j * -1.311209 * -0.707107
+ -1.186882 * 0.382683 -j * -1.186882 * 0.923880
+ 0.989713 * -1.000000 -j * 0.989713 * 0.000000
+ 0.847877 * 0.382683 -j * 0.847877 * -0.923880
+ -0.188791 * 0.707107 -j * -0.188791 * 0.707107
+ 1.186882 * -0.923880 -j * 1.186882 * 0.382683
+ 0.510287 * -0.000000 -j * 0.510287 * -1.000000
+ -0.847877 * 0.923880 -j * -0.847877 * 0.382683
+ -1.311209 * -0.707107 -j * -1.311209 * 0.707107
+ -1.186882 * -0.382683 -j * -1.186882 * -0.923880
= 0.000000 0.000000j

5/1/02

Discrete Fourier Transform - Frank Lenkszus

63

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

X(6) =
+ 0.989713 * 1.000000 -j * 0.989713 * 0.000000
+ 0.847877 * -0.707107 -j * 0.847877 * 0.707107
+ -0.188791 * -0.000000 -j * -0.188791 * -1.000000
+ 1.186882 * 0.707107 -j * 1.186882 * 0.707107
+ 0.510287 * -1.000000 -j * 0.510287 * 0.000000
+ -0.847877 * 0.707107 -j * -0.847877 * -0.707107
+ -1.311209 * 0.000000 -j * -1.311209 * 1.000000
+ -1.186882 * -0.707107 -j * -1.186882 * -0.707107
+ 0.989713 * 1.000000 -j * 0.989713 * -0.000000
+ 0.847877 * -0.707107 -j * 0.847877 * 0.707107
+ -0.188791 * -0.000000 -j * -0.188791 * -1.000000
+ 1.186882 * 0.707107 -j * 1.186882 * 0.707107
+ 0.510287 * -1.000000 -j * 0.510287 * 0.000000
+ -0.847877 * 0.707107 -j * -0.847877 * -0.707107
+ -1.311209 * -0.000000 -j * -1.311209 * 1.000000
+ -1.186882 * -0.707107 -j * -1.186882 * -0.707107
= 1.917702 -3.510330j

X(6) corresponds to 3kHz. This looks more interesting. It’s a complex number.

5/1/02

Discrete Fourier Transform - Frank Lenkszus

64

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

X(7) =
+ 0.989713 * 1.000000 -j * 0.989713 * 0.000000
+ 0.847877 * -0.923880 -j * 0.847877 * 0.382683
+ -0.188791 * 0.707107 -j * -0.188791 * -0.707107
+ 1.186882 * -0.382683 -j * 1.186882 * 0.923880
+ 0.510287 * -0.000000 -j * 0.510287 * -1.000000
+ -0.847877 * 0.382683 -j * -0.847877 * 0.923880
+ -1.311209 * -0.707107 -j * -1.311209 * -0.707107
+ -1.186882 * 0.923880 -j * -1.186882 * 0.382683
+ 0.989713 * -1.000000 -j * 0.989713 * 0.000000
+ 0.847877 * 0.923880 -j * 0.847877 * -0.382683
+ -0.188791 * -0.707107 -j * -0.188791 * 0.707107
+ 1.186882 * 0.382683 -j * 1.186882 * -0.923880
+ 0.510287 * -0.000000 -j * 0.510287 * 1.000000
+ -0.847877 * -0.382683 -j * -0.847877 * -0.923880
+ -1.311209 * 0.707107 -j * -1.311209 * 0.707107
+ -1.186882 * -0.923880 -j * -1.186882 * -0.382683
= 0.000000 -0.000000j

5/1/02

Discrete Fourier Transform - Frank Lenkszus

65

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

X(8) =
+ 0.989713 * 1.000000 -j * 0.989713 * 0.000000
+ 0.847877 * -1.000000 -j * 0.847877 * 0.000000
+ -0.188791 * 1.000000 -j * -0.188791 * -0.000000
+ 1.186882 * -1.000000 -j * 1.186882 * 0.000000
+ 0.510287 * 1.000000 -j * 0.510287 * -0.000000
+ -0.847877 * -1.000000 -j * -0.847877 * 0.000000
+ -1.311209 * 1.000000 -j * -1.311209 * -0.000000
+ -1.186882 * -1.000000 -j * -1.186882 * 0.000000
+ 0.989713 * 1.000000 -j * 0.989713 * -0.000000
+ 0.847877 * -1.000000 -j * 0.847877 * 0.000000
+ -0.188791 * 1.000000 -j * -0.188791 * -0.000000
+ 1.186882 * -1.000000 -j * 1.186882 * 0.000000
+ 0.510287 * 1.000000 -j * 0.510287 * -0.000000
+ -0.847877 * -1.000000 -j * -0.847877 * -0.000000
+ -1.311209 * 1.000000 -j * -1.311209 * -0.000000
+ -1.186882 * -1.000000 -j * -1.186882 * 0.000000
= 0.000000 0.000000j

5/1/02

Discrete Fourier Transform - Frank Lenkszus

66

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

X(9) =
+ 0.989713 * 1.000000 -j * 0.989713 * 0.000000
+ 0.847877 * -0.923880 -j * 0.847877 * -0.382683
+ -0.188791 * 0.707107 -j * -0.188791 * 0.707107
+ 1.186882 * -0.382683 -j * 1.186882 * -0.923880
+ 0.510287 * 0.000000 -j * 0.510287 * 1.000000
+ -0.847877 * 0.382683 -j * -0.847877 * -0.923880
+ -1.311209 * -0.707107 -j * -1.311209 * 0.707107
+ -1.186882 * 0.923880 -j * -1.186882 * -0.382683
+ 0.989713 * -1.000000 -j * 0.989713 * 0.000000
+ 0.847877 * 0.923880 -j * 0.847877 * 0.382683
+ -0.188791 * -0.707107 -j * -0.188791 * -0.707107
+ 1.186882 * 0.382683 -j * 1.186882 * 0.923880
+ 0.510287 * -0.000000 -j * 0.510287 * -1.000000
+ -0.847877 * -0.382683 -j * -0.847877 * 0.923880
+ -1.311209 * 0.707107 -j * -1.311209 * -0.707107
+ -1.186882 * -0.923880 -j * -1.186882 * 0.382683
= 0.000000 0.000000j

5/1/02

Discrete Fourier Transform - Frank Lenkszus

67

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

X(10) =
+ 0.989713 * 1.000000 -j * 0.989713 * 0.000000
+ 0.847877 * -0.707107 -j * 0.847877 * -0.707107
+ -0.188791 * 0.000000 -j * -0.188791 * 1.000000
+ 1.186882 * 0.707107 -j * 1.186882 * -0.707107
+ 0.510287 * -1.000000 -j * 0.510287 * 0.000000
+ -0.847877 * 0.707107 -j * -0.847877 * 0.707107
+ -1.311209 * -0.000000 -j * -1.311209 * -1.000000
+ -1.186882 * -0.707107 -j * -1.186882 * 0.707107
+ 0.989713 * 1.000000 -j * 0.989713 * -0.000000
+ 0.847877 * -0.707107 -j * 0.847877 * -0.707107
+ -0.188791 * -0.000000 -j * -0.188791 * 1.000000
+ 1.186882 * 0.707107 -j * 1.186882 * -0.707107
+ 0.510287 * -1.000000 -j * 0.510287 * 0.000000
+ -0.847877 * 0.707107 -j * -0.847877 * 0.707107
+ -1.311209 * -0.000000 -j * -1.311209 * -1.000000
+ -1.186882 * -0.707107 -j * -1.186882 * 0.707107
= 1.917702 3.510330j

)10(X looks like the complex conjugate of)6(X .

5/1/02

Discrete Fourier Transform - Frank Lenkszus

68

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

X(11) =
+ 0.989713 * 1.000000 -j * 0.989713 * 0.000000
+ 0.847877 * -0.382683 -j * 0.847877 * -0.923880
+ -0.188791 * -0.707107 -j * -0.188791 * 0.707107
+ 1.186882 * 0.923880 -j * 1.186882 * 0.382683
+ 0.510287 * -0.000000 -j * 0.510287 * -1.000000
+ -0.847877 * -0.923880 -j * -0.847877 * 0.382683
+ -1.311209 * 0.707107 -j * -1.311209 * 0.707107
+ -1.186882 * 0.382683 -j * -1.186882 * -0.923880
+ 0.989713 * -1.000000 -j * 0.989713 * 0.000000
+ 0.847877 * 0.382683 -j * 0.847877 * 0.923880
+ -0.188791 * 0.707107 -j * -0.188791 * -0.707107
+ 1.186882 * -0.923880 -j * 1.186882 * -0.382683
+ 0.510287 * 0.000000 -j * 0.510287 * 1.000000
+ -0.847877 * 0.923880 -j * -0.847877 * -0.382683
+ -1.311209 * -0.707107 -j * -1.311209 * -0.707107
+ -1.186882 * -0.382683 -j * -1.186882 * 0.923880
= 0.000000 -0.000000j

5/1/02

Discrete Fourier Transform - Frank Lenkszus

69

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example
X(12) =
+ 0.989713 * 1.000000 -j * 0.989713 * 0.000000
+ 0.847877 * -0.000000 -j * 0.847877 * -1.000000
+ -0.188791 * -1.000000 -j * -0.188791 * 0.000000
+ 1.186882 * 0.000000 -j * 1.186882 * 1.000000
+ 0.510287 * 1.000000 -j * 0.510287 * -0.000000
+ -0.847877 * -0.000000 -j * -0.847877 * -1.000000
+ -1.311209 * -1.000000 -j * -1.311209 * 0.000000
+ -1.186882 * -0.000000 -j * -1.186882 * 1.000000
+ 0.989713 * 1.000000 -j * 0.989713 * -0.000000
+ 0.847877 * -0.000000 -j * 0.847877 * -1.000000
+ -0.188791 * -1.000000 -j * -0.188791 * 0.000000
+ 1.186882 * 0.000000 -j * 1.186882 * 1.000000
+ 0.510287 * 1.000000 -j * 0.510287 * -0.000000
+ -0.847877 * 0.000000 -j * -0.847877 * -1.000000
+ -1.311209 * -1.000000 -j * -1.311209 * -0.000000
+ -1.186882 * 0.000000 -j * -1.186882 * 1.000000
= 6.000000 0.000000j

)12(X looks the same as)4(X .

5/1/02

Discrete Fourier Transform - Frank Lenkszus

70

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

X(13) =
+ 0.989713 * 1.000000 -j * 0.989713 * 0.000000
+ 0.847877 * 0.382683 -j * 0.847877 * -0.923880
+ -0.188791 * -0.707107 -j * -0.188791 * -0.707107
+ 1.186882 * -0.923880 -j * 1.186882 * 0.382683
+ 0.510287 * -0.000000 -j * 0.510287 * 1.000000
+ -0.847877 * 0.923880 -j * -0.847877 * 0.382683
+ -1.311209 * 0.707107 -j * -1.311209 * -0.707107
+ -1.186882 * -0.382683 -j * -1.186882 * -0.923880
+ 0.989713 * -1.000000 -j * 0.989713 * -0.000000
+ 0.847877 * -0.382683 -j * 0.847877 * 0.923880
+ -0.188791 * 0.707107 -j * -0.188791 * 0.707107
+ 1.186882 * 0.923880 -j * 1.186882 * -0.382683
+ 0.510287 * -0.000000 -j * 0.510287 * -1.000000
+ -0.847877 * -0.923880 -j * -0.847877 * -0.382683
+ -1.311209 * -0.707107 -j * -1.311209 * 0.707107
+ -1.186882 * 0.382683 -j * -1.186882 * 0.923880
= -0.000000 0.000000j

5/1/02

Discrete Fourier Transform - Frank Lenkszus

71

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

X(14) =
+ 0.989713 * 1.000000 -j * 0.989713 * 0.000000
+ 0.847877 * 0.707107 -j * 0.847877 * -0.707107
+ -0.188791 * -0.000000 -j * -0.188791 * -1.000000
+ 1.186882 * -0.707107 -j * 1.186882 * -0.707107
+ 0.510287 * -1.000000 -j * 0.510287 * 0.000000
+ -0.847877 * -0.707107 -j * -0.847877 * 0.707107
+ -1.311209 * -0.000000 -j * -1.311209 * 1.000000
+ -1.186882 * 0.707107 -j * -1.186882 * 0.707107
+ 0.989713 * 1.000000 -j * 0.989713 * -0.000000
+ 0.847877 * 0.707107 -j * 0.847877 * -0.707107
+ -0.188791 * -0.000000 -j * -0.188791 * -1.000000
+ 1.186882 * -0.707107 -j * 1.186882 * -0.707107
+ 0.510287 * -1.000000 -j * 0.510287 * -0.000000
+ -0.847877 * -0.707107 -j * -0.847877 * 0.707107
+ -1.311209 * 0.000000 -j * -1.311209 * 1.000000
+ -1.186882 * 0.707107 -j * -1.186882 * 0.707107
= -0.000000 8.000000j

)14(X looks like the complex conjugate of)2(X .

5/1/02

Discrete Fourier Transform - Frank Lenkszus

72

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

X(15) =
+ 0.989713 * 1.000000 -j * 0.989713 * 0.000000
+ 0.847877 * 0.923880 -j * 0.847877 * -0.382683
+ -0.188791 * 0.707107 -j * -0.188791 * -0.707107
+ 1.186882 * 0.382683 -j * 1.186882 * -0.923880
+ 0.510287 * -0.000000 -j * 0.510287 * -1.000000
+ -0.847877 * -0.382683 -j * -0.847877 * -0.923880
+ -1.311209 * -0.707107 -j * -1.311209 * -0.707107
+ -1.186882 * -0.923880 -j * -1.186882 * -0.382683
+ 0.989713 * -1.000000 -j * 0.989713 * 0.000000
+ 0.847877 * -0.923880 -j * 0.847877 * 0.382683
+ -0.188791 * -0.707107 -j * -0.188791 * 0.707107
+ 1.186882 * -0.382683 -j * 1.186882 * 0.923880
+ 0.510287 * 0.000000 -j * 0.510287 * 1.000000
+ -0.847877 * 0.382683 -j * -0.847877 * 0.923880
+ -1.311209 * 0.707107 -j * -1.311209 * 0.707107
+ -1.186882 * 0.923880 -j * -1.186882 * 0.382683
= -0.000000 0.000000j

5/1/02

Discrete Fourier Transform - Frank Lenkszus

73

USPAS ‘99 - Fundamentals of Digital Signal Processing

Matrix Form of DFT

• The Matrix Dn is an matrix, called the DFT Matrix of dimension N

Let Nj
N eW π2−= then

]1[

]2[
]1[
]0[

]1[

]2[
]1[
]0[

2)1()1(210

)1(2420

1210

0000

−

=

− −−−

−

−

Nx

x
x
x

WWWW

WWWW
WWWW
WWWW

NX

X
X
X

N
N

N
N

N
NN

N
NNNN

N
NNNN

NNNN

Μ

Λ
ΜΛΜΜΜ

Λ
Λ
Λ

Μ

or

NNN xDX =

5/1/02

Discrete Fourier Transform - Frank Lenkszus

74

USPAS ‘99 - Fundamentals of Digital Signal Processing

Matrix Form of DFT

– Properties of Dn :
– .The elements of the first row and first column are equal to one.
– .It’s symetric.
– .If Dn is the complex conjugate of Dn then:

• where In is the NxN identity matrix

• An NxN matrix Q satisfying is called a unitary matrix. If Q is
real, it is called an orthonormal matrix. Therefore the matrix is
unitary. Since it’s symetric, it is a symmetric unitary matrix. is
called the normalized DFT matrix.

– We also have

• That is, the inverse DFT can be described by the conjugate of Dn multiplied by N-1.

NNN NIDD =

NIQQ =′

NDN 21−

NDN 21−

NNN XDNx 1−=

5/1/02

Discrete Fourier Transform - Frank Lenkszus

75

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Leakage

5/1/02

Discrete Fourier Transform - Frank Lenkszus

76

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Leakage

5/1/02

Discrete Fourier Transform - Frank Lenkszus

77

USPAS ‘99 - Fundamentals of Digital Signal Processing

Windows

• Had our window function, W(θ), been an impulse function δ(θ), we would have obtained
X(θ) =Y(θ). But the inverse transform of δ(θ), is w[n]=1 for all n. This does not have a
finite duration.

• Since this is not the case we get distortions.
• The distortions are of two types.

– .Smearing due to the finite width of the main lobe. This causes a loss of resolution.
Any impulse like feature in Y(θ) (such as that due to a sine or cosine wave) will
have a width of approximately ±2π/N in the spectrum of the rectangular-windowed
signal {x[n]}. Periodic components separated by less than 2π/N will overlap.

– The side lobes of one signal component will interfere with the main lobe of other
components. This becomes a particular problem when there are weak signals in the
presence of strong signals. This effect is worse when the weak component’s
frequency is an odd multiple of π/N of the strong component.

5/1/02

Discrete Fourier Transform - Frank Lenkszus

78

USPAS ‘99 - Fundamentals of Digital Signal Processing

Windows

• Goals:
– Have as narrow a main lobe as possible
– Have side lobes that are as low as possible
– But reducing side lobe amplitude results in broader main lobe - tradeoff

• Strategy
– Force beginning and end of input sequence to go smoothly to the same amplitude

value

5/1/02

Discrete Fourier Transform - Frank Lenkszus

79

USPAS ‘99 - Fundamentals of Digital Signal Processing

Windows

• Overlapping Windows
– Consider the case where the DFT is used to process a long-time sequence by

partitioning the long sequence into equal length smaller sequences of length N.
– If nonoverlapping partitions are selected, window edge effects can obscure short

duration signals that occur near the beginning or the end of a partiton.
– Data is lost.
– To avoid this loss of data, the DFT is applied to overlapping partitions. An overlap

of 50 to 75 percent is typical.

5/1/02

Discrete Fourier Transform - Frank Lenkszus

80

USPAS ‘99 - Fundamentals of Digital Signal Processing

Signal Detection

5/1/02

Discrete Fourier Transform - Frank Lenkszus

81

USPAS ‘99 - Fundamentals of Digital Signal Processing

Signal Detection

5/1/02

Discrete Fourier Transform - Frank Lenkszus

82

USPAS ‘99 - Fundamentals of Digital Signal Processing

Signal Detection

5/1/02

Discrete Fourier Transform - Frank Lenkszus

83

USPAS ‘99 - Fundamentals of Digital Signal Processing

Signal Detection

5/1/02

Discrete Fourier Transform - Frank Lenkszus

84

USPAS ‘99 - Fundamentals of Digital Signal Processing

Signal Detection

5/1/02

Discrete Fourier Transform - Frank Lenkszus

85

USPAS ‘99 - Fundamentals of Digital Signal Processing

Signal Detection

5/1/02

Discrete Fourier Transform - Frank Lenkszus

86

USPAS ‘99 - Fundamentals of Digital Signal Processing

Signal Detection

5/1/02

Discrete Fourier Transform - Frank Lenkszus

87

USPAS ‘99 - Fundamentals of Digital Signal Processing

Scalloping Loss

• Scalloping - aka “picket fence” effect
• Scalloping describes the fluctuations in overall magnitude response of a DFT.

– This occurs because input frequencies that are not exactly at DFT analysis
frequencies can not be exactly represented by the DFT.

• Scalloping loss is maximum at the point midway between two adjacent analysis
frequencies.

• It is defined as the maximum reduction in processing gain or equivalently as the ratio of
coherent gain for a tone located half a bin from a DFT sample point to the coherent gain
for a tone located at a DFT sample point

• Scalloping loss is not usually a severe problem in practice. Most real-world signals
normally have bandwidths that span several DFT output points so the DFT magnitude
ripples can go almost unnoticed.

()

∑

∑
−

=

−

−

−

== 1

0

1

0

)(

)(

)(

)0(
2

N

n

N

n

Nnj

s

nTw

enTw

W
NW

SL

π

ω

5/1/02

Discrete Fourier Transform - Frank Lenkszus

88

USPAS ‘99 - Fundamentals of Digital Signal Processing

Scalloping Loss

5/1/02

Discrete Fourier Transform - Frank Lenkszus

89

USPAS ‘99 - Fundamentals of Digital Signal Processing

Zero Padding

5/1/02

Discrete Fourier Transform - Frank Lenkszus

90

USPAS ‘99 - Fundamentals of Digital Signal Processing

Zero Padding

5/1/02

Discrete Fourier Transform - Frank Lenkszus

91

USPAS ‘99 - Fundamentals of Digital Signal Processing

Zero Padding

5/1/02

Discrete Fourier Transform - Frank Lenkszus

92

USPAS ‘99 - Fundamentals of Digital Signal Processing

Zero Padding

5/1/02

Discrete Fourier Transform - Frank Lenkszus

93

USPAS ‘99 - Fundamentals of Digital Signal Processing

Zero Padding

5/1/02

Discrete Fourier Transform - Frank Lenkszus

94

USPAS ‘99 - Fundamentals of Digital Signal Processing

Zero Padding

5/1/02

Discrete Fourier Transform - Frank Lenkszus

95

USPAS ‘99 - Fundamentals of Digital Signal Processing

Zero Padding

5/1/02

Discrete Fourier Transform - Frank Lenkszus

96

USPAS ‘99 - Fundamentals of Digital Signal Processing

Zero Padding

5/1/02

Discrete Fourier Transform - Frank Lenkszus

97

USPAS ‘99 - Fundamentals of Digital Signal Processing

FFT Derivation (Preliminaries)

• First let’s repeat the equation for the DFT:

• Define

• So now we have:

• It can be shown (we won’t do it here) that:

1.....,1,0,)()(
1

0

2 −== ∑
−

=

− NkenxkX
N

n

Nknj π

Nj
N eW π2−=

1.....,1,0,)()(
1

0

−== ∑
−

=

NkWnxkX
N

n

kn
N

2
2

NN WW =

k
N

Nk
N WW −=+)2(

nk
N

Nkn
N WW 2

)2(
2 =+





=
≠

==∑
−

= 0)mod(
0)mod(

,
,0

]mod[
1

0 Nk
Nk

N
NkNW

N

n

kn
N δ

5/1/02

Discrete Fourier Transform - Frank Lenkszus

98

USPAS ‘99 - Fundamentals of Digital Signal Processing

FFT Derivation

• Now lets split into two sequences, one composed of all the even-numbered values and
the other composed of the odd numbered values. We now can write:

• Since: we can write:

• The summations in the above equation are the N/2 point DFTs of the odd indexed input
values and the even indexed input values. We can now express X(k) as the combination
of two N/2 point DFTs:

∑∑
−

=

+
−

=

++=
1)2(

0

)12(
1)2(

0

2)12()2()(
N

n

kn
N

N

n

nk
N WnxWnxkX , 1,,2,1,0 −= Nk Κ

∑∑
−

=

−

=

++=
1)2(

0

2
1)2(

0

2)12()2()(
N

n

nk
N

k
N

N

n

nk
N WnxWWnxkX , 1,,2,1,0 −= Nk Κ

nk
N

nk
N WW 2
2 =

∑∑
−

=

−

=

++=
1)2(

0
2

1)2(

0
2)12()2()(

N

n

nk
N

k
N

N

n

nk
N WnxWWnxkX , 1,,2,1,0 −= Nk Κ

5/1/02

Discrete Fourier Transform - Frank Lenkszus

99

USPAS ‘99 - Fundamentals of Digital Signal Processing

FFT Derivation

• The factors occur in the expressions for both X11(k) and X12(k) and need be
computed just once. We can also show that

• So we can get the term X(k+N/2) from X(k) by just changing the sign of , so we
can avoid additional multiplications.

1,.....,2,1,0),()()()(12111 −=+== NkkXWkXkXkX k
N

nk
NW 2

)()()2(1211 kXWkXNkX k
N−=+

k
NW

5/1/02

Discrete Fourier Transform - Frank Lenkszus

100

USPAS ‘99 - Fundamentals of Digital Signal Processing

FFT

X(0)

X(2)

X(4)

X(6)

X(1)

X(3)

X(5)

X(7)

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

0
8W

1
8W

2
8W

3
8W

4
8W

5
8W

6
8W

7
8W

∑ +
3

0
4)12(nmWnx

4-point
DFT

4-point
DFT

∑
3

0
4)2(nmWnx

8-Point DFT using 4-point DFTs

5/1/02

Discrete Fourier Transform - Frank Lenkszus

101

USPAS ‘99 - Fundamentals of Digital Signal Processing

FFT

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

0
8W

1
8W

2
8W

3
8W

4
8W

5
8W

6
8W

7
8W

Full Decimation in Time FFT Implementation of 8-
point DFT

0
4W

1
4W

2
4W

3
4W

3
4W

2
4W

1
4W

0
4W

A(0)

A(1)

A(2)

A(3)

B(0)

B(1)

B(2)

B(3)

2-Point
DFT

2-Point
DFT

2-Point
DFT

2-Point
DFT

5/1/02

Discrete Fourier Transform - Frank Lenkszus

102

USPAS ‘99 - Fundamentals of Digital Signal Processing

FFT

x(k)

x(k+N/2)

1

-1

x(k)

x(k+N/2) 2N
NW

0
NW

2-Point DFT Butterfly

5/1/02

Discrete Fourier Transform - Frank Lenkszus

103

USPAS ‘99 - Fundamentals of Digital Signal Processing

FFT

1
8W

7
8W5

8W

3
8W

0
4

0
8 WW =2

4
4

8 WW =

1
4

2
8 WW =

3
4

6
8 WW =

-1

-1

-1

-1

Cyclic Reduancies in Twiddle Factors
8-Point FFT

5/1/02

Discrete Fourier Transform - Frank Lenkszus

104

USPAS ‘99 - Fundamentals of Digital Signal Processing

FFT - Bit Reversal

Normal
order of
index n

Binary Bits
of index n

Reversed
bits of index
n

Bit-reversed
order of n

0 000 000 0

1 001 100 4

2 010 010 2

3 011 110 6

4 100 001 1

5 101 101 5

6 110 011 3

7 111 111 7

5/1/02

Discrete Fourier Transform - Frank Lenkszus

105

USPAS ‘99 - Fundamentals of Digital Signal Processing

FFT - Interpreting Results

• For radix-2 FFT outputs are complex and of the form:

• So the magnitude is:

• Because of the way we’ve defined the DFT, all the magnitudes are inherently multiplied
by N for complex inputs and N/2 for real inputs, so we divide our FFT magnitudes by N
for complex inputs and N/2 for real inputs.

• An additional correction is required if we windowed our input. Each magnitude value
should be divided by the window function processing loss factor.

)()()(njXnXnX imagreal +=

22)()()()(nXnXnXnX imagrealmag +==

5/1/02

Discrete Fourier Transform - Frank Lenkszus

106

USPAS ‘99 - Fundamentals of Digital Signal Processing

FFT - Interpreting Results

• Phase:

• But watch out for Xreal(n)=0! Avoid divide by 0. Set Xθ(n) to π/2 if Ximag(n) is positive
or set Xθ(n) to -π/2 if Ximag(n) is negative.









= −

)(

)(
tan)(1

nX

nX
nX

real

imag
θ

5/1/02

Discrete Fourier Transform - Frank Lenkszus

107

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

5/1/02

Discrete Fourier Transform - Frank Lenkszus

108

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

5/1/02

Discrete Fourier Transform - Frank Lenkszus

109

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

• Recall the rectangular form of the DFT equation:

1,.....1,0),2sin()2][cos([][
1

0

−=−= ∑
−

=

NkNknjNknnxkX
N

n

ππ

5/1/02

Discrete Fourier Transform - Frank Lenkszus

110

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Leakage

5/1/02

Discrete Fourier Transform - Frank Lenkszus

111

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Leakage

5/1/02

Discrete Fourier Transform - Frank Lenkszus

112

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Leakage

5/1/02

Discrete Fourier Transform - Frank Lenkszus

113

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Leakage

5/1/02

Discrete Fourier Transform - Frank Lenkszus

114

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Leakage

5/1/02

Discrete Fourier Transform - Frank Lenkszus

115

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Leakage

5/1/02

Discrete Fourier Transform - Frank Lenkszus

116

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

• Let’s pick a sample frequency of 8kHz and collect 16 samples.

• So our analysis frequencies are:
0.0,0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5,7.0
,7.5

Step Time(ms) Sin(1kHz) Cos(2kHz) Sin(3kHz) Sum (x[n])
00 0.000 0.000000 0.750000 0.239713 0.989713
01 0.125 0.707107 0.000000 0.140770 0.847877
02 0.250 1.000000 -0.750000 -0.438791 -0.188791
03 0.375 0.707107 -0.000000 0.479775 1.186882
04 0.500 0.000000 0.750000 -0.239713 0.510287
05 0.625 -0.707107 0.000000 -0.140770 -0.847877
06 0.750 -1.000000 -0.750000 0.438791 -1.311209
07 0.875 -0.707107 -0.000000 -0.479775 -1.186882
08 1.000 -0.000000 0.750000 0.239713 0.989713
09 1.125 0.707107 0.000000 0.140770 0.847877
10 1.250 1.000000 -0.750000 -0.438791 -0.188791
11 1.375 0.707107 -0.000000 0.479775 1.186882
12 1.500 0.000000 0.750000 -0.239713 0.510287
13 1.625 -0.707107 -0.000000 -0.140770 -0.847877
14 1.750 -1.000000 -0.750000 0.438791 -1.311209
15 1.875 -0.707107 -0.000000 -0.479775 -1.186882

kHzNff s 5.0168000 ===∆ 1....,2,1,0, −=∆= NkfkequenciesAnalysisFr

5/1/02

Discrete Fourier Transform - Frank Lenkszus

117

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

5/1/02

Discrete Fourier Transform - Frank Lenkszus

118

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

• Things to notice:
– The magnitudes are 8 (N/2) times the peak value of the original sine/cosine waves.
– For the nth and N-n terms, the magnitudes are equal and the phases are inverted.

5/1/02

Discrete Fourier Transform - Frank Lenkszus

119

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

• The X[0] term
– All the imaginary terms are zero.
– The real term is merely the sum of all the numbers in the sequence .

• This corresponds to N times the average value of {x[n]}.

5/1/02

Discrete Fourier Transform - Frank Lenkszus

120

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Example

• Things to notice:
– The 1kHz term (sin) is purely imaginary
– The 2kHz term (cos) is purely real
– The 3kHz term (phase shifted sin) is complex.
– The nth and N-n terms are complex conjugates.

5/1/02

Discrete Fourier Transform - Frank Lenkszus

121

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Properties

• Periodicity
– The DFT is periodic with period N; i.e., X[k+N]=X[k].

• Symmetry
– Magnitude and Phase symmetry/anti-symmetry for real signals
– DFT Magnitude – Even Symmetry

– DFT Phase – Odd Symmetry

– Lower and upper halves are complex conjugates (Conjugate Symmetric)
– For Real inputs only N/2 of DFT’s outputs are independent;i.e. the DFT outputs

from to are redundant with DFT outputs (bins) for
• Linearity

() ()][Re][Re kXkNX =−

0=n ()12 −= Nn 2
Nn ≥

{ } { } { } { }][][][][kYbkXanybnxa DFT ∗+∗ →∗+∗

() ()][Im][Im kXkNX −=−

5/1/02

Discrete Fourier Transform - Frank Lenkszus

122

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Properties

• Shifting Theorem
– Time shift Ö Phase shift
– If we time shift {x[n]} to {x[n-L]} the DFT of the time shifted series is:

– That is, the DFT of the time-shifted series can be obtained from the DFT of the
original series by multiplying each term of the DFT of the original series by

• Circular Shift
– Given
– Then

• Frequency Shift (Modulation)

– Given
– Then

{ }[] { }NLkj
d ekXLnxF π2][][−=−

NLkje π2−

{ } { }][][kXnx
DFT

→

(){ } { }][mod][2 kXeNmnx Nkmj
DFT

π−→−

{ } { }][][kXnx
DFT

→

{ } []{ }NmkXnxe
DFT

Nmnj mod)(][2 −→− π

5/1/02

Discrete Fourier Transform - Frank Lenkszus

123

USPAS ‘99 - Fundamentals of Digital Signal Processing

DFT Properties

• Parseval’s Theorem

– The above expresses the energy in the finite duration sequence in terms of the
frequency components . The right hand side is the mean square spectral amplitude.

• Conjugation

– Given

– Then

∑∑
−

=

−

=

=
1

0

1

0

][][
1

][][
N

n

N

n

kYkX
N

nynx

∑∑
−

=

−

=

=
1

0

2
1

0

2][
1

][
N

n

N

n

kX
N

nx

{ } { }][][kXnx
DFT

→

{ } []{ }NkNXnx
DFT

mod)(][−→

1

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

The z-Transform

• The z-transform is the discrete time counterpart of the Laplace transform

2

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

Deriving The z-Transform

• The z-transform can be derived from the Laplace transform

• Represent the discrete time sequence, f[k], in the continuous time domain.

3

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

 The Delta Function

0 t

)(tεδ

ε
1

ε

1)(=⋅∫
∞

∞−

dttεδ

1)(=⋅∫
∞

∞−

dttδ

)(lim)(
0

tt εε
δδ

→
≡ 1)(

0

0

=⋅∫
+

−

dttδ

4

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

 The Delta Function

0

1

)(tδ

t

0

1

)(kTt −δ

t
kT

5

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

 Expressing a Discrete Time Function in Continuous Time

∑
∞

=

−⋅=
0

)()()(
k

s kTtkTftf δ

[]

∫∑

∑

∑

∞

−

−
∞

=

∞

=

∞

=

⋅⋅−⋅=

−⋅=





 −⋅=

00

0

0

)()(

)()(

)()()(

dtekTtkTf

kTtLkTf

kTtkTfLsF

st

k

k

k
s

δ

δ

δ

6

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

 Expressing a Discrete Time Function in Continuous Time

∫∑
∞

−

−
∞

=

⋅⋅−⋅=
00

)()()(dtekTtkTfsF st

k
s δ

)()()()(kTtkTgkTttg −⋅≡−⋅ δδ

∫∫
∞

−

−
∞

−

− ⋅⋅−→⋅⋅−
00

)()(dtekTtdtekTt skTst δδ

∫∑
∞

−

−
∞

=

⋅⋅−⋅=
00

)()()(dtekTtkTfsF skT

k
s δ

7

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

 Expressing a Discrete Time Function in Continuous Time

skT

k

skT

k

skT

k

skT

k
s

ekTf

ekTf

dtkTtekTf

dtekTtkTfsF

−
∞

=

−
∞

=

∞

−

−
∞

=

∞

−

−
∞

=

⋅=

⋅⋅=

⋅−⋅⋅=

⋅⋅−⋅=

∑

∑

∫∑

∫∑

0

0

00

00

)(

1)(

)()(

)()()(

δ

δ

8

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

 Expressing a Discrete Time Function in Continuous Time

k

kez

skT

k

zkTfekTf
sT

−
∞

==

−
∞

=

⋅=⋅ ∑∑
00

)()(

k

k

zkTfkTfZ −
∞

=

⋅= ∑
0

)()]([

[] k

k

zkff[k]Z −
∞

=

⋅= ∑
0

][

9

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

Z Plane Mapping

() TjTTjsT eeeez ωσωσ === + Tzez T ωσ =∠=

zIm

zRe1−=πje

je
j

12 =
π

10 =e
je

j
12

3

−=
π

sIm

sRe0
T

j

2

π

T

j

2

3π

T

jπ

jjez
T

j
s

T
T

j

1
2

sin
2

cos
2

2 =+==→= πππ π

1sincos −=+==→= πππ π

jez
T

j
s

T
T

j

jjez
T

j
s

T
T

j

1
2

3
sin

2

3
cos

2

3 2

3

−=+==→= πππ π

10

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

 z-Transform of a Finite Sequence

∑
∞

=

−⋅=
0

)()(
n

nznhzH

4321 2321)(−−−− +⋅+⋅+⋅+= zzzzzH

h[n] ={1,2,3,2,1} then

11

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

Transform of bn

• h[n] = bn

∑
∞

=

−⋅=
0

)(
n

nn zbzH

() () () ())(
2111

0

011 +⋅+⋅+⋅=⋅= −−
∞

=

−−∑ zbzbzbzbzH
n

n

r
rrrr

n

n

−
=++++=∑

∞

= 1

1
......1 32

0

• |r|<1

12

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

Transform of bn

()∑
∞

=
−

−

−
=

⋅−
=⋅=

0
1

1

1

1
)(

n

n

bz

z

zb
zbzH

[]
bz

z
bn

−
=Ζ

13

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

 Transform of
neα

[] ()∑∑
∞

=
−

−
∞

=

−

−
=

⋅−
=⋅=⋅=Ζ

0
1

1

0 1

1

n

n

n

nnn

ez

z

ze
zezee αα

ααα

14

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

 Transform of sin

j

e

j

e
Tn

nTjnTj

22
]sin[

ωω

ω
−

−=

[] [] [][]nTjnTj
nTjnTj

ee
jj

e

j

e
Tn ωω

ωω

ω −
−

Ζ−Ζ⋅=







Ζ−








Ζ=Ζ

2

1

22
)sin(

[] α
α

ez

z
e n

−
=Ζ

[]
Tj

nTj

ez

z
e ω

ω

−
=Ζ []

Tj
nTj

ez

z
e ω

ω
−

−

−
=Ζ

][Tnω

15

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

 Transform of sin][Tnω

[] () ()
()()122

1
)sin(

2 ++−
−⋅−−⋅=





−
−

−
⋅=Ζ −

−

− TjTj

TjTj

TjTj eezzj

ezzezz

ez

z

ez

z

j
Tn ωω

ωω

ωωω

[] ()
() 12

)sin(
2 ++−

⋅−=Ζ −

−

TjTj

TjTj

eezz

z

j

ee
Tn ωω

ωω

ω

[]
1)cos(2

)sin()sin(
2 +−

⋅=Ζ
Tzz

z
TTn

ω
ωω

[]
1)cos(2

)sin(
)sin(

2 +−
=Ζ

Tzz

Tz
Tn

ω
ωω

16

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

Transform of the unit step sequence

0

,....3,2,1,0

0

1
][

<
=





=
n

n
nq

1
][

=
=

b

nbnq

[]
1

)(
−

=Ζ
z

z
nq

17

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

 Transform of the delta sequence

0

0

0

1
][

≠
=





=
n

n
nδ

[] 1
0

][==
−

=Ζ
z

z

z

z
nδ

18

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

 Transform of the convolution sum

∑
=

⋅−=
n

i

iuinhny
0

)()()(

n

n

n

i

ziuinhzY −
∞

= =

⋅



 ⋅−= ∑ ∑

0 0

)()()(

n

n i

ziuinhzY −
∞

=

∞

=

⋅



 ⋅−= ∑ ∑

0 0

)()()(

)(

0 0

)()()(ini

n i

zziuinhzY −−−
∞

=

∞

=

⋅⋅⋅−= ∑∑

19

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

 Transform of the convolution sum

)(

0 0

)(

0 0

)()()()()(ini

i n

ini

n i

zziuinhzziuinhzY −−−
∞

=

∞

=

−−−
∞

=

∞

=

⋅⋅⋅−=⋅⋅⋅−= ∑∑∑∑

i

i n

in ziuzinhzY −
∞

=

∞

=

−− ⋅⋅



 ⋅−= ∑ ∑)()()(

0 0

)(

i

i il

l ziuzlhzY −
∞

=

∞

−=

− ⋅⋅



 ⋅= ∑ ∑)()()(

0

)(

i

i l

l ziuzlhzY −
∞

=

∞

=

− ⋅⋅



 ⋅= ∑ ∑)()()(

0 0

)(

20

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

 Transform of the convolution sum

∑
∞

=

−⋅=
0

)()()(
l

lzlhzH

∑∑
∞

=

−−
∞

=

⋅⋅=⋅⋅=
00

)()()()()(
i

ii

i

ziuzHziuzHzY

∑
∞

=

−⋅=
0

)()(
i

iziuzU

)()()(zUzHzY ⋅=

)(

)(
)(

zU

zY
zH =

21

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

 Step Response

()72.1576.0cos2597.0063.6)(807.2)(−⋅⋅⋅+⋅= nnnh nδ

h n()

n
0 10 20

2

0

2

4

() () () jnjn een 72.1576.072.1576.072.1576.0cos2 −−− +=−⋅

() ()njjnjj eeeennh 576.072.1576.072.1 597.0063.6597.0063.6)(807.2)(−− ⋅+⋅+⋅= δ

() () jnnjnn eennh 72.1576.072.1576.0 597.0063.6597.0063.6)(807.2)(−−− ⋅+⋅+⋅= δ

22

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

 Step Response

• c1 = 6.063e-1.72j, c2 = 6.063e1.72j, b0 = 2.807, p1 = 0.5967e0.5759j, and p2 = 0.5967e-0.5759j.

() ()njjnjj eeeennh 576.072.1576.072.1 597.0063.6597.0063.6)(807.2)(−− ⋅+⋅+⋅= δ

nn pCpCnBnh 22110)()(⋅+⋅+⋅= δ

[] 1)(=Ζ nδ

[]
bz

z
bn

−
=Ζ

[]
2

2

1

1
0)()(

pz

Cz

pz

Cz
BzHnh

−
⋅+

−
⋅+==Ζ

23

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

 Step Response

[]
2

2

1

1
0)()(

pz

Cz

pz

Cz
BzHnh

−
⋅+

−
⋅+==Ζ

() () () ()
() ()21

2112210)(
pzpz

pzCzpzCzpzpzB
zH

−⋅−
−⋅⋅+−⋅⋅+−⋅−⋅=

3561.0

12
)(

2

2

+−
++=

zz

zz
zH

24

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

 Step Response

)()()(zQzHzY ⋅=

[]
1

)()(
−

==Ζ
z

z
zQnq

13561.0

12
)(

2

2

−
⋅

+−
++=

z

z

zz

zz
zY

[])()(1 zYny −Ζ=

25

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

 Inverse Z-transform

• p1 = 0.5+0.325j = 0.5967ej0.5759 and p2 = 0.5-0.326j = 0.5967e-j0.5759

() ()

() () 1

12

1)326.05.0()326.05.0(

12

13561.0

12
)(

21

2

2

2

2

−
⋅

−⋅−
++=

−
⋅

−−⋅+−
++=

−
⋅

+−
++=

z

z

pzpz

zz

z

z

jzjz

zz

z

z

zz

zz
zY

26

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

 Partial Fraction Expansion

() () 11

121)(3

2

2

1

1

21

2

−
+

−
+

−
=

−
⋅

−⋅−
++⋅=

z

k

pz

k

pz

k

z

z

pzpz

zz

zz

zY

() ()

1

)()()(

)(
1

121

13

2

12

1

11

1
21

2

−
−⋅+

−
−⋅+

−
−⋅=

−⋅
−

⋅
−⋅−
++⋅

z

pzk

pz

pzk

pz

pzk

pz
z

z

pzpz

zz

z

27

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

 Partial Fraction Expansion

() () 1

)()(

1

12 13

2

12
1

2

2

−
−⋅+

−
−⋅+=

−⋅−
++

z

pzk

pz

pzk
k

zpz

zz

() () 1
121

1
2

1

1

12
k

ppp

pp =
−⋅−

++

1
577.2051.6242.3114.5 kej j ==+−

2
577.2051.6242.3114.5 kej j ==−− −

32.11 k=

28

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

 Partial Fraction Expansion

1
)(3

2

2

1

1

−
⋅+

−
⋅+

−
⋅=

z

zk

pz

zk

pz

zk
zY

[] nn b
bz

z

bz

z
b =





−
Ζ→

−
=Ζ −1

nnn k
z

kz
pk

pz

kz
pk

pz

kz
1

1 3
31

22
2

21
11

1

11 ⋅=





−
⋅Ζ⋅=








−
⋅Ζ⋅=








−
⋅Ζ −−−

29

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

 Partial Fraction Expansion

[] nnn kpkpknyzY 1)()(32211
1 ⋅+⋅+⋅==Ζ−

() () 2.11597.0051.6597.0051.6)(576.0577.2576.0577.2 +⋅+⋅= −− njjnjj eeeeny

y n()

n
0 10 20

0

5

10

15

30

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

Difference Equations

)2(3561.0)1()2()1(2)()(−−−+−+−+= nynynxnxnxny

y
n

n T.
0 0.02 0.04

2

0

2

4

31

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

 Time Shift

[])3()2()1()0()()()(321

0

+⋅+⋅+⋅+=⋅=Ζ= −−−−
∞

=
∑ zxzxzxxznxnxzX n

n

[]
()

)()1(

.....)3()2()1()0()1(

....)2()1()0()1()1()1(

1

3211

321

0

zXzx

zxzxzxxzx

zxzxzxxznxnx n

n

−

−−−−

−−−−
∞

=

+−=
+⋅+⋅+⋅++−=

+⋅+⋅+⋅+−=⋅−=−Ζ ∑

[]
()

)()1()2(

.....)2()1()0()1()2(

....)1()0()1()2()2()2(

21

2121

321

0

zXzzxx

zxzxxzzxx

zxzxzxxznxnx n

n

−−

−−−−

−−−−
∞

=

+⋅−+−=
+⋅+⋅++⋅−+−=

+⋅+⋅+⋅−+−=⋅−=−Ζ ∑

32

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

Difference Equations

[] [])()1()2()()1(2)()(211 zXzzxxzXzxzXzY −−− +−+−++−+=

[] [])()1()2(3561.0)()1(211 zYzzyyzYzy −−− +−+−−+−+

)(3561.0)()()(2)()(2121 zYzzYzzXzzXzzXzY −−−− −+++=

)()(2)()(3561.0)()(2121 zXzzXzzXzYzzYzzY −−−− ++=+−

[] []2121 21)(3561.01)(−−−− ++=+− zzzXzzzY







+−

++⋅= −−

−−

21

21

3561.01

21
)()(

zz

zz
zXzY

21

21

3561.01

21

)(

)(
)(−−

−−

+−
++==

zz

zz

zX

zY
zH

33

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

 Frequency Response

3561.0

12
)(

2

2

+−
++=

zz

zz
zH

H e
j 2. π. f. T.

f
0 100 200 300

0

5

10

15

34

USPAS ‘99 - Fundamentals of Digital Signal Processing z-Transform - Rob Merl

6/16/99

Stability

• p1 = 0.5967e0.5759j, and p2 = 0.5967e-0.5759j

() ()21

2

2

2 12

3561.0

12
)(

pzpz

zz

zz

zz
zH

−⋅−
++=

+−
++=

nn pCpCnBnh 22110)()(⋅+⋅+⋅= δ

• c1 = 6.063e-1.72j, c2 = 6.063e1.72j, b0 = 2.807

2

0
00

poles_magnitude

poles_angle

0

90

180

270

210

1

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters I - John Carwardine

6/15/99

Digital Filters I

John Carwardine

2

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters I - John Carwardine

6/15/99

Digital Filters I

• Ideal frequency-selective filters.
• Design of simple FIR and IIR digital filters.
• Linear-phase characteristics of filters.
• FIR filter design

– by impulse response truncation.
– by windowing.
– using optimal techniques.

• ...Digital Filters II
– IIR filter design
– special filters

• Relevant sections in Mitra: 4.3, 7.1, 7.7, 7.9

3

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters I - John Carwardine

6/15/99

Ideal Frequency-Selective Digital Filters

• The frequency response of an ideal frequency-selective lowpass filter has a passband
with constant magnitude, an infinitely sharp transition between passband and stopband,
and infinite attenuation in the stopband. The phase delay is zero for all frequencies.

• As we have discussed before, the impulse response of this ideal filter is a doubly-infinite
sin(x)/x function that cannot be implemented in practice

n
0

f
Fc Fs0.5Fs

A(f)

0

1

Fs-Fc

passband

stopband

4

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters I - John Carwardine

6/15/99

Ideal Frequency-Selective Digital Filters (cont)

f
Fc 10.5

A(f)

0

1

1-Fc

passband

stopband

f

A(f)

Fc 10.50

1

1-Fc

f

A(f)

F1 10.50

1

1-F2F2 1-F1

f

A(f)

F1 10.50

1

1-F2F2 1-F1

Lowpass

Highpass Bandstop

Bandpass







⋅⋅
⋅⋅⋅=
ncf

ncf
cf

cf
nh

π
π

2
)2sin(2

2
][0≠n

0=n







⋅⋅
⋅⋅⋅−

−
=

ncf
ncf

cf

cf
nh

π
π

2
)2sin(2

21
][0≠n

0=n







⋅⋅
⋅⋅−

⋅⋅
⋅⋅

−
=

nf
nff

nf
nff

ff
nh

12
)12sin(

12
22

)22sin(
22

)12(2
][

π
π

π
π 0≠n

0=n







⋅⋅
⋅⋅−

⋅⋅
⋅⋅

−−
=

nf
nff

nf
nff

ff
nh

22
)22sin(

22
12

)12sin(
12

)12(21
][

π
π

π
π 0≠n

0=n

Note that frequencies are normalized to the sampling rate, and the phase is zero for all frequencies.

5

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters I - John Carwardine

6/15/99

Frequency Response of Practical Filters

• When a realizable impulse response is generated, the frequency response of the resulting
filter is compromised from the ideal response

– The passband may not be flat
– There is a finite width to the transition from passband to stopband
– The stopband will not have infinite attenuation
– The phase response will not be zero for all frequencies.

Pass band Stop band
Transition

band

Ωs

1+δp
1-δp

δs
0

0 Ωp
Ω

Ideal response

6

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters I - John Carwardine

6/15/99

0 π/4 π/2 3π/4 π

−90

−45

0

Normalized Frequency

Phase Response (deg)

0 π/4 π/2 3π/4 π
0

0.5

1

Normalized Frequency

Magnitude Response

Simple Lowpass FIR Digital Filter

• The simplest FIR filter is a 2-point moving average, with transfer function

)1(
2
1

)(
)(

)(1−+== z
zX
zY

zHlp

2
cos)(

2
1)1(

2
1)(2/2/2/2/ ωωωωωωω jjjjjj

lp eeeeeeH −−−− =+=+=

Its frequency response is given by

Magnitude Response Phase Response

The difference equation is

()]1[][5.0][−+⋅= nxnxny

7

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters I - John Carwardine

6/15/99

0 π/4 π/2 3π/4 π
−270

−225

−180

−135

−90

−45

0

Normalized Frequency

Phase Response (deg)

0 π/4 π/2 3π/4 π
0

0.5

1

Normalized Frequency

Magnitude Response

4-Point FIR Averager

• A 4-point moving average, has the transfer function

)1(
4
1

)(
)(

)(321 −−− +++== zzz
zX
zY

zHlp





 +⋅= −

2
coscos)(2/3 ωωωω jj

lp eeH

Its frequency response is given by

Phase ResponseMagnitude Response

The difference equation is

()]3[]2[]1[][25.0][−+−+−+⋅= nxnxnxnxny

8

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters I - John Carwardine

6/15/99

0 π/4 π/2 3π/4 π

−90

−45

0

Normalized Frequency

Phase Response (deg)

α=0.5
α=0.7

α=0.9

0 π/4 π/2 3π/4 π
0

0.5

1

Normalized Frequency

Magnitude Response

α=0.5
α=0.7

α=0.9

Simple Lowpass IIR Digital Filter

• A first-order lowpass IIR digital filter has the transfer function

1

1

1
1

2
1

)(
)()(−

−

⋅−
+−==

z
z

zX
zYzHlp α

α 1<α

Magnitude Response Phase Response

The difference equation is

()]1[]1[][
2

1
][−⋅+−+⋅






 −= nynxnxny αα

• This is the discrete-time equivalent of an electronic R-C circuit

9

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters I - John Carwardine

6/15/99

Simple Highpass Filters

• The corresponding highpass filters can be obtained from the relationship

11

11
2

1
11

11
2

11)(
−⋅−

−−+=
−⋅−

−+−−=
z

z

z

zzhpH
α

α

α

α

• And the simple IIR highpass filter has the transfer function

)11(
2
1)11(

2
11)(−−=−+−= zzzhpH

)(1)(zlpHzhpH −=

• So, the simple FIR highpass filter has the transfer function

10

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters I - John Carwardine

6/15/99

Phase Distortion and Linear Phase Response

• Nonlinear-phase filters (eg a simple IIR lowpass filter) introduce distortion because
difference frequency components depart from the filter at different times.

Simple IIR Filter (a=0.75)
(Non-linear Phase)

8-Point FIR Averager
(Linear Phase)

Input

Output

Input

Output

• Whether it is better to have phase distortion or a time-delay will depend on the
application (eg in feedback/control, the time-delay can significantly reduce bandwidth).

11

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters I - John Carwardine

6/15/99

Impulse Response Options for Linear Phase Digital Filters

Impulse
Response

Phase delay
(samples)

Initial phase
(radians)

Symmetric M 0

L
en

gt
h

2M
+1

Anti-symmetric M π/2

Symmetric M+0.5 0

Le
ng

th
 2

M

Anti-symmetric M+0.5 π/2

n
M

n
M

n
M

n
M

• It can be shown that true linear phase is only achieved with a symmetrical (or anti-
symmetrical) impulse response. Only FIR filters can achieve this.

• The figure shows four possibilities for a causal FIR filter, with either 2M coefficients or
2M+1 coefficients, with (anti-) symmetry about the M’th coefficient.

12

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters I - John Carwardine

6/15/99

FIR Filter Structure

z-1 z-1 z-1 z-1

Σ

b0 b1 b2 b3
bM-1

y[n]

x[n]

• Block diagram...

∑
−

=
−=

1

0
][][

M

k
knxkbny

∑
−

=

−=

−
−++−+−+=

1

0
][

1
1

1
2

1
10][

M

k
zXkzkb

zMbzbzbbzY Κ

• Difference equation... • z-transform...

13

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters I - John Carwardine

6/15/99

Design Options for Linear Phase FIR Filters

• Truncation of ideal impulse responses.
• Impulse Response Truncation with windowing.
• Frequency Sampling.
• Least Squares fitting to desired response.
• Optimal (equiripple) design using Parks-McClellan algorithm.

14

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters I - John Carwardine

6/15/99

FIR Filter Design by Impulse Response Truncation

• In the IRT method of designing an FIR filter, we take the impulse response of the
idealized impulse response, truncate it to (say) 2M+1 samples, and shift it by M samples
to make the impulse response causal.

n
0

n
0

Non-causal doubly-infinite ideal impulse response

Truncated & shifted causal impulse response

15

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters I - John Carwardine

6/15/99

FIR Filter Design Example Using Impulse Response Truncation

Design a bandpass filter with band edges at 0.3π and 0.56π and an impulse response of
length 31.

Solution

f

|H(f)|

0.3π π0

1

0.56π 1.44π 1.7π 2π

• The frequency response must be specified from 0 to 2π, in order to do the inverse
Fourier transform.

• The magnitude of H(F) will be unity from 0.3π to 0.56π and from 1.44π to 1.7π and
zero elsewhere, as shown below

16

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters I - John Carwardine

6/15/99

FIR Filter Design Example by IRT (cont)

• First, we’ll compute the ideal impulse response

[] []

[]

[]

n
n

n
n

eeee
jn

eeee
jn

e
jn

e
jn

dfedfe

dfefHnh

njnjnjnj

njnjnjnnj

njnj

jj

j

3.0
)3.0sin(

3.0
56.0

)56.0sin(
56.0

1

1

11

)(][

56.03.03.056.0

44.17.13.056.0

7.1
44.1

56.0
3.0

7.1

44.1

56.0

3.0

1
0

−=

−+−=

−+−=

+=

+=

=

−−

∫∫

∫

ωω

ωω

ω
f

|H(f)|

0.3π π0

1

0.56π 1.44π 1.7π 2
π

17

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters I - John Carwardine

6/15/99

FIR Filter Design Example by IRT (cont)

• Truncate the sequence to 31 points by defining that the sequence be zero outside the
range -15 ≤ n ≤ 15.

• The sequence is then made causal by shifting the truncated impulse response to the right
by 15 points.

• The final impulse response and the corresponding frequency response are shown below

31-point Impulse Response Frequency Response of 31-point Filter

-0.2

-0.1

0

0.1

0.2

n
150 30

0 0.2π
0

0.2

0.4

0.6

0.8

1

Normalized Frequency

M
ag

ni
tu

de

Actual Response

Desired response

0.4π 0.6π 0.8π π

n
n

n
n

nh
3.0

)3.0sin(
3.0

56.0
)56.0sin(

56.0][−=

18

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters I - John Carwardine

6/15/99

Frequency Response vs Length of Truncated Impulse Response

• More points gives a better approximation to the desired (ideal) frequency response

0 0.2 π 0.4 π 0.6 π 0.8 π π
0

0.2

0.4

0.6

0.8

1

Normalized Frequency

M
ag

ni
tu

d
e

0 0.2 π 0.4 π 0.6 π 0.8 π π
0

0.2

0.4

0.6

0.8

1

Normalized Frequency

M
ag

ni
tu

de

0 0.2 π 0.4 π 0.6 π 0.8 π π
0

0.2

0.4

0.6

0.8

1

Normalized Frequency

M
ag

ni
tu

de

0 0.2 π 0.4 π 0.6 π 0.8 π π
0

0.2

0.4

0.6

0.8

1

Normalized Frequency

M
ag

ni
tu

de

11 points 31 points

101 points 201 points

…but there is no change in the amplitude of the passband or stopband ripple.

19

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters I - John Carwardine

6/15/99

Gibbs Effect and the Impulse Response Truncation Method

• The truncation process is in effect multiplication of the ideal impulse response by a
rectangular window (c.f. windowing in the DFT).

Hideal(f)

W(f)

H(f)

∗

][][][nwnhnh ideal ⋅=

• In the frequency domain, this means the actual frequency response is the convolution of
the ideal response and the frequency response of the window function

][][][ωωω WidealHH ∗=

20

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters I - John Carwardine

6/15/99

FIR Filter Design by Windowing

• The same window functions discussed in relation to the DFT can be used in place of the
rectangular window (truncation).

• Windows used for FIR filter design include Hann, Hamming, and Blackman.
• Properties of filters designed with these windows are shown below

Window Main-lobe
width (∆ML)

Transition
width (∆ω)

δ Passband
Ripple (dB)

Stopband
Ripple (dB)

Rectangular 4π/(2M+1) 0.92π/M 0.09 0.75 -21
Hanning 8π/(2M+1) 3.11π/M 0.0063 0.055 -44
Hamming 8π/(2M+1) 3.32π/M 0.0022 0.019 -53
Blackman 12π/(2M+1) 5.56π/M 0.0002 0.0017 -74

0.5

ωc

∆ML

1+δ
1-δ

δ
−δ ωp ωs

∆ω

21

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters I - John Carwardine

6/15/99

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Normalized Frequency

Magnitude (dB)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Normalized Frequency

Magnitude (dB)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Normalized Frequency

Magnitude (dB)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Normalized Frequency

Magnitude (dB)

Effect of Windowing on Bandpass Filter Example

• Magnitude responses of bandpass filters with length 101 for different window functions
(band edges at 0.15Fs and 0.28Fs)

Hanning Window

Hamming Window

Blackman Window

Rectangular Window

22

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters I - John Carwardine

6/15/99

Design Example Using the Window Method

Design a lowpass filter with passband from DC to 0.15Fs, at least 50dB attenuation above
0.2Fs, and passband ripple of less than 0.1dB.

• Any of the windows (except rectangular) will meet the passband ripple spec, but only the
Hamming or Blackman will meet the stopband spec. Let’s pick the Hamming window.

• The transition band is 0.05Fs wide (ie ∆ω = 0.1π), so

π
π

1.0
32.3

≥
M

2.33≥Mgiving

• We’ll pick a filter length of 69, giving M = 34.
• Next compute the ideal filter coefficients and the window coefficients, where

[]






⋅⋅
⋅⋅⋅=
nf
nff

f
nh

c

c
c

c

π
π

2
2sin2

2
][0≠n

0=n








+
⋅+=

12
2cos46.054.0][
M

nnw π
MnM ≤≤−

175.0
2

2.015.0 =+=fcIn this example

23

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters I - John Carwardine

6/15/99

0 0.1 0.2 0.3 0.4 0.5
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

0.15 0.2 0.25
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

Design Example Using the Window Method (cont)

0 10 20 30 40 50 60 70
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Ideal Impulse Response Window Function Windowed Impulse Response

Magnitude Response Transition Region

Normalized Frequency (1=sampling rate) Normalized Frequency (1=sampling rate)

M
ag

ni
tu

de
 R

es
po

ns
e

(d
B

)

M
ag

ni
tu

de
 R

es
po

ns
e

(d
B

)

0 0.05 0.1 0.15
-0.1

-0.05

0

0.05

0.1

Passband

Normalized Frequency (1=sampling rate)

M
ag

ni
tu

de
 R

es
po

ns
e

(d
B

)

M
ag

ni
tu

de
 R

es
po

ns
e

(d
B

)

24

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters I - John Carwardine

6/15/99

Optimal Design Methods for FIR Filters

• Design methods discussed so far generate filters that are sub-optimal because
– the resulting passband and stopband ripple amplitudes are the same.
– the passband and stopband ripple amplitudes are not constant, but decay as we

move away from the discontinuities.
• The length of the filter to meet a given spec can be reduced if

– we allow different passband and stopband ripple amplitudes.
– we make the ripple magnitude constant in the passband and stopband.

• The most commonly used algorithm is the Parks-McClellan algorithm.

25

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters I - John Carwardine

6/15/99

Parks-McClellan Algorithm

• The objective is to minimize the maximum error across the filter bands.
• The algorithm makes use of the Remez Exchange optimization.
• The algorithm is implemented in Matlab with the functions remezord and remez.

Design Approach
• Separate normalized frequency-space into regions that define the desired response.

There should be a ‘don’t care’ region between each ‘do care’ region.
• Specify a weighting factor for each region.
• Use Matlab to estimate the filter order, and then to compute the impulse response.

Ex.

D
on

't
ca

re
 re

gi
on

D
on

't
ca

re
 re

gi
on

Region 1

Region 2

Region 3

1.0

0 0.2 0.4 0.6 0.8 1.0

Frequency (Normalized to Nyquist)

D
es

ire
d

M
ag

ni
tu

de
R

es
po

ns
e

26

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters I - John Carwardine

6/15/99

Optimal Filter Design Example

Design a lowpass filter with passband from DC to 0.15Fs, at least 50dB attenuation above
0.2Fs, and passband ripple of less than 0.1dB.

• Divide up frequency space into two regions:

Region 2 (stopband)
• Frequency range = 0.2Fs - 0.5Fs
• Desired amplitude = 0
• Max ripple = -50dB (0.0032)

Region 1 (passband)
• Frequency range = 0 - 0.15Fs
• Desired amplitude = 1
• Max ripple = 0.1dB (0.011)

• Estimate the filter order and weighting factors using the Matlab function remezord.
– This gave the required order as 44 and weighting factors 1 & 3.66

• Generate the impulse response using the Matlab function remez.

27

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters I - John Carwardine

6/15/99

Frequency Response of Optimal FIR Design Example

0 0.1 0.2 0.3 0.4 0.5
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

0.15 0.2 0.25
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

0 0.05 0.1 0.15

-0.2

-0.1

0

0.1

0.2

Magnitude Response Transition Region

Normalized Frequency (1=sampling rate) Normalized Frequency (1=sampling rate)

M
ag

ni
tu

de
 R

es
po

ns
e

(d
B

) Passband

Normalized Frequency (1=sampling rate)
M

ag
ni

tu
de

 R
es

po
ns

e
(d

B
)

M
ag

ni
tu

de
 R

es
po

ns
e

(d
B

)

Comparisons with windowed IRT method for the same filter spec:
• The optimal filter required 45 coefficients, whereas the windowed IRT filter

required 69 coefficients.
• The optimal filter just meets both passband and stopband specs, whereas the

windowed IRT filter far exceeded the passband ripple spec.
• The optimal filter has constant magnitude ripple in both bands, whereas the

windowed IRT filter had decreasing ripple with increasing frequency in the
stopband.

• The optimal filter required a computer to calculate, whereas the windowed IRT
filter could be designed analytically on paper.

28

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters I - John Carwardine

6/15/99

Homework Problems

1) Using the impulse response truncation (IRT) method, design the coefficients of a 7-point FIR high-
pass filter that has cutoff frequency at 1kHz with a sampling rate of 8kHz.
Write down the filter’s z-transfer function and difference equation. Draw a block diagram
representation of this filter.
[Hint: use the formula on page 4 of the ‘Filters I’ lecture, or on page 448 of Mitra]

2) Show that the frequency response of a 6-point FIR averager can be represented by the expression:





 ω+ω+ω=

ω−ω

2
cos

2
3cos

2
5cose

3
1)e(H 2

5jj

3) Do Mitra problem 4.16 part (a).
Hints:
a) Write down the transfer function of the filter as

4321 azbzczbza]z[H −−−− ++++=

b) Substitute z = ejω to obtain an expression for the frequency response.
c) Collect terms into cosines using Euler, as done in problem 2.
d) Evaluate the frequency response magnitude at the specified frequencies, and solve for a,b,c.
(Don’t be surprised if some of the coefficients come out to zero.)
[You could check you have the right form using the Matlab command freqz()]

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

1

Digital Filters II

John Carwardine

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

2

Digital Filters II

• Properties of common analog filter types.
• Butterworth filters.
• Spectral transformations.
• Digital design from analog prototypes

– impulse invariance method.
– bilinear transform.

• Comparison of IIR and FIR filters.
• Digital notch filters.
• Comb filters.
• Elements of optimal least-squares filters.
• Elements of adaptive filters.

• Relevant sections from Mitra: 5.3, 7.2-7.5

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

3

Magnitude Response of Common Analog Filter Types

• The following are all 4th-order analog lowpass filters with cutoff at 1Hz

10
-1

10
0

10
1

0

0.25

0.5

0.75

1

Frequency (Hz)

Magnitude

Bessel

10
-1

10
0

10
1

0

0.25

0.5

0.75

1

Frequency (Hz)

Magnitude

Elliptical (Rp=1,Rs=-20)

10
-1

10
0

10
1

0

0.25

0.5

0.75

1

Frequency (Hz)

Magnitude

Chebychev I (Rs=20dB)

10
-1

10
0

10
1

0

0.25

0.5

0.75

1

Frequency (Hz)

Magnitude

Chebychev II (Rp=1dB)

10
-1

10
0

10
1

0

0.25

0.5

0.75

1

Frequency (Hz)

Magnitude

Butterworth

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

4

Basic Properties of Common Analog Filter Types

Passband Stopband Key benefits

Butterworth Flattest -20N
dB/decade

Maximally flat in
passband

Chebyshev
Type I Equiripple -20N

dB/decade
Faster initial roll-off
than Butterworth

Chebyshev
Type II Flat Equiripple Faster roll-off than

Butterworth

Elliptic Equiripple Equiripple Narrowest transition
band

Bessel Monotonic -20N
dB/decade

Linear-phase in
passband

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

5

Specifying Analog Filters with |Ha(jw)|2

• Consider the following Laplace transfer function

)()(|)(| 2 jwHjwHjwH aaa −⋅=

22242

22

)2(
1

)()(
1

)()(
1

cacba

cjbjacjbja

+Ω++Ω
=

+Ω−+Ω−
⋅

+Ω+Ω
=

csbsa
sHa +⋅+⋅

= 2
1

)(

cjbja
jHa

+Ω⋅+Ω⋅
=Ω

)()(
1

)(2

• The magnitude response is computed by setting s = jw and computing the magnitude of
the resulting expression

• However, the magnitude response can also be computed from the following product

• The magnitude-squared of any Laplace transfer function can be computed from this
product which always results in a rational polynomial of powers of w2.

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

6

Transfer Functions of Lowpass Analog Filters

• Commonly, the transfer functions of analog lowpass filters are of the form

2
2

)(1
1

)(
sP

sH
N

a +
=

• Where PN(s) is a polynomial of order N in s the form of which depends on the chosen
filter type.

• Examples for P(s) are:
– Butterworth filters have PN(s) = sN

– Chebyshev and Elliptical filters use Chebyshev polynomials of order N.

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

7

Butterworth Filters (cont)

• The poles of the Butterworth magnitude-squared response all lie on a circle of unit
radius in Laplace-space.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Real part

Imaginary part

N
c

a jH 2
2

)/(1
1

)(
ΩΩ+

=Ω

• The magnitude-squared response of an Nth order Butterworth filter is given by

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

8

Butterworth Filters

• Butterworth filters are maximally-flat.
• There is no ripple in either the passband or stopband.
• The magnitude-response of an Nth-order filter rolls off at 20N dB/decade.
• The stopband phase delay of an Nth-order filter is -90N degrees.
• A Butterworth filter can be completely described by its -3dB cutoff frequency Ωc, and

its order N.

10
-1

10
0

10
1

-50

-40

-30

-20

-10

0

Frequency

Ma gnitude (dB)

N=2

N=4

N=8

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Frequency

Magnitude N=2

N=4
N=8

Linear Magnitude, Linear Frequency Magnitude in dB, Log Frequency

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

9

Transfer Functions of Normalized Butterworth Lowpass Filters

Coefficients for each power of sFilter
Order S8 S7 S6 S5 S4 S3 S2 S1 S0

1 1 1
2 1 1.4142 1
3 1 2 2 1
4 1 2.6131 3.4142 2.6131 1
5 1 3.2361 5.2361 5.2361 3.2361 1
6 1 3.8637 7.4641 9.1416 7.4641 3.8637 1
7 1 4.4940 10.0978 14.5918 14.5918 10.0978 4.4940 1
8 1 5.1258 13.1371 21.8462 25.6884 21.8462 13.1371 5.1258 1

• All these filters are normalized (ie their -3dB cutoff frequency is 1rad/s).
• For example, the 4th order Butterworth lowpass filter is described by the transfer

function

16131.24142.36131.2
1

)(234 ++++
=

ssss
sH

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

10

Butterworth Lowpass Filter Design Example

• Determine the lowest order of a Butterworth filter that has a -3dB cutoff at 1kHz,
and minimum attenuation of 40dB at 5kHz.

2
2)(

)/(1
1

Ω=
ΩΩ+

jHaN
c

Solution
• We’ll use the following expression for a Butterworth filter to compute the order.

386.2
)2000/50002(log

)110(log
2
1

01.0
)2000/50002(1

1

4

2
2

→=
⋅

−
=

=
⋅+

N

N
e

e

N

ππ

ππ

Substituting known values,

The normalized 3rd-order Butterworth filter is given by

()()()3/23/223 1
1

122
1

)(ππ jj esesssss
sH −+++

=
+++

=

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

11

Spectral Transformation of IIR Filters

• Transformations exist to convert a lowpass filter prototype into highpass, bandpass, and
bandstop filters.

• The transforms replace s with another expression that includes the frequencies of
relevance to the desired filter form

• We therefore only need design normalized lowpass filters, and then to transform them to
the appropriate form.

p

s
s

Ω
→

s
s pΩ

→

21
2

12)(
Ω⋅Ω+

Ω−Ω
→

s
s

s

Lowpass to lowpass Lowpass to highpass

Lowpass to bandstop
)(12

21
2

Ω−Ω
Ω⋅Ω+

→
s
s

sLowpass to bandpass

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

12

Butterworth Bandpass Filter Design Example

Design a bandpass analog filter with -3dB cutoffs at 100 rad/s and 200 rad/s, from the
following normalized lowpass filter prototype transfer function

122
1

)(
++

=
ss

sH

• The transformation we need is

()12

21
2

Ω−Ω
Ω⋅Ω+

→
s
s

s

So the new transfer function is given by

1
100

102
2

100
102

1
)(

42242
+







 ⋅+
+







 ⋅+
=

s
s

s
s

sHbp

() s
s

s
ss

100
102

100200
200100 422 ⋅+=

−
⋅+→which for our case means

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

13

Butterworth Bandpass Filter Design Example (cont)

• The final result is the 4th-order transfer function

862434

24

10410828.21054.141
10

)(
⋅+⋅+⋅++

=
ssss

s
sHbp

• The magnitude response of this function is shown below

100 101 102
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

Magnitude

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

14

Structure of the General IIR Filter

• Block diagram...

∑∑
−

=

−

=
−+−=

1

1

1

0
][][][

N

k
k

M

k
k knybknxanyΣx[n] y[n]

Z-1

a0

a1

a2

aM-1

b1

b2

bN-1

Z-1

Z-1

Z-1

Z-1

Z-1

∑

∑
−

=

−

−

=

−

+−
−

−−

+−
−

−−

−
=

−−−−
++++

==

1

1

1

0

1
1

2
2

1
1

1
1

2
2

1
10

][1

][

1][
][

][

N

k

k
k

M

k

k
k

N
N

M
M

zYzb

zXza

zbzbzb
zazazaa

zX
zY

zH
Κ
Κ

• Difference equation...

• z-transform...

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

15

IIR Digital Filter Design Methods

• Generate digital filter from analog prototype
– generate lowpass normalized analog prototype filter.
– convert lowpass prototype to other form if necessary (eg highpass, bandpass).
– convert analog filter to digital domain

• impulse invariance.
• bilinear transform.

• Generate digital filter directly in digital domain
– least squares design in frequency domain.
– least squares fitting of desired discrete-time impulse response.

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

16

IIR Digital Filter Design by Impulse Invariance Method

• The idea is to design a digital filter whose impulse response is identical to the sampled
version of the impulse response of the analog filter prototype.

• Given the Laplace transfer function of an analog prototype filter Ha(s), then the impulse
response is given by

)}({)(1 sHLth aa
−=

• The impulse response of the digital filter is ha(t) sampled at periodic intervals T

)(][nThng a= ...3,2,1,0=n

• And the z-transform of the digital filter is given by

)}({]}[{)(nThngzG aΖ=Ζ=

)}({1)(saHLtah −=)(][nThng a=

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

17

Impulse-Invariance Mapping

For s = σ+jΩ, we get

• Mapping of the s-plane poles and zeros to the z-plane is achieved by the transformation

sTez =
TjTTjsT eeeez ΩΩ+ === σσ)(

• The entire strip on the s-plane between -π/2 and +π/2 is mapped into the unit circle of
the z-plane.

• Because of the periodicity of the mapping, the strip on the s-plane between π/2 and 3π/2
(and all other similar strips) are also mapped into the unit circle of the z-plane.

T

π3

T
π

T
π−

T
π3−

σ

jΩ

s-plane z-plane

Re z

Im z

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

18

Using the Impulse-Invariance Mapping

• Consider a simple 1-pole (stable) analog filter described by the Laplace transform

α+
=

s
AsH)(

• The continuous-time impulse response is given by

tAeth ⋅−= α)(

• The discrete-time impulse response is obtained by sampling the h(t) at time intervals T

()nTTn eAAenThng ⋅−⋅⋅− === αα)(][

11
)(−⋅−+

=
ze

A
zG Tα

• The closed-form expression for the z-transform of g[n] is therefore

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

19

Impulse Invariance Mapping of 1st and 2nd Order Poles

• There are two forms of the second-order transfer functions, and without proof, are
mapped as follows

TT

T

eTzez
Tze

zG
s

sH ββ

β

λ
λ

λβ
λ

221221 cos2
sin

][
)(

)(−−

−

+−
=→

++
=

TT

T

eTzez
Tzez

zG
s

s
sH ββ

β

λ
λ

λβ
β

22

2

2222 cos2
cos

][
)(

)(−−

−

+−
−

=→
++

+
=

• So, to generate the z-transform from the Laplace transform,

α+s
A

11 −⋅−+ zTe

A
αwithwe replace

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

20

Impulse-Invariance Numerical Example

• Consider the following 2-pole filter that is to be converted to the discrete-domain at a
sample rate of 20Hz.

• We will use the first form of the 2nd-order mapping,

2/1)2/2(
)2/1(2

12
1)(22 ++

=
++

=
sss

sH

TT

T

eTzez
Tze

zG
s

sH ββ

β

λ
λ

λβ
λ

221221 cos2
sin

][
)(

)(−−

−

+−
=→

++
=

So that

TT

T

eTzez
Tze

zG ββ

β

λ
λ

22 cos2
sin

2][−−

−

+−
⋅= where

20/1
2/1

2/1

=
=

=

T
β

λ

9317.09293.1
06824.0

][2

2

+−
=

zz
z

zGiiGiving

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

21

Impulse-Invariance Numerical Example (cont)

• Comparisons of the original continuous-time and the discrete-time filters are shown
below.

0 2 4 6 8 10
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time (sec)

Amplitude

Discrete-time filter
Continuous-time filter

Impulse Responses

Frequency (rad/sec)

Phase (deg); Magnitude (dB)

Bode Diagrams

-80

-60

-40

-20

0

10
-1

10
0

10
1

10
2

-400

-300

-200

-100

0

Bode Diagrams

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

22

10
-2

10
-1

10
0

10
1

10
2

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency (Hz)

Magnitude (dB)

0 5 10 15 20 25 30 35 40
-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency (Hz)

Magnitude (dB)

Aliasing with the Impulse-Invariance Transformation

• Since the mapping is not unique, there is aliasing of the original analog frequency
response above half the sampling frequency.

• The figures show the magnitude response of the same 2-pole Butterworth filter over a
frequency range up to twice the sampling frequency

Magnitude Response (Log Frequency) Magnitude Response (Linear Frequency)

Discrete

Continuous

Discrete

Continuous

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

23

Aliasing of Analog Filter Response with Impulse-Invariance Transformation

• If the sampling rate is too low, then the aliased components have a significant impact on
the resulting discrete-time filter. Consider, for example, what happens if the 1Hz 1-pole
filter is sampled at only 5Hz...

0 2 4 6 8 10
-25

-20

-15

-10

-5

0

5
FsFs/2

M
ag

n
it

u
d

e
R

es
p

o
n

se
 (d

B
)

Frequency (Hz)

Aliased response of
the digital filter

Response of analog
filter prototype

Aliased components

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

24

IIR Filter Design using the Bilinear Transformation

• Unlike the impulse-invariance transformation, the bilinear transformation maps the
entire left-half of the s-plane into the unit circle.

• Because there is a one-to-one correspondence between points on the s-plane and points
on the z-plane, there is no aliasing of the filter response.















−+

−−⋅→
11

11

z

zCs

σ

jΩ

s-plane z-plane

Re z

Im z

• The bilinear transformation is given by

where C is a constant to be found

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

25

BLT Warping of Analog Frequencies to Digital Frequencies

• The mapping from analog frequency Ω to discrete-time frequency ω is

π−π

−π

π

Ω

ω

2
tan ω⋅=Ω C

• The mapping is shown graphically below

sF
cF⋅

=
π

ω
2where and C is a mapping constant

πω
ω

=→∞=Ω
=→=Ω 00

• The mapping constant allows us to adjust the scaling so we can get exact
correspondence at one additional frequency. A low frequency approximation is

sF
T

C 22 ==

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

26

BLT Example

Design a digital IIR filter that implements the analog lowpass filter described by the
following normalized Laplace transfer function and a sampling rate of 20Hz. Use the low
frequency approximation of the bilinear transformation.

122
1

)(
++

=
ss

slpH

• We will use the following mapping to get good low frequency approximation










+
−⋅=









+
−⋅→ −

−

−

−

1

1

1

1

1
140

1
12

z
z

z
z

T
s

• Plugging this into the Laplace transfer function gives

21

21

1

12

1

1 9375.09293.11
)21(0006033.0

1
1
1

402
1
1

40

1
][−−

−−

−

−

−

− +−
++⋅

=

+








+
−

⋅+








+
−

⋅

=
zz
zz

z
z

z
z

zGblt

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

27

10
-1

10
0

10
1-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency (Hz)

Magnitude (dB)

Comparison with Impulse Invariance Method

• The magnitude responses for the original continuous-time filter and the discrete-time
filters from both impulse invariance and bilinear transformation are show below

• For low frequencies, the impulse invariance method gives an exact match with the
continuous-time filter.

• The bilinear transformation generates a zero (null) response at the Nyquist frequency,
whereas the impulse invariance aliases the original response.

• Both discrete-time filters have alias responses about multiples of the sampling rate.

Bilinear transform

Impulse-invariance

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

28

BLT Bandpass Example with Pre-warping

Design a digital bandpass filter given the following Laplace transfer function that has a
passband from 100rad/s to 200rad/s. The sample rate should be 100Hz. Use the bilinear
transformation such that the upper band edge matches exactly.

94853.8108284.2
4

)(234

2

++++
=

ssss
s

sHbp

• First we have to determine the value of the mapping constant C in the transformation

2.0
1000
200

2 ===
s

c

F
F

πω

• The analog frequency we want to match is 200rad/s so, we can compute C as follows

3.1993
2
2.0cot200

2
cot =⋅=⋅Ω= ωC

2
cot

2
tan ωω ⋅Ω=→⋅=Ω CC

• The value of ω is determined from the sampling rate and desired matching frequency

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

29

BLT Bandpass Example with Pre-warping (cont)

• We can now apply the following mapping to our analog transfer function

Plugging this mapping into the Laplace transfer function gives us the Z transform

1

1

1
1

3.1993 −

−

+
−

⋅→
z
z

s

9
1
1

3.19934853.8
1
1

3.199310
1
1

3.19938284.2
1
1

3.1993

1
1

3.19934
][

1

12

1

13

1

14

1

1

2

1

1

+








+
−

⋅+








+
−

⋅+








+
−

⋅+








+
−

⋅










+
−

⋅
=

−

−

−

−

−

−

−

−

−

−

z
z

z
z

z
z

z
z

z
z

zGbp

After a lot of manipulation, we get the discrete-time transfer function

3862.01782.0104.10.2962z1
0.07638z + z 107.772z 0.1528-z 103.3860.07638

][321-

-4-3-16-2-1-15

++++
⋅+⋅+

= −− zz
zGbp

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

30

BLT Bandpass Example with Pre-warping (cont)

• The resulting frequency response is plotted in the figure, together with the
corresponding analog filter response and the BLT discrete-time filter response without
pre-warping.

0 5 10 15 20 25 30 35 40 45 50
-20

-15

-10

-5

0

Frequency (Hz)

Magnitude (dB)

Analog filter

BLT w/o pre-warp

BLT w/ pre-warp

Match-point

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

31

Digital PID Regulator

• The most common feedback regulator is the PID regulator, which has the Laplace transfer
function

dKs
s
iK

pKspidH ⋅++=)(

Where Kp, Ki, Kd are the gain constants for the proportional, integral, and
derivative terms, respectively.

• A digital PID can be generated from this using either BLT or impulse invariance
mapping.

• In the case of the impulse invariance method, we simply use the mapping

11
1

−−
→

z
s

()1
1 1

1
)(−

− −+
−

+= zK
z

K
KzH d

i
ppidz

• This results in the discrete-time PID transfer function

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

32

Digital PID Regulator (cont)

• For the BLT, with a good low frequency approximation, we use the mapping















−+

−−⋅→
11

112

z

z
T

s where T is the sampling interval















−+

−−
+














−−

−+
+= 11

112
11

112
)(

z

z
TdK

z

z
TiKpKzpidzH

• This results in the discrete-time PID transfer function

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

33

Comparison of FIR and IIR Filters

Characteristic IIR Filters FIR Filters

Filter order for given
specification Lowest Highest

Number of
multiplications Least Most

Memory requirements Least Most

Stability Must be designed in Guaranteed

Linear phase Not possible Yes if impulse response
is symmetrical

Can simulate analog
filters Yes No

Supports adaptive
filtering

Yes, but non-linear
solution

Yes, and linear solution

Sensitivity to coefficient
quantization

Can be high – depends on
realization

Generally very low

Difficulty in analyzing
finite wordlength effects More difficult Easier

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

34

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Frequency (1=sampling rate)

Magnitude Response

Digital Notch Filters

• A notch filter is a filter that contains one or more deep notches in its frequency response.
They can be used for example to eliminate 60Hz power-line frequencies from signals.

and an IIR notch filter has the transfer function

)cos21(][21 −− +⋅−= zzbzH oofir ω

221

21

cos21
cos21][−−

−−

+⋅−
+⋅−=

zrzr
zzbzH

o

o
oiir ω

ω

• A simple FIR notch filter has the transfer function

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Frequency (1=sampling rate)

Magnitude Response

IIR Notch Filter with ω o = 0.8π

r = 0.9
r = 0.99

FIR Notch Filter with ω o = 0.8π

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

35

Comb Filters

• A comb filter can be considered a filter that has a frequency response that repeats
periodically across the frequency band.

• A comb filter can be produced from any filter form, with the substitution

Mzz −− →1 M is the required number of replications
Example
• A comb filter with 8 replications that was generated from an IIR notch filter would be

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Frequency (1=sampling rate)

Magnitude Response

1628

168

cos21
cos21][−−

−−

+⋅−
+⋅−=

zrzr
zzbzH

o

o
o ω

ω

Notice that the
original response
over 0 - 2π is
replicated with
periodicity 2π / M

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

36

Optimal Least-Squares Filter Design

• Consider a situation where a signal x[n] is to be filtered in such a way that the output
sequence is as close as possible to a desired signal d[n]

∑ −⋅−=
k

knxkfndne][][][][

• The least-squares solution involves taking the derivative of the mean-squared error with
respect to each coefficient and setting the result to zero.

• The result is a set of Normal Equations that can be solved to find the optimum FIR filter
coefficients from the input auto-correlation and input-demand cross-correlation
functions.

)()()(jdxrjf
j

ijxxr =⋅−∑

{ }][][)(jnxndEjrdx −⋅=where { }][][)(inxjnxEijrxx −⋅−=− and

f[n]x[n]
y[n]

e[n]

d[n]

Σ
+

-

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

37

Applications of Optimal Least-Squares Filters

• System Identification - generate linear model of unknown system

f[n]

x[n]
y[n]

e[n]Σ
+

-

g[n]=?

• Least-Squares Inverse Filter Design - generate inverse of known filter

f[n]h[n] e[n]

δ[n]

Σ
+

-

δ[n]

• Linear Prediction - eg used in AR power spectrum estimation

f[n]x[n-n o] e[n]

x[n]

Σ
+

-
x[n]

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

38

Adaptive Filters

• The least-squares filter works for situations when the input statistics are stationary.
• An adaptive filter can be used as an alternative if the plant statistics are time-varying or

are not know exactly.

Σx(n)
y(n) e(n)

d(n)

+

-
f(n)

• The filter coefficients adapt in order to minimize the error in a least-squares sense.
• Generally adaptive filters are FIR, since they have quadratic ‘performance’ surfaces.
• The most common algorithm is the LMS, which is a simplification of the steepest-

decent iterative solution to a quadratic problem.
• The vector of filter coefficients is updated on each step using the latest error, and a

vector of past input values, so that

nxnenf
nf ⋅⋅−=

+
][

1
α

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

39

Adaptive Filter Application Examples

• Adaptive echo cancellation

delay

delay

Hybrid Adaptive
Filter

Σ+

-

HybridAdaptive
Filter

Σ +

-

Adaptive
Filter

Σ+

-

z-m y[n]

x[n]
e[n]

• Adaptive line enhancement (detect small periodic signals buried in noise)

USPAS ‘99 - Fundamentals of Digital Signal Processing Digital Filters II - John Carwardine

4/30/02

40

Homeworks

• Mitra 7.1 [Hint: multiply the frequency responses together]

• Using the formula on Page 34 of the lecture notes, design a digital IIR notch filter with
notch frequency at 120Hz, at a sampling rate of 5kHz. Use a damping ratio of 0.95 (r in
the formula). Compute the -3dB notch width of this filter in Hz.

• Mitra 4.24 (Realizations homework)

1

USPAS ‘99 - Fundamentals of Digital Signal Processing Realization - John Carwardine

6/20/99

System Realization

John Carwardine

2

USPAS ‘99 - Fundamentals of Digital Signal Processing Realization - John Carwardine

6/20/99

System Realization

• Review of direct and canonical forms.
• Cascade and parallel forms.
• Transposed realizations.
• A good rule of thumb (cascaded biquads).
• Coupled form (state-space realizations).
• Lattice filters.

• Relevant sections in Mitra: 6.1, 6.3-6.5

3

USPAS ‘99 - Fundamentals of Digital Signal Processing Realization - John Carwardine

6/20/99

Direct and Canonical Forms

• We have seen that all LTI systems can be represented by the generic difference equation

∑∑
−

=
−−

−

=
−=

1

1
][

1

0
][][

N

k
knykb

M

k
knxkany

Direct Form Canonical Form

Σx[n] y[n]

z-1

a0

a1

a2

aM-1

b1

b2

bN-1

z-1

z-1

z-1

z-1

z-1

x[n] y[n]
a0

a1

a2

aM-1

b1

b2

bN-1

ΣΣ

z-1

z-1

z-1

and can be implemented in either direct form or canonical form

4

USPAS ‘99 - Fundamentals of Digital Signal Processing Realization - John Carwardine

6/20/99

Why Consider Different Realizations?

• In real systems, it may be impractical to implement the difference equation directly
• Memory requirements
• Processing requirements
• Finite word-length effects (number representation, quantization)

• In general, finite word-length effects get worse as the order of the transfer function
increases.

5

USPAS ‘99 - Fundamentals of Digital Signal Processing Realization - John Carwardine

6/20/99

Cascade and Parallel Forms

Cascade Form
• Example: bandpass filter

][][][

][][][

21

21

zHzHzH

nhnhnh

⋅=

∗=

][][][

][][][

21

21

zHzHzH

nhnhnh

+=

+=

h1[n]

h2[n]

x[n] y[n]

h1[n] h2[n]x[n] y[n]

Parallel Form
• Example: PID regulator

• The principles of linearity allow a system to be represented as an equivalent
combination of cascade and/or parallel forms.

6

USPAS ‘99 - Fundamentals of Digital Signal Processing Realization - John Carwardine

6/20/99

Cascaded System Example

• The following represents a 6th-order FIR filter as a cascade of 2nd-order systems

]2[]1[][][
]2[]1[][][
]2[]1[][][

−+−+=
−+−+=
−+−+=

nwnwnwny
nvnvnvnw
nxnxnxnv

• Some manipulation results in

]6[]5[3]4[6]3[7]2[6]1[3][][−+−+−+−+−+−+= nxnnxnxnxnxnxny

Σ

1

1

Σ

1

1

Σ

1

1

x[n] y[n]

z-1

z-1

z-1

z-1

z-1

z-1

v[n] w[n]

111

}1,3,6,7,6,3,1{][=nh

7

USPAS ‘99 - Fundamentals of Digital Signal Processing Realization - John Carwardine

6/20/99

Parallel System Example

• A PID regulator is commonly implemented as a parallel combination of three elements

()
]1[][][

]1[][][][][

−+=

−−⋅+⋅+⋅=

nwnxnw

nxnxKnwKnxKny dip

-1
z-1

Σ

y[n]1

z-1

Σ

Σ

Kp

Ki

Kd

x[n]

w[n]

8

USPAS ‘99 - Fundamentals of Digital Signal Processing Realization - John Carwardine

6/20/99

Transpose Forms

• Any LTI structure can be converted to another structure by the following operations:
– Reverse all path directions
– Replace pick-off points by adders and vice-versa
– Interchange input and output nodes

IIR Canonical Form Transpose of IIR Canonical Form

FIR Direct Form Transpose of FIR Direct Form

z-1z-1

a0a1a2

x[n]

y[n]Σ Σz-1 z-1

a0 a1 a2

y[n]

x[n]

Σ Σ

x[n] y[n]

a1
b1

z-1

z-1

Σ

Σ

Σ

Σ

a2
b2

a0

x[n] y[n]

a1
b1

z-1

z-1

a2
b2

a0
Σ

Σ

Σ

9

USPAS ‘99 - Fundamentals of Digital Signal Processing Realization - John Carwardine

6/20/99

Rule-of-Thumb Good Realization

• In general, a good realization of a high-order system can be obtained by separating the
transfer function into a cascade of second-order systems, and implement each stage in
canonical form (biquad).

• “Good” in this context implies low sensitivity to finite word-length effects.

• Example: a 4th-order filter implemented as a cascade of two biquads










++
++⋅









++
++==⋅= −−

−−

−−

−−

2
22

1
21

2
22

1
2120

2
12

1
11

2
12

1
1110

11][
][

][
][

][
][

][
zbzb

zazaa
zbzb

zazaa
zX
zY

zX
zW

zW
zY

zH

x[n] y[n]ΣΣ

b12 a12

a11b11

ΣΣ

b22 a22

a21b21

z-1

z-1

z-1

z-1

2nd stage1st stage
w[n]

a10 a20

10

USPAS ‘99 - Fundamentals of Digital Signal Processing Realization - John Carwardine

6/20/99

Procedure for Pairing Poles and Zeros in Cascade Forms

• Complex conjugate pairs must appear in the same stage to ensure real coefficients
• When matching poles with zeros, the idea is to pair each pole with a zero that is as close

to it as possible, to make the magnitude response for each stage close to unity.
– Match the complex pole nearest the unit-circle with the zero closest to it.
– Go to the remaining pole nearest the unit-circle and match it with its nearest zero.
– Repeat until all complex poles are matched, and then repeat for the real poles.

Real Z

Imag Z

2
1

3

4

2
1

3

4

Example

11

USPAS ‘99 - Fundamentals of Digital Signal Processing Realization - John Carwardine

6/20/99

Coupled Form

• The second-order coupled form falls into the category of state-space structures.
• It has certain benefits in relation to available pole locations when implemented with

finite word-length (more on this in the next lecture).

21)()(1
][−− −++−

=
zz

zH
βγαδδα

γ

γ

z-1 z-1

Σ Σ

Σ

x[n] y[n]

β

α δ

]2[)(]1[)(][][−⋅−−−⋅++⋅= nynynxny βγαδδαγ

12

USPAS ‘99 - Fundamentals of Digital Signal Processing Realization - John Carwardine

6/20/99

Lattice Filters

• Lattice structures are commonly used for prediction-error filters, in speech synthesis,
and in adaptive filtering.

• When implementing a prediction-error filter, the outputs of successive stages are
successively better approximations to the desired output.

• Internal gains of each stage are always less than unity, which helps with scaling and
implementation issues.

• Lattice structures have low sensitivity to quantization noise.

Two-Stage FIR Lattice Filter

z-1

Σ
k1

k1
b

z-1

k2
x[n]

y[n]
f1[n]

g1[n] g2[n]

f2[n]f0[n]

g0[n]

k2
b

Σ

Σ

Σ

1

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

• Finite Word Length Effects

2

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

Quantization of Pole Locations

• Filter performance depends on pole locations

• 4 bit implementation

3561.0

12
)(

2

2

+−
++=

zz

zz
zH

25.0
2

2

2 4
=±=±=

bits

FullScale
R

R

2

1.75

1.5

1.25

1

0.75

0.5

0.25

0

0.25

0.5

0.75

1

1.25

1.5

1 75

=

25.0

175.1
)(

2

2

1 +−
+⋅+=

zz

zz
zH

3

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

Quantization of Pole Locations

• Frequency response may change.

H e
j 2. π. f. T.

H1 e
j 2. π. f. T.

f
0 100 200 300

0

10

20

H e
j 2. π. f. T.

H1 e
j 2. π. f. T.

f
0 100 200 300

0

5

10

15

• 4 bit implementation.

• 8 bit implementation.

4

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

Quantization of Pole Locations

• Mapping Quantized Coefficients to z-Plane

21
2

1
)(

azaz
zH

+⋅−
=

() ()

2121
2

21

1

1
)(

ppzpzpz

pzpz
zH

⋅+⋅−⋅−
=

−⋅−
=

*21 pp =

θ

θ

j

j

erp

erp
−⋅=

⋅=
*

5

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

Quantization of Pole Locations

• H(z) may be written in terms of z-plane magnitude and angle.

θθθθ jjjj ererzerzerz
zH −− ⋅⋅⋅+⋅⋅−⋅⋅−

=
22

1
)(

()
22

22

cos2

1

1
)(

rzrz

reezrz
zH

jj

+⋅⋅⋅−
=

++⋅⋅−
= −

θ

θθ

21
2

1
)(

azaz
zH

+⋅−
=

2
2

1 cos2

ra

ra

=

⋅⋅= θ












⋅
=

=

−

2

11

2

2
cos

a

a

ar

θ

6

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

Quantization of Pole Locations

• Possible discrete pole locations based on the four bit quantized coefficients a1 and a2.

r
i

r
i

θ
i j,

0

30

60

90

120

150

180

210

240

270

300

330

210

7

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

Quantization of Pole Locations

• Intended poles are quantized.

00

poles_magnitude

poles_magnitude1

poles_angle poles_angle1,

0

90

180

270

210

() ()21

2

2

2

12

3561.0

12
)(

pzpz

zz

zz

zz
zH

−⋅−
++=

+−
++=

jep 576.0
1 596.0 ⋅=

jep 576.0
2 596.0 −⋅=

25.0

175.1
)(

2

2

1 +−
+⋅+=

zz

zz
zH 5.01 =p

5.02 =p

8

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

Binary Number Representation

• Binary numbers are represented with only ones or zeros.

a3 a2 a1 a0ab-1 ab-2 ab-3 a4

∑
−

=

⋅
1

0

2
b

i

i
ia

10
123

2 1002120211010 =+⋅+⋅+⋅=

9

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

Fractional Two’s Complement representation

• Negative numbers must be represented in digital systems.

-s a-1 a-2 a-3

• Negative numbers are formed by subtracting the corresponding positive value from
2n+1.

∑
=

−
− ⋅+−

b

i

i
ias

1

2

10
321

2

10
321

2

375.021202111101

5.020202100100

−=⋅+⋅+⋅+−=

=⋅+⋅+⋅+−=
−−−

−−−

10

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

Subtraction

• Two's complement representation makes subtraction easier to do.

• 6/8 - 5/8

• Two's complement of 5/810 = 10112
• 00012 = 1/810

00011

1011

0110

+

11

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

Overflow

• add 6/810 and 6/810

• 11002 = -4/810. This is not the right answer.

1100

0110

0110

+

12

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

Intermediate Overflows

• Intermediate overflows will not cause a problem, as long as the final result is within
range.

• Add 4/8 + 6/8 - 7/8

• 3/8 is the correct answer.

0000
0001

0010

0011

0100

0101

0110

0111
1000

1001

1010

1011

1100

1101

1110

1111

0
1/8

2/8

3/8

4/8

5/8

6/8
7/8

-1/8
-2/8

-3/8

-4/8

-5/8
-6/8

-7/8
-8/8

00111

1001

1010

0110

0100

+
=

+

13

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

Multiplication

• When two b bit binary numbers are multiplied, the result will be 2b bits long.

• 6/810 = 0.7510 = 01102 and 3/810 = 0.37510 = 00112

00100100

0011

0110

×

• The actual result is 0.2812510.

• The four-bit result is 00102 = 0.2510.

14

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

Product Truncation Errors

• Truncation of a 2b bit product to fit in a b bit word is called a truncation error.

• An error is introduced because the b bit value must be an integer multiple of q.

b

fullscale
q

2

±=

q/2
e

p(e)

1/q

-q/2

• The error can range from -q/2 to +q/2.

12

1
)(

22/

2/

2
2/

2/

22 q
dee

q
deepe

q

q

q

q

=⋅⋅=⋅⋅= ∫∫
−−

σ

• Compute the variance of p(e) as:

15

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

Product Truncation Errors

• σ2 is a measure of the noise power caused be the quantization.

+
a

e[n]

y[n]x[n]
b

bits
2b
bits

b
bits

16

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

Canonic Section

• Noise sources must be added any time that a multiplication is made.

z-1

z-1

++ +

+

+

+

+

e4[n]

e5[n]

e3[n]

y[n]x[n]

e1[n]

e2[n]

b1

b2

a1

a2

• All the noise sources in the figure above have the same magnitude, q2/12.

17

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

Canonic Section

• Noise sources that feed the sane adder may be combined.

z-1

z-1

+ +

a1

y[n]x[n]

-b1

-b2

a0

a2

e1,e2 e3,e4,e5

3

2

12

22 Bq −

=[]∑
∞

=

⋅
0

2
2

12 n

nf
q

[]
12

3

12

2 2

0

2
2

2 q
nf

q

n

+⋅= ∑
∞

=

σ

18

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

Canonic Section

• f[n] is the impulse response from the noise source to the filter output.

2
2

1
1

2
2

1
10

1
][−−

−−

⋅+⋅+
⋅+⋅+=
zbzb

zazaa
zH

[] [] [] [] [] []2121 21210 −⋅−−⋅+−⋅+−⋅+⋅= nfbnfbneaneaneanf

19

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

Canonic Section

• example
21

21

9747.08353.11

1436.02872.01436.0
][−−

−−

⋅+⋅−
⋅+⋅+=

zz

zz
zH

[] [] [] [] [] []29747.018353.121436.012872.01436.0 −⋅−−⋅+−⋅+−⋅+⋅= nfnfnenenenf

y
n

n
0 200 400

2

0

2

[] 45
0

2 ≅∑
∞

=n

nf

[] 2
222

0

2
2

2 75.7
12

3
45

12

2

12

3

12

2
q

qqq
nf

q

n

⋅=+⋅=+⋅= ∑
∞

=

σ

20

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

Direct Form

• Each multiplier truncation is treated as the addition of a noise source.

z-1

z-1

+

z-1

z-1

x[n] y[n]
a0

a1

a2

-b1

-b2

+

+

+

+

+

e1[n]

e2[n]

e3[n]

e4[n]

e5[n]

21

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

Direct Form

• All five noise sources are of equal magnitude and they all feed the same adder.

z-1

z-1

+

z-1

z-1

x[n] y[n]

e1,e2,e3,e4,e5
a0

a1

a2

-b1

-b2

3

2

12

22 Bq −

=

22

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

Direct Form

• Impulse response from the noise source to the output.

+

z-1

z-1

y[n]

e1,e2,e3,e4,e5

-b1

-b2

]2[9747.0]1[8353.1][][−⋅−−⋅+= nynyneny

[] 2
2

0

2
2

2 25.61147
12

5

12

5
q

q
ny

q

n

⋅=⋅=⋅= ∑
∞

=

σ

Form σ2 ⋅ q2

Canonic 7.75
Direct 61.25

23

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

ADC Quantization Noise

3

2

12

22
2

Bq −

==σ

24

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

Scaling

• Direct Form

• Using two's complement math only the final result must be within the representable
range.

z-1

z-1

+

z-1

z-1

x[n] y[n]

a0

a1

a2

-b1

-b2

25

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

Scaling

• Canonic Form

• Two adders in this system.

z-1

z-1

+ +

a1

a2

a0
y[n]x[n]

b1

b2

26

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

Scaling

• L1 norm

∑
∞

=

=
0

1][
n

nws

21

21

9747.08353.11

1436.02872.01436.0
][−−

−−

⋅+⋅−
⋅+⋅+=

zz

zz
zH

• If the input is multiplied by 1/s1, then the gain at w[n] will be one.

• Example

27

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

Scaling

• L1 norm

• Example

21

21

9747.08353.11

1436.02872.01436.0

][

][
−−

−−

⋅+⋅−
⋅+⋅+=

zz

zz

zX

zY

21
21

9747.08353.11

][
1436.02872.01436.0][−−

−−

⋅+⋅−
⋅⋅+⋅+=

zz

zX
zzzY

21 9747.08353.11

][
][−− ⋅+⋅−

=
zz

zX
zW

]2[9747.0]1[8353.1][][−⋅−−⋅+= nwnwnxnw

28

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

Scaling

• L1 norm

• Example

]2[9747.0]1[8353.1][][−⋅−−⋅+= nwnwnxnw

2.604

2.317

w
n

4000 n
0 200 400

4

2

0

2

4

4.136][
1000

0
1 == ∑

=k

nws

29

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

Scaling

• L1 norm

• Input is multiplied by 1/s1

z-1

z-1

+ + y[n]x[n]

-b1

-b2

1/s1

a0

a2

a1

30

USPAS ‘99 - Fundamentals of Digital Signal Processing Finite Word Length Effects - Rob Merl

6/16/99

Scaling

• L∞ norm

• Scaling down the input prior to processing compressed the range of values that our filter
may see.

()
()Tj

Tj

eX

eW
s ω

ω

max1 =

• Ensures that there will be no overflow at the w[n] when a sine wave is applied at x[n].

• Example

• s1 = 107.

21 9747.08353.11

1

)(

)(
−− ⋅+⋅−

=
zzzX

zW

107.042

0.262

W e
1j 2. π. f. T.

2500 f
0 100 200 300

0

50

100

150

5/1/02

1

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Tips and Techniques

Frank Lenkszus

5/1/02

2

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Tips and Techniques

• Topics
– Windowing In Frequency Domain
– Calculating the Inverse DFT using the Forward DFT
– Simplified FIR Filter Structure
– Generate sine and cosine waveforms and tables
– Anti-Alias Filter Considerations
– Noise and Aliasing - a case study

5/1/02

3

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Windowing In Frequency Domain

• Suppose we have the DFT of unwindowed data, but need the DFT of that same data
with a window function applied to reduce leakage.

• Must we multiply the sequence by a window function and recompute the DFT?
• NO- there is a another way
• Recall that multiplication in the time domain;ie, time series multiplied by a window

function, is equivalent to convolution in the frequency domain.
• Convolution of the DFT of the unwindowed function with the DFT of a window

function with a small number of non-zero terms will take less calculations than applying
the window to the original time sequence and then recalculating the DFT.

• Works most efficiently with window functions of the form:

– Examples are the Hamming, Hanning and Blackman Windows
• Such windows have simple DFTs with small number of nonzero values.

Κ+++=)4cos()2cos()(NnNnnw πλπβα

5/1/02

4

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Windowing In Frequency Domain

DFT
Non-windowed function

5/1/02

5

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Windowing In Frequency Domain

• Consider a window function of the form:

• Taking the DFT

• Using Euler’s relation

• Thus we get

• Each of the three terms above result in a Dirichlet Kernel of the form:

)2cos(][Nnnw πβα −=

[]∑
−

=

−−=
1

0

2)2cos(][
N

n

NnkjeNnkW ππβα

[]∑
−

=

−−−−=
1

0

222)2()2(][
N

n

NnkjNnjNnj eeekW πππ ββα

∑∑∑
−

=

+−
−

=

−−
−

=

− −−=
1

0

)1(2
1

0

)1(2
1

0

2

22
][

N

n

Nknj
N

n

Nknj
N

n

Nnkj eeekW πππ ββ
α

)sin(
)sin(
Nk

k
π

π
))1(sin(

))1(sin(
Nk

k
−

−
π

π
))1(sin(

))1(sin(
Nk

k
+

+
π

π

5/1/02

6

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Windowing In Frequency Domain

β/2 β/2

α

5/1/02

7

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Windowing In Frequency Domain

• Since there are only three terms in the DFT of the window function, the expression for
any term of the DFT of the function with the window applied (convolution of the
window DFT with the function DFT) is:

– Three nonzero terms in Window function DFT yields three none zero terms in the
convolution

• Thus we can get an N-point DFT with 4N additions and 4N multiplications rather the
Nlog2N additions and 2Nlog2N multiplications that would be required by a DFT

• For the Hanning window α, β=0.5 - multiplication by α and β/2 reduce to 1-bit and 2-bit
shifts

]1[
2

]1[
2

][][+−−−= kXkXkXkX windowed

ββ
α

() () ()()]1[Re]1[Re
2

][Re][++−−= kXkXkXkX windowed

β
α

() () ()()



 ++−−+]1[Im]1[Im

2
][Im kXkXkXj

β
α

5/1/02

8

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Windowing In Frequency Domain

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Hanning Window

X

Multiplication in the time domain is equivalent to:

5/1/02

9

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Windowing In Frequency Domain

0

0

0.1

0.2

0.3

0.4

0.5

DFT of Hanning Window

DFT Bin

nn-1 n+1

N

Convolution in the Frequency Domain

5/1/02

10

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Windowing In Frequency Domain

5/1/02

11

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Inverse DFT using the Forward DFT

• Some applications require calculation of the Inverse DFT, but only the Forward DFT
may be available

• Two methods to compute the Inverse DFT from the Forward DFT

5/1/02

12

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Inverse DFT using the Forward DFT (#1)

Forward
DFT

1/N

1/N xreal[n]

ximag[n]

-1-1

Xreal[m]

Ximag[m]

Conjugate X[m]
Compute the forward DFT of X[m]*

Conjugate the forward DFT results
Divide by N

5/1/02

13

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Inverse DFT using the Forward DFT (#1)

• Consider the expressions for the Forward and Inverse DFT:

• Take the complex conjugate of the Inverse DFT:

• Therefore we can obtain the Inverse DFT by:
– Conjugating X(m)
– Compute the forward DFT of X(m)*

– Conjugate the forward DFT results
– Divide by N

∑
−

=

−=
1

0

2)()(
n

n

NnmjenxmX π ∑
−

=

=
1

0

2)(
1

)(
n

n

NnmjemX
N

nx π

∗−

=

∗







= ∑
1

0

2)(
1

)(
n

n

NnmjemX
N

nx π

∑
−

=

−∗∗ =
1

0

2)(
1

)(
n

n

NnmjemX
N

nx π

∗−

=

−∗








= ∑

1

0

2)(
1

)(
n

n

NnmjemX
N

nx π

Looks like the forward DFT

5/1/02

14

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Inverse DFT using the Forward DFT (#2)

Forward
DFT

1/N

1/N xreal[n]

ximag[n]

Xreal[m]

Ximag[m]

Swap the real and imaginary parts of X[m]
Calculate the Forward DFT of the Xswapped[m]
Swap the real and imaginary parts of the Forward DFT’s results
Divide each term by 1/N to get x[n]

5/1/02

15

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Inverse DFT using the Forward DFT (#2)

• Restate the Inverse DFT

• Split X(m) into real and imaginary parts and user Euler’s relationship for ejθ

• The above is an equivalent expression for the Inverse DFT of X(m)
• Now, swap the real and imaginary parts of X(m) and take the forward DFT

• Now swap the real and imaginary parts of the results:

∑
−

=

=
1

0

2][
1

][
N

k

NnkjekX
N

nx π

[] [])2cos(][)2sin(][)2sin(][)2cos(][
1

][
1

0

NknkXNknkXjNknkXNknkX
N

nx imagreal

N

k
imagreal ππππ ++−= ∑

−

=

()()∑
−

=

−+
1

0

)2sin()2cos(][][
N

k
realimag NknjNknkjXkX ππ

[] []∑
−

=

−++
1

0

)2sin(][)2cos(][)2sin(][)2cos(][
N

k
imagrealrealimag NknkXNknkXjNknkXNknkX ππππ

[] []∑
−

=

++−
1

0

)2sin(][)2cos(][)2sin(][)2cos(][
N

k
realimagimagreal NknkXNknkXjNknkXNknkX ππππ

=
1/N

Looks the same as

5/1/02

16

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Simplified FIR Filter Structure

• Basic idea:
– Take advantage of symmetrical property of coefficients to trade multiplications for

additions

5/1/02

17

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Simplified FIR Filter Structure

z-1

h[1]

x[n-1]

+

z-1

h[2]

x[n-2] z-1

h[3]

x[n-3] z-1

h[4]

x[n-4]

h[0]

x[n]

y[n]
h[2]

h[1] h[3]
h[4]h[0]

Odd # of Symmetrical Coefficients

Conventional Filter Structure

Observe:

h[0]=h[4] h[1]=h[3]

5/1/02

18

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Simplified FIR Filter Structure

Simplified Filter Structure

z-1

h[1]=h[3]

x[n-1]

+

z-1

h[2]

x[n-2]

z-1 x[n-3]
z-1

x[n-4]

h[0]=h[2]

x[n]

y[n]

+

+

Odd # of Symmetrical Coefficients

5/1/02

19

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Simplified FIR Filter Structure

z-1

h[1]

x[n-1]

+

z-1

h[2]

x[n-2] z-1

h[3]

x[n-3] z-1

h[4]

x[n-4]

h[0]

x[n]

y[n]
h[2]

h[1] h[4]
h[5]h[0]

h[3]

z-1

h[5]

x[n-5]

Conventional Filter Structure

Even # of Symmetrical Coefficients

Observe:

h[0]=h[5] h[1]=h[4] h[2]=h[3]

5/1/02

20

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Simplified FIR Filter Structure

z-1

h[1]=h[3]

x[n-1]

+

z-1

h[2]=h[5]

x[n-2]
z-1

x[n-3]
z-1

x[n-4]

h[0]=h[2]

x[n]

y[n]

+

+

z-1

+

Simplified Filter Structure

Even # of Symmetrical Coefficients

5/1/02

21

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Generating Tables of Sine and Cosine Values

• Occasionally the need to generate tables or of sines and cosines arises
– There may be insufficient memory to statically store all values or the period may be

a changeable parameter
• Start with a pair of trigonometry identities:

• Let A=α and B=nα so we have:

• The above two equations are in the form of difference equations which may be iterated
to generate sequences of sines and cosines for a given angle step α

– Only sin(α) and cos(α) need be stored

)sin()cos()cos()sin()sin(BABABA +=+

)sin()sin()cos()cos()cos(BABABA −=+

())sin()cos()cos()sin()1(sin ααααα nnn +=+
())sin()sin()cos()cos()1(cos ααααα nnn −=+

][)cos(][)sin(]1[sincossin nynyny αα +=+
][)sin(][)cos(]1[sincoscos nynyny αα −=+

5/1/02

22

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Generating Sine and Cosine Values- Example

• Example: let α=22.5ο , then sin(α)=0.382683 and the cos(α)=0.923880
• Repeating our difference equations for convenience:

• for n=1:

• for n=2:

• for n=3:

707107.0382683.0*382683.0923880.0*923880.0)45cos()2cos(]2[

707107.0322683.0*923880.0923880.0*382683.0)45sin()2sin(]2[

cos

sin

=−===

=+===
o

o

y

y

α

α

382683.0707107.0*382683.0707107.0*923880.0)5.67cos()3cos(]3[

923880.0707107.0*923880.0707107.0*382683.0)5.67sin()3sin(]3[

cos

sin

=−===

=+===
o

o

y

y

α

α

000000.0923880.0*382683.0382683.0*923880.0)90cos()4cos(]4[

000000.1923880.0*923880.0382683.0*382683.0)90sin()4sin(]4[

cos

sin

=−===

=+===
o

o

y

y

α

α

][)cos(][)sin(]1[sincossin nynyny αα +=+
][)sin(][)cos(]1[sincoscos nynyny αα −=+

5/1/02

23

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Generating a Sine Wave

• Start with the trigonometric identity:

• Let:

• Then substituting for α and β

• The above is a difference equation involving the constant and the two prior
values of

• To start the iterations we use ; and







 −







 +=+

2
\cos

2
sin2sinsin βαβαβα

0ωα n= 0)2(ωβ −= n

() () ()0000 cos)1(sin2)2(sin)sin(ωωωω −=−+ nnn

() () ()0000)2(sin)1(sincos2)sin(][ωωωω −−−== nnnny

)cos(2 0ω
)sin(0ω

0]1[=−ny)sin(]2[0ω−=−ny

()]2[]1[*cos2][0 −−−= nynyny ω

sd ffπωω 20 == ω0 is discrete frequency

5/1/02

24

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Generating a Sine Wave - Example

• Generate a 10Hz sine wave with a sampling frequency of 1kHz

• Initial conditions:

• Iterations:

• Etc.

0]1[=−ny
062791.0)100010**2sin()**2sin()sin(]2[0 −=−=−=−=− piffpiny sω

996053.1)100010**2cos(*2)cos(*2 0 == piω

062791.0)062791.0(0.0*996053.1]2[]1[*996053.1]1[=−−=−−−= nynyy

125333.00.0062791.0*996053.1]2[=−=y

187381.0062791.0125333.0*996053.1]3[=−=y

248690.0125333.0187381.0*996053.1]4[=−=y

()]2[]1[*cos2][0 −−−= nynyny ω

5/1/02

25

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Generating a Sine Wave - Example

5/1/02

26

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Anti-Alias Filter Considerations

N Q-noise(dB) Percent dB
08 -49.9 0.3906 -0.03400
10 -62.0 0.0977 -0.00849
12 -74.0 0.0244 -0.00212
14 -86.0 0.0061 -0.00053
16 -98.1 0.0015 -0.00013
18 -110.1 0.0004 -0.00003

• ADC quantization noise and resolution (1 LSB) in percent and dB

76.102.6 += NSNRdB

For a perfect ADC of N bits

Resolution

5/1/02

27

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Anti-Alias Filter Considerations

• Maintain accuracy commensurate with ADC resolution
– Reduce alias contamination below quantization noise of ADC
– Keep filter pass-band attenuation within ADC resolution

• Parameters to adjust
– Sample Frequency
– Filter Type
– Filter cutoff frequency
– Filter Order

• Other factors
– Filter phase shift may be important consideration in stability of feedback

applications
– Filter pass band undulations may be undesirable in high resolution measurement

applications
• No pass band undulations - Butterworth, Bessel, Chebychev I
• Pass undulations - Chebychev II, Eliptical

– Filter roll-off affects amplitude of frequencies near cutoff

5/1/02

28

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Anti-Alias Filter Considerations

f/fc 1 2 3 4 5 6 7 8
0.0 0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000
0.1 -0.0432 -0.0004 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
0.2 -0.1703 -0.0069 -0.0003 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
0.3 -0.3743 -0.0350 -0.0032 -0.0003 -0.0000 -0.0000 -0.0000 -0.0000
0.4 -0.6446 -0.1098 -0.0178 -0.0028 -0.0005 -0.0001 -0.0000 -0.0000
0.5 -0.9691 -0.2633 -0.0673 -0.0169 -0.0042 -0.0011 -0.0003 -0.0001
0.6 -1.3354 -0.5292 -0.1980 -0.0723 -0.0262 -0.0094 -0.0034 -0.0012
0.7 -1.7319 -0.9346 -0.4831 -0.2434 -0.1210 -0.0597 -0.0294 -0.0144
0.8 -2.1484 -1.4910 -1.0111 -0.6736 -0.4429 -0.2886 -0.1869 -0.1206
0.9 -2.5768 -2.1909 -1.8510 -1.5548 -1.2991 -1.0803 -0.8947 -0.7383
1.0 -3.0103 -3.0103 -3.0103 -3.0103 -3.0103 -3.0103 -3.0103 -3.0103
1.5 -5.1188 -7.8265 -10.9309 -14.2535 -17.6838 -21.1643 -24.6676 -28.1812
2.0 -6.9897 -12.3045 -18.1291 -24.0993 -30.1072 -36.1247 -42.1445 -48.1649
3.0 -10.0000 -19.1381 -28.6332 -38.1704 -47.7122 -57.2546 -66.7970 -76.3394
4.0 -12.3045 -24.0993 -36.1247 -48.1649 -60.2060 -72.2472 -84.2884 -96.3296
5.0 -14.1497 -27.9657 -41.9385 -55.9176 -69.8970 -83.8764 -97.8558 -111.8352
6.0 -15.6820 -31.1294 -46.6892 -62.2521 -77.8151 -93.3782 -108.9412 -124.5042
7.0 -16.9897 -33.8057 -50.7059 -67.6078 -84.5098 -101.4118 -118.3137 -135.2157
8.0 -18.1291 -36.1247 -54.1854 -72.2472 -90.3090 -108.3708 -126.4326 -144.4944
9.0 -19.1381 -38.1704 -57.2546 -76.3394 -95.4243 -114.5091 -133.5940 -152.6788

10.0 -20.0432 -40.0004 -60.0000 -80.0000 -100.0000 -120.0000 -140.0000 -160.0000

Butterworth Low-Pass Magnitudes

Filter Order

5/1/02

29

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Anti-Alias Filter Considerations

f/fc 1 2 3 4 5 6 7 8
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 -5.7 -8.1 -11.5 -15.0 -18.6 -22.2 -25.8 -29.4
0.2 -11.3 -16.4 -23.1 -30.1 -37.3 -44.5 -51.7 -59.0
0.3 -16.7 -25.0 -34.9 -45.5 -56.3 -67.2 -78.1 -89.1
0.4 -21.8 -34.0 -47.3 -61.4 -75.8 -90.4 -105.1 -119.8
0.5 -26.6 -43.3 -60.3 -78.0 -96.1 -114.5 -133.1 -151.7
0.6 -31.0 -53.0 -74.1 -95.7 -117.7 -140.0 -162.4 -185.0
0.7 -35.0 -62.7 -88.9 -114.9 -141.1 -167.5 -194.1 -220.9
0.8 -38.7 -72.3 -104.4 -135.9 -167.1 -198.2 -229.5 -260.8
0.9 -42.0 -81.5 -120.1 -158.1 -195.7 -233.1 -270.3 -307.4
1.0 -45.0 -90.0 -135.0 -180.0 -225.0 -270.0 -315.0 -360.0
1.5 -56.3 -120.5 -186.1 -251.7 -317.0 -382.0 -446.8 -511.4
2.0 -63.4 -136.7 -209.7 -282.0 -353.9 -425.5 -496.9 -568.3
3.0 -71.6 -152.1 -231.0 -309.3 -387.3 -465.2 -543.0 -620.8
4.0 -76.0 -159.3 -241.0 -322.2 -403.3 -484.2 -565.1 -646.0
5.0 -78.7 -163.6 -246.9 -329.9 -412.7 -495.5 -578.3 -661.0
6.0 -80.5 -166.4 -250.8 -334.9 -419.0 -503.0 -586.9 -670.9
7.0 -81.9 -168.3 -253.6 -338.6 -423.4 -508.3 -593.1 -677.9
8.0 -82.9 -169.8 -255.6 -341.2 -426.8 -512.3 -597.8 -683.2
9.0 -83.7 -171.0 -257.2 -343.3 -429.4 -515.4 -601.3 -687.3

10.0 -84.3 -171.9 -258.5 -345.0 -431.4 -517.8 -604.2 -690.6

Butterworth Low-Pass Angles

Filter Order

5/1/02

30

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Anti-Alias Filter Considerations

• Relation between sampling frequency and desired attenuation
• For a Butterworth Filter

• Difference in dB between passband frequency fp and any frequency fa

• We select the lowest aliased frequency to fall at fp so therefore:

• The above equation relates desired attenuation to Butterworth Filter order and the ratio
of the sampling frequency to the pass band frequency

• The following table evaluates the above expression for ratios 3-10

() N
cff

jH 2

2

1
1)(

+
=ω

() 








+
= N

c
dB ff

jH 210 1
1

log10)(ω












=

























≈

























+






+

p

a

N

p

a
N

c

p

N

c

a

f
f

N
f
f

f
f

f
f

10

2

102

2

10 log20log10
1

1
log10

psa fff −=












−≈ 1log20 10

p

s

f
f

NnAttenuatiodB

3 4 5 6 7 8 9 10
6.02N 9.54N 12.04N 13.98N 15.56N 16.9N 18.06N 20N

p
s

f
f

Mitra p317

5/1/02

31

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Anti-Alias Filter Considerations

fs/2 fsfb fa

fs-fb

Salias

Qnoise

Signal

fa is aliased to fb

Aliased frequency is greater Qnoise

5/1/02

32

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Anti-Alias Filter Considerations

Signal
Filter

fs/2 fsfb fa

fs-fb

Salias

Qnoise

fc

5/1/02

33

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Anti-Alias Filter Considerations

Signal
Filter

Filtered Signal

Aliased frequency now at or below Qnoise

fs/2 fsfb fa

fs-fb

Salias

Qnoise

fc

5/1/02

34

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Noise and Aliasing - A Case Study

16-bit ADC SHARC
DSP

6-pole Butterworth
Anti-aliasing Filter

1.5 kHz

ADC Noise Measurement

5/1/02

35

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Histogram of ADC Noise

5/1/02

36

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

DFT - Sampling at 20 kHz

5/1/02

37

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Aliasing Case Study

• How do we determine if an observed line is aliased?
• Shift the sampling frequency slightly and recalculate the DFT
• If the measured frequency changes -- the tone is aliased

5/1/02

38

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Aliasing

• Hold fs Constant and sweep a tone from 0 to 3 fs

2
sf

sf
2

3 sf sf2
2

5 sf sf3
0 1 2 3 4 5
1
2

3
4
5

5/1/02

39

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Aliasing

• Two cases depending on whether aliased frequency is above or below a multiple of
• Equation 1

• Equation 2

• Both cases have two unknowns, n and factual , therefore need two equations.
– Get two equations by changing fs and recomputing factual

– But can’t change fs so much that an nfs or (2nfs + 1)/2 is crossed
• Which equation should be used?

– Rule:
– If fobserved moves in the same direction as fs, then use equation 2, else use equation 1.

sactuals f
n

fnf
2

12 +
≤≤

() actualsobserved ffnf −+= 1 () sactuals fnff
n

1
2

12
+≤≤

+

2sf

sactualobserved nfff −=

5/1/02

40

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Aliasing

• Get two equations and two unknowns by using two sampling frequencies and making
two observations

• Solving Equation 1:

• And Equation 2:

21

12

ss

obsobs

ff
ff

N
−
−

=
21

1221

ss

obssobss
actual ff

ffff
f

−
−=

1
12

12 −
−
−

=
ss

obsobs

ff
ff

N
12

1221

ss

obssobss
actual ff

ffff
f

−
−=

5/1/02

41

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

DFT - Sampling at 20 kHz (Expanded Scale)

5/1/02

42

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Aliasing

• Sampling at 20 kHz

10.0 20.0 140.0 150.0 160.0

sf5.0 sf0.1 sf0.7 sf5.7 sf0.8
156.23.8

Answer Hidden from View

5/1/02

43

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

DFT - Sampling at 19.950 kHz

5/1/02

44

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Aliasing

• Sampling at 19.950 kHz

9.975 19.95 139.65 149.625 159.6

sf5.0 sf0.1 sf0.7 sf5.7 sf0.8
156.23.83.4 Answer Hidden from View

5/1/02

45

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Aliasing

• The Solution:
• Observed frequency moved in same direction (down in frequency) as the sampling

frequency, so use equation 2.

71
2095.19
8.34.3

=−
−

−
=n

kHzfactual 2.156
2095.19

8.395.194.320
=

−
∗−∗

=

5/1/02

46

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

A Clue

• The +/- 15 Volt DC-DC converter switches at 165 kHz +/- 15%
• We computed 156.2 kHz
• From the Histogram data we infer a peak-to-peak swing of ~ 1mV
• Can’t see this with an oscilloscope because of general noise levels.

5/1/02

47

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

DC-DC Converter Replaced with Linear Supply

5/1/02

48

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

DC-DC Converter Isolated and Filtered

5/1/02

49

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Results

• Results:
– Original circuit

• 662 microVolts sigma ~ 2 bits
– Final

• 275 microVolts sigma ~ 0.9 bits

5/1/02

50

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

UNUSED SLIDES FOLLOW

5/1/02

51

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Windowing In Frequency Domain

5/1/02

52

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Windowing In Frequency Domain

5/1/02

53

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Windowing In Frequency Domain

5/1/02

54

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

Inverse DFT using the Forward DFT (#2)

• Steps for method #2
– Swap the real and imaginary parts of X(m)
– Calculate the Forward DFT of the Xswapped(m)
– Swap the real and imaginary parts of the Forward DFT’s results
– Divide each term by 1/N to get x(n)

5/1/02

55

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

DFT - Sampling at 19.950 kHz

5/1/02

56

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

DFT - Sampling at 19.950 kHz (Expanded Scale)

5/1/02

57

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

ADC Noise Histogram (Linear Supplies)

5/1/02

58

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

DC-DC Converter Replaced with Linear Supply

5/1/02

59

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

ADC Noise Histogram (Final)

5/1/02

60

Tips & Techniques - Frank LenkszusUSPAS ‘99 - Fundamentals of Digital Signal Processing

DC-DC Converter Isolated and Filtered

USPAS ‘99 - Fundamentals of Digital Signal Processing Advanced Sampling Techniques - John Carwardine

6/18/99

1

Advanced Sampling Techniques

John Carwardine

USPAS ‘99 - Fundamentals of Digital Signal Processing Advanced Sampling Techniques - John Carwardine

6/18/99

2

Advanced Sampling Techniques

• Review of lowpass sampling.
• Bandpass sampling (direct digital down-conversion).
• Quadrature sampling of phase and amplitude.
• Sample-rate conversion (multi-rate signal processing).

• Relevant sections in Mitra: 5.2, 10.1-10.3, 11.11-11.13

USPAS ‘99 - Fundamentals of Digital Signal Processing Advanced Sampling Techniques - John Carwardine

6/18/99

3

Lowpass Sampling - Review

• Elements of sampling a continuous-time signal

continuous-time
signal

t

analog sampling analog-digital
conversion

DSP Operations
t n

t f
-Fs-2Fs Fs 2Fs0

xs(t) Xs(f)

• Time-domain and Fourier-domain representation of a sampled-data signal that has
frequency content between +/-B and is sampled at Fs > 2B.

()]2sin[][φπ +±= nskFfTnx

• We showed mathematically that when sampling at a frequency Fs, we cannot
distinguish between f, and a frequency f±kFs where k is an integer.

USPAS ‘99 - Fundamentals of Digital Signal Processing Advanced Sampling Techniques - John Carwardine

6/18/99

4

Motivation for Bandpass Sampling

• Frequently in signal processing, there is a need to sample signals that have limited
bandwidth, and ride on a carrier frequency much above the bandwidth of the
information we wish to sample.

• An accelerator example is that of turn-by-turn beam position monitors where, for
example at the APS, we have position information in a 135KHz bandwidth that rides on
a carrier of 352MHz.

• The available options are to sample at twice the highest frequency, or to mix down to an
intermediate frequency before sampling, in which case the validity of the mixed signal
then depends on the stability of the mixing signal.

• Bandpass sampling provides a mechanism for directly sampling the information without
the need for a mixer and IF system.

USPAS ‘99 - Fundamentals of Digital Signal Processing Advanced Sampling Techniques - John Carwardine

6/18/99

5

Bandpass Sampling - Overview

• What if that signal we want to sample is not within the frequency band +/-B, but within
the band Fs+/-B…?

• The signal would be aliased down into the band +/-B, but we would have successfully
sampling the signal and retained the information.

0
f (MHz)

97-7-9

Example
• Consider an analog signal with bandwidth of +/-1MHz, riding on a carrier of 8MHz.

• According to what we have previously considered, we would have to sample this at
greater than 18M samples/second.

USPAS ‘99 - Fundamentals of Digital Signal Processing Advanced Sampling Techniques - John Carwardine

6/18/99

6

Bandpass Sampling Example

• Instead, let’s sample the signal at only 10M samples/second.

0
f (MHz)

(Fs)(Fs/2)

Original
spectrum

Image
spectrum

105 9731-10 -5

• In this case the Nyquist frequency would be 5MHz, and the original spectrum is in the
range of Fs/2 to Fs, instead of the range DC-Fs/2 (as we are used to seeing).

• The original spectrum is aliased into the lower half of the frequency band, reflected
about the Nyquist rate of 5MHz, appearing in the frequency range 3Mhz - 1MHz.

• So, we have successfully sampled the signal using a sampling rate almost half the
‘officially’ required rate

USPAS ‘99 - Fundamentals of Digital Signal Processing Advanced Sampling Techniques - John Carwardine

6/18/99

7

Bandpass Sampling Example (cont)

• What if we sample at only 6.5M samples/second??

f (MHz)

(Fs)(Fs/2)

Original
spectrum

Image
spectra

9.750.5 6.53.252.5 4 6

• This time the original spectrum lies between Fs and 1.5Fs.
• Here, the spectrum is reflected about the sampling rate, to appear in the range from Fs/2

to Fs, spanning 6MHz - 4MHz.
• It is then reflected a second time about Fs/2, finally appearing in the lower half of the

sampled frequency range between 0.5MHz and 2.5MHz.

Can we sample at an even lower rate and still get a unique spectrum??

USPAS ‘99 - Fundamentals of Digital Signal Processing Advanced Sampling Techniques - John Carwardine

6/18/99

8

Lower Limit of Sampling Rate for Bandpass Example

• We can indeed sample at less than 6.5M samples/second, but not by much.
• To consider what happens, let’s revisit the case from the last slide and examine how the

spectral images behave when we reduce the sampling rate below 6.5M samples/sec

f (MHz)

FsFs/2
9.750.5 2.5 4 6

-Fs -Fs/2

• As the sample rate is reduced, the image spectra move closer together, until eventually
they collide when the sample rate gets to 6M samples/second.

f (MHz)

(Fs)(Fs/2)

Original
spectrum

9630

USPAS ‘99 - Fundamentals of Digital Signal Processing Advanced Sampling Techniques - John Carwardine

6/18/99

9

Upper Limit of Sampling Rate for Bandpass Example

• Now let’s consider what happens if we increase the sampling rate from 6.5M
samples/second.

f (MHz)

(Fs)(Fs/2)

Original
spectrum

973.50

f (MHz)

FsFs/2
9.750.5 2.5 4 6

-Fs -Fs/2

• This time, the image spectra move further apart until eventually the first image spectrum
collides with the original spectrum when the sampling rate reaches 7M samples/second.

USPAS ‘99 - Fundamentals of Digital Signal Processing Advanced Sampling Techniques - John Carwardine

6/18/99

10

General Case of Bandpass Sampling

• In the general case, there might be any number of image spectra between the original
spectrum and its negative frequency image.

• Consider the case where the original spectrum is centered at frequency fc, and has
bandwidth B.

• It can be shown that if there are m image spectra between the original and its negative
image, the range of possible sampling frequencies is given by the expression

f
-fc fc-fs fs 2fs 3fs-2fs-3fs

2fc-B

0

2fc+B

1
22

+
+

≥≥
−

m
Bfc

fs
m

Bfc

• Example with m = 5

USPAS ‘99 - Fundamentals of Digital Signal Processing Advanced Sampling Techniques - John Carwardine

6/18/99

11

Graphical Representation of Possible Sampling Rates

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9

S
am

pl
in

g
ra

te
 (f

s/
B

)

Highest frequency component / bandwidth ([fc+B/2]/B)

Shaded regions
are forbidden

m
Bfc

fs
−

=
2

1
2

+
+=

m
Bfcfs

m=1

m=2
m=3

f
-fc fc-fs fs 2fs 3fs-2fs-3fs

2fc-B

0

2fc+B

USPAS ‘99 - Fundamentals of Digital Signal Processing Advanced Sampling Techniques - John Carwardine

6/18/99

12

Selection of Sampling Rate - Example

What sampling rates could be used for a signal that is centered at 20MHz, and has a 4MHz
bandwidth (ie spanning the frequency range 18MHz to 22MHz)?

2

4

6

8

10

12

1 2 3 4 5 6

S
am

pl
in

g
ra

te
 (f

s/
B

)

Highest frequency component / bandwidth ([fc+B/2]/B)

B=4MHz, fc=20MHz

22MHz<fs<36MHz

fs>44MHz

14.67MHz<fs<18MHz

11MHz<fs<12MHz

• The highest frequency is 22MHz, so the ratio of highest frequency to bandwidth is 5.5.
• The figure shows possible sampling rates for this case

USPAS ‘99 - Fundamentals of Digital Signal Processing Advanced Sampling Techniques - John Carwardine

6/18/99

13

Front-End Requirements for Bandpass Sampling

• When designing the front-end for a bandpass application, there are a couple of points to
bear in mind.

• Firstly, the analog front-end circuits and sample/hold must be designed for the
maximum signal bandwidth (ie fc+B/2), which can be several times the sampling rate.

• Secondly, the anti-alias filter must be a bandpass filter since noise both above and below
the band of interest can be aliased into the baseband.

USPAS ‘99 - Fundamentals of Digital Signal Processing Advanced Sampling Techniques - John Carwardine

6/18/99

14

Quadrature Sampling

• What if the signal we wish to sample contains both amplitude and phase information?
• An example of this might be sampling of accelerating cavity voltage for digital control\

of the RF systems.

• The basic scheme is to modulate the incoming continuous-time signal with in-phase and
quadrature sinusoids at the carrier frequency of the signal.

X

X

sin(2πfct)

A/D
converter

A/D
converter

x(t)

Real { x(n) }

Imag { x(n) }

cos(2πfct)

lowpass
filter

lowpass
filter

• Two continuous-time signals must now be anti-alias filtered and sampled to produce two
discrete-time sequences corresponding to the real and imaginary parts of the original
continuous-time signal.

USPAS ‘99 - Fundamentals of Digital Signal Processing Advanced Sampling Techniques - John Carwardine

6/18/99

15

Quadrature Sampling with Digital Mixing

• In practice, it can be very difficult to implement the I/Q mixing without error so that the
two channels match each other exactly.

• Modern technology now offers a completely digital approach to this problem.

X

X

sin(2πfcnts)
A/D

converterx(t)

Real { x(n) }

Imag { x(n) }

lowpass
filter

lowpass
filter

Fs=4fc=1/ts
cos(2πfcnts)

x(nts) discrete-time
sequences

• The continuous-time signal is sampled at exactly 4 times the carrier frequency.
• Digital sine and cosine signals are multiplied with the incoming discrete-time sequence

to generate the real and imaginary part of the signal.
• Why sample at exactly 4 times the carrier frequency of the continuous-time signal?

USPAS ‘99 - Fundamentals of Digital Signal Processing Advanced Sampling Techniques - John Carwardine

6/18/99

16

Sample-Rate Conversion

• Consider the following sampled-data discrete-time sinusoid

• This has 64 samples per period, so the discrete-time frequency is 2π/64.
• If the sample-rate had been 128kS/s, this would represent a 2kHz sinusoid.
• How would we represent this signal at a sample-rate of 16kS/s or 256kS/s?

• The signal can be decimated to produce fewer samples per period (ie reduce the sample-
rate) or interpolated to produce more samples per period (ie increase the sample rate).

USPAS ‘99 - Fundamentals of Digital Signal Processing Advanced Sampling Techniques - John Carwardine

6/18/99

17

Motivation for Decimation of Discrete-Time Signals

• If the signal is to be archived, then reduction of data storage might be an objective.
• In real-time applications, unnecessarily high data rates requires additional processing

power with consequential impact on cost or performance.
• When implementing filters, it is sometimes impossible to achieve the required

performance at high sample rates because of wordlength effects.

• Almost always, something is done to the signal before it is decimated.
– Example: 16-times over-sampling ADC, with 4-bit quantizer.

4-bit ADC 16
x[k]

x[n]
xf[k]

Lowpass
(average)

Decimate

x(t)

Data rate = Fs

Effective bits = 8

Sample @ 16x Fs

USPAS ‘99 - Fundamentals of Digital Signal Processing Advanced Sampling Techniques - John Carwardine

6/18/99

18

Decimation and Filter Implementation

• Consider a signal that is sampled at 1MS/s, where we need to implement a lowpass filter
with cutoff at 1kHz.

• A simple one-pole lowpass filter that meets this requirement would have the transfer
function

1999.01

001.0
)(−−

=
z

zH

19.01

1.0)(
−−

=
z

zH

• We would need a dynamic range of 2000 to represent these filter coefficients in a DSP
chip, implying at least 11 bits.

• However, if we reduced the sampling rate from 1MS/s to 10kS/s, the same 1kHz
lowpass filter would be implemented with the transfer function

• We only need a dynamic range of 20 to represent the coefficients of this filter, so we
could use a DSP chip with fewer bits.

• We could also use a much slower DSP to implement the same filter since data only
arrives every 100µS rather than every 1µS.

USPAS ‘99 - Fundamentals of Digital Signal Processing Advanced Sampling Techniques - John Carwardine

6/18/99

19

The Decimation Process

• Decimating a signal by a factor M can be represented by the expression

n
2 4 6 8 10 12 14

16 18 20 22 24 26 28

Original Sequence

n
1 2 3 4 5

6 7

Sequence Decimated by factor 3

8 9

][][nMxny ⋅=

For example, if M = 3 then],0[]0[xy =

• An example of decimating a sinusoidal signal by a factor 3 is shown below

],3[]1[xy =],6[]2[xy = etc

• Note that to avoid aliasing, we must obey Shannon’s sampling theorem after decimation.

USPAS ‘99 - Fundamentals of Digital Signal Processing Advanced Sampling Techniques - John Carwardine

6/18/99

20

Decimation in Frequency Space

• Decimating by a factor two splits the frequency space from DC to the original sampling
rate into two, with additional image spectra appearing about the new sampling rate. Note
that there is an implied reduction in sampling rate along with the decimation process.

• If the same signal were decimated by a factor three, the new spectrum would be

Image spectrum at
150K sample/sec

Spectrum of
original signal

150KHz

Image spectrum when
decimated by 2

75KHz

Aliasing of decimated
spectral image

f

Fs2 Fs1

37.5KHz 112.5KHz

Image spectrum at
150K sample/sec

Spectrum of
original signal

150KHz

Image spectra when
decimated by 3

75KHz

Aliasing of decimated
spectral image

f
50KHz

Fs2 Fs1

100KHz

2x Fs2

USPAS ‘99 - Fundamentals of Digital Signal Processing Advanced Sampling Techniques - John Carwardine

6/18/99

21

Anti-Alias Filters for Decimation

• The decimation process can be thought of as the sampling of a discrete-time sequence.
• Anti-alias filters are required prior to decimation in the same way they are required in

the continuous-time domain before sampling.

Mx[n] xf[Mn]
xf[n]

Anti-alias Decimate

• In a multi-stage decimation system, anti-alias filters are required before every
decimation stage, regardless of what else is done to the signal.

x[n]

y1[M1n]

Anti-alias

M1

Decimate

H1[z]

Anti-alias

M2

Decimate

H2[z] y2[M2M1n]

USPAS ‘99 - Fundamentals of Digital Signal Processing Advanced Sampling Techniques - John Carwardine

6/18/99

22

Anti-Alias Filter Generic Requirements

• The anti-alias filter is required to prevent aliasing when the original spectrum at sample-
rate #1 is down-sampled to sample-rate #2.

f
Fs2Fb Fs1

Image spectrum at
sampling rate Fs1

Spectrum of
anti-alias filter

Image spectrum when
decimated to Fs2

• More relaxed requirements on the anti-alias filter slope that still avoid aliasing

f
Fs2Fb

Fs2-Fb
Fs1

Image spectrum at
sampling rate Fs1

Image spectrum when
decimated to Fs2

Spectrum of
anti-alias filter #2

Fs1-Fb

USPAS ‘99 - Fundamentals of Digital Signal Processing Advanced Sampling Techniques - John Carwardine

6/18/99

23

Interpolation

Mx[n] xf[n/M]

Interpolate Reconstruct

x[n/M]

Sequence Interpolated by factor 3

n
3 6 9 12 15

18 21 24 27

n1 2 3 4 5
6 7

Original Sequence

8 9

• The M-point interpolator inserts M-1 zeros between each point in the original sequence
to generate a sequence with M times the original number of data points.

• A reconstruction filter smoothes out the values in the new sequence.

Example

USPAS ‘99 - Fundamentals of Digital Signal Processing Advanced Sampling Techniques - John Carwardine

6/18/99

24

Frequency Domain View of Interpolation

• The original spectrum is not modified by the interpolation process (adding of zeros).
• Image spectra that were originally about multiples of the sampling frequency will

appear in the baseband as a result of the interpolation process.
• The reconstruction filter must remove these spectral images.

Image spectrum at Fs2Spectrum of
original signal Image spectra when

decimated by 3

f

ω1 = 2π at Fs1
ω1 = 2π/3 at Fs2

ω3 = 6π at Fs1
ω3 = 2π at Fs2

ω1 ω3ω2

ω2 = 4π at Fs1
ω2 = 4π/3 at Fs2

Nyquist
at Fs2

Nyquist
at Fs1

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

1

USPAS ‘99 - Fundamentals of Digital Signal Processing

The APS Fast Orbit Feedback System

F. Lenkszus

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

2

USPAS ‘99 - Fundamentals of Digital Signal Processing

Topics

• Influences on Particle Beam Motion
• Feedback Algorithm
• The Regulator
• Hardware Configuration
• Real-Time Beam Diagnostics

– Sliding Algorithms

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

3

USPAS ‘99 - Fundamentals of Digital Signal Processing

Influences on Particle Beam Motion

• Most of the sources of particle beam motion somehow affect the magnets that
guide the beam around the storage ring.

– Magnet power supply ripple directly modulates the magnetic field strength.

– Vibration of the guiding magnets

• Ambient ground vibration.

• Automobile traffic.

• Rotating machines (pumps, motors etc).

• Cooling water.

• Wind noise on the buildings.

– Thermal expansion/contraction of components in the storage-ring tunnel.

– Terresterial effects that change the shape of the storage ring

• Ocean swell.

• Lunar tides.

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

4

USPAS ‘99 - Fundamentals of Digital Signal Processing

Betatron Oscillations

• Disturbances to the beam produce harmonic betatron motion.
• Regardless of the location of the disturbance, the entire orbit is affected.

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

5

USPAS ‘99 - Fundamentals of Digital Signal Processing

• The ‘inverse response matrix’ maps orbit errors at the bpms to changes in corrector strength
(corrector errors):

• Computation of corrector ‘errors’ is separated into a series of vector dot-products, one for each
corrector.

• The computation for each corrector requires the entire BPM error vector, but only one row of the
inverse response matrix .

• Each corrector ‘error’ becomes the input to one of the 38 independent feedback regulators

Distributed Nature of the Real-Time Global Orbit Feedback Algorithm

B
P

M
 e

rr
or

s

row 38

row 37

row 2

row 1 corrector 1

corrector 2

corrector 37

corrector 38

inverse response matrix

=

corrector 'errors'

38 x 160 160 x 1 38 x 1

cxR ∆=∆⋅−1

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

6

USPAS ‘99 - Fundamentals of Digital Signal Processing

The Orbit Feedback Algorithm

Regulator Σ Corrector
Magnets

Inverse Response
Matrix

Vector of bpm
positions

DC Setpoints
from EPICS

Vector
Products

Accelerator

∆

Vector of bpm
setpoints

bpm errors
corrector errors

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

7

USPAS ‘99 - Fundamentals of Digital Signal Processing

Regulator

)(
)1(

l

l

bz
za
−

+

Low Pass
Filter

)(
)1(

h

h

bz
za
+

−

High Pass
Filter

z
z

K
z

z
KK DIP

1
1

−
+

−
+

PID

Corrector
Error To Corrector

Orbit Feedback Regulator

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

8

USPAS ‘99 - Fundamentals of Digital Signal Processing

Slave Station Flow Chart (One Axis)

Wait for Clock Tick

Read 16 BPM Values From Hardware

Calculate BPM Errors

Write BPM Errors to Reflective Memory

Wait for all Slaves to Write Reflective Memory

Read 160 BPM errors from Reflective Memory

Calculate Corrector Errors

Pass Corrector Errors through Regulator

Write New Corrector Setpoints

Write Computed Values to Reflective Memory

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

9

USPAS ‘99 - Fundamentals of Digital Signal Processing

Fast Orbit Feedback System

Master Crate
Storage Ring

Double-Sector Feedback IOC

Controls Network

Reflective Memory Network

Corrector
Power

Supplies

from previous
station

Turn-by-turn
rf BPMs

Feedback 'Slave'
Station

X-ray BPMs

to next
station

Narrow-bandwidth
rf BPMs

Sample Clock

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

10

USPAS ‘99 - Fundamentals of Digital Signal Processing

Fast Orbit Feedback System

Reflective
Memory

C40

C40* C40*

FSIC

CMPSI MSI

C30

C30* C30*

VME bus

Controls Network

to correctors from rf BPMs

MIX busMIX bus

68040

Sample
clock

* Not presently used

XRI

from
x-ray BPMs

P2 bus

16-bit
ADC

from
low bandwidth

rf BPMs

'Slave' VME Crate

Horizontal Vertical

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

11

USPAS ‘99 - Fundamentals of Digital Signal Processing

Fast Orbit Feedback System

C40 C40
C40

C40C40

PMC

Reflective
Memory

Controls Network

Reflective
Memory*

VME Bus

68040 FSIC sample clock

* Future installation

Master Crate

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

12

USPAS ‘99 - Fundamentals of Digital Signal Processing

Operator Interface

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

13

USPAS ‘99 - Fundamentals of Digital Signal Processing

Real-Time Beam Diagnostics

• ‘DSPscope’
– Simultaneous collection of 40 channels of time-domain data from bpms, correctors, or

regulator error signals.
– Data is provided as EPICS waveforms records.

• ‘AC Voltmeter’
– Simultaneous sliding Fourier transforms of 40 selectable data channels.
– Simultaneous sliding Fourier transforms of all 320 BPM channels in either plane.

• Corrector Error Statistics
– Sliding estimates of the mean and variance of the corrector errors are computed at

each sample tick.
– Used to detect problems with the orbit feedback system itself and to detect BPM

problems.

• Corrector Error History Buffer
– Maintain a circular buffer of the past 128mS of corrector errors.
– Used to detect and locate sources of unwanted beam motion e.g., following a beam

dump.

• AC Lock-In Measurements
– Drive a corrector at some frequency (e.g. 83.3Hz), and measure only that frequency component

in the orbit response.
– Used for fast measurements of the response matrix.

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

14

USPAS ‘99 - Fundamentals of Digital Signal Processing

Waveform Capture using ‘DSPscope’

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

15

USPAS ‘99 - Fundamentals of Digital Signal Processing

Sliding Algorithms

• The orbit feedback system is not well suited to algorithms that operate on blocks of
time-sequence data (e.g., FFT)

• We have implemented ‘sliding’ algorithms that use the latest data sample to update
previous results on each sample tick.

• Sliding Statistics
– The mean value is simply the output of a lowpass IIR filter.
– The variance is computed from the instantaneous value and the mean value

IIR

Lowpass

X2 IIR

Lowpass

Mean

Variance

latest sample

+
-

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

16

USPAS ‘99 - Fundamentals of Digital Signal Processing

Variance Computation

• Mean:

– Computed by:

• Variance:

– Computed by:

– Square Root of σ2 (standard deviation) is computed in controls processor
• Mean and variance are computed at full feedback system sampling rate

∑
−

=

=
1

0

][
1 N

n

nx
N

x

]1[)1(][][−−+= nxanaxnx

∑
−

=

−
−

=
1

0

22)][(
1

1 N

n

xnx
N

σ

222]1[)1(])[][(−−+−= nanxnxa σσ

1)1(1
][−−−

=
za

a
zH

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

17

USPAS ‘99 - Fundamentals of Digital Signal Processing

Sliding Algorithms (Continued)

• Sliding N-point Fourier Transform
– Updates the previous result from the difference between the latest sample and the

sample N points ago

– The algorithm requires N sample ticks to compute an initial result, but thereafter
the result is updated on every sample tick.

[] N
kj

eNnxnxnYnY
kk

π2
.][][]1[][

−
−−+−=

+ x

N-Deep FIFO

e-j2π k/N

z-1

x[n] x[n-N]

Y[n]

Y[n-1]

-
+

+

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

18

USPAS ‘99 - Fundamentals of Digital Signal Processing

Sliding DFT Derivation

• Consider the N-point DFT calculation for a single DFT analysis frequency

• Compute the same component for the N points starting with the (n+1)th point

• Let and observe that

• Comparing sum term with the our expression for X[k], we can write:

• now let

• The above equation shows how to update the DFT component, X[k], upon receipt of a
new sample of x[n]. Let Yk[n] represent the nth update of X[k], then:

∑
−

=

+=
1

0

][][
N

n

kn
NWnlxkX N

j

N eW
π2−

=

∑
−

=

++=
1

0

']1[][
N

n

kn
NWnlxkX

)1(
2

0

']11[]1[][−
−

=

−+++++= ∑ Nk
N

N

n

kn
N WNlxWnlxkX

k
N

kN
N

N

n

k
N

nk
N WWNlxWWnlxkX −

−

=

−+ −+++++= ∑]11[]1[][
2

0

)1('

1+= np 1=kN
NW

() k
N

k
N

N

p

kp
N

k
N

N

p

k
N

pk
N WNlxWlxWplxWNlxWWplxkX −−

−

=

−
−

=

− ++







−+=+++= ∑∑][][][][][][

1

0

1

1

)('

k
N

k
N WNlxWlxkXkX −− ++−=][])[][(]['

Nln +=
k

NWnxNnxkXkX −+−−=])[][][(]['

k
Nkk WnxNnxnYnY −+−−=+])[][][(]1[

Pull out (N-1)th term from Σ

factor out k
NW −

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

19

USPAS ‘99 - Fundamentals of Digital Signal Processing

Implementation of the 320-channel AC Voltmeter

• Four C40 DSPs are used to implement the 320-channel AC voltmeter, each operating on
80 BPMs.

• The DSP high speed serial ports are used to transfer control messages between the
processors, e.g., for arbitration of access to the reflective memory.

• The output of each channel is a magnitude or power (user selectable).
• A selectable channel is used as a phase reference for the other channels. The sign of the

magnitude is then chosen relative to the sign of the reference channel.
• The 320 results are available as an EPICS waveform and can be downloaded from the

feedback system at 2Hz.

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

20

USPAS ‘99 - Fundamentals of Digital Signal Processing

Sliding Fourier Transform
(‘AC Voltmeter’)

• All 320 bpm channels are simultaneously Fourier analyzed at a chosen
frequency.

• One channel is used as a phase reference.
• Used with ‘AC-lockin’ measurements.

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

21

USPAS ‘99 - Fundamentals of Digital Signal Processing

Identification of Sources of Motion

• 1. Low frequency random noise from sextupole power supply with poor regulation.

• 2. Narrow-band source at 248Hz from oscillating corrector power supply.
• 3. Broadband noise caused by a bad bpm in sector 6 (not real orbit motion)

Corrector Error Power-Spectrum

Relative Power

Frequency (Hz)

Storage-Ring Sector

(1)
(2)

(3)

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

22

USPAS ‘99 - Fundamentals of Digital Signal Processing

Unused Slides Follow

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

23

USPAS ‘99 - Fundamentals of Digital Signal Processing

Fast Orbit Feedback System

• System consists of 21 multiprocessor VME crates distributed around 1104 m storage-
ring

– 1 master crate and 20 slave crates
– Slave Crate Processors:

• 68040 based EPICS processor (controls interface)
• TI C40 Floating Point DSP (Vertical axis feedback)
• TI C30 Floating Point DSP (Horizontal axis feedback)

– Reflective memory network used to assemble and distribute error vectors to all
DSPs

• Direct data feed from BPM subsystem to each slave crate
• Direct “fast” connection to global correctors from each slave crate
• System synchronously computes orbit corrections at 1.67 kHz
• Corrects global rms orbit using 160 bpms and 38 correctors
• High pass filter rolls off frequency response below 20mHz (to mesh with work-station

based ‘slow’ orbit correction program)
• Fast global orbit feedback system has been in production use since June 1997 and is

required to operate whenever user beam operations are in progress

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

24

USPAS ‘99 - Fundamentals of Digital Signal Processing

Slave Processor Utilization

• The present system uses two DSPs to perform global orbit correction in two planes at a
1.67 kHz rate.

– Ultimately there will be six DSP processors in each slave station that perform both
global and local correction.

• The two main processorare be staggered in time to reduce VME bus collisions while
reading bpm values from Reflective Memory.

C40

C40 C40

FSIC

CMPSI MSI

C30

C30 C30

VME Bus

Controls Network

MIXMIX

68040

sample clock

XRI

from x-ray bpms

P2

Horizontal PlaneVertical Plane

Reflective
Memory

Global

Local

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

25

USPAS ‘99 - Fundamentals of Digital Signal Processing

Master Crate Hardware

• The master station has access to slave data over the Reflective Memory
network.

• One C40 DSP performs supervisory functions and implements some data
analysis functions.

• An array of four C40 DSPs is used for real-time data analysis.
• A second Reflective Memory card (on PMC bus) will improve effective

throughput of the data analysis algorithms.

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

26

USPAS ‘99 - Fundamentals of Digital Signal Processing

Synchronization and Data Sharing

Code Loop

DSP

Slave Crate #1

Timing System
Feedback Clock

BPM Error
vector

Heartbeat
vector

Data 'ready'
vector DRAM

Reflective
Memory
Network

R Inverse
Position Data

Sequence
Program

EPICS
Database

R Inverse
Position Data

Controls Processor

APS Controls
Network

Loop On/Off

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

27

USPAS ‘99 - Fundamentals of Digital Signal Processing

Synchronization

• After computing & writing bpm error values to reflective memory, each DSP sets
an assigned word in a ‘data ready’ vector in reflective memory.

• All DSPs “spin-wait” on the ready-vector becoming all ones, before proceeding
to read the entire bpm error vector.

• A maximum wait-time prevents complete breakdown if one slave crate fails to
write its ready-vector.

• Each slave writes to a heartbeat word in reflective memory that is checked by
the master crate.

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

28

USPAS ‘99 - Fundamentals of Digital Signal Processing

Timing the DSP Code

• For timing across multiple DSPs, we use a DAC output module. Each DSP
writes values to a different channel.

• The DSP’s on-board timer chips are used to time sections of code on individual
DSPs

DAC

Controls
Processor

Elapsed
Time

Code
Loop

Hardware
Timer

DSP

1

0

DRAM

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

29

USPAS ‘99 - Fundamentals of Digital Signal Processing

Code Development

• General
– The DSP code is developed under Unix using the Texas Instruments TMS320 code

generation tools.
– Most of the code is written in ‘C’, with speed-critical functions written in C-

callable assembler.
– DSP Code is downloaded over the controls LAN from the control system file server

using SwiftNet tools that run on the VME controls processor under VxWorks.
• C Code Optimization

– We use compiler optimization where possible. This can cause unexpected behavior,
e.g., when the compiler rearranges code to minimize DSP pipeline conflicts.

• Debugging
– Rather that using extensive debugging tools, we have used reserved “test” locations

in dual access RAM on the DSP to pass debugging information to the VME
controls processor.

– This method has the little impact on the DSP algorithm and allows us to debug at
normal DSP operating speeds.

5/1/02

Fast Orbit Feedback System - Frank Lenkszus

30

USPAS ‘99 - Fundamentals of Digital Signal Processing

Control System Interface

• The DSP operation is controlled and monitored through data structures residing in dual-
access RAM on the DSP board.

• Elements of these data structures are interfaced to EPICS process variables through
EPICS sequence programs. Since the process variables are control system entities they
are accessible by all the standard EPICS tools.

• A sequence program on the controls processor periodically scans the data structure and
deposits data such as BPM readings into corresponding process variables.

• A separate EPICS sequence program transfers local control information such as inverse
response matrix rows or BPM selections to the DSP resident data structure and sets a
flag commanding the DSP to load the new values into its local SRAM.

• Global control parameters such as feedback loop open/close, filter cutoff frequencies,
etc., are delivered to the master station as process variables. Reflective Memory is then
used to pass these parameters to the slave stations.

1

USPAS ‘99 - Fundamentals of Digital Signal Processing BPM Digital Front End - Rob Merl

6/16/99

• Design of a Digital Front End for the APS Beam Position
Monitor System

2

USPAS ‘99 - Fundamentals of Digital Signal Processing BPM Digital Front End - Rob Merl

6/16/99

Existing System

3

USPAS ‘99 - Fundamentals of Digital Signal Processing BPM Digital Front End - Rob Merl

6/16/99

Existing System

BPM

BPM

BPM

BPM

Local
Bus

Interface

BPM

BPM

BPM

BPM

BPM

2048 point averager

2048 point averager

2048 point averager

2048 point averager

2048 point averager

2048 point averager

2048 point averager

2048 point averager

2048 point averager

2048 point averager

2048 point averager

2048 point averager

2048 point averager

2048 point averager

2048 point averager

2048 point averager

2048 point averager

2048 point averager
VXI

Interface
slow orbit
correction

fiber
transmitter

4

USPAS ‘99 - Fundamentals of Digital Signal Processing BPM Digital Front End - Rob Merl

6/16/99

Existing System

32 point averager

32 point averager

32 point averager

32 point averager

32 point averager

32 point averager

32 point averager

32 point averager

32 point averager

32 point averager

32 point averager

32 point averager

32 point averager

32 point averager

32 point averager

32 point averager

VME
Interface

real time
feedback

fiber
receiver

5

USPAS ‘99 - Fundamentals of Digital Signal Processing BPM Digital Front End - Rob Merl

6/16/99

Existing System - Summary

2048
point

averager

32
point

averager

slow orbit
correction

real time
feedback
system

BPM

6

USPAS ‘99 - Fundamentals of Digital Signal Processing BPM Digital Front End - Rob Merl

6/16/99

Nature of the Moving Averager

()]3[]2[]1[][
4

1
][−+−+−+⋅= nxnxnxnxny

()

()321

321

1][
4

1

][][][
4

1
][

−−−

−−−

+++⋅⋅=

+⋅+⋅+⋅=

zzzzX

zzXzzXzzXzY

∑
=

−⋅==
3

04

1

][

][
)(

k

kz
zX

zY
zH

∑
=

−⋅=
31

032

1
)(

k

kzzH

7

USPAS ‘99 - Fundamentals of Digital Signal Processing BPM Digital Front End - Rob Merl

6/16/99

Frequency Response of the 32 Point Averager

∑
=

−⋅=
31

032

1
)(

k

kzzH

0

50

20 log H e
1j 2. π. f. T.

1.355 10
5.0 f

0 2 10
4

4 10
4

6 10
4

8 10
4

1 10
5

1.2 10
5

1.4 10
5

40

20

0

8

USPAS ‘99 - Fundamentals of Digital Signal Processing BPM Digital Front End - Rob Merl

6/16/99

Sampling at 1.67 kHz

1

0

H e
1j 2. π. f. T.

al f()

10000
5 10

3. f
6000 4000 2000 0 2000 4000 6000 8000 1 10

4
0

0.5

1

9

USPAS ‘99 - Fundamentals of Digital Signal Processing BPM Digital Front End - Rob Merl

6/16/99

Actual Beam Motion

10

USPAS ‘99 - Fundamentals of Digital Signal Processing BPM Digital Front End - Rob Merl

6/16/99

Feedback’s Response

11

USPAS ‘99 - Fundamentals of Digital Signal Processing BPM Digital Front End - Rob Merl

6/16/99

Improved Digital Filter Design

1.5 kHz 8 300 Hz
135.5
kHz

135.5
kHz

16.93
kHz

16.93
kHz

Fs=1.6
kHz

12

USPAS ‘99 - Fundamentals of Digital Signal Processing BPM Digital Front End - Rob Merl

6/16/99

First Stage Filter

1.5 kHz
135.5
kHz

135.5
kHz

1

3.01818903 10
6.

H e
1j 2. π. f. T.

al f()

3 10
4.0 f

0 5000 1 10
4

1.5 10
4

2 10
4

2.5 10
4

3 10
4

0

0.5

1

13

USPAS ‘99 - Fundamentals of Digital Signal Processing BPM Digital Front End - Rob Merl

6/16/99

 Second Stage Filter

300 Hz
16.93
kHz

16.93
kHz

1.00000016

0

H e
1j 2. π. f. T.

al f()

5 10
3.0 f

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

14

USPAS ‘99 - Fundamentals of Digital Signal Processing BPM Digital Front End - Rob Merl

6/16/99

Second Stage Filter Response

1.00000016

0

H e
1j 2. π. f. T.

al f()

2 10
4.0 f

0 2000 4000 6000 8000 1 10
4

1.2 10
4

1.4 10
4

1.6 10
4

1.8 10
4

2 10
4

0

0.5

1

1.5

15

USPAS ‘99 - Fundamentals of Digital Signal Processing BPM Digital Front End - Rob Merl

6/16/99

Combination Response of First and Second Stage Filters

9.153 10
6.

200

20 log A f()()

2 10
4.0 f

0 2000 4000 6000 8000 1 10
4

1.2 10
4

1.4 10
4

1.6 10
4

1.8 10
4

2 10
4

200

100

0

16

USPAS ‘99 - Fundamentals of Digital Signal Processing BPM Digital Front End - Rob Merl

6/16/99

Filter Design

22 847.11

1

765.01

1
)(

ssss
sH

+⋅+
⋅

+⋅+
=

1

1

1

1
−

−

+
−⋅=

z

z
Cs






 ⋅=

Fs

Fr
C πcot 135500,1500 == FsFr

21

21

21

21

87932983.087478558.11

00113606.000227212.000113606.0

94818548.094347473.11

00117768.000235536.000117768.0
)(−−

−−

−−

−−

⋅+⋅−
⋅+⋅+⋅

⋅+⋅−
⋅+⋅+=

zz

zz

zz

zz
zH

17

USPAS ‘99 - Fundamentals of Digital Signal Processing BPM Digital Front End - Rob Merl

6/16/99

 Cascade Form

21

21

21

21

87932983.087478558.11

00113606.000227212.000113606.0

94818548.094347473.11

00117768.000235536.000117768.0
)(−−

−−

−−

−−

⋅+⋅−
⋅+⋅+⋅

⋅+⋅−
⋅+⋅+=

zz

zz

zz

zz
zH

4321

463626166

8337.04865.34711.58182.31

103379.1103516.510027.8103516.510
)(−−−−

−−−−−−−−−

+⋅−⋅+⋅−
⋅×+⋅×+⋅×+⋅×+×=

zzzz

zzzz1.3379
zH

)()()(21 zHzHzH ⋅=

21

21

1 94818548.094347473.11

00117768.000235536.000117768.0
)(−−

−−

⋅+⋅−
⋅+⋅+=

zz

zz
zH

21

21

2 87932983.087478558.11

00113606.000227212.000113606.0
)(−−

−−

⋅+⋅−
⋅+⋅+=

zz

zz
zH

18

USPAS ‘99 - Fundamentals of Digital Signal Processing BPM Digital Front End - Rob Merl

6/16/99

 Difference Equations

21

21

1

1
1 94818548.094347473.11

00117768.000235536.000117768.0

)(

)(
)(−−

−−

⋅+⋅−
⋅+⋅+==

zz

zz

zX

zY
zH

() ())(00117768.000235536.000117768.0)(94818548.094347473.11 1
21

1
21 zXzzzYzz ⋅⋅+⋅+=⋅⋅+⋅− −−−−

)(00117768.0)(00235536.0)(00117768.0)(94818548.0)(94347473.1)(1
2

1
1

11
2

1
1

1 zXzzXzzXzYzzYzzY ⋅⋅+⋅⋅+⋅=⋅⋅+⋅⋅− −−−−

]2[00117768.0]1[00235536.0][00117768.0]2[94818548.0]1[94347473.1][111111 −⋅+−⋅+⋅=−⋅+−⋅− nxnxnxnynyny

]2[94818548.0]1[94347473.1]2[00117768.0]1[00235536.0][00117768.0][111111 −⋅−−⋅+−⋅+−⋅+⋅= nynynxnxnxny

]2[87932983.0]1[87478558.1]2[00113606.0]1[00227212.0][00113606.0][222222 −⋅−−⋅+−⋅+−⋅+⋅= nynynxnxnxny

19

USPAS ‘99 - Fundamentals of Digital Signal Processing BPM Digital Front End - Rob Merl

6/16/99

Implementation of the Difference Equation

]2[94818548.0]1[94347473.1]2[00117768.0]1[00235536.0][00117768.0][111111 −⋅−−⋅+−⋅+−⋅+⋅= nynynxnxnxny

z-1
x1[n-1]

z-1
x1[n-2]

x1[n] z-1+ z-1

y1[n]

y1[n-1] y1[n-2]

1.9 x y1[n-1]

-0.94 x y1[n-2]

0.002 x x1[n-1]

0.0011 x x1[n-2]

0.0011 x x1[n]

20

USPAS ‘99 - Fundamentals of Digital Signal Processing BPM Digital Front End - Rob Merl

6/16/99

 Direct Form II

21

21

1

1
1 94818548.094347473.11

00117768.000235536.000117768.0

)(

)(
)(−−

−−

⋅+⋅−
⋅+⋅+==

zz

zz

zX

zY
zH

21
121

1 94818548.094347473.11

)(
00117768.000235536.000117768.0)(−−

−−

⋅+⋅−
⋅⋅+⋅+=

zz

zX
zzzY

)(00117768.000235536.000117768.0)(1
21

1 zWzzzY ⋅⋅+⋅+= −−
21

1
1 94818548.094347473.11

)(
)(−− ⋅+⋅−

=
zz

zX
zW

]2[00117768.0]1[00235536.0][00117768.0][1111 −⋅+−⋅+⋅= nwnwnwny

]2[94818548.0]1[94347473.1][][1111 −⋅−−⋅+= nwnwnxnw

21

USPAS ‘99 - Fundamentals of Digital Signal Processing BPM Digital Front End - Rob Merl

6/16/99

 Direct Form II

]2[00117768.0]1[00235536.0][00117768.0][1111 −⋅+−⋅+⋅= nwnwnwny

]2[94818548.0]1[94347473.1][][1111 −⋅−−⋅+= nwnwnxnw

z-1
w1[n-1]

z-1
w1[n-2]

x1[n] + y1[n]

1.9 x w1[n-1]

-0.94 x w1[n-2]

0.002x x1[n-1]

0.0011 x x1[n-2]

0.0011 x x1[n]

+
w1[n]

1

USPAS ‘99 - Fundamentals of Digital Signal Processing Sampling Lab - John Carwardine

4/30/02

Lab 1 - Sampling

Objectives
• Get started with the Matlab environment.
• Generate continuous-time sinusoid and sample it at different time intervals.
• Explore Shannon’s sampling theorem.

Helpful Sections in Mitra
• Discrete-time sequences: sections 2.1.3, and 2.1.4
• Sampling: section 2.3

Matlab Startup
• Log into the respective student account.
• Make a directory for your lab files, eg myfiles and CD to this directory.
• Start up Matlab by typing pasmatlab. This will bring up a command prompt where Matlab commands can be entered.
• Start up your favorite editor in a separate window.

Getting Help in Matlab
• At the command prompt, type help either alone, or with the name of a command (for example)

help
help plot

• To inspect the contents of a program, type (for example)
type myfile

2

USPAS ‘99 - Fundamentals of Digital Signal Processing Sampling Lab - John Carwardine

4/30/02

Lab 1 - Sampling

Exercise 1
• Using the editor, create a file in subdirectory myfiles called lab1_1.m that contains the following Matlab code:

% Generate time vector
dt = 0.0005;
t = [0:dt:1];
% Pick a frequency in Hz
fc = 5;
% Generate frequency in rad/s
wc = 2*pi*fc;
% Generate sinewave
S1 = cos(wc*t);
% Plot it
subplot(2,1,1)
plot(t,S1)
set(gca,’ylim’,[-1.1,1.1]);
xlabel('Time (sec)'); ylabel ('Amplitude')
title(['S1 = cos(2*pi*',num2str(fc),'*t)']);

• From the Matlab prompt, type lab1_1
• Verify the frequency of the resulting sinewave plot.
• Change the frequency to 20Hz and rerun the file lab1_1.m to check the result.

3

USPAS ‘99 - Fundamentals of Digital Signal Processing Sampling Lab - John Carwardine

4/30/02

Lab 1 - Sampling
Exercise 2
• Add the following code to the end of file lab1_1.m. to add a plot with a sampled version of the original sinewave

% Enter a sampling interval in seconds
T = 0.015;
% Generate the nT sequence
nT = [0:T:1];
% Generate the sampled-data sinewave
S1d = cos(wc*nT);
% Plot the sequence
subplot(2,1,2)
stem(nT,S1d);
set(gca,’ylim’,[-1.1,1.1]);
xlabel('Time (sec)'); ylabel ('Amplitude')
title(['Sampled-data version of S1 at T = ',num2str(T)]);

• Experiment with a few different sampling intervals and sinewave frequencies. For each case you try, calculate the
appropriate discrete-time frequency ωd in radians (per sample).

Ts = ________sec fc = ________Hz ω d = ________rad
Ts = ________sec fc = ________Hz ω d = ________rad
Ts = ________sec fc = ________Hz ω d = ________rad

4

USPAS ‘99 - Fundamentals of Digital Signal Processing Sampling Lab - John Carwardine

4/30/02

Lab 1 - Sampling

• Reset the continuous-time frequency to 20Hz. Determine the maximum sampling interval that does not violate
Shannon’s sampling theorem. Enter exactly this sampling interval into the code and examine the resulting sequence.

Max Ts = ________sec

• Change the signal S1 from a cosine to a sine and re-run the code with the maximum sampling rate (there are three
lines in the code that must be changed). Explain the differences between the sine and cosine results.

• Enter a sampling interval that violates Shannon’s sampling theorem. Examine the resulting sequence.
• Without changing the sampling interval, find two other continuous-time frequencies that result in the same discrete-

time sequence as this. [Hint: compute the discrete-time frequency and then add or subtract multiples of 2π]

Ts1 = ________sec Ts2 = ________sec

Exercise 3
• Pick a new continuous-time frequency. Calculate two sampling intervals such that the resulting discrete-time

sequences have period 20 with the longer sampling interval, and period 12 with the shorter sampling interval.

Ts1 = ________sec Ts2 = ________sec

• Make a new program lab_1_2.m that is based on program lab_1_1.m so the continuous-time signal is comprised of
two sinusoids with different frequencies and amplitudes. Choose frequencies that are not harmonically related. Find
two sampling rates such that the resulting discrete-time sequence is identical for the two cases.

fc1 = ________Hz fc2 = ________Hz
Ts1 = ________sec Ts2 = ________sec

5/1/02

DFT Lab- Frank Lenkszus

1

USPAS ‘99 - Fundamentals of Digital Signal Processing

LAB 2 - DFT LAB

• DFT Lab
 Objectives

• Use Matlab to compute DFT
• Determine Analysis frequencies
• Determine frequency content of a signal
• Use different sampling frequencies - observe DFT output
• Compare signal to noise ratio as # of points in DFT is increased
• Apply a window - observe results
• Investigate effect of “zero stuffing”

• You will be given a file 'dataFile.bin’ to analyze with the DFT. This file contains about 200 msecs of a sampled
signal. The signal is sampled at 1MHz (.001 millisec sampling period). The signal contains a number of frequencies.
The primary goal will be to identify the frequency components contained within the signal. We will sample the
original signal at 5, 10 and 20 kHz and compute DFTs. We will confine our analysis to the first 100 millisec of the
input signal.

• Question: Given that our sample interval (record length) is 100 ms, how many points will our input sequence contain
for the sampling frequency 5kHz? 10kHz? 20kHz?

• Question: What will be our DFT resolution (DFT bin size) at 5kHz? 10kHz? 20kHz?
• Question: Given the input file step size is 0.001 millisecs, compute the interval in input file steps between successive

samples to achieve a 5kHz sample rate. 10kHz? 20kHz?
• OK- time to start processing data. We will be using milliseconds and kHz as our units.
• Use the editor of your choice to create a file called ‘dftLab1.m’. We will edit this file and run it in Matlab to do the

analysis.
• Once in matlab, you can type the contents of you file if you wish with >>type dftLab1.m

5/1/02

DFT Lab- Frank Lenkszus

2

USPAS ‘99 - Fundamentals of Digital Signal Processing

LAB 2 - DFT LAB

• Add the following lines to your file to read the input signal into a vector ‘Sig’ and define the input file time step size
and the length of the time record we will be using

 M='Hit any key to continue';
 clear;
 fid=fopen('dataFile.bin','r');
 Sig=fread(fid,inf,'double');
 fclose(fid);
 dt=.001; % data file sample period in millisecs
 TMax=100000;

• The following lines set the interval between samples of the input signal, Sig, and deposit the samples into Ssig
 SInt=200; % Interval between samples
 SSig=Sig(1:SInt:TMax); % sample the original sequence
 T=dt*SInt; % sample period (millisecs)

• Compute the analysis frequencies
 N=length(SSig); % length of our discrete signal
 fs=1/T; % sampling frequency
 df=fs/N; % frequency resolution
 f=[0:df:fs-df]; % analysis frequencies
 Title=sprintf('%d-point DFT with Rectangular Window',N);

5/1/02

DFT Lab- Frank Lenkszus

3

USPAS ‘99 - Fundamentals of Digital Signal Processing

LAB 2 - DFT LAB

• Save your file and type the following:
 >>dftLab1
 >>f % list DFT analysis frequencies

• Now we’re ready to compute our first DFT. Add the following to dftLab1.m
 X=fft(SSig);
 Xmag=abs(X);
 plot(f,Xmag);
 title(Title);
 xlabel('Frequency kHz');
 set(gca,'yscale','log');
 disp(M);
 pause;

• Reminder, you can always type help in Matlab for a Matlab function: example: >>help fft
• Run dftLab1 again, you should see a graphical window pop up with the DFT of the input sequence. You should

observe several strong lines. You will now determine the frequencies of these lines or tones. Our original input
sequence was a real sequence (not complex valued). Therefore, what can you say about the upper half of the DFT
output (above half the sampling frequency)?

•
• Determine the frequencies of the lines below half the sampling frequency. To do this use the ‘canned’ Matlab

procedure ‘listDFT’. Type help listDFT in your Matlab window to learn what this function does. Add the following
lines to dftLab1.m:

 [F,X,I]=listDFT(f, .4, .1, Xmag);
 [F,X] NO SEMICOLON

5/1/02

DFT Lab- Frank Lenkszus

4

USPAS ‘99 - Fundamentals of Digital Signal Processing

LAB 2 - DFT LAB

• The added lines will list the frequencies and DFT values from 0.3kHz to 0.5kHz.
• You can use the zoom in/out feature of the plot window (the magnifying glasses with the ‘+’ (zoom in) and ‘-’ (zoom

out) to ‘blow up’ a region of the plot to determine what to plug into ‘listDFT’.
• Run dftLab1
• From the output record the frequency of the line near 0.4kHz. Zoom in on each peak to get a frequency range to plug

into listDFT and rerun the last two lines to determine the frequencies of all the peaks below 1/2 the sampling
frequency. Record your results below. You may not find as many frequencies as there are slots slots listed below:

 f1 =
 f2 =
 f3 =
 f4 =
 f5 =
 f6 =

• From now on we’re going to use the Matlab procedure ‘dftProc’ to save some typing.
• Add the following lines to dftLab1.m to sample the original input sequence at 10kHz.

 disp(M);
 pause;
 SInt=100; % Interval between samples
 SSig=Sig(1:SInt:TMax); % sample the original sequence
 T=dt*SInt; % sample period (millisecs)
 [Xmag,f]=dftProc(SSig,'rectangular',T);

• Run dftLab1

5/1/02

DFT Lab- Frank Lenkszus

5

USPAS ‘99 - Fundamentals of Digital Signal Processing

LAB 2 - DFT LAB

• Use listDFT to determine the frequencies of the peaks in DFT output and record the results below. (Again, you may
not observe as many frequencies as there are places to record results)

 f1 =
 f2 =
 f3 =
 f4 =
 f5 =
 f6 =

• Add the following lines to dftLab1.m to sample the original input sequence at 20kHz.
 SInt=50; % Interval between samples
 SSig=Sig(1:SInt:TMax); % sample the original sequence
 T=dt*SInt; % sample period (millisecs)
 [Xmag,f]=dftProc(SSig,'rectangular',T);

• Run dftLab1, record the observed frequencies below (use listDFT again)
 f1 =
 f2 =
 f3 =
 f4 =
 f5 =
 f6 =

5/1/02

DFT Lab- Frank Lenkszus

6

USPAS ‘99 - Fundamentals of Digital Signal Processing

LAB 2 - DFT LAB

• Compare your results. What can you say about the frequencies you measured with the 3 sampling rates?
• You probably observed 5 distinct tones in each DFT. Some observed frequencies disappeared and new ones popped

up. Copy the results from your 20kHz DFT below and indicate which observed (measured) frequencies you think
reflect the true values in the original input signal and which observed frequencies you suspect are aliased.

 Value @ 20kHz fs Alias (Yes/No)
 f1 =
 f2 =
 f3 =
 f4 =
 f5 =

• Rerun dftLab1. This time record the peak amplitude of the line near 1.4 kHz and an estimate of the average noise
level. Record the results below:

 Peak value Ave Noise ratio
 5 kHz
 10 kHz
 20 kHz

5/1/02

DFT Lab- Frank Lenkszus

7

USPAS ‘99 - Fundamentals of Digital Signal Processing

LAB 2 - DFT LAB

• Now we’re going to repeat our DFT calculations with a window applied to the input sequence. We’ll use the
Blackman window. Add the following lines to dftLab1.m for 5kHz:

 SInt=200; % Interval between samples
 SSig=Sig(1:SInt:TMax); % sample the original sequence
 T=dt*SInt; % sample period (millisecs)
 [Xmag,f]=dftProc(SSig,'blackman',T);
 [F,X,I]=listDFT(f, 1.4, .1, Xmag);
 [F,X]
 disp(M);
 pause;

• Repeat the above lines for Sint = 100, 50 to repeat for 10kHz and 20kHz
• Run dftLab1
• For each of the sampling frequencies observe the region near the 1.4kHz line. Do you see a new line appear? If so,

record it’s frequency (you can use the 20kHz plot results)
 Frequency of line adjacent to 1.4 kHz line -

• Give an explanation of why you didn’t observe this line using the ‘rectangular’ window.

5/1/02

DFT Lab- Frank Lenkszus

8

USPAS ‘99 - Fundamentals of Digital Signal Processing

LAB 2 - DFT LAB

• Add the following lines to dftLab1
 % investigate zero stuffing

 SInt=50; % Interval between samples
 TMax=200000;
 SSig=Sig(1:SInt:TMax); % sample the original sequence
 T=dt*SInt; % sample period (millisecs)
 [Xmag,f]=dftProc(SSig,'rectangular',T);

 SInt=200; % Interval between samples
 TMax=100000;
 SSig=Sig(1:SInt:TMax); % sample the original sequence
 T=dt*SInt; % sample period (millisecs)
 [Xmag,f]=dftProcZS(SSig,'rectangular',T, 3500);

• The first 5 lines compute the DFT with 20kHz sampling over a 200 millisec interval. What will be the number of
sample points? What will be the DFT resolution? The last five lines sample the input at 5kHz for 100 millisecs. 3500
zeros are appended to the sequence before computing the DFT. What will be the apparent DFT resolution? Run
dftLab1

• Examine the region near the 1.4 kHz line for both cases. Do you think you see the small 1.458 kHz tone in either
DFT output? Comment on whether or not adding 3500 zeros to the 5kHz DFT improved the effective resolution?

1

USPAS ‘99 - Fundamentals of Digital Signal Processing Discrete-Time Systems Lab - John Carwardine

4/30/02

Lab 3 - Discrete-Time Systems

Objectives
• Generate impulse response and step response from difference equa tions and transfer functions
• Plot the frequency response of a transfer function or difference equation
• Plot the pole/zero locations of a transfer function

Helpful Sections in Mitra
• Impulse and step responses: Section 2.4.2
• LTI Systems: sections 2.5.5
• Frequency response: section 4.1.1

2

USPAS ‘99 - Fundamentals of Digital Signal Processing Discrete-Time Systems Lab - John Carwardine

4/30/02

Lab 3 - Discrete-Time Systems

Exercise 1
• Using the editor, create a file called lab3_1.m that contains the following Matlab code:

% Generate impulse and step sequences
N = 20;
n = [0:N-1];
dn = [1; zeros(N-1,1)];
un = ones(N,1);
% Numerator and Denominator of transfer function to be studied
% Note that [a,b,c,d,…] represents ‘a + bz^-1+cẑ -2+d^-3+…’
Num = [1,1,1,1];
Den = [1];
% generate and plot the impulse response
Simp = filter(Num,Den,dn);
subplot(2,1,1)
stem(n,Simp);
xlabel('Sample index'); ylabel ('Amplitude')
title('Impulse Response of System’);
% generate and plot the step response
Sstep = filter(Num,Den,un);
subplot(2,1,2)
stem(n,Sstep);
xlabel('Sample index'); ylabel ('Amplitude')
title(‘Step Response of System’);

3

USPAS ‘99 - Fundamentals of Digital Signal Processing Discrete-Time Systems Lab - John Carwardine

4/30/02

Lab 3 - Discrete-Time Systems

• Write down the transfer function and difference equation for the system described by the numerator and denominator
vectors in this program.

H[z] = y[n] =

• How does the impulse response compare with the transfer function numerator and denominator?

• Is this an FIR or IIR system?

• Can you determine the DC gain of this system from the analysis so far, and if so, what is it?

4

USPAS ‘99 - Fundamentals of Digital Signal Processing Discrete-Time Systems Lab - John Carwardine

4/30/02

Lab 3 - Discrete-Time Systems

Exercise 2
• Change the numerator and denominator vectors in the file so they represent the following difference equation .

]2[85.0]1[75.1]1[125.0][125.0][−−−+−+= nynynxnxny

• Write down the transfer function of this system.

H[z] =

• Plot the impulse response and step response. Change the value ofN if there are not sufficient points plotted to get a
good representation of the impulse response.

• Is this FIR or IIR?

• What is the DC gain of this system?

5

USPAS ‘99 - Fundamentals of Digital Signal Processing Discrete-Time Systems Lab - John Carwardine

4/30/02

Lab 3 - Discrete-Time Systems

• What can be inferred about this system from its step response?

• Will the high frequency gain be higher or lower than the DC gain?

• Will any particular frequencies be amplified?

Exercise 3
• Make a new file named lab_3_2.m.
• Add code to the file from lab_1_1.m and lab_3_1.m in order to do the following:

• Generate a discrete-time sinewave of frequencyω d that can be specified in the file.
• Set up a discrete-time transfer function with numerator and denominator from Exercise 2.
• Use the filter command to generate and plot (stem) the time-domain response to this sinewave.
• Adjust the frequency of the sinewave until you find the peak of the response.

Max gain is at ω d = ____________rad

6

USPAS ‘99 - Fundamentals of Digital Signal Processing Discrete-Time Systems Lab - John Carwardine

4/30/02

Lab 3 - Discrete-Time Systems

Exercise 4
• Use the following Matlab command to plot the frequency response of our transfer function

freqz(Num,Den);

• Compare the plotted frequency response with the results obtained in Exercise 3.
• The transfer function we have been examining is of the general form

22cos121

sin1
][

−+−−

−
=

zadz
dazzH

ω

ω

)sin(][o
n nanh ω=

which has a damped sinusoidal impulse response of the form

• Compute the values of a and ωd for this particular transfer function. Does the value of ωd you computed line up
with experimental results from Exercise 3 and from the frequencyplot in Exercise 4?

• Compute a new transfer function that has a 1/e decay time-constant of 100 samples and a resonant frequency of 0.05
periods / sample. Re-run the impulse, step, and frequency response plots.

H[z] =

7

USPAS ‘99 - Fundamentals of Digital Signal Processing Discrete-Time Systems Lab - John Carwardine

4/30/02

Lab 3 - Discrete-Time Systems

Exercise 5
• Compute the locations of the poles and zeros of our transfer function.

Zero is at z = __________ Poles are at z = __________, and __________

• Use the following Matlab command to plot the pole-zero locations. Verify your calculations with the plot. Note tha t
you can zoom in by dragging a box with the mouse (right mouse button returns to last plot).

zplane(roots(Num),roots(Den));

1

USPAS ‘99 - Fundamentals of Digital Signal Processing FIR Filter Lab - John Carwardine

4/30/02

Lab 4 - FIR Filters

Objectives
• Use the Matlab command fir1 to design a lowpass and bandpass FIR filter with different windows.
• The signal from Lab 2 will be used as a test signal.

Helpful Sections in Mitra
• Ideal filters: Section 7.7.2
• Window functions: Section 7.7.4
• FIR filter design in Matlab using windows : Section 7.9.3, starting at the bottom of page 483.

2

USPAS ‘99 - Fundamentals of Digital Signal Processing FIR Filter Lab - John Carwardine

4/30/02

Lab 4 - FIR Filters

Exercise 1
• Start a new file readSignal.m. Add the following lines from Lab 2 to read in the vector Sig, and sample it at interval

Sint to generate the sequence SSig. We will be using a sampling interval of 50µS.

fid=fopen('dataFile.bin','r');
Sig=fread(fid,inf,'double');
fclose(fid);
dt=.001; % data file sample period in millisecs
TMax=100000; % end of sampling record
SInt=50; % Interval between samples
SSig=Sig(1:SInt:TMax); % sample the original sequence
T=dt*SInt; % sample period (millisecs)
N=length(SSig); % length of our discrete signal
fs=1/T; % sampling frequency
df=fs/N; % frequency resolution
f=[0:df:fs-df]; % analysis frequencies

• Run this program to read the signal SSig and associated variables in to the Matlab workspace.
• Start another new file called lab4_1.m and add the following code to generate the DFT of SSig using the Blackman

window.
fftWin = blackman(length(SSig));
X=fft(Ssig .* fftWin);
Xmag=abs(X);

3

USPAS ‘99 - Fundamentals of Digital Signal Processing FIR Filter Lab - John Carwardine

4/30/02

Lab 4 - FIR Filters

• Run program lab4_1 and verify the presence of the tones that were studied in Lab 2.

• We will now generate an FIR lowpass filter. The objective will be to filter SSig so that the tones around 1.4kHz
remain, but all tones above that are attenuated.

• Based on the frequencies of the tones, determine the frequency corresponding to the upper edge of the filter passband,
and that corresponding to the lower edge of the stopband. The transition band width of the filter will be the difference
between the two. First calculate the frequencies in Hz, and then compute the corresponding discrete-time frequencies
that will be needed to design the filter.

Passband cutoff: fp = _________kHz, ω p = __________rad
Stopband cutoff: fs = _________kHz, ωs = __________rad
Transition band width: df = _________kHz, dω = __________rad

• We will use the Matlab command fir1 to generate the filter coefficients. This uses impulse response truncation (IRT)
with windowing.

• First we must estimate the length of the filter from the chosen window function and the transition band width in
radians. We will initially use the rectangular window.

• Add the following code to the end of lab4_1.m:
Wp = ####; % *** Add your value for Wp here ***
Ws = ####; % *** Add your value for Ws here ***
dW = Ws - Wp;
L = fix(4*pi/dW - 1) + 1; % compute filter order (length = L+1)
win = boxcar(L+1); % compute rectangular window of appropriate length

4

USPAS ‘99 - Fundamentals of Digital Signal Processing FIR Filter Lab - John Carwardine

4/30/02

Lab 4 - FIR Filters

• We are now ready to design the filter. The fir1 routine requires the window values and the passband cutoff
(normalized to the Nyquist rate), and returns the impulse response of the FIR filter.

• Add the following code to the end of lab4_1.m to design the filter
Wn = Wp/pi; % the fir1 routine requires the cutoff between 0-1 (1=Nyquist)
Num = fir1(L,Wn,win); % Num is the impulse response of our filter with passband cutoff Wn
Den = 1; % this is an FIR filter, so the transfer function denominator is unity.

• Add the following code to filter the signal and generate the DFTof the resulting signal SSigF.
SSigF = filter(Num,Den,SSig);
Xf=fft(SSigF.*fftWin);
Xfmag=abs(Xf);

• Add the following code to plot the unfiltered and filtered signals together on the same graph
plot(f,[Xmag Xfmag]);
title('FFT of Unfiltered and Filtered Signal');
xlabel('Frequency kHz'); ylabel(‘Amplitude of FFT’);
set(gca,'yscale','log');
legend('Unfiltered','Filtered',3)

• Now run the completed lab4_1 program and examine the results.

5

USPAS ‘99 - Fundamentals of Digital Signal Processing FIR Filter Lab - John Carwardine

4/30/02

Lab 4 - FIR Filters

• What is the max stopband attenuation the filter gives (in dB)?

Max stopband attenuation = _______ dB

• Are there any artifacts evident in the filtered noise spectrum? (eg ripple from filter stopband response)

• How much was the 1.4kHz line attenuated (in dB)

Attenuation = _______ dB

• What is the length of the filter (ie the number of coefficients)?

• Plot the impulse response and frequency response of the filter using the filter and freqz commands from Lab 2. Are
they what you expected? Explain.

• What can we do to improve the effectiveness of this filter?

6

USPAS ‘99 - Fundamentals of Digital Signal Processing FIR Filter Lab - John Carwardine

4/30/02

Lab 4 - FIR Filters

Exercise 2
• We will now examine the filter performance with different window functions in place of the rectangular window we

used in Exercise 1.
• Modify lab4_1.m to replace the rectangular window with a hamming window. This will require the following code

L = fix(8*pi/dW - 1) + 1; % compute filter order (length = L+1)
win = hamming(L+1); % compute rectangular window of appropriate length

• Why did we have to modify the filter length computation as well as the window function calculation?

• Re-run the code and examine the results.
• What is the filter length this time?

• Is this a better filter than that designed with that designed with the rectangular window?

7

USPAS ‘99 - Fundamentals of Digital Signal Processing FIR Filter Lab - John Carwardine

4/30/02

Lab 4 - FIR Filters

Exercise 3
• Modify lab4_1.m to replace the rectangular window with a Blackman window. This will require the following code

L = fix(12*pi/dW - 1) + 1; % compute filter order (length = L+1)
win = blackman(L+1); % compute rectangular window of appropriate length

• Re-run the code and examine the results.
• What is the filter length this time?

• Compare the performance of this filter with that of the other two filters.

• Plot the first 200 points of the filtered and unfiltered signals using the commands
plot([Ssig(1:200), SSigF(1:200)])
title(‘Unfiltered and Filtered Signals');
xlabel(‘Sample Index’);
legend('Unfiltered','Filtered',3)

• Comment on the relative phase of the two signals.

8

USPAS ‘99 - Fundamentals of Digital Signal Processing FIR Filter Lab - John Carwardine

4/30/02

Lab 4 - FIR Filters

• Modify the length of the filter. For example, try 2x the calculated length, and 0.5x the calculated length. How does
this affect the performance of the filter?

Exercise 4
• We will now design a bandpass filter that rejects all tones except the 4kHz tone. The maximum signal level in the

stopband should be at least 20dB below the noise level in the passband.
• For this filter, there will be four critical frequencies and two transition regions. In a similar manner to Exercise 1,

determine the two transition band widths and passband cutoff frequencies.

Passband lower cutoff: fp1 = ______kHz, ω p1 = _______rad
Stopband lower cutoff: fs1 = ______kHz, ωs1 = _______rad
Lower transition band width: df1 = ______kHz, dω1 = _______rad
Passband upper cutoff: fp2 = ______kHz, ω p2 = _______rad
Stopband upper cutoff: fs2 = ______kHz, ωs2 = _______rad
Upper transition band width: df2 = ______kHz, dω2 = _______rad

• We will need the narrowest of the two transition bandwidths to determine the filter length, and the two passband
frequencies to design the filter itself.

Narrowest transition band width: dω = _______rad
Passband cutoff: frequencies ω p1 = _______rad, ω p2 = _______rad,

9

USPAS ‘99 - Fundamentals of Digital Signal Processing FIR Filter Lab - John Carwardine

4/30/02

Lab 4 - FIR Filters

• The same basic code will be used to generate the bandpass filter. The fir1 routine designs a bandpass filter in place of
a lowpass filter if it is supplied with two passband cutoff frequencies. We will also return to the rectangular window.

• Copy lab4_1.m to lab4_2.m and modify the following lines in the new file
Wp1 = ####; % *** enter your value for lower passband cutoff here ***
Ws1 = ####; % *** enter your value for lower stopband cutoff here ***
dW1 = Wp1 - Ws1; % make sure of the order, we need a positive number!
Wp2 = ####; % *** enter your value for upper passband cutoff here ***
Ws2 = ####; % *** enter your value for upper stopband cutoff here ***
dW2 = Ws2 - Wp2; % make sure of the order, we need a positive number!
dW = min([dW1,dW2]);

:
Wn = [Wp1,Wp2]/pi; % This is the frequency vector that will be given to fir1

:
L = fix(8*pi/dW - 1) + 1; % compute filter order (length = L+1)
win = hamming(L+1); % compute rectangular window of appropriate length

:

• Run the new code and discuss the results.

• What is the length of this filter?

10

USPAS ‘99 - Fundamentals of Digital Signal Processing FIR Filter Lab - John Carwardine

4/30/02

Lab 4 - FIR Filters

• Did the filter meet the requirements?

• If not, change the passband and stopband frequencies, and/or the window function until the requirements are met.
Describe the parameters you used in the final filter design.

Bonus Exercise
• Copy lab4_1.m to lab4_3.m.
• We will replace the FIR filter designed using fir1 with an FIR averager and compare its performance.
• Choose a filter length that was used in the earlier exercises, and replace the expression for L and Num with

L = ###; % *** enter your filter length here ***
Num = 1/L * ones(L,1); % coefficients for the FIR averagerof length L

• Run the new program and compare the results with that obtained using fir1. Try different length averagers and discuss
your results.

1

USPAS ‘99 - Fundamentals of Digital Signal Processing IIR Filter Lab - John Carwardine

4/30/02

Lab 5 - IIR Filters

Objectives
• Design a lowpass and bandpass FIR filter using impulse- invariance and bilinear transformation.
• Design IIR notch and comb filters to eliminate harmonically related signals.
• The signal from Lab 2 will be used as a test signal.

Helpful Sections in Mitra
• Ideal filters: Section 7.7.2
• Impulse invariance method: Section 7.2
• Bilinear transformation method: Section 7.3
• Digital notch filters: Section 7.4
• IIR Filter design using Matlab: Section 7.9.2

2

USPAS ‘99 - Fundamentals of Digital Signal Processing IIR Filter Lab - John Carwardine

4/30/02

Lab 5 - IIR Filters

Exercise 1
• We will be using the same signal and sampling rates that were used in Lab 4.
• Run the program readSignal.m from Lab 4 to read in the signal SSig and associated variables into the workspace.
• Start another new file called lab5_1.m and add the following code to generate the DFT of SSig using the Blackman

window (as before)
fftWin = blackman(length(SSig));
X=fft(Ssig .* fftWin);
Xmag=abs(X);

• Run program lab5_1 and verify the presence of the tones that were studied in Labs 2 and 4.

• We will now design an IIR lowpass filter that meets the same objective as the filter in Lab 4, that is to filter SSig so
that the tones around 1.4kHz remain, but all higher tones are attenuated by at least 40dB. We will be designing a
Butterworth filter to achieve this objective.

• First we need the transfer function of an analog prototype filter.
• We need to determine the order of the filter and the cutoff frequency based on the requirements. This can be done by

hand using the techniques described in the lecture, or we can use the canned Matlab routine buttord which requires
the passband and stopband frequencies and the required attenuation. It returns the filter order and the appropriate -3dB
cutoff frequency.

• Use the same original choices for passband and stopband cutoff that we used before. Only the continuous-time
frequencies are required this time. We also need the acceptable passband droop at fp, and the attenuation at fs. The
stopband attenuation is given to us, but we must choose a passband droop

Passband cutoff: fp = _________kHz Droop = _________dB
Stopband cutoff: fs = _________kHz Attenuation = ___40____dB

3

USPAS ‘99 - Fundamentals of Digital Signal Processing IIR Filter Lab - John Carwardine

4/30/02

Lab 5 - IIR Filters

• The order and cutoff frequency can now be determined. Add the fo llowing code to lab5_1.m

Fpass = ####; % *** add your number for the end of the passband in kHz ***
Fstop = ####; % *** add your number for the start of the stopband in kHz ***
Rp = ####; % *** add your number for the passband droop ("ripple") in dB ***
Rs = 40; % stopband attenuation ("ripple") in dB from design spec
% compute the filter order (the ‘s’ tells Matlab we want the continuous-time filter)
[N,Wn] = buttord(2*pi*Fpass, 2*pi*Fstop, Rp, Rs,'s');

• The analog filter can now be designed using the Matlab function butter. This function will actually design a digital
filter directly, but only using the bilinear transformation. Since the objective is to compare two design methods, we
will design the analog filter and then convert it to the digital domain.

• Add the following line to lab5_1.m
[NumA,DenA] = butter(N,Wn,'s'); % returns the Laplace-transform coefficients

• Run the program lab5_1 to generate the analog filter coefficients. Generate a bode plot of the frequency response and
step response using the following Matlab commands.

bode(NumA,DenA);
step(NumA,DenA);

• We are now ready to generate the discrete-time filter. First let’s use the impulse- invariance method.
• Add the following code to lab5_1.m

[NumD,DenD] = impinvar(NumA,DenA,fs); % fs is the sampling frequency in kHz
SSigF = filter(NumD,DenD,SSig);

4

USPAS ‘99 - Fundamentals of Digital Signal Processing IIR Filter Lab - John Carwardine

4/30/02

Lab 5 - IIR Filters

• Finally, add the following code to the end of lab5_1.m to plot the two DFTs (same code as lab4_1.m)

Xf=fft(SSigF.*fftWin);
Xfmag=abs(Xf);
plot(f,[Xmag Xfmag]);
title('FFT of Unfiltered and Filtered Signal');
xlabel('Frequency kHz');
set(gca,'yscale','log');
legend('Unfiltered','Filtered',3)

• Run the completed lab5_1 program and examine the results.
• Write down the attenuation at the nearest frequency in the stopband, and the attenuation of the 1.4kHz line

Passband droop = _______dB Stopband attenuation = _______dB
• Does the filter meet the specification?

• What is the length of the filter (numerator and denominator)?

• How does the performance compare with the FIR filters designed to do the same job?

5

USPAS ‘99 - Fundamentals of Digital Signal Processing IIR Filter Lab - John Carwardine

4/30/02

Lab 5 - IIR Filters

• Plot the frequency response and step response of the digital filter using the following Matlab commands
freqz(NumD,DenD)
dbode(NumD,DenD,fs); % remember the sampling rate is in kHz, so the scale will be too!
dstep(NumD,DenD);

• Both freqz and dbode produce frequency response plots of the discrete-time system. What is the difference between
the two commands?

• Now let’s generate the discrete-time filter from the same analog filter but using the bilinear transformation.
• Modify lines in program lab5_1.m that generate the digital filter transfer function to the following

[NumD,DenD] = bilinear(NumA,DenA,fs);

• Re-run the program and examine the results.
• How does the bilinear transform response differ from the impulse- invariance method?

Exercise 2
• Now let’s use the elliptical filter prototype instead of the Butterworth filter. Modify the code that generated the analog

filter prototype to the following

[N,Wn] = ellipord(2*pi*Fpass,2*pi*Fstop,Rp,Rs,’s’);
[NumA,DenA] = ellip(N,Rp,Rs,Wn,’s’);

• Re-run the bilinear and impulse invariance methods and compare results with the Butterworth filter.

6

USPAS ‘99 - Fundamentals of Digital Signal Processing IIR Filter Lab - John Carwardine

4/30/02

Lab 5 - IIR Filters

Exercise 3
• Using lab5_2.m as a template, change the objective to removing the 8kHz tone, but leaving all other tones including

the 7.1kHz tone. The acceptable tolerance is again 1dB in the passband and 40dB attenuation.
• Use the elliptical filter prototype, and the impulse- invariance method to design the digital filter. Examine the

performance, and in particular, check the level of attenuation in the stopband. Is this as good as expected?

• Now use the bilinear transformation to make the same filter. In this case, verify the location of the passband cutoff
relative to that expected from the design. Did the filter meet the requirements?

• The frequency scale of the filter can be pre-warped by giving bilinear another parameter, which is the frequency at
which we want an exact match. Th e following command line is required:

[NumD,DenD] = bilinear(NumA,DenA,fs,Fmatch); % Fmatch is the c-t frequency to match

• Install this version of the routine, using the edge of the passband as the matching frequency. Does the pre-warped
filter meet the design specifications?

7

USPAS ‘99 - Fundamentals of Digital Signal Processing IIR Filter Lab - John Carwardine

4/30/02

Lab 5 - IIR Filters

Bonus Exercises
• Repeat the bandpass filter design from Lab 4, but generating an IIR filter with either a Butterworth or elliptical analog

filter prototype.
• Try a different analog filter prototype. Matlab provides bessel, and both chebyshev filter types.
• What are your observations about the performance of FIR filters versus IIR filters? Consider the level of

computational effort involved with actually implementing either filter in real hardware.

4/30/02

Word Length Effects Lab - Frank Lenkszus

1

USPAS ‘99 - Fundamentals of Digital Signal Processing

Lab 6 - Word Length Effects

• Objectives
Investigate effect of coefficient quantization on pole/zero location, frequency response and impulse response of a

filter
Investigate word length effect on the transient response of a filter
Investigate word length effects on the signal to noise ratio of a filter

• Create a file named WrdLenLab.m
• Add the following lines:

% Word Length Effects Lab
clear;
Ms='Hit any key to continue';
num=[0.125 0.125];
den=[1 -1.75 0.85];
w=[0.00001:pi/512:pi];

• The num and den are the numerator and denominator coefficients of our filter H(z). w is a 512 length vector of radian
frequencies from 0+ to π . (We have to avoid 0 for w to avoid problems later).

• Write down the difference equation for H(z). We’ll use that later.

21

1

85.075.11
)1(125.0

)(−−

−

+−
+

=
zz

z
zH

4/30/02

Word Length Effects Lab - Frank Lenkszus

2

USPAS ‘99 - Fundamentals of Digital Signal Processing

Lab 6 - Word Length Effects

• Add the following lines to plot the poles and zeros, frequency response and impulse response of H(z)
[Z,P,K]=tf2zp(num,den);
zplane(Z,P);
disp(Ms);
pause;
F=freqz(num,den,w);
plot(w,abs(F));
set(gca,'yscale','log');
axis([0 3.5 .01 10]);
disp(Ms);
pause;
dimpulse(num,den);
disp(Ms);
pause;

• Run WrdLenLab. You should see a pole zero plot, frequency response plot and finally an impulse response. Record
the values of the zeros (Z) and the poles (P). You can do this by typing Z followed by a return and P followed by a
return.

• Zeros:

• Poles:

4/30/02

Word Length Effects Lab - Frank Lenkszus

3

USPAS ‘99 - Fundamentals of Digital Signal Processing

Lab 6 - Word Length Effects

• Now we’ll investigate the effects of quantization on the coefficients of H(z). First we will quantize the coefficients by
rounding to the nearest value allowed by our selected number of bits. We’ll use the function QuantizeR to quantize
the coefficients with rounding. Do a help QuantizeR in matlab to see what this function does.

• Add the following lines of code to WrdLenLab.m
% quantize coefficients (Rounding)
N=5;
numqr=QuantizeR(num,N,2,-2);
denqr=QuantizeR(den,N,2,-2);
[Zqr,Pqr,K]=tf2zp(numqr,denqr);
zplane(Zqr,Pqr);
disp(Ms);
pause;
Fqr=freqz(numqr,denqr,w);
plot(w,abs(Fqr));
set(gca,'yscale','log');
axis([0 3.5 .01 100]);
disp(Ms);
pause;
dimpulse(numqr,denqr);
disp(Ms);
pause;

• The calls to QuantizeR will quantize num and den to 2^5 (32) values between 1.75 (2 - one LSB) and -2.

4/30/02

Word Length Effects Lab - Frank Lenkszus

4

USPAS ‘99 - Fundamentals of Digital Signal Processing

Lab 6 - Word Length Effects

• Run WrdLenLab This time you will see the pole zero plot, frequency response plot and impulse response of H(z)
with coefficients quantized to 5-bits.

• At the matlab prompt type numqr <CR>, denqr<CR>, Zqr<CR>,Pqr<CR> to display the numerator coefficients,
denominator coefficients, zeros and poles. (<CR> denotes ‘Return’). Record the results:

• Numerator coefficients Denominator coeffiecients

• Zeros Poles

• How did they change?

• How did the Impulse response change?

4/30/02

Word Length Effects Lab - Frank Lenkszus

5

USPAS ‘99 - Fundamentals of Digital Signal Processing

Lab 6 - Word Length Effects

• Now we’ll repeat the same experiment. This time we’ll use the function QuantizeT which will quantize values with
truncation instead of rounding. Type help QuantizeT at the matlab to see what this function does.

• Add the following lines to your matlab file:
% quantize coefficients (Truncation)
N=5;
numqt=QuantizeT(num,N,2,-2);
denqt=QuantizeT(den,N,2,-2);
[Zqt,Pqt,K]=tf2zp(numqt,denqt);
zplane(Zqt,Pqt);
disp(Ms);
pause;
Fqt=freqz(numqt,denqt,w);
plot(w,abs(Fqt));
set(gca,'yscale','log');
axis([0 3.5 .01 100]);
disp(Ms);
pause;
dimpulse(numqt,denqt);
disp(Ms);
pause;

• Run WrdLenLab

4/30/02

Word Length Effects Lab - Frank Lenkszus

6

USPAS ‘99 - Fundamentals of Digital Signal Processing

Lab 6 - Word Length Effects

• You should have noticed a dramatic difference in all the plots. At the matlab prompt type numqt <CR>, denqt <CR>,
Zqt <CR>,Pqt <CR> to display the numerator coefficients, denominator coefficients, zeros and poles. Record the
results:

• Numerator coefficients Denominator coeffiecients

• Zeros Poles

• How did they change?

• How did the Impulse response change and frequency change?

• Explain what happened? Would you call this system “stable”?

4/30/02

Word Length Effects Lab - Frank Lenkszus

7

USPAS ‘99 - Fundamentals of Digital Signal Processing

Lab 6 - Word Length Effects

• Finally add the following to your file to display all three systems on one plot. (You can skip this if you feel you’re
short on time).

zplane([Z; Zqr; Zqt],[P, Pqr, Pqt]),
title('All poles and zeros');
disp(Ms);
pause;

plot(w,abs(F),'b',w, abs(Fqr),'g',w,abs(Fqt),'r');
title('All impulse responses');
set(gca,'yscale','log');
axis([0 3.5 .01 100]);
disp(Ms);
pause;

dimpulse(num,den);
hold on;
dimpulse(numqr,denqr);
dimpulse(numqt,denqt);
hold off;

• Run WrdLenLab

4/30/02

Word Length Effects Lab - Frank Lenkszus

8

USPAS ‘99 - Fundamentals of Digital Signal Processing

Lab 6 - Word Length Effects

• We’ll now investigate the effect of word length on the impulse response of our filter H(z). In this exercise, not only
will the transfer function coefficients be quantized, but the all multiplies will also be quantized

• Start a new file called WrdLenLab1.m
• Insert the following lines:

% Word Length Effects Lab
clear;
Ms='Hit any key to continue';
num=[0.125 0.125];
den=[1 -1.75 0.85];
Max=2;
Min=-2;
Steps=70;
x=[1 0];
y=[0 0 0];
Out=[];

• We’ll use the same transfer function as before (num, den). x is our input and y is the filter output. Filter output s will
be accumulated in Out. x is initialize to ‘1’ to act as a discrete impulse in.

4/30/02

Word Length Effects Lab - Frank Lenkszus

9

USPAS ‘99 - Fundamentals of Digital Signal Processing

Lab 6 - Word Length Effects

• Now add the following lines of code:
for I = 1:Steps,

xp1=num(1)*x(1);
xp2=num(2)*x(2);
yp2=-den(2)*y(2);
yp3=-den(3)*y(3);
y(1)=xp1+xp2+yp2+yp3;
Out=[Out y(1)];
x(2)=x(1); x(1)=0;
y(3)=y(2); y(2)=y(1);

end
plot(Out);
title('Impules Response (Non-quantized)');
disp(Ms);
pause;

• The “for” loop calculates the impulse response by iterating through the difference equation for H(z).
• Run WrdLenLab1. You should see the impulse response without quantization effects.

4/30/02

Word Length Effects Lab - Frank Lenkszus

10

USPAS ‘99 - Fundamentals of Digital Signal Processing

Lab 6 - Word Length Effects

• Now add the following lines:
% rounding
Steps=70;
Bits=9; % Change this to specify # of bits
nq=QuantizeR(num,Bits,Max,Min);
dq=QuantizeR(den,Bits,Max,Min);
x=[1 0]; y=[0 0 0];
Out=[];
for I = 1:Steps,

xp1=QuantizeR(nq(1)*x(1),Bits,Max,Min);
xp2=QuantizeR(nq(2)*x(2),Bits,Max,Min);
yp2=QuantizeR(-dq(2)*y(2),Bits,Max,Min);
yp3=QuantizeR(-dq(3)*y(3),Bits,Max,Min);
y(1)=xp1+xp2+yp2+yp3;
Out=[Out y(1)];
x(2)=x(1); x(1)=0;
y(3)=y(2); y(2)=y(1);

end
end
T=sprintf('Impulse Response - Quantized to %d bits (Rounding)', Bits);
plot(Out);
title(T);
disp(Ms); pause;

4/30/02

Word Length Effects Lab - Frank Lenkszus

11

USPAS ‘99 - Fundamentals of Digital Signal Processing

Lab 6 - Word Length Effects

• Add the following also
%truncation
Steps=70;
Bits=9; % Change this to specify # of bits
nq=QuantizeT(num,Bits,Max,Min);
dq=QuantizeT(den,Bits,Max,Min);
x=[1 0];
y=[0 0 0];
Out=[];
for I = 1:Steps,

xp1=QuantizeT(nq(1)*x(1),Bits,Max,Min);
xp2=QuantizeT(nq(2)*x(2),Bits,Max,Min);
yp2=QuantizeT(-dq(2)*y(2),Bits,Max,Min);
yp3=QuantizeT(-dq(3)*y(3),Bits,Max,Min);
y(1)=xp1+xp2+yp2+yp3;
Out=[Out y(1)];
x(2)=x(1); x(1)=0;
y(3)=y(2); y(2)=y(1);

end
T=sprintf('Impulse Response - Quantized to %d bits (Truncation)', Bits);
plot(Out);
title(T);

4/30/02

Word Length Effects Lab - Frank Lenkszus

12

USPAS ‘99 - Fundamentals of Digital Signal Processing

Lab 6 - Word Length Effects

• That was a lot of typing, but now you should be able to see some interesting effects. We’ve added two ‘for’ loops.
The first added for loop evaluates the difference equation with rounding while the second one evaluates with
truncation. “Bits” specifies the number of bits to quantize to. Run WrdLenLab1. You’ll see Three impulse response
plots: 1) Unquantized 2) Rounding 3) Truncation.

• Run WrdLenLab1
• Note differences you observe.(9-bits)

• Now edit your file and change Bits from 9 to 8 (two places) and rerun. Write your observations:

• Now edit the file and change Bits to 16 (two places) and rerun. How do things look now?

4/30/02

Word Length Effects Lab - Frank Lenkszus

13

USPAS ‘99 - Fundamentals of Digital Signal Processing

Lab 6 - Word Length Effects

• Now we’ll investigate word length effects on a filters output signal to noise ratio. Open a new file called
WrdLenLab2.m

% Word Length Effects Lab
clear;
Ms='Hit any key to continue';
fid=fopen('dataFile.bin','r');
Sig=fread(fid,inf,'double');
fclose(fid);
dt=.001; % data file sample period in millisecs
TMax=100000; % end of sampling record
SInt=20; % Interval between samples
SSig=Sig(1:SInt:TMax); % sample the original sequence
T=dt*SInt; % sample period (millisecs)
N=length(SSig); % length of our discrete signal
fs=1/T; % sampling frequency
df=fs/N; % frequency resolution
f=[0:df:fs-df]; % analysis frequencies

num=[0.125 0.125]; % filter H(z) numerator
den=[1 -1.75 0.85]; % filter H(z) denominator
Max=12; % Max value for quantization
Min=-12; % Min value for quantization
Bits=12; % Number of bits for quantization

4/30/02

Word Length Effects Lab - Frank Lenkszus

14

USPAS ‘99 - Fundamentals of Digital Signal Processing

Lab 6 - Word Length Effects

• The lines you just added read in our signal file and sample it every 20 samples. Knowing our step size on our input
signal is .001 millisecs, what sampling frequency does taking every 20th step correspond too? num and den specify
the numerator and denominator of the H(z) that we’ve been using. Max, Min and Bits specify that we’ll be quantizing
with 12 bits over a range of ±12.

• Now add the following lines:
% No quantization
[Out Xmag]=filterDiff(SSig,num,den,Bits,Max,Min,T);
% rounding
[Out Xmag]=filterDiffQR(SSig,num,den,Bits,Max,Min,T);
% truncation
[Out Xmag]=filterDiffQT(SSig,num,den,Bits,Max,Min,T);

• The lines make calls to Matlab functions we’ve provided to pass our signal through the filter without quantization,
with quantization with rounding and quantization with truncation. Do help on each of the routines in your Matlab
window to get an explanation of each. Run WrdLenLab2. Be patient as the routines take some time to complete.

• For each case, you should see a plot of the filtered input signal followed by the DFT of that signal. Describe any
differences you see between the three cases:

4/30/02

Word Length Effects Lab - Frank Lenkszus

15

USPAS ‘99 - Fundamentals of Digital Signal Processing

Lab 6 - Word Length Effects

• You should have observed differences in the noise level between the two quantized cases and the non quantized case.
• Now we’ll repeat the experiment with 8-bits. Edit your file to change Bits to 8;ie,

Bits=8; % Number of bits for quantization
• Rerun your program. Note any differences you see below:

• You should have seen a considerable increase in the noise level in the DFTs for the 8-bit case. Also, the filtered
output for the rounding case appears to have a higher peak-to-peak value than the 12-bit case. The filtered output for
the 8-bit truncation case has a much higher peak-to-peak value and a significant DC shift. You should also be able to
see a significant increase in the noise level of the 8-bit truncated case over the 8-bit rounding case.

J. Carwardine 05/01/02

Recommended Texts on Digital Signal Processing

USPAS Course Text
S. K. Mitra, Digital Signal Processing – A Computer-Based Approach, McGraw-Hill 1998

Signals and Systems
W. McC. Siebert. Circuits, Signals, and Systems. MIT Press 1986.

A. Openheim and A Willsky. Signals and Systems. Prentice-Hall 1996.

Zoher Z. Karu. Signals and Systems Made Ridiculously Simple . ZiZi Press 1997.
[Great memory-jogger, and quick reference]

Digital Signal Processing
J. Proakis and D. Manolakis. Digital Signal Processing. McMillan Press 1996.
[An excellent college-level text]

R. Lyons. Understanding Digital Signal Processing. Addison-Wesley 1996.
[Really good explanatory text. The DFT section is exceptional. Minimal mathematics]

B. Porat, A Course in Digital Signal Processing, John Wiley & Sons 1997

W. Stanley, G. Dougherty, R. Dougherty. Digital Signal Processing. Reston Publishing
[Sadly out of print. If you find a copy, buy it!]

A. Oppenheim and R. Shafer. Discrete -Time Signal Processing. Prentice-Hall 1989.

Advanced Topics in Digital Signal Processing
Peter Clarkson. Optimal and Adaptive Signal Processing. CRC Press 1993.
[Does an excellent job with optimal least-squares filter design]

G. Strang and T. Nguyen. Wavelets and Filter Banks. Wellesley-Cambridge Press 1997.
[The authors run 3-day workshops on wavelets and filter-banks]

B. Widrow and S. Sterns. Adaptive Signal Processing. Prentice-Hall 1985.

Books on Related Topics
G. Franklin and J. Powell. Digital Control of Dynamic Systems. Addison-Wesley 1997.
[The one book you need if you are designing a digital control system]

E. Kreyszig. Advanced Engineering Mathematics. John Wiley & Sons 1999.

D. Lancaster. Active Filter Cookbook. Newnes Press 1996.
[Worth its weight in gold if you have to design and build an analog filter]

May 13, 1999

Page 1 of 15
Carwardine/Lenkszus/Merl

Preparatory Material for “Fundamentals of Digital Signal
Processing”

A. Euler’s Formula

2
cos

θθ
θ

jj ee −+
=

j
ee jj

2
sin

θθ
θ

−−
=

B. Converging Power Series
Given any real or complex value x, where |x| < 1

L++++++==
− ∑

∞

=

5432

0
1

1
1

xxxxxx
x k

k

C. Continuous-Time Delta-Function
The delta function δ(t) is defined by the expression

1)(
0

0
=∫

+

−
dttδ

It is an infinitesimally narrow pulse that has unit area. The function is zero except at t = 0. Also
note that given a continuous-time function f(t), and a constant a,

)()()(afdtatf =∫
+ ∞

∞−
δ

D. Review of Partial Fraction Expansions
Any rational polynomial with denominator degree M and numerator degree N (with M > N) can
be separated into a sum of M rational polynomials each with degree less than M.

Ex.1
2

3
1

2

23

75
)(

21 +
+

+
=

++

+
=

ssss

s
sX

Ex.2
3

25.0
1

25.0

)1(

5.0

)3()1(

1
)(

222 +
+

+
−

+
=

++
=

sssss
sX

The method is shown in the examples that follow.

Non-Repeated Roots

Consider the following function of s, where a is a constant

USPAS ’99 Fundamentals of Digital Signal Processing May 13, 1999

Page 2 of 15
Carwardine/Lenkszus/Merl

ssa
sY

⋅⋅+
=

)1(
1

)(

The partial fraction expansion is

s
B

sa
A

ssa
sY +

⋅+
=⋅

⋅+
=

1
1

1
1

)((1)

In equation (1), A and B are constants. First, find the constant B by multiplying both sides of (1)
by a factor s.

s
B

s
sa

A
s

ssa
ssys ⋅+

⋅+
⋅=⋅

⋅+
⋅=⋅

1
1

1
1

)(

This reduces to

B
sa

A
s

sa
sYs +

⋅+
⋅=

⋅+
=⋅

11
1

)(

The A term can be eliminated and B determined by setting s to zero. In this case, B = 1.

To find A, we multiply both sides of (1) by the factor (1+a.s) to give

() () () ()
s
B

sa
sa

A
sa

ssa
sasYsa ⋅⋅++

⋅+
⋅⋅+=⋅

⋅+
⋅⋅+=⋅⋅+ 1

1
1

1
1

1
1)(1

This reduces to

()
s
B

saA
s

sYsa ⋅⋅++==⋅⋅+ 1
1

)()1((2)

Since we already know that B = 1, equation (2) can be further reduced to

s
sa

A
s

⋅+
+=

11

The A coefficient can now be found by setting s = 1, giving A = -a. The partial fraction expansion
of Y(s) is therefore

ssa
a

ssa
sY

1
1

1
1

1
)(+

⋅+
−

=⋅
⋅+

=

Repeated Roots

When the denominator of the function to be expanded contains repeated roots, the approach
described above must be slightly modified. Consider the function

)21()1(

1
)(

2 ss
sY

+⋅+
=

USPAS ’99 Fundamentals of Digital Signal Processing May 13, 1999

Page 3 of 15
Carwardine/Lenkszus/Merl

The partial fraction expansion will be of the form

s
C

s

B
s

A

ss
sY

21)1(1)21()1(

1
)(

22 +
+

+
+

+
=

+⋅+
= (3)

The constant C can be found as before, by multiplying equation (3) through by the factor (1+2s)

s
C

s
s

B
s

s
A

s
ss

ssY
21

)21(
)1(

)21(
1

)21(
)21()1(

1
)21()(

22 +
⋅++

+
⋅++

+
⋅+=

+⋅+
⋅+=

Setting s = -1/2 gives C = 4.

The B constant can be found by multiplying equation (3) through by the factor (1+s)2

s
C

s
s

B
s

s
A

s
ss

ssY
21

)1(
)1(

)1(
1

)1(
)21()1(

1
)1()(2

2
22

2
2

+
⋅++

+
⋅++

+
⋅+=

+⋅+
⋅+=

Setting s = -1, results in B = -1.

To find A, we must plug in the values we have already found for B and C,

sss
A

ss
sY

21
4

)1(

1
1)21()1(

1
)(

22 +
+

+

−
+

+
=

+⋅+
=

Since the equality must hold for all values of s, we can pick any value that makes the expression
easy to solve. Picking s = 0 gives

1
4

1
1

11
1

)(+
−

+==
A

sY

so A = -2.

The partial fraction expansion is therefore

sssss
sY

21
4

)1(

1
1

2

)21()1(

1
)(

22 +
+

+

−
+

+
−

=
+⋅+

=

USPAS ’99 Fundamentals of Digital Signal Processing May 13, 1999

Page 4 of 15
Carwardine/Lenkszus/Merl

E. Review of Laplace Transforms

The Laplace transform is defined in equation (1).

[] ∫
∞

−

− ⋅⋅==
0

)()()(dtetftfLsF st (1)

Where s = σ + jω and j = √-1.

Associated with the Laplace integral is a region of convergence (ROC). Not all integrals converge
for all values of s. This can be illustrated with an example.

Consider the expression f(t) = eαt. The Laplace transform integral is

∫
∞

−

− ⋅⋅=
0

)(dteesF sttα

giving

∞

−

−
∞

−

−
∞

−

− ⋅
−

=⋅=⋅⋅ ∫∫ 0

)(

0

)(

0

1 tstsstt e
s

dtedtee ααα

α

When t = -0, the expression tse
s

)(1 −⋅
−

α

α
 reduces to

s−α
1

.

When t = ∞, the value of tse
s

)(1 −⋅
−

α

α
 depends on the value of s.

Since s = σ + jω, tjttjts eeee ωσαωσαα −−−−− ⋅==)()()(and)sin()cos(tjte tj ωωω ⋅−=− , then the

expression tse
s

)(1 −⋅
−

α

α
 can be rewritten as [])sin()cos(

1)(tjte
s

t ωω
α

σα ⋅−⋅⋅
−

− .

As long as σ is greater than α, then the expression reduces to 0 when t = ∞ and the integral
converges. When σ is greater than α, the integral is said to be within its region of convergence
(ROC). While it is necessary to recognize the existence of the ROC, in practical systems it is rare
that it must be taken into consideration. From here on, the Laplace transform is always assumed
to be in its region of convergence.

The Laplace transform of f(t) = eαt is then

[] []
s

eLtfL t

−
==

α
α 1

)(

Equally, in most practical situations, a table of elementary transforms allows solution of most
problems. Laplace transforms of some common functions of t follow

USPAS ’99 Fundamentals of Digital Signal Processing May 13, 1999

Page 5 of 15
Carwardine/Lenkszus/Merl

Laplace Transforms of Elementary Functions

f(t) F(s)
)(tδ 1

1
s
1

t 2

1
s

nt 1

!
+ns

n

ate−

as +
1

atet −⋅ ()2

1
as +

atn et −⋅ () 1

!
++ nas

n

f(t) F(s)
()t⋅ωsin

22 ω
ω
+s

()t⋅ωcos
22 ω+s

s

()tt ⋅⋅ ωsin

()222

2

ω

ω

+

⋅⋅

s

s

()tt ⋅⋅ ωcos

()222

22

ω

ω

+

−

s

s

()te at ⋅⋅− ωsin
() 22 ω

ω
++ as

()te at ⋅⋅− ωcos
() 22 ω++

+
as

as

Properties of the Laplace Transform

A table of important properties of the Laplace transform appears below.

Property Time function Laplace transform
Linearity)()(2211 tftf ⋅+⋅ αα)()(2211 sFsF ⋅+⋅ αα
s-shifting)(tfe at ⋅−)(asF +

Time shifting 0),()(≥−⋅− TTtqTtf)(sFe sT ⋅−

s-differentiation (time scaling))(tft ⋅)(sF
dt
d−

Time differentiation)(tf
dt
d)0()(−−⋅ fsFs

Convolution ∫ ⋅⋅−
t

duth
0

)()(τττ)()(sUsH ⋅

Time integration ∫
−

⋅
t

dtf
0

)(τ
s
sF)(

By way of illustration as to how these properties might be derived, the Laplace transform of time
domain differentiation can be shown as follows

∫
∞

−

− ⋅⋅=





0

)()(dtetf
dt
d

tf
dt
d

L st

USPAS ’99 Fundamentals of Digital Signal Processing May 13, 1999

Page 6 of 15
Carwardine/Lenkszus/Merl

This can be rearranged to give

∫
∞

−

− ⋅⋅=





0

)()(dttf
dt
d

etf
dt
d

L st (2)

Integration by parts states that ∫∫ ⋅−⋅=⋅ duvvudvu .

Set)(tfv = , then dttf
dt
d

tdfdv ⋅==)()(.

Set steu −= , then dte
dt
d

dedu stst ⋅== −− .

Equation (2) then becomes

∫∫
∞

−

−∞

−

−
∞

−

− ⋅⋅−⋅=⋅⋅
0

0
0

)()()(dte
dt
d

tftfedttf
dt
d

e ststst

Now,)(tfe st ⋅− reduces to zero at t = ∞ within its region of convergence, and reduces to f(0-)
when t = 0.

And stst ese
dt
d −− ⋅−= so

∫∫
∞

−

−
∞

−

−∞

−

− ⋅⋅⋅+−−=⋅⋅−⋅
00

0
)()0(0)()(dtetfsfdte

dt
d

tftfe ststst

∫
∞

−

− ⋅⋅
0

)(dtetf st is the definition of the Laplace transform from equation (1), so

)0()()()0(0
0

−−⋅=⋅⋅⋅+−− ∫
∞

−

− fsFsdtetfsf st

)0()()(−−⋅=



 fsFstf
dt
d

L (5)

Where f(0-) is the initial condition.

System Representation using Laplace Transforms

Consider the RC circuit shown in Figure 1.

USPAS ’99 Fundamentals of Digital Signal Processing May 13, 1999

Page 7 of 15
Carwardine/Lenkszus/Merl

R

C
vi(t) vo(t)

+

-

+

-

Figure 1. RC Circuit

The input to the circuit is the voltage)(tvi and the output is)(tvo . Using ohm’s law)(tvo is

related to)(tvi with the equation Rtitvtv io ⋅−=)()()(. Where
dt

tdv
Cti o)(

)(= . This results in

the differential equation (1).

dt
tdv

CRtvtv o
io

)(
)()(⋅⋅−= (1)

which can be rearranged as (2)

dt
tdv

CRtvtv o
oi

)(
)()(⋅⋅+= (2)

The Laplace transform is used to solve equation (2).

[] 



 ⋅⋅+=

dt
tdv

CRtvLtvL o
oi

)(
)()(

The Laplace transformed is

)()()(sVCRssVsV ooi ⋅⋅⋅+= (3)

This can be re-arranged into a transfer function H(s), given by

CRssV
sV

sH
o

i

⋅⋅+
==

1
1

)(
)(

)((4)

This can be rearranged into a form that is easily inverse-transformed.







 +

⋅

⋅=
s

CR

CRsH
1

1

)((5)

The impulse response of this system is obtained by taking the inverse Laplace transform of H(s)

USPAS ’99 Fundamentals of Digital Signal Processing May 13, 1999

Page 8 of 15
Carwardine/Lenkszus/Merl

[] RCte
CRs

CR

CRLsHLth /11 1
1

1

)()(−−− ⋅
⋅

=

























 +

⋅

⋅==

The inverse transform of the transfer function appears in (6). This is the solution to the
differential equation in (2) and is impulse response h(t).

RCte
CR

th /1
)(−⋅

⋅
= (6)

The transfer function can be convolved with the unit step in (7) to determine the step response.

sCRs
sUsHsY

1
1

1
)()()(⋅

⋅⋅+
=⋅= (7)

The inverse Laplace transform is found through partial fraction expansion as shown earlier to
give equation (8).

s
CR

s
sY

1
1

1
)(+









⋅
+

−
= (8)

The inverse Laplace transform of (8) is the step response, y(t) which appears in (9).

[] 



+



























⋅
+

−
= −−−

s
L

CR
s

LsYL
1

1
1

)(111

Leading to

1)(/ +−= − RCtety (9)

By way of example, assume that R = 1KΩ and C = 10 µF. Then (10) describes the step response
of the circuit in Figure 1.

1)(01.0/ +−= −tety (10)

The step response is plotted in Figure 2.

USPAS ’99 Fundamentals of Digital Signal Processing May 13, 1999

Page 9 of 15
Carwardine/Lenkszus/Merl

y t()

t

0 0.05 0.1
0

1

[seconds]

Figure 2. Step response.

The capacitor C in Figure 1 may have an initial voltage across it,)0(ov . In such a case, the
Laplace transform from equation (3) would be rewritten with the initial condition in (11).

())0()()()(oooi vsVsCRsVsV −⋅⋅⋅+= (11)

Equation (11) can be manipulated as follows to form equation (12).

)0()()()(oooi vCRsVCRssVsV ⋅⋅−⋅⋅⋅+=

())0(1)()(ooi vCRCRssVsV ⋅⋅−⋅⋅+⋅=

()CRssVvCRsV ooi ⋅⋅+⋅=⋅⋅+ 1)()0()(

)(
1

)0(
1

)(
sV

CRs
vCR

CRs
sV

o
oi =
⋅⋅+

⋅⋅
+

⋅⋅+
(12)

If Vi(s) = U(s) = 1/s = the unit step function, then Y(s) = Vi(s) and (12) becomes

)(
1

)0(1
1

1
sY

CRs
vCR

sCRs
o =
⋅⋅+

⋅⋅
+⋅

⋅⋅+
(13)

The first term of equation (13) has already been inverse Laplace transformed in (8) and (9). The
inverse Laplace transform of the second term can be added to (9) to form y(t) in equation (14).

RCt
o

o
o

o etv
s

CR

L
CR
vCR

s
CR

CRLvCR
CRs

vCR
L /111)(

1
1)0(

1

1

)0(
1

)0(−−−− ⋅=
















+
⋅

⋅
⋅
⋅⋅

=
















+
⋅

⋅⋅⋅⋅=





⋅⋅+
⋅⋅

RCt
o

RCt etvety //)(1)(−− ⋅++−= (14)

USPAS ’99 Fundamentals of Digital Signal Processing May 13, 1999

Page 10 of 15
Carwardine/Lenkszus/Merl

A more complicated RC circuit appears in Figure 3.

R2

C1 C2

R1

vi(t) vo(t)

+

-

+

-

Figure 3.

The circuit is converted to the s-domain in Figure 4.

R2

1/sC1 1/sC2

R1

vi(t) vo(t)

+

-

+

-

v1(t)

Z1 Z3

Z2 Z4

Figure 4. s-domain circuit.

An equation for V1(s) can be generated using the fact that the current flowing through R2 must
equal the current flowing through C2.

21)()()(CssVsVsV oo ⋅⋅=−

)1()()(221 CRssVsV o ⋅⋅+⋅= (14)

The currents are summed at the node V1(s).

21
2

1

1

1)(
)()()()(

CssV
R

sVsV
R

sVsV oi ⋅⋅+
−

=
−

(15)

Equation (14) is substituted into (15).

222
2

22

1

22)1()(
)()1()()1()()(

CsCRssV
R

sVCRssV
R

CRssVsV
o

oooi ⋅⋅⋅⋅+⋅+
−⋅⋅+⋅

=
⋅⋅+⋅−

This equation is rearranged in the form of the transfer function H(s).

22112122111
1

)(
)(

)(
CRCRsCRsCRsCRssV

sV
sH

i

o

⋅⋅⋅⋅+⋅⋅+⋅⋅+⋅⋅+
==

Assume that R1 = 1000 Ω, R2 = 2000 Ω, C1 = 100 µF, and C2 = 100 µF, then the transfer
function reduces to equation (16).

USPAS ’99 Fundamentals of Digital Signal Processing May 13, 1999

Page 11 of 15
Carwardine/Lenkszus/Merl

204.07.01
1

)(
ss

sH
⋅+⋅+

= (16)

The magnitude (frequency) response of H(s) can is plotted in Figure 5 by substituting s = jω.

H j ω.()

ω

2 π.

0 5 10 15 20
0

0.5

1

Frequency [Hz]

Figure 5

The impulse response can be calculated by taking the inverse Laplace transform of equation (16).
First, the equation is rewritten as a partial fraction in equation (17).

22 5.1725
25

04.07.01
1

)(
ssss

sH
+⋅+

=
⋅+⋅+

=

)57.1(
74.1

)93.15(
74.1

)(
+

+
+
−

=
ss

sH (17)

The impulse response h(t) can be found from the partial fraction expansion of equation (17) with
the inverse Laplace transform

[] 







+

+







+
−

= −−−

)57.1(
74.1

)93.15(
74.1

)(111

s
L

s
LsHL

tt eeth 57.193.15 74.174.1)(−− ⋅+⋅−= (18)

The impulse response from equation (18) is plotted in figure 6.

USPAS ’99 Fundamentals of Digital Signal Processing May 13, 1999

Page 12 of 15
Carwardine/Lenkszus/Merl

h t()

t
0 2 4

0

0.5

1

1.5

Figure 6.
The step response is the convolution of the impulse response from equation (18) with unit step
function. This can be done by multiplying the transfer function from equation (16) with the
Laplace transform of the unit step function (1/s).

sss
sY

1
04.07.01

1
)(2 ⋅

⋅+⋅+
=

Y(s) can be expressed as a partial fraction expansion.

sss
sY

1
)57.1(

1093.1
)93.15(

1093.0
)(+

+
−

+
+

=

The step response is found by taking the inverse Laplace transform of Y(s).

[] 



+








+

−
+








+

= −−−−

s
L

s
L

s
LsYL

1
)57.1(

1093.1
)93.15(

1093.0
)(1111

11093.11093.0)(57.193.15 +⋅+⋅−= −− tt eety (19)

y t()

t

0 2 4 6
0

1

[seconds]

Figure 7. Step response

USPAS ’99 Fundamentals of Digital Signal Processing May 13, 1999

Page 13 of 15
Carwardine/Lenkszus/Merl

F. Fourier Series Representation of Periodic Functions
Any periodic function f(t) can be represented as a weighted sum of sines and cosines

))sin()cos((
2
1

)(0
1

00 tnbtnaatf n
n

n ωω∑
∞

=
++=

where the a and b coefficients are computed by integrating the following expressions over one
period of f(t)

∫
−

=
2

2

0)cos()(
2

T

T
n dttntf

T
a ω K3,2,1,0=n

∫
−

=
2

2

0)sin()(
2

T

T
n dttntf

T
b ω K3,2,1=n

and

T
π

ω
2

0 =

The Fourier series (Complex Form)
An alternative representation using complex frequency is

∑
∞

− ∞=
=

n

tjn
nectf 0)(ω

where the c coefficients are again computed by integrating the following expression over one
period of f(t)

∫
−

−=
2

2

)(
1

T

T

tjn
n

oetf
T

c ω K,3,2,1,0 ±±±=n

and

T
π

ω
2

0 =

USPAS ’99 Fundamentals of Digital Signal Processing May 13, 1999

Page 14 of 15
Carwardine/Lenkszus/Merl

G. The Fourier Transform
The Fourier transform of a non-periodic function x(t) is defined as

∫
∞

∞−

−= dtetxjX tjωω)()(

The inverse Fourier transform is computed as

∫
∞

∞−

= ωω
π

ω dejXtx tj)(
2
1

)(

The following table shows graphically the Fourier transform pairs of some elementary functions

Table of Fourier Transform Pairs

1δ(t)

t
0

f
0

1

1δ(f)

f
0

t
0

1

1

t
0

f
0

1/T

1/T 2/T 3/T-1/T-2/T-3/T

t
0

sin(wot)

t
0

cos(wot)

1/2j

t
0

-1/2j
wo

-wo

1/2

t
0

1/2

wo-wo

f
0

2T

1/2T

t
0

1

T-T

t
0

2w

1/2w

f
0

1

w-w

t
wt

π
)sin(

2/
)sin(

ω
ωT

x(t) X(ω)

Several important properties of the Fourier transform are shown in the following table.

USPAS ’99 Fundamentals of Digital Signal Processing May 13, 1999

Page 15 of 15
Carwardine/Lenkszus/Merl

Table of Fourier Transform Properties

Property X(t) X(ω)

Linearity)()(21 tbxtax +)()(21 ωω bXaX +

Duality X(t) -x(ω)

Convolution x(t) * w(t) X(ω)W(ω)

Time-domain Product x(t) w(t) X(ω) * W(ω)

Time Shift)(ottx −)(ωω Xe otj−

Frequency Shift)(txe tj oω)(oX ωω −

Differentiation
dt

tdx)()(ωωXj

Multiply by t tx(t)
df

dX
j

)(1 ω
−

Time Scaling x(at))/(
1

aX
a

ω

May 13, 1999

Page 1 of 8
Carwardine/Lenkszus/Merl

Preparatory Problems for “Fundamentals of Digital Signal
Processing”

Problem 1
Using the Euler relationship, show that

[])2/cos()2/3cos(21 2
3

32 ωω
ω

ωωω +=+++
−−−− jjjj eeee

Sketch the magnitude and phase of the above expression for the range 0 = ω = π.

Problem 2
Find closed-form expressions for the following infinite series where x is a complex variable.
Write down the radius of convergence for x in each case.

a) L−+−+−= 8642
1 1)(xxxxxF

b) L+++++= −−−− 4321
2 16

1
8
1

4
1

2
1

1)(xxxxxF

c) L+++++= −−−− xxxx
eeeexF 42

9
32

3

3 81
16

27
8

9
4

3
2

1)(

Problem 3
Sketch the Bode plots for the following Laplace transforms. Identify magnitude and phase values
at critical frequencies:

a)
314

6282.0
)(

+
+=

ss
sH

b)
2

4

)1531.0(

)11018.3(
)(

+

+⋅
=

−

s

s
sH

Problem 4
Three circuits comprise no more than one each of an inductor, a capacitor, and a resistor. Five
Laplace transform pole-zero plots, Bode plots, and step responses are also shown.
a) For each of the three circuits, match the appropriate pole-zero plots, frequency-response

plots, and step responses.
b) Write down a Laplace transfer function for each of the five pole-zero plots.

1

1

Vi(t) Vo(t)

1

1Vi(t) Vo(t)1

Circuit A Circuit B Circuit C

1

1

Vi(t) Vo(t)

1

USPAS ’99 Fundamentals of Digital Signal Processing May 13, 1999

Page 2 of 8
Carwardine/Lenkszus/Merl

Pole-Zero Plots

Frequency-Responses

Step Responses

Problem 5
Using partial fraction expansion, find the inverse Laplace transforms, h(t), of the following
Laplace transfer functions

a) ()22

1
)(

2 +⋅+⋅
=

sss
sH

c) ()22

1
)(

2

3

+⋅+⋅

+
=

sss

s
sH [Hint: divide out the constant term first]

c)
()3

2

2

1
)(

+

+
=

s

s
sH

d)
() ()21

1
)(

3 +⋅−

+
=

ss

s
sH

t

Vo(t)

t

Vo(t)

t

Vo(t)

t

Vo(t)

1 2 3 4 5

t

Vo(t)

log f

20log|H(f)|

log f

20log|H(f)|

log f

20log|H(f)|

log f

20log|H(f)|

log f

20log|H(f)|

1 2 3 4 5

1 2 3 4 5

USPAS ’99 Fundamentals of Digital Signal Processing May 13, 1999

Page 3 of 8
Carwardine/Lenkszus/Merl

Problem 6
Show that the coefficients for the complex Fourier Series representation of the waveform shown
in Figure P1 are:

T
Ad

c =0 ,

2

2sin

0

0

dn

dn

T
Ad

cn ω

ω







= , 0≠n

Figure P1

Problem 7
Show that the Fourier Series of a periodic train of impulses (shown in Figure P2) is given by :

∑ −=)()(nTttf δ

is:

∑
∞

=

+=
1

0)cos(
21

)(
n

tn
TT

tf ω

Figure P2
Two methods should be used to show this:

a) Use the basic definitions of the Fourier Series representation with the sine/cosine form.
b) Compute the Fourier Series of the function g(t) shown in Figure P2a.

t

X(t)

T/2-T -T/2 d/2-d/2

A

0 T 2T-T-2T

USPAS ’99 Fundamentals of Digital Signal Processing May 13, 1999

Page 4 of 8
Carwardine/Lenkszus/Merl

Figure P2a
Using

∫
−

=
2

2

0)sin()(
2

T

T
n dttntf

T
b ω K3,2,1=n

to obtain

)sin()(0
1

tnbtg
n

n ω∑
∞

=
=

Then use the fact that the derivative of g(t) itself is given by

∑
∞

− ∞=
−+−=

n
nTt

T
tg

dt
d

)(
1

))((δ

Problem 8
Show that the Fourier Transform of:

Figure P3
Is given by

2
)2sin(

)(
d

d
djX

ω
ω

ω =

1/2

-1/2

0 T 2T-T-2T

d/2-d/2

1

USPAS ’99 Fundamentals of Digital Signal Processing May 13, 1999

Page 5 of 8
Carwardine/Lenkszus/Merl

Problem 9
Show that the Fourier Transform of

)cos()()(0ttxtg ω=

is

)(
2
1

)(
2
1

)(00 ωωωωω jjXjjXjG ++−=

where)(ωjX is the Fourier Transform of x(t)

Problem 10
Using the results of Problems 8 and 9 show that the Fourier Transform of the windowed cosine
function shown in Figure P5 and described by





=
0

)cos(
)(0t

tx
ω

2,2

22
dtdt

dtd

><

≤≤

Figure P5

Is given by

2)(
)2)sin((

22)(
)2)sin((

2
)(

0

0

0

0
d

dd
d

dd
jX

ωω
ωω

ωω
ωω

ω
+

+
+

−
−

=

USPAS ’99 Fundamentals of Digital Signal Processing May 13, 1999

Page 6 of 8
Carwardine/Lenkszus/Merl

Answers

Problem 1

Problem 2

a)
21

1

1
)(

jx
xF

−
= Radius of convergence 1<x

b)

x

xF

2
1

1

1
)(2

−
= Radius of convergence

2
1

>x

c)

2
33

3
2

1

1
)(

x

e

xF

−

= Radius of convergence 





>

3
2

log
3
2

ex

USPAS ’99 Fundamentals of Digital Signal Processing May 13, 1999

Page 7 of 8
Carwardine/Lenkszus/Merl

Problem 3
a)

b)

USPAS ’99 Fundamentals of Digital Signal Processing May 13, 1999

Page 8 of 8
Carwardine/Lenkszus/Merl

Problem 4
Circuit A: pole-zero = 3, bode = 2, step = 4
Circuit B: pole-zero = 4, bode = 5, step = 1
Circuit C: pole-zero = 1, bode = 1, step = 5

Transfer functions from pole-zero plots:

)1(
1

)(
2

1 +
++

=
ss

ss
sH

1

)1(
)(

22
++

+
=

ss

ss
sH

1
1

)(3 +
=

s
sH

1
)(

24
++

=
ss

s
sH

1
)(5 +

=
s

s
sH

Problem 5

a) ())]cos([sin
2
1

2
1

4
sin

2
2

2
1

4
3

cos
2
2

2
1

)(tteteteth ttt +⋅+=





 +⋅+=






 +⋅+= −−− ππ

b))]sin()cos(5[
2
1

2
1

)()(ttetth t +⋅++= −δ

c) ttt eteteth 2222
2
5

4)(−−− ⋅+⋅−=

d) tttt eeetetth 22
27
1

27
1

9
1

3
1

)(−+−⋅+⋅=

	Cover Page
	Table of Contents
	Discrete - Time Signals & Systems
	Sampling & Recontruction
	The Discrete Fourier Transform
	The z-Transform
	Digital Filters I
	Digital Filters II
	System Realization
	Finite Word Length Effects
	Tips & Tricks
	Advanced Sampling Techniques
	The APS Fast Orbit Feedback System
	Design of a Digital Front End for the APS Beam Position Monitor System
	Lab 1 - Sampling
	Lab 2 - DFT Lab
	Lab 3 - Discrete-Time Systems
	Lab 4 - FIR Filters
	Lab 5 - IIR Filters
	Lab 6 - Word Length Effects
	Appendix
	Bibliography
	Preparatory Material

	GoTop2:
	GoNext2:
	GoTop7:
	GoTop8:
	GoTop9:
	GoTop10:
	GoTop11:
	GoTop12:
	GoTop13:
	GoTop14:
	GoTop15:
	GoTop16:
	GoTop17:
	GoTop18:
	GoTop19:
	GoTop20:
	GoTop21:
	GoPrev2:
	GoPrev:
	GoNext:
	GoTop22:
	GoTop30:
	GoTop44:
	GoTop55:
	GoTop66:

