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Beam Stability at Synchrotron Light Sources

Orbit Feedback Dynamics
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Outline

• Simple orbit correction algorithm as feedback loop.
• BPM filtering and processing
• Corrector dynamics and eddy current effects
• Regulator design matters
• Performance metrics for regulator design
• Orbit feedback system as a noise-shaping filter.
• Running separate DC and AC feedback systems
• Impact of different corrector dynamics (leading to a dilemma)
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The global orbit correction process
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Simple regulator implementation

• At each orbit correction step
– Measure the orbit error ∆x
– Calculate corrector ‘errors’ from matrix multiplication ∆c = R-1 * ∆x
– Apply gain factor (<1) to ∆c
– Add the resulting corrector deltas to the existing setpoints
– Wait one tick
– Repeat ad infinitum

• Resulting system is stable and well-behaved providing gain factor <<1, and 
provided the update rate is slow relative to system dynamics

– Update rates and setting times of corrector power supplies.
– Corrector dynamics (power supplies, magnets, eddy current effects).
– BPM filtering.
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Frequency response of simple regulator

• Cumulating the errors from step to step has the same effect as a digital 
integrator.

Rejection Ratio for update interval of 5 seconds and gain of 0.2
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Orbit spectrum to be corrected
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The dynamic global orbit feedback algorithm
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One-dimensional (SISO) or multi-dimensional (MIMO) 
control problem?

• Global RMS orbit feedback can be treated as a one-dimensional control problem
– Relationship between bpms and corrector errors is static linear matrix.
– Response matrix orthogonalizes the corrector control loops.
– Design the regulator loop once, implement for every corrector.

• Even when corrector dynamics are different, the feedback control loops are still 
orthogonal.

• We will see later how different dynamics impact the overall correction 
effectiveness.



6/20/2003

USPAS 2003, John Carwardine Glen Decker and Bob Hettel

9

Beam Stability at Synchrotron Light Sources

Implementing the orbit correction algorithm

• Computation of corrector ‘errors’ is conveniently separated into a series of M
vector dot-products, one for each of the M correctors

BP
M

 e
rro

rs

row M

row M-1

row 2

row 1 corrector 1

corrector 2

corrector M-1

corrector M

inverse response matrix

=

corrector 'errors'

M x N N x 1 M x 1

• Corrector ‘errors’ becomes the input to one of M feedback regulators.
• Provided the corrector and bpm dynamics are identical, the feedback loops are 

independent, and can be implemented as M single-input / single-output systems.
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Issues

• Knowledge of the bpm dynamics.
• Knowledge of the corrector dynamics.
• Performance metrics for the closed-loop response.
• Designing the regulator.
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BPM DYNAMICS
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Different flavors of bpm processing at APS

• Narrow-band rf bpms
– Analog signal processing with bandwidth in the 100’s Hz.
– 6-pole Butterworth anti-alias filter at 300Hz.
– Digitized at feedback system sampling rate (1500Hz)

• Photon bpms
– Analog signal processing with bandwidth in the 100’s Hz.
– 7-pole Butterworth anti-alias filter at 185 Hz.
– Digitized at feedback system sampling rate (1500Hz)

• Turn-by-turn rf bpms
– Sampled at ½ revolution frequency (135kHz)
– 32-point boxcar averager at 135kHz rate.
– Down-sampled to feedback system sampling rate (1500Hz)
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Analog front-end of APS x-ray and Narrowband rf bpms
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Butterworth Filters

• Butterworth filters are maximally-flat.
• There is no ripple in either the passband or stopband.
• The magnitude-response of an Nth-order filter rolls off at 20N dB/decade.
• The stopband phase delay of an Nth-order filter is -90N degrees.
• A Butterworth filter can be completely described by its -3dB cutoff frequency Ωc, 

and its order N.

Linear Magnitude, Linear Frequency Magnitude in dB, Log Frequency
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Transfer Functions of Normalized Butterworth Lowpass 
Filters

Coefficients for each power of sFilter
Order S8 S7 S6 S5 S4 S3 S2 S1 S0

1 1 1
2 1 1.4142 1
3 1 2 2 1
4 1 2.6131 3.4142 2.6131 1
5 1 3.2361 5.2361 5.2361 3.2361 1
6 1 3.8637 7.4641 9.1416 7.4641 3.8637 1
7 1 4.4940 10.0978 14.5918 14.5918 10.0978 4.4940 1
8 1 5.1258 13.1371 21.8462 25.6884 21.8462 13.1371 5.1258 1

• For example, the 4th order prototype Butterworth lowpass filter is described by 
the transfer function

16131.24142.36131.2
1)( 234 ++++

=
ssss

sH

• NB: these prototype filter transfer functions are normalized (ie their -3dB cutoff 
frequency is 1rad/s). To convert to a different cut-off frequency, replace each 
instance of s with s/2πFc, where Fc is the cut-off frequency in Hz.
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Digital Filters

• Finite Impulse Response (FIR) filter
– Common design basis: truncated impulse response of ideal brick-wall filter, 

possibly with windowing.

• Infinite Impulse Response (IIR) filter
– Common design basis: analog prototype filter, converted to digital domain 

using impulse invariance or bilinear transform.
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FIR Filter example
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Transfer function

Example:

• Output is a linear combination of present and past inputs only.
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IIR (recursive) filter

• Output is a linear combination of present & past inputs and past outputs.
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Example:
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4-Point FIR averager
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• This can be described with the following difference equation

• Or with the following z-transform transfer function
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4-Point FIR averager frequency response

• 4-point moving average z-transfer function
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• Evaluate frequency response by setting

jwez −− =1

Giving (by Euler):



6/20/2003

USPAS 2003, John Carwardine Glen Decker and Bob Hettel

21

Beam Stability at Synchrotron Light Sources

Averagers with Different Number of Points
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Using averaging to get more effective resolution

• Single-sample (turn-by-turn) resolution of APS bpms is nominally 12-bits.
• Residual noise in the analog front-end provides an opportunity to get more 

resolution by averaging data samples
– Assuming Gaussian noise, we improve the resolution by a factor 2 (one 

additional bit) by averaging four samples.
– The APS bpm processing system uses a 1024-sample boxcar averager to 

improve the resolution by a factor 32, giving effectively 17-bit resolution.
– In principle we can increase the resolution ad infinitum, provided we are 

willing to wait long enough to collect the requisite number of samples.

When does this breakdown?
• Averaging will always work when dealing with Gaussian noise, but at some 

point, other non-Gaussian processes start to dominate, limiting the performance
– Front-end amplifier non-linearity.
– Digitizer quantization errors (integral and differential non-linearity).
– Word-length effects in the digital processing circuits.
– Drift.

• Usually digitizers with 12-bit performance do not have 17-bit systematics.
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32-Tap Averager vs 32-Tap FIR Filter

• About the only benefit of a boxcar averager is that it’s easy to implement, but 
does not provide the optimum level of filtering for the number of terms used.

Averager Coefficients

FIR Filter Coefficients
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Ideal Frequency-Selective Digital Filters

• The frequency response of an ideal frequency-selective lowpass filter has a passband with 
constant magnitude, an infinitely sharp transition between passband and stopband, and 
infinite attenuation in the stopband. The phase delay is zero for all frequencies.

• As we have discussed before, the impulse response of this ideal filter is a 
doubly-infinite sin(x)/x function that cannot be implemented in practice
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FIR Filter Design by Impulse Response Truncation (IRT)

• In the IRT method of designing an FIR filter, we take the impulse response of 
the idealized impulse response, truncate it to (say) 2M+1 samples, and shift it by 
M samples to make the impulse response causal.

n
0

n
0

Non-causal doubly-infinite ideal impulse response

Truncated & shifted causal impulse response
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Frequency Response vs Length of Truncated Impulse 
Response

• More points (coefficients) give a better approximation to the ideal frequency response
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…but as the number of points increases, there is no change in the amplitude of the 
passband or stopband ripple.
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Gibbs Effect and the Impulse Response Truncation Method

• The truncation process is in effect multiplication of the ideal impulse response by 
a rectangular window (c.f. windowing in the DFT).

Hideal(f)

W(f)

H(f)

∗

][][][ nwnhnh ideal ⋅=

• In the frequency domain, this means the actual frequency response is the 
convolution of the ideal response and the frequency response of the window 
function

][][][ ωωω WidealHH ∗=
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FIR Filter Design by Windowing

• Window functions other than rectangular (truncation) can be used to change the 
response of the filter. These are the same window functions used with the DFT.

• Windows used for FIR filter design include Hann, Hamming, and Blackman.
• Characteristics of filters designed with these windows are shown below

Window Main-lobe
width (∆ML)

Transition
width (∆ω)

δ Passband
Ripple (dB)

Stopband
Ripple (dB)

Rectangular 4π/(2M+1) 0.92π/M 0.09 0.75 -21
Hanning 8π/(2M+1) 3.11π/M 0.0063 0.055 -44
Hamming 8π/(2M+1) 3.32π/M 0.0022 0.019 -53
Blackman 12π/(2M+1) 5.56π/M 0.0002 0.0017 -74

0.5

ωc

∆ML

1+δ
1-δ

δ
−δ ωp ωs

∆ω
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Effect of Windowing on Bandpass Filter Example

• Magnitude responses of bandpass filters with length 101 for different window 
functions (band edges at 0.15Fs and 0.28Fs)

Hanning Window

Hamming Window

Blackman Window

Rectangular Window
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CORRECTOR DYNAMICS
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Measurement of corrector dynamics

• Measuring the response of a magnet / power supply is often straight-forward
– Swept sine measurements
– Transfer function analysis

• But we need the response of the global orbit to changes in corrector strength 
that include magnet and eddy-current effects.

• The only real means to determine system dynamics is to measure the 
responses in-situ using beam-based measurements.

• The procedure is to drive a single corrector at a time, and measure global orbit 
changes caused by the corrector drive.

– Both frequency-domain and frequency-domain methods can be used.
– At APS, time-domain measurements have resulted in more robust 

parametric models.
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Beam-based corrector response measurement
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Corrector response example
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Measured step responses of APS corrector magnet fields

• Step responses of the power supplies and magnets are the same in all cases.
• Overall responses of each corrector family are dominated by eddy-current 

effects in the vacuum chambers. Effects are different for each family.

‘Slow’ horizontal correctors

‘Fast’ horizontal corrector

‘Slow’ vertical corrector
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Why do different correctors families have different dynamics?

• Location, location, location…
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APS storage ring corrector location S1A:H1
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Effect of vacuum chamber eddy currents

• Magnet fields have to penetrate ½” of aluminum in the APS vacuum chamber

0.5”

• This has no impact on DC fields, and therefore on ‘slow’ orbit correction, but 
significantly impacts dynamic orbit correction bandwidth for those magnets 
surrounding the aluminum chamber.
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Eddy current wall model

• Skin depth:

( )
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σωµ ⋅⋅
=∂

2

• Frequency domain (from Jackson):
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Impulse response of 2cm aluminum wall

• The 0.5mS time delay significantly impacts the maximum correction bandwidth 
because regulator phase advance will not speed up the response.
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Corrector equalization

• Eddy current effects are two-fold
– The chamber acts as a low-pass filter.
– It takes a finite amount of time for the field to penetrate the chamber.

• We can compensate for the low-pass filter, but not for the time delay.

• Provided the time delay is small compared with system dynamics and correction 
rates, reasonable equalization can be accomplished using frequency-domain 
techniques (eg lead/lag compensators)

– NSLS used frequency-based equalization filters for the VUV local bumps.
– Time domain techniques based on measured step responses provide more 

robust models when the time delay is significant.

• Appreciable eddy current time delays will ultimately become the limiting factor in 
optimizing the closed loop performance because time-delay = linearly increasing 
phase with frequency.
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Impact of eddy currents on NSLS local correction 
frequency & phase responses
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Step Response Equalization using optimal filters

• Optimal least-squares filter design based on measured and desired time-domain 
sequences offers a more robust alternative to frequency-based methods of 
modeling step responses. 

Σ

Mean-
Squared Error

I.I.R. FilterMeasured Step
Response

'Desired' Step
Response

• Digital filter coefficients are computed from the “Normal” equations that use 
auto-and cross-correlation functions between desired and measured responses.

• The resultant all-point IIR (‘auto-recursive’) filter represents the transfer function 
of the inverse filter.
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Results of least-squares filter equalization

• Desired’ response was chosen to be a simple low-pass filter with a one-sample 
delay.

• Reasonable results were obtained with a 3-pole, 3-zero IIR filter. 

Original ‘slow’ corrector

Equalized responses

Original ‘fast’ corrector
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REGULATOR DESIGN
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Simple plant/regulator models

Open-loop system:

• Works fine, provided there are no disturbances to the system, and the system 
itself does not change over time.

Closed-loop system:

Control
Law SystemGoals

u(t) y(t)

Sensors

Measurement errors

Disturbances

Control
Law SystemGoals

u(t) y(t)
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Elementary feedback control system

• For a stable system, all roots of the denominator (poles) of the closed loop 
transfer function must be in the left half of the complex plane.

)(
)()(1

)()( sR
sHsG

sGsC ⋅
⋅+

=

G1(s)C(S) R(S)

H(s)

E(S)
G2(s)

G(s)

• Black’s formula:
∑+

=
gains loop1
gain forwardTF
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Elementary Laplace Transform Pairs
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Impulse responses vs transfer function pole locations 

Dorf – Modern Control Systems
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Bode diagram

• Provides a convenient graphical method of evaluating frequency and phase 
responses using asymptotic approximations

Example (single pole):

Dorf – Modern Control Systems
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Phase lead compensators

• Phase lead compensator
– Increases gain at high frequencies, while low frequency gain is unchanged.
– Improves stability margins at expense of high frequency gain.
– State-space notation (time-domain design) (still to do)

( )s
sTF
⋅+
⋅+

=
αα

ατ
1

1

1
1sin max +

−
=
α
α

φ

Dorf – Modern Control Systems
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State-space notation

• Time-domain representation of system dynamics in terms of first-order 
difference equations (digital control), or differential equations (analog control)

• State equation describes the dynamics of internal states of the system.
• Output equation describes the dynamics of the system output.

][][][
][][]1[

nDunCxny
nBunAxnx

+=
+=+

)()()(
)()()(
tDutCxty
tButAxtx

+=
+=&

• More versatile than classical frequency domain representation
• Easily extended to multi-input/multi-output systems.
• Applicable to LTI and non-LTI systems.
• Greater variety of control design techniques, eg Optimal control techniques 

allow computation of regulator design based on cost functions, eg rms 
actuator power, rms tracking error, etc

Continuous-time

Discrete-time
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Mathematical model of orbit feedback system

Hc(z) x[k]

Accelerator
response

R

HR(z)
cD[k]

c[k]

w[k]

cE[k-1]
Rinv

Inverse response
matrix

Corrector
dynamics

Regulator
dynamics

Beam
position

Beam
disturbance

Corrector
field

+

Corrector
drive

][][][ kwkcRkx +⋅=

]1[][ −⋅−= kxRkc invE

)()()()( 1 zczHzHzzc ERc ⋅= −
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System Transfer Function

[ ] 1)()( −⋅⋅+= invRzHRIzG

)()()( 1 zHzHzzH cR ⋅= −

and

• The system transfer function quantifies the effect of the system in rejecting orbit 
disturbances.

)()()( zWzCRzX +⋅= )()( zXRzC invE ⋅−=

)()()()( 1 zCzHzHzzC ERc ⋅⋅= −

Transfer Function:

)()()()()( 1 zWzCzHzHRzzX ERc +⋅⋅⋅=∴ −

)()()()(1 zWzXRzHzHRz invRc +⋅⋅⋅⋅−= −

where
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REGULATOR PERFORMANCE METRICS
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Control system performance metrics

• Elementary performance criteria
• The plant didn’t blow up.
• The process measurements stay close enough to the setpoint.
• They say it’s OK and you can go home now.

• Classical (deterministic) performance criteria
– Closed loop bandwidth.
– Gain margin, phase margin.
– Maximum disturbance rejection.
– Steady-state error.
– Minimum overshoot, minimum setting time.

• “Modern/optimal’ performance criteria
– Usually based on some form of cost function

• Integral of absolute value of error or error squared
• Integral of time x absolute value of error or error squared
• Actuator effort (peak and/or rms)
• Stochastic metrics (eg error/spectral shaping).
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Step response performance measures

Dorf – Modern Control Systems
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Statistical control options

• The control objective of an orbit feedback system is to minimize the rms orbit 
motion (most likely weighted as a function of frequency).

• Options for accomplishing objective of minimizing rms over wide band
– Use conventional regulator (eg PID), and tune empirically to minimize rms 

motion over selected frequency band
– Include measured or modeled orbit spectrum as a cost function in the 

regulator design (‘optimal control’ techniques).
– Design closed loop response as a noise shaping filter (requires knowledge 

of both actual orbit motion spectrum and desired spectrum)
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Effect of PID regulator tuning on closed-loop step response

Low integral gain

High integral gain

• Which is better: fast rise-time with overshoot; or slower rise-time with no 
overshoot?
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Effect of PID regulator tuning on rms orbit motion

High integral gain

Low integral gain

Low integral gain

High integral gain
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Stochastic vs deterministic orbit motion

• The orbit motion spectrum contains both deterministic and stochastic (random) 
time-domain components.

– We can correct deterministic components within the correction bandwidth.
– we cannot change the rms of the stochastic component, but we can shape 

its frequency spectrum.

• Assuming stationary Gaussian statistics, the orbit motion spectrum can be 
modeled as a spectrally-shaped white noise source

White noise

wS[k]wN[k] G(z)

Noise-
shaping filter
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Closed-loop verification of model for S4A:V3 corrector
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Orbit feedback system with noise model

Hc(z) x[k]

Accelerator
response

R

HR(z)
cD[k]

c[k]

cE[k-1]
Rinv

Inverse response
matrix

Corrector
dynamics

Regulator
dynamics

Beam
position

White
noise

Corrector
field

+

Corrector
drive

wS[k]

wN[k]

G(z) Spectral
shaping
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Orbit feedback system re-drawn as a noise-shaping filter

Hc(z)

x[k]

R

HR(z)

Rinv

Closed-loop
spectrum

+wS[k]

Open-loop
spectrum

White noise

wS[k]wN[k] G(z)

Noise-
shaping filter
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USING SEPARATE DC AND AC SYSTEMS
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Using separate DC and AC systems

• Slow correction system (up to 25Hz update rate)
– Many bpms and correctors to get good DC correction.
– Include polynomial correction for bpm pin-cushions
– Include bpm outlier removal

• Fast correction system (1500Hz)
– Fewer bpms and correctors to reduce computational load.
– Wider bandwidth due to faster sampling rate.
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DC and AC correction system frequency responses

• The two systems will fight if there is too much frequency overlap.

DC correction system
roll-off

AC correction system
roll-off

f

Overlap

Closed-loop
magnitude response

AC correction system
high-pass filter
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Block diagram of combined DC and AC systems
(no overlap compensation)

x[k]

wS[k]

Beam
position

Beam
disturbance

+Hc(z)

Accelerator
response

R

HR(z)
cD[k]

c[k]

cE[k-1]
Rinv

Inverse response
matrix

Corrector
dynamics

Regulator
dynamics

Corrector
field

Hc(z)

Accelerator
response

R

HR(z)
cD[k]

c[k]

cE[k-1]
Rinv

Inverse response
matrix

Corrector
dynamics

Regulator
dynamics

Corrector
field

DC correction System
(<25 updates/sec)

AC correction System
(1500 updates/sec)

• Both systems attempt to correct the same orbit motion within the frequency 
band where they are both effective.
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Block diagram of combined DC and AC systems
(with overlap compensation)

x[k]

wS[k]

Beam
position

Beam
disturbance

+Hc(z)

Accelerator
response

R

HR(z)
cD[k] cE[k-1]

Rinv

Inverse response
matrix

Corrector
dynamics

Regulator
dynamics

Hc(z)

Accelerator
response

R

HR(z)
cD[k]

c[k]

cE[k-1]
Rinv

Inverse response
matrix

Corrector
dynamics

Regulator
dynamics

DC correction System
(<25 updates/sec)

AC correction System
(1500 updates/sec)

Transfer
matrix

-

Ht(z)

• Overlap compensation prevents fighting by introducing a correction factor into 
one system derived from the action of the other system. Since the two systems 
use different correctors & bpms and have different dynamics, mappings are 
required between the two.

• A scheme similar to this is in use at the APS.
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IMPACT OF DIFFERENT CORRECTOR DYNAMICS 
ON ORBIT CORRECTION PERFORMANCE
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Impact of different corrector dynamics on control loop

• To this point, we have modeled the system assuming that all corrector dynamics 
are identical (or at least close).

• Each corrector control loop is decoupled from all others, therefore each can be 
independently controlled and stabilized without regard to other loops.

• To first order, the correction algorithm requires the corrector (and bpm) 
dynamics to be identical.

• What happens if they are not?
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Orbit feedback model revisited
(corrector drive to corrector error)

Corrector error in terms of corrector drive…

Hc(z) x[k]

Accelerator
response

R

HR(z)
cD[k]

c[k]

w[k]

cE[k-1]
Rinv

Inverse response
matrix

Corrector
dynamics

Regulator
dynamics

Beam
position

Beam
disturbance

Corrector
field

+

Corrector
drive

)()()( zCzHRRzC DCinvE ⋅⋅⋅=
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Corrector regulator loop decoupling

• Expand to show diagonal nature of HC(z)
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But to first order, 
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• Therefore the loops are decoupled, irrespective of individual corrector dynamics

So…
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Orbit feedback model revisited
(orbit correction to orbit error)

Orbit correction in terms of orbit error…

Hc(z) x[k]

Accelerator
response

R

HR(z)
cD[k]

c[k]

w[k]

cE[k-1]
Rinv

Inverse response
matrix

Corrector
dynamics

Regulator
dynamics

Beam
position

Beam
disturbance

Corrector
field

+

Corrector
drive

)()()( zXRzHRzXz inv ⋅⋅⋅=⋅
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Orbit correction to orbit error

• Expand to show diagonal nature of HC(z)
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Simplest case, no dynamics, and unity gain per corrector channel…

so
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Orbit correction to orbit error with different regulator gains

• Different regulator gains…
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So, in this case IRzHR inv ≠⋅⋅ )(

• This means that the correction algorithm is rendered partially ineffective when 
each corrector channel has different dynamics.

• Seen another way, the orbit error is decomposed into M error vectors (one for 
each of M correctors). Only if all error vectors are treated identically does the 
correction algorithm hold.
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Modeled vertical beam motion for various configurations
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An orbit feedback configuration dilemma

• The APS accelerator contains 317 correctors per plane
– 38 correctors have ‘fast’ response (100’s Hz)
– 279 correctors have varying degrees of ‘slow’ response (10’s Hz or worse).

• Option #1
– Use only the 38 fast correctors.
– Algorithm will hold throughout the closed loop bandwidth.

• Option #2
– Use 38 fast correctors + additional slow correctors (eg 117 total)
– Algorithm will break down at above the cut-off frequency of the slow 

correctors.
– DC orbit correction is improved over 38-corrector case.

Which is better?


