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Outline

» Application of filters to beam stability

» Ideal frequency-selective filter characteristics
« Characteristics of common analog filters

» Anti-alias filters

« Averaging as a filter

 FIR digital filters

* |IR digital filters
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APPLICATIONS OF FILTERS TO BEAM STABILITY
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Applications of filters to beam stability
» Anti-alias filters prior to A/D conversion
— Stringent requirements not to contaminate signals as they are digitized.
« Anti-alias filters prior to sample-rate conversion (down-sampling)
— Similar stringent requirements to anti-alias filters for A/D conversion.
* Implementation of digital regulator functions.
* Implementation of signal processing algorithms (eg measurement of beam
motion within specified frequency bands).
Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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Analog front-end of APS x-ray and Narrowband rf bpms
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Real-time RMS orbit motion calculations

 New real-time measurement of the APS orbit motion
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PROPERTIES OF COMMON ANALOG FILTERS

Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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 When arealizable impulse response is generated, the frequency response of
the resulting filter is compromised from the ideal response

— The passband may not be flat

— There is a finite width to the transition from passband to stopband
— The stopband will not have infinite attenuation

— The phase response will not be zero for all frequencies.

Frequency Response of Practical Filters
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Pass band ansitio Stop band
band
1+dp yd
1-dp — - _\_ AR __— ldeal response
- |
I
I
I
I
ds -+ %ZW
0 | > W
0 Wh Ws
Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel

8



6/14/2003

Magnitude Response of Common Analog Filter Types

« The following are all 4th-order analog lowpass filters with cutoff at 1Hz
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Basic Properties of Common Analog Filter Types

Passband Stopband Key benefits
-20N Maximally flat in
Butterworth Flattest dB/decade | passband
Chebyshev Equiriople -20N Faster initial roll-off
Typel quiripp dB/decade | than Butterworth
Chebyshev Flat Equiriople Faster roll-off than
Typell quiripp Butterworth
Elliptic Equiripple | Equiripple Elsrtlrgowest transition
: -20N Linear-phasein
Bessel Monotonic dB/decade | passband

Beam Stability at Synchrotron Light Sources
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Specifying Analog Filters with |H_(jw)|?

« Consider the following Laplace transfer function

1
Ha(s) =
a(9) axe2 +hxs+c

 The magnitude response is computed by setting s = jw and computing the
magnitude of the resulting expression

(W)= L

ax( jW)? +bx(jW) +c

 However, the magnitude response can also be computed from the following
product

|Ha(jW) |2: Ha(jW)xHa(' JW)
_ 1 o 1
a(jW)? +b(jW) +c a(- W) +b(- jW) +c
) 1
T a2W + (b2 + 2ac)WP + 2

 The magnitude-squared of any Laplace transfer function can be computed from
this product which always results in a rational polynomial of powers of w?

Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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Transfer Functions of Lowpass Analog Filters -
« Commonly, the transfer functions of analog lowpass filters are of the form
2 1
Ha(9)" =
TV
* Where P(s) is a polynomial of order N in s the form of which depends on the
chosen filter type.
 Examples for P(s) are:
— Butterworth filters have Py(s) = sN
— Chebyshev and Elliptical filters use Chebyshev polynomials of order N.
Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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« The magnitude-squared response of an N order Butterworth filter is given by

Butterworth Filters (cont)

1
1+ (W/W,)2N

Ho(jW)|* =

» The poles of the Butterworth magnitude-squared response all lie on a circle of
unit radius in Laplace-space.
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Butterworth Filters

« Butterworth filters are maximally-flat.

« There is no ripple in either the passband or stopband.

« The magnitude-response of an N-order filter rolls off at 20N dB/decade.
e The stopband phase delay of an N"-order filter is -90N degrees.

» A Butterworth filter can be completely described by its -3dB cutoff frequency W,
and its order N.

Linear Magnitude, Linear Frequency Magnitude in dB, Log Frequency
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Transfer Functions of Normalized Butterworth Lowpass ¢
Filters

Filter Coefficientsfor each power of s

Order s’ S S s s’ s s s
1 1 1
2 1 14142 1
3 1 2 2 1
4 1 | 26131 | 34142 [ 26131 | 1
5 1 3236152361 | 52361 | 32361 | 1
6 1 |38637 | 74641 | 91416 | 74641 | 38637 | 1
7 1 | 44940 | 10.0978 | 14.5018 | 14.5918 | 10.0978 | 4.4940 | 1
8 5.1258 | 13.1371 | 21.8462 | 25.6884 | 21.8462 | 13.1371 | 51258 | 1

» All these filters are normalized (ie their -3dB cutoff frequency is 1rad/s).

* For example, the 4th order Butterworth lowpass filter is described by the transfer
function

1

H(s) =
) s* +2.6131s® +3.4142<% +2.6131s +1

Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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Butterworth Lowpass Filter Design Example ol
 Determine the lowest order of a Butterworth filter that has a -3dB cutoff at
1kHz, and minimum attenuation of 40dB at 5kHz.
Solution
« We'll use the following expression for a Butterworth filter to compute the
order. 1 ,
=Ha(IW)
1+(W/wW,)2N Ha(IW)
Substituting known values,
1 A2
5 — 0.01
1+ (2p >6000/2000p)
_1_ loge(10°- 1)
2 log.(2p »6000/2000p )
N=286® 3
The normalized 3rd-order Butterworth filter is given by
1 1
H(s) = = / _ \/ _ \
®) $$+25%+2s+1 (s+1)s+el®/3fs+e 1%/3)
Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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ANTI-ALIAS FILTER DESIGN

Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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Anti-Alias Filter Considerations

« Maintain accuracy commensurate with ADC resolution
— Reduce alias contamination below quantization noise of ADC
— Keep filter pass-band attenuation within ADC resolution
o Parameters to adjust
— Sample Frequency
— Filter Type
— Filter cutoff frequency
— Filter Order
* Other factors

— Filter phase shift may be important consideration in stability of feedback
applications

— Filter pass band undulations may be undesirable in high resolution
measurement applications

* No pass band undulations - Butterworth, Bessel, Chebychev |
« Pass undulations - Chebychev I, Eliptical
— Filter roll-off affects amplitude of frequencies near cutoff

Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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Beam Stability at Synchrotron Light Sources

Anti-Alias Filter Considerations

Relation between sampling frequency and desired attenuation
For a Butterworth Filter

H(w) =

1
1+(f /)" gl+(f/ )"
Difference in dB between passband frequency f, and any frequency f,

2Nu
el+? fr a %f OZNU éf U
1OIogloe—°ﬂ3»1OIog a7 = 20N log,, %
el+9 fo l:l Pg u @ pg

e € cg 0

We select the lowest aliased frequency to fall atf &g f- T

. é
H (jw)| =10log,,&

(-] C\ -

therefore:

e
dB Attenuation » 20N |og10é:—s 14
e'r 0
The above equation relates desired attenuation to Butterworth Filter order and
the ratio of the sampling frequency to the pass band frequency

. . f .
The following table evaluates the above expression )65 ratios 3-10
3 4 5 6 7 8 9 10
6.02N | 954N | 12.04N | 13.98N [ 1556N | 169N | 18.06N | 20N

USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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Anti-Alias Filter Considerations

Aliased frequency is greater Q.o

Beam Stability at Synchrotron Light Sources

Signal —
7
Salias E
— fisaiased tof,
4 fs_fb
4 Qnoise < >
f, /2 f f

USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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Anti-Alias Filter Considerations

Y

Qnoise

Signal —
Filter ———

Beam Stability at Synchrotron Light Sources
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Anti-Alias Filter Considerations

Signal —
Filter —~
Filtered Signal ———-

Ve ’ ' AN .
) o\ f, f/2 f L f
e N
. / \ .
7 N .
7 N )
Aliased frequency now at or below Qs
Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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Measured Filter Performance -
Bandwidth (3 dB) 165 Hz
Attenuation (at 800 Hz) 98 dB
Spurious Free Dynamic
Range 90 dB
(45 Hz Full-Scale Input)
Noise and Pickup -115 dB
Adjacent Channel Crosstalk
-116 dB
(At 105 Hz)
Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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Filter Frequency Response (Average = 32)
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Cross Talk on Channel #1

x=1085 HE
Ya=—-89, an =HBVrms
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Digitizer performance trade-offs

« Getting even 16-bit performance is not as simple as just using a 16-bit digitizer!

6

8

10

Relatively Easy

12

14 frrrrmr e SRS ;

16
Specialized

18 | Knowledge

20 N

Effective Number of Bits

22

Difficult to
Impossible

1 10 100 1K 10K 100K 1M 10M 100M 1G

Signal bandwidth (Hz)

Ref: “Practical Limits of Analog-to-Digital Conversion” (Jerry Horn)
USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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FINITE IMPULSE RESPONSE (FIR) DIGITAL FILTERS

Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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FIR Filter Design by Impulse Response Truncation (IRT)

* Inthe IRT method of designing an FIR filter, we take the impulse response of
the idealized impulse response, truncate it to (say) 2M+1 samples, and shift it by
M samples to make the impulse response causal.

Non-causal doubly-infinite ideal impulse response

®
o|®

_e%% - 9?0 Qll J - % lu* %% o %

\j

Truncated & shifted causal impulse response

1% T T 10N
0 J.Ml iw.
Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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FIR Filter Design Example Using IRT

Design a bandpass filter with band edges at 0.3p and 0.56p and an impulse
response of length 31.

Solution

« The frequency response must be specified from 0O to 2p, in order to do the
inverse Fourier transform.

 The magnitude of H(F) will be unity from 0.3p to 0.56p and from 1.44p to 1.7p
and zero elsewhere, as shown below

1

IH()]

: —» f
0 0.3p 056p P 1.44p 1.7p 2P

Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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FIR Filter Design

Example by IRT (cont)

1
H(f
First, we’ll compute the ideal impulse response HO
. } = f
h[n] = (‘éLH(f)eJWdf 0 0.3p 056ppP 1.44p 1.7p§
=g, edf +Q " e f
— 1] jwn 0.56 wn
in © ] ]i44
_.i-ejO.SGn _ ejn0.3n +ej1.7n _ ej1.44n:|
n-
__i'ejo.56n _el03n 4 03 _ o j0.56n]
n-
_ O_565in(0.56n) ] O_BSi n(0.3n)
0.56n 0.3n

Beam Stability at Synchrotron Light Sources

USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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FIR Filter Design Example by IRT (cont)

Truncate the sequence to 31 points by defining that the sequence be zero
outside the range -15 £ n £ 15.

The sequence is then made causal by shifting the truncated impulse response to
the right by 15 points.

The final impulse response and the corresponding frequency response are
shown below

31-point Impulse Response Frequency Response of 31-point Filter
Actual Response
0.2 Desired response
. .l
0.1 P P 8 0.8f
. f il f . n € o6l
062 L 4@ 15 65 Ld %bgy, §

0.1 0.4r
° ° 0.2f

-0.2 5 5 0 L ' , B

02 N8f4rr?alized Fre8[16epncy 0% P

sin(0.56n sin(0.3n
hn] =056 370-56N) _ 4 55in(0-3n)
0.56n 0.3n
Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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Frequency Response vs Length of Truncated Impulse

Response

*  More points gives a better approximation to the desired (ideal) frequency response

31 points

.

N\
o 0.Ll‘\‘l)orm.’:llized Fre(():iijpency
101 points
N\ /\

AV

0.2p

v

0.6p

0.8p

Normalized Frequency

0.4p 0.6p
Normalized Frequency

201 points

0.2p

AR
vvE

A
ALY

YOS

0.4p 0.6p
Normalized Frequency

...but there is no change in the amplitude of the passband or
stopband ripple.

Beam Stability at Synchrotron Light Sources

USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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* Nonlinear-phase filters (eg a simple IIR lowpass filter) introduce distortion because
difference frequency components depart from the filter at different times.

Simple IR Filter (a=0.75) 8-Point FIR Averager
(Non-linear Phase) (Linear Phase)

I nput I nput

 Whether it is better to have phase distortion or a time-delay will depend on the
application (eg in feedback/control, the time-delay can significantly reduce
bandwidth).

Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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Gibbs Effect and the Impulse Response Truncation Method )

» The truncation process is in effect multiplication of the ideal impulse response by
a rectangular window (c.f. windowing in the DFT).

h[N] = Ngea [N]>W{N]

* In the frequency domain, this means the actual frequency response is the
convolution of the ideal response and the frequency response of the window

function
HIw] = Hideal [W]* W[w]
Hideal(f)
] - \ H(f)
I
W (f) /
Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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« The same window functions discussed in relation to the DFT can be used in
place of the rectangular window (truncation).

 Windows used for FIR filter design include Hann, Hamming, and Blackman.
* Properties of filters designed with these windows are shown below

FIR Filter Design by Windowing

Window Main-lobe Transition d Passband Stopband
width (Du.) | width (Dw) Ripple (dB) | Ripple (dB)
Rectangular | 4p/(2M+1) | 0.92p/M | 0.09 0.75 -21
Hanning 8p/(2M+1) | 3.11p/M |0.0063| 0.055 -44
Hamming 8p/(2M+1) | 3.32p/M | 0.0022 0.019 -53
Blackman | 12p/(2M+1) | 5.56p/M | 0.0002| 0.0017 74
Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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« Magnitude responses of bandpass filters with length 101 for different window
functions (band edges at 0.15Fs and 0.28Fs)

6/14/2003

Effect of Windowing on Bandpass Filter Example

Rectangular Window Hamming Window

oF R o
10 b 10
-20 B -20f
-30+ E -30+
-40
-50
-60n
Magritude| (dB}
-70p
-80H H
90} ' i
H
100 I I I I I I I I _ 1 , . . . . . I ( i ]
o 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 [o] 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Normalized Frequency Normalized Frequency
ol - T s T T ol T T - T T
10+ / \ 4 10+
20 20
30 30
-40+
50
-60+
Magriude!| (dB)
70
_80-
100

i
i . . . . . . .
.05 0.1 0.15 0.2 0.25 0.3 0. 0.15 0.2 0.25 0.3

Normalized Frequency

Beam Stability at Synchrotron Light Sources

Normalized Frequency

USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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Design Example Using the Window Method

Design a lowpass filter with passband from DC to 0.15Fs, at least 50dB attenuation
above 0.2Fs, and passband ripple of less than 0.1dB.

* Any of the windows (except rectangular) will meet the passband ripple spec, but
only the Hamming or Blackman will meet the stopband spec. Let’s pick the
Hamming window.

« The transition band is 0.05Fs wide (ie Dw = 0.1p), so

3';2'0 304p  giving M3 332

« We'll pick a filter length of 69, giving M = 34.
* Next compute the ideal filter coefficients and the window coefficients, where

1 2f.. n=0 .
| . N
=, Sipxon o w[n] :O.54+O.460053822|3 +19 - MEnEM
{75 xipon © o
In this example fc = @ =0.175
Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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Design Example Using the Window Method (cont) -
|deal Impulse Response Window Function Windowed Impulse Response

0.15
0.1

0.05

Mo%%g%owwf?%ﬁ j L FTT%&?Tm@%o%o% 22 m m O'OZ mﬂ%@mﬁh j L ETTM‘W%WW
o I b [ . S

10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

o

Magnitude Response Passband Transition Region
% 10 a . a 10
\9—; , ‘ S = o —
\ 0.05 T
%_ o \ % % 10
-20 1 -20
30 \ ya h ~"\ 30
% -40 ‘ g'g ° / L | Sig_m \
° () | D
E 50 N °© “ © 50
= -0 ‘\\\mM g 0.05 | g -60 - ~
g T \\“m\/u\w\mw A 5 \ & VEY
= w0 [l “ LU f\mﬂ\‘s‘\c”ﬂwﬂ\f & \ Q_ao \/ \
RN RR AT = | = “
Normalizéd FreqUency (izgampl-i ng raté) Normalized Frequency (1=sampling rate) Normalized Frequency (1=mpling raté)
Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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Optimal Design Methods for FIR Filters

» Design methods discussed so far generate filters that are sub-optimal because
— the resulting passband and stopband ripple amplitudes are the same.

— the passband and stopband ripple amplitudes are not constant, but decay
as we move away from the discontinuities.

« The length of the filter to meet a given spec can be reduced if

— we allow different passband and stopband ripple amplitudes.

— we make the ripple magnitude constant in the passband and stopband.
 The most commonly used algorithm is the Parks-McClellan algorithm.

Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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Parks-McClellan Algorithm

* The objective is to minimize the maximum error across the filter bands.
« The algorithm makes use of the Remez Exchange optimization.
« The algorithm is implemented in Matlab with the functions remezord and remez.

Design Approach

» Separate normalized frequency-space into regions that define the desired
response. There should be a ‘don’t care’ region between each ‘do care’ region.

» Specify a weighting factor for each region.
« Use Matlab to estimate the filter order, and then to compute the impulse

response.

Ex. o 104 Region 2
E S S
Y 3 3
S 5 [ [0
= o 3 S
- P o o
% o = £ ! Region 3
© Regionl | & a
Qa

0 0.2 0.4 0.6 0.8 1.0
Frequency (Normalized to Nyquist)
Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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Optimal Least-Squares Filter Design

» Consider a situation where a signal x[n] is to be filtered in such a way that the
output sequence is as close as possible to a desired signal d[n]

d[n]

N en]=d[n]- & f[k]>Xn- K]

> g A efn k

» The least-squares solution involves taking the derivative of the mean-squared
error with respect to each coefficient and setting the result to zero.

 The result is a set of Normal Equations that can be solved to find the optimum
FIR filter coefficients from the input auto-correlation and input-demand cross-
correlation functions.

& (i - 1) 1(1) = ()
J

where 1, (j-i)=E{Xn- j>xIn- i} and rg(j)=E{d[n]>xn- |}

Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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AVERAGING AS A FILTER

Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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Simple Lowpass FIR Digital Filter

 The simplest FIR filter is a 2-point moving average, with transfer function

_Y(2) _1 1
H,(2) = X(2) =51+z7)
Theldifference equation
'S y[n] = 0.55(x{n] + x[n - 1])

Its frequency response is given by

Hlp(ejw) :%(1+e' jwy :%e' W/2(IWI2 | o W2y g jW/ZCOS%

Magnitude Response Phase Response
—— =<
— _ \\\
\\ \‘\
- \ \\\\
o N
AN ™~
N -45 =
05 . \\
\\\\
Ma gnitugle Res pnse \\\ Phase Res pnse (e g) . -
\\\ \\\\\
o \\ -90 S
[o] pl4 p/2 3p/4 P 0 pl4 p/2 3p/4 P
Normalized Frequency Normalized Frequency
Beam Stab|||ty a Synchrotron L|ght Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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4-Point FIR Averager

* A 4-point moving average, has the transfer function

Hp(@) = ) =4 2 4224 27)

The difference equation is
y[n] =0.25:(x[n] + X[n- 1]+ x[n- 2]+ X[n- 3])

Its frequency response is given
by

AN

. o A W
H o (e™) =& 132 Eecosw +cos

& 2H
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Averager Block Diagram (DSP Viewpoint)

X[n-1] X[n-2] X[n-3]
1-sample 1-sample 1-sample
X[n] delay delay delay
1/4
y[n]

» This can be described with the following difference equation
y[n] =0.255(x[n] + x[n- 1+ x[n- 2]+ x[n- 3])

* Or with the following z-transform transfer function

@YD Ltz s
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Averagers with Different Number of Points

Attenuation (dB)
5

20+
—— 4-point
25t — 16-point
— 32-point “
10_3 10_2 10'1 100
Normalized Frequency
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Attenuation (dB)

32-Tap Averager vs 32-Tap FIR Filter

level of filtering

10+

Beam Stability at Synchrotron Light Sources

A boxcar averager is simple to implement, but does not provide the optimum

Averager Coefficients

Averager

FIR Filter

|

FIR Filter Coefficients

10°

10

-1

Normalized Frequency

10
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Using averaging to get more effective resolution -

» Single-sample (turn-by-turn) resolution of APS bpms is nominally 12-bits.

* Residual noise in the analog front-end provides an opportunity to get more
resolution by averaging data samples

— Assuming Gaussian noise, we improve the resolution by a factor 2 (one
additional bit) by averaging four samples.

— The APS bpm processing system uses a 1024-sample boxcar averager to
Improve the resolution by a factor 32, giving effectively 17-bit resolution.

— In principle we can increase the resolution ad infinitum, provided we are
willing to wait long enough to collect the requisite number of samples.

When does this breakdown?

« Averaging will always work when dealing with Gaussian noise, but at some
point, other non-Gaussian processes start to dominate, limiting the performance

— Front-end amplifier non-linearity.

— Digitizer quantization errors (integral and differential non-linearity).
— Word-length effects in the digital processing circuits.

— Drift.

» Usually digitizers with 12-bit performance do not have 17-bit systematics.
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INFINITE IMPULSE REPSONSE (IIR) DIGITAL FILTERS
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lIR Digital Filter Design Methods

« Generate digital filter from analog prototype
— generate lowpass normalized analog prototype filter.

— convert lowpass prototype to other form if necessary (eg highpass,
bandpass).

— convert analog filter to digital domain
« impulse invariance.
 bilinear transform.
« Generate digital filter directly in digital domain
— least squares design in frequency domain.
— least squares fitting of desired discrete-time impulse response.

Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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Simple Lowpass IIR Digital Filter

« Afirst-order lowpass IIR digital filter has the transfer function

Y(z) _1-a 1+z?
X(2) 2 1-axz?

Hip(2) = al<1

The difference equation is
4
yim = &2l +x(n- 1)+a oin- 1
o}

« This is the discrete-time equivalent of an electronic R-C circuit

Magnitude Response Phase Response

0
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lIR Digital Filter Design by Impulse Invariance Method -

« The ideais to design a digital filter whose impulse response is identical to the
sampled version of the impulse response of the analog filter prototype.

» Given the Laplace transfer function of an analog prototype filter H_(s), then the
impulse response is given by

h(t) = L {H,(9)}
« The impulse response of the digital filter is h,(t) sampled at periodic intervals T
gln]=h,(nT)  n=0123..

* And the z-transform of the digital filter is given by

G(2) =Z{g[n]} = Z{h,(nT)}

{ H(HTTT%O%MMMW

ha() =L HHa(9)} g[n] = hy(nT)
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Impulse-Invariance Mapping

« Mapping of the s-plane poles and zeros to the z-plane is achieved by the
transformation

2= esT
For s = s+jW, we get 2=¢5T =g +IWT — STIWT
jw Im z
\
‘ P
| T
\
| -
| P _—
\
\
) P
l T
|
s-plane z-plane

» The entire strip on the s-plane between -p/2 and +p/2 is mapped into the unit
circle of the z-plane.

» Because of the periodicity of the mapping, the strip on the s-plane between p/2
and 3p/2 (and all other similar strips) are also mapped into the unit circle of the

z-plane.
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Using the Impulse-Invariance Mapping

Consider a simple 1-pole (stable) analog filter described by the Laplace transform

A

s+a
The continuous-time impulse response is given by

H(s) =

h(t) = Ae’®*

The discrete-time impulse response is obtained by sampling the h(t) at time
intervals T

g[n] =h(nT) = Ae’ @™ = A(e'a’z‘—)n
The closed-form expression for the z-transform of g[n] is therefore

A
-aq -1

G(2) =1+e
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Impulse Invariance Mapping of 1st and 2nd Order Poles ~

« So, to generate the z-transform from the Laplace transform,

" A
wit

we replace

 There are two forms of the second-order transfer functions, and without proof,
are mapped as follows

I ze °Tdnl T
Ha(s) = 7 2 ® G[7] = 2 - bT - 2bT
(s+b)“+lI z°-2ze " cosl T+e
2 - bT
s+b z°-ze "' cosl T
Hy(8) = 2 2® G,l7] = 2 - bT - 2bT
(s+b)“ +I z°-2ze " cosl T +e
Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel

55



e

6/14/2003 >

J
Impulse-Invariance Numerical Example

» Consider the following 2-pole filter that is to be converted to the discrete-domain
at a sample rate of 20Hz.

1 242
*++/2s+1 (s++/2/2)*+1/2

H(s) =

* We will use the first form of the 2nd-order mapping,

I ze PTaenl T
2 2® Gl[z]= 2 - bT -2
(s+b)“+lI z°-2ze " cosl T +e

Hy(s) = =

So that _
G[Z] =/2 % e Menl T where | _1/\/\/é
2%- 22 PT cos| T +e 27T b =1/~2
T=1/20

0.068247°

Givin G:[z] =
J ilZ 7 - 1.92937+0.9317
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» Comparisons of the original continuous-time and the discrete-time filters are
shown below.

Impulse-Invariance Numerical Example (cont)

Bode Diagrams
Impulse Responses

0 =S
0.6 . . : : \\
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Aliasing with the Impulse-Invariance Transformation

* Since the mapping is not unique, there is aliasing of the original analog
frequency response above half the sampling frequency.

« The figures show the magnitude response of the same 2-pole Butterworth filter
over a frequency range up to twice the sampling frequency

Magnitude Response (L og Frequency) Magnitude Response (Linear Frequency)

0 0y
N L x
-10+ AN i | b -104
\\ ﬁ; i "‘,
20 . Discrete - 20}
-30 1‘3: E -30+ \‘:\
401 -40+ \\\
ol ol Discrete
-601 -60F AN
Ma qiitude @B) Magitude @8) >~ T
-7or -70}
.80} . -80} h i
Continuous . _
-90F <o Continuous e
-100 ' ' -100 : ! ! ; : ; ;
10° 10* 10° 10t 102 0 5 10 15 20 25 30 35 40
Frequency (Hz) Frequency (Hz)
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lIR Filter Design using the Bilinear Transformation

» Unlike the impulse-invariance transformation, the bilinear transformation maps
the entire left-half of the s-plane into the unit circle.

« Because there is a one-to-one correspondence between points on the s-plane
and points on the z-plane, there is no aliasing of the filter response.

jw Imz

iy

Re z

. £
\

W

s-plane z-plane

* The bilinear transformation is given by

q_ ;10
s® C¥ N where C is a constant to be
81+ Z g found
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S; Al Jﬂr ”‘r‘n A e T =

« The mapping from analog frequency Wto discrete-time frequency w is

W=C ><tanﬂ where w = 2P >Fc and C is a mapping
2 Fe constant

 The mapping is shown graphically below
w

ﬁ W=0® w=0
: W

P P W=¥ ® w=p

p

 The mapping constant allows us to adjust the scaling so we can get exact
correspondence at one additional frequency. A low frequency approximation

IS
c=2-,
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I
-

BLT Example

Design a digital IIR filter that implements the analog lowpass filter described by the
following normalized Laplace transfer function and a sampling rate of 20Hz. Use the
low frequency approximation of the bilinear transformation.

Hip(s) =

2 +425+1

* We will use the following mapping to get good low frequency approximation

_ -16 _ -16
s® Z%ﬂ- Z-1i:40>§ Z-1i
T gl+7 74 1+72 " 4

» Plugging this into the Laplace transfer function gives

_ 1 _0.0006033x1+ 2z 1 +772)
Gonl2) = 162 15 1- 1.92937° 1 +0.93757 2
x -7 -0 x -7-0 - L. .
20022 L 28204 % 2
1+7 " 1+7 "
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* The magnitude responses for the original continuous-time filter and the discrete-time filters
from both impulse invariance and bilinear transformation are show below

Comparison with Impulse Invariance Method

-10+

20

Impulse-invariance

-30+

-40}

Magidde @B)

-60

70} Bilinear transform —

sl . A\

10™ 10° 10
Frequency (Hz)

* For low frequencies, the impulse invariance method gives an exact match with
the continuous-time filter.

» The bilinear transformation generates a zero (null) response at the Nyquist
frequency, whereas the impulse invariance aliases the original response.

» Both discrete-time filters have alias responses about multiples of the sampling
rate.
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BLT Bandpass Example with Pre-warping

Design a digital bandpass filter given the following Laplace transfer function that has
a passband from 100rad/s to 200rad/s. The sample rate should be 100Hz. Use the
bilinear transformation such that the upper band edge matches exactly.

4s°
s* +2.8284<% +10s? +8.4853s+ 9

pr(S) =

» First we have to determine the value of the mapping constant C in the

transformation W W
W= C ><tan§ ® C =W>C0t5

 The value of wis determined from the sampling rate and desired matching

frequency . 200

w=2p—=t= =0.2
F. 1000

 The analog frequency we want to match is 200rad/s so, we can compute C as

follows
C= Wmot% =200 >coto;22 =1993.3
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BLT Bandpass Example with Pre-warping (cont)

 We can now apply the following mapping to our analog transfer function

1- 2%
1+7

S® 1993.3%

Plugging this mapping into the Laplace transfer function gives us the Z

transform

& 1- 716
4€1993.3% %
1+7 74

Gppl Z
wl2l= 2104 2'163 2102 1- 210
é1993 3><7 +2. 8284%1993 3><7 +10 1993 3><7 +8.485 1993 3><7 +9

1+7 15 1+z15 1+715 1+715

After a lot of manipulation, we get the discrete-time transfer function

0.07638+3.386X0™° z1-0.15282% + 7.772:07° 23 + 0.07638z*
1+0.2962z 1 +1.1042° % +0.178272 ° + 0.3862

Gbp[z] =
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BLT Bandpass Example with Pre-warping (cont) o

» The resulting frequency response is plotted in the figure, together with the
corresponding analog filter response and the BLT discrete-time filter response
without pre-warping.

BLT w/o pre-war .
P P Match-point
or \ /
Va
/
Andog filter
5+ / .
10} f
Ma qitdde @B) /
/
15 7
// BLT w/ prewarp
,y \
-20 1 1 1 1 1 | 1 1
5 10 15 20 25 30 35 40 45 50
Frequency (Hz)
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» ﬂ‘r H‘EW/”,
Digital PID Regulator )

The most common feedback regulator is the PID regulator, which has the Laplace
transfer function

K.
Hpid (5) = Kp +—-+sKd

Where Kp, Ki, Kd are the gain constants for the proportional, integral, and
derivative terms, respectively.

A digital PID can be generated from this using either BLT or impulse invariance

mapping.
* In the case of the impulse invariance method, we simply use the mapping
1
sS®
1- 271

This results in the discrete-time PID transfer function
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Digital PID Regulator (cont)

« Forthe BLT, with a good low frequency approximation, we use the mapping

2 &. 710
s® =X%———_"  where T is the sampling
T 81+ Z g interval

 This results in the discrete-time PID transfer function
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Comparison of FIR and IIR Filters

Characteristic IR Filters FIR Filters
Fllte_r _ord(_ar for given L owest Highest
specification
Number of L east Most
multiplications
Memory requirements L east Most
Stability Must be designed in Guaranteed
Linear phase Not possible ves '.f 'mpulse response

IS symmetrical
Can simulate analog Yes No

filters

Suppprts adaptive Y es, but n(_)n-llnear Yes, and linear solution
filtering solution

Sensitivity to coefficient | Can be high — depends on Generallv verv low
quantization realization y very

Difficulty in analyzing
finite wordlength effects

More difficult

Easier
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