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 bpms.  The corrector is sepa-

s corrector/bpm configuration.

ents at the two bpms.

s

Problem Set 4 Thursday June 19, 20

Problem 1:

1a) The figure shows a simple transport line consisting of a corrector followed by two

rated from the bpms by drift spaces L1 and L2. Determine the response matrix for thi

Answer:  x1 = L1θ , x2 = L2θ ,

1b) Determine the pseudoinverse of the response matrix R in 9a.

Answer:

1c) Derive a formula for the corrector kick angle change that minimizes the displacem

Figure for problem1
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TR) are the squares of the sin-

nd V  respectively.
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Answer:

1d) Determine the SVD of the response matrix R = U S VT. The eigenvalues of RRT (R

gular values and the normalized eigenvectors of  RRT and RTR are the columns of U a

Answer:  ,

Find the normalized eigenvectors of RRT to get the columns of U.
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= vλ1 = [v1].

 at the bpms by minimizing
The eigenvalue for RTR is repeated.  The normalized eigenvector = V = VT = [1] 

So the final answer is easily verified by multiplication.

1e) Determine the value of the corrector angle that minimizes the position of the beam

the function:

χ2 = (x1 - L1θ)2 + (x2 - L2θ)2.

Answer:
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ne bpm. The corrector is sep-

is corrector/bpm configura-

erminant 0!  What to do,

TR) are the squares of the sin-

nd V  respectively.

s

Problem 2:

2a) The figure shows a simple transport line consisting of two correctors followed by o

arated from the bpms by drift spaces L1 and L2.  Determine the response matrix for th

tion.

Answer:  x = L1θ1 , x = L2θ2 ,  ,

2b) Determine the pseudoinverse of the response matrix R in 2a.

Answer:  There is no pseudo inverse as it stands because the matrix RTR has det
SVD to the rescue!

2c) Determine the SVD of the response matrix R = U S VT. The eigenvalues of RRT (R

gular values and the normalized eigenvectors of  RRT and RTR are the columns of U a

Figure for problem 2

 x
θ1

L2

θ2

L1

x L1θ1 L2θ2+= R L1 L2=

R
1–

R
T

R( )
1–
R

T L1

L2

L1 L2

1–
L1

L2

L1
2

L1L2

L1L2 L2
2

1–

L1

L2

===



eigenvector = U = UT = [1]

ors are the columns of V.

o, we can immediately write
Answer:  ,

Find the normalized eigenvectors of RRT to get the columns of U. The normalized
= uλ1 = [u1].

Find the normalized eigenvectors for the matrix RTR.  The normalized eigenvect

But, this matrix is the same as RRT from problem 9! with the same eigenvalues. S

down the matrix V and VT.

So the final answer is.
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ion at the bpm.

 The differential mode

nstraint. In this problem, the

of the  two corrector kicks.
2d) Determine the pseudoinverse of the matrix R using the SVD result  in 2c.

Answer:

2e) Use the result of 2d to determine the corrector kick angles that minimize the posit

Answer:

In equation form the kick angles are:

θ1 = L1x / (L1
2 + L2

2) , θ2 = L2x / (L1
2 + L2

2)

This is the common mode solution (angles have the same sign as x) and is stable. 
(angles have opposite signs) is obviously unstable.

2f) The method of Lagrange multipliers is used to minimize a function subject to a co

constraint is that the difference between the bpm position must always equal the sum 

The constraint can be expressed by the function:
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quares of the corrector kick

o the angles and λ.

solution. Finally, the result
G(θ1,θ2) = x - L1θ1 − L2θ2 = 0

In this  problem, the function ( χ2) to minimize with this constraint is the sum of the s

angles: χ2 = θ1
2 + θ2

2.

Given the function:

F(θ1,θ2,λ) =  χ2 + λG(θ1,θ2) ,

Derive formulas for the corrector kick angles by minimizing F(θ1,θ2,λ) with respect t

Answer:  ;  ;

From the first two equations:

; which is what you would expect θ2 should be < θ1 for a well behaved

is the same as for SVD.
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 method and the method of

ane: Show that the values for

tangent to the line defined by

0 points. The condition for
bstituteθ2 from the function

2
2)1/2
2g) To illustrate the least squares minimization obtained from the SVD/pseudoinverse

Lagrange multipliers, consider the constraint function G(θ1,θ2) and χ2 in the θ1, θ2 pl

θ1 and θ2 given by both methods are simply the point where the circle defined by ρ is

G(θ1,θ2) = 0.

Answer: Here is a possible solution noting that a circle intersects a line in 2, 1 or
a single point is when the line is tangent to the circle. For this solution, simply su
G(θ1,θ2) into the function for ρ and solve for θ1 in terms of ρ.

θ1

θ2G(θ1,θ2) = 0

ρ = (χ2)1/2 = (θ1
2 + θ

Figure for problem 2g



 in the square root is > 0.
is the same solution as given

are root of the above expres-
θ2 = (x - L1θ1) / L2  ; ρ2 = θ1
2 + θ2

2

ρ2 = θ1
2 + (x - L1θ1)2 / L2

2 = θ1
2(1 + L1

2 / L2
2) + 2xL1θ1 / L2

2 + x2 / L2
2 ;

θ1
2 + (x - L1θ1)2 / L2

2 = θ1
2(1 + L1

2 / L2
2) - 2xL1θ1 / L2

2 + x2 / L2
2 - ρ2 = 0

Solve this quadratic equation for θ1. There are two solutions only when the term
There is only a single solution is when the term in the square root equals 0. This
by SVD/pseudoinverse and method of Lagrange multipliers.

Finally, the value of ρ2 for these values is: For this value of ρ2 the squ

sion equals 0.
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