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Essentials of Accelerator Physics

Single particle horizontal displacement relative to “the” equilibrium closed orbit:
X(s) = [Wy By(s)]""% cos[Wi(s) - Wyl

Single particle vertical displacement relative to “the” equilibrium closed orbit:

y(s) = [Wy By(s)]"% cos[wy(s) - Wo,]

Displacement of the equilibrium closed orbit for an off-energy particle:

AXg(s) = n(s) At . n(s) &
Eq
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Double Bend Achromat Lattice - also known as Chasman-Green Lattice
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Essentials of Accelerator Physics

Twiss Parameters a(s) , [Xs) , Y(s)

1+ 0(2(8)

B(s)

a(s) =-P(s)/ 2 ¥(s) =

B(s+L) = B(s)

All Twiss parameters are periodic functions: a(s+L) = a(s)
y(s+L) = y(s)

L = Ring “Circumference” = ¢ T,

Courant-Snyder Invariant® W, = y,(s) xz(s) + 2 a,(s) xX(s) X'(s) + By(s) x’(s)2
= [ X%+ (o x + B X)? 1/ By

* E.Courant, H.S. Snyder, Annals of Physics 3, 1-48 (1958)
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Particle Beam Phase Space
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v, ¥, (rad)

Beam Stability at

Horizontal, Vertical Betatron Phases
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Betatron Tunes

The betatron tune v is the betatron phase advance in one circuit around the

machine, divided by 2 m,i.e. it is the number of betatron wavelengths once
around the machine:

s+L

270 = U(sth) - (o) = [y
S

s+L
2TV, = Yy(stl) - Yy (s) = By%s)ds
S
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Normalized Electron Phase Space at Fixed Location s

Oy X + By X’

/s A

W,= [ X2+ (ay x + By X)% 1/ By

Turn 2

dBx(s) _ 2 a, = 0 at symmetry points -> phase space ellipse is upright, so
ds
Oy X + By X’
> /By X
/Bx

Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glenn Decker and Bob Hettel



Charged Particle Moving in a Magnetic Field B

v

B(T) p (m) = 3.335641 E (GeV)

(magnetic field pointing into page)
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Hard-edge dipole steering corrector
First and Second Magnetic Field Integrals, in Sensible Units
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Actual Magnet Measurement Data, APS Linac Steering Corrector
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Closed Orbit Distortion Resulting
from Single Corrector Change Ax’;

x(s) = A~Bx(S) cos[Wy(s) - W(sq) + v, ; s <54
= AJBx(S) cos[Uy(sq) - W(s) + vyTl; s > 54

[31/2
,\/71AX1 >0

|
AAm\AA A
VAAVARVARD.VARY. t

€Y

AP =2 1T
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Array Display Tool (Difference w.r.t. St 5)

File

Options

SE H AVERAGE ERROR EPM®S Cmm SDEY': 0, o0g AYG: 0, e MAX: -0,125

0,500 ADiv Centers 0, 00

Horizontal Difference Orbit

SE % AVERAGE ERROR BPMTS Cmmd SDEY: 0,113 AMG: 0,002 MAX: -0,2E0

| 0, 00cE

Vertical Difference Orbit

Steering Corrector S8B:V4

I 0, 00CE Interval: I 3,00 sector: I B
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Closed Orbit Distortion Resulting
from Single Corrector Change Ax’;
Phase Space Representation

Oy X + By X

/Bx

A

JB1 AX'g

. «/[371 A)(’1
X A=

— 2 SiNTTVy

/Bx

A
Y 2 11V, mod(2m)

J/Bx(8)B1AX

ZSInT[\)X

L cos[ () — W (5y) + VT s <5 efc,

x(s) =
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Closed Orbit Half-Wave Bump - Two Correctors

X(S)
X A m = JB1 AX'q sin[y(s) - Y]
S— JB(s
Bl/Z

JBLOX = /B2 AX,

» | (radians)

\
\

- {1
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Phase Space Representation of Two-Corrector Half-Wave Bump

Oy X + By X
pr(s) -y
/\/E( 1
A
JB1 X 4

VB2 AX'; /B

Xmax = ~/BoB1 AX'y
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x (m)

APS Injection Closed Orbit Bump as Designed
(Pulsed - Full Width < 2 turns = 7 psec)
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APS Injection Orbit Bump in Practice (not closed)

Injection bump produced by mismatched kickers
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APS lattice functions

2.4 nmxrad lattice, one sector

Eeta functions
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Essentials of Accelerator Physics
Longitudinal Phase Space

|

\

Phase-space portrait of a pendulum

Kapitaniak, T. Chaos for engineers ; theory, applications, and control. Springer Verlag, 1998
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Phase Stability

The longitudinal equations of motion for an electron in a storage ring are

do _

dt

do _

(p = Phase of arrival at a fixed
point along the closed orbit,
in radians, at the RF frequency.

= WRg At

WRE = 2 Tt fre = Angular RF frequency

0l = momentum compaction
_ (AL)/L
(AE)/E

= Revolution Period

Beam Stability at Synchrotron Light Sources

eV e (t) — U(3)
EOTO

evRF
 EgTy

——[sin@—sing|

O = relative energy deviation =

Eo

Eq = Nominal ring energy

= RF voltage gain per turn

(05 = Synchronous phase
- defined by the relation for U(d) :

U(3) = eV peSing,

= Energy loss per turn from emission of
synchrotron radiation and other parasitic losses
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Define Phase U relative to synchronous phase: P=(0-q@)

Taylorexpand - [sin@—sin@| = (¢ — ¢ ) cos@, + order (¢— cpS)3 =  cosqg
Pendulum Equation
2 0 0
do  OcWRpeVRE . . _ = O WREeV pECoSPd
ae __ [singp—sing]= (- @)
dt” EoTo . EoTo .
W 2
- d_;p + QS P=0 A harmonic oscillator equation
dt

QS = Angular synchrotron frequency 2 Ttfs

0
_ O WREEV R COSQ,
EoTo
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2 0
d_;p . Qg W=0 Q, - A WREEV g COSQ,
dt EoTo
Qs QSTO
= = V4 = Synchrotron Tune = Number of synchrotron
(’orev 2T[ . .
oscillations / turn
Arrival phase Relative energy deviation
dy :
_ 5=8E-__1 ¥_5§  snQ.t
) qJOCOSQSt E, AWpy dt max s

WRF : :
h = = ring harmonic number

rev (usually a big number; = 1296 for APS)
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Harmonic Oscillator

. v _
Y= ypcosQt O = Oy SINQL = ﬁ] WpSinQ.t

“Energy” of a single particle’s

Energy” of a harmonic oscillator synchrotron oscillation

1, .2, 1 2
ékx +5mv > Buczhzgéz + Bbszng = constant
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Important Longitudinal Phase Space Parameters

Quantity Definition Units Typical Vaues
0= (AE / E) Relative energy deviation Dimensionless Fractions of a percent
variable
P = ORE AT Arrival phase variable Dimensionless A few degrees
_ o Bigringse.g. APS- A few * 10
O, = (AL)/L Momentum Compaction Dimensionless Med. ringse.g. ALS - A few * 10°3
(AE)/E Small rings
eg. NSLSVUV - A few * 1072
h= WRE / Wray Harmonic number Dimensionless 1to0 1000's
Vg = QS /(*)rev Synchrotron tune Dimensionless afew * 1072
foc = | 2 Tt | RF frequency Hz Rings 10'sto 100's of MHz,
RF = ORF SRF1.3GHzeg. ERL's
Electron Linacs 3-30 GHz
fr ev = Wray |/ 2 11 | Revolution frequency Hz 3e8/ Circumference
0 & E L T keV - MeV
U(6) _ eVRFsmq)s nergy Loss per Turn € € — CyE4/p
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Connection between longitudinal and horizontal beam motion
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Particle Beam Statistical Properties

Beam Current (Amps) = Ng_* 1.6e-19 (Coulombs / electron) = f., (Hz)

Ne. = Number of electrons = a few = 1

Beam Stability at Synchrotron Light Sources

51111111131'}f§ X Fit

Centroid

012
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Y Fit
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Particle Beams with > 1 particle
Single particle trajectory x(s) = [W, BX(S)]1/2 coS[Py(S) - Wyl

Courant-Snyder Invariant®™ W, = y,(s) xz(s) + 2 a,(s) X(s) X'(s) + By(s) x’(s)2
= [x%+ (ax x + B X)? 1/ By
... and similarly for x <-->y

X’A X’A X’A

AN /

<V
<V
<V

N /

> -
Ox >0 By = minimum a, <0
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Propagation of Phase Space Through Drift Space

o, >0

X,A

\ >
\s
/5 A

\

X’A

By = B;= minimum a, <0

X,A

<V

. /
xy/

/
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Emittance

= >~ 20,
X —
? Ox = Bxgx
€, = Horizontal Emittance

A = Oy Oy
% - (when a, = 0)
8 —>_ - Probability
& 2 0y

-

X
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In the horizontal plane, there is an additional
contribution to beam size and angular diver-
gence derived from the finite fractional energy
spread O .

A single off-energy particle will be radially dis-
placed relative to the equilibrium closed orbit
by an amount

Axe(s) = n(s) LE

0

=n(s)o

where E is the nominal beam energy, AE is

the energy error, and n(s) is the horizontal dis-
persion function.

The fractional energy spread o5 makes a con-
tribution to the horizontal beam size of n(s) o5 .

This adds in quadrature to +/Px€x . A similar
contribution is made to the horizontal angular

divergence 0, . For planar machines, the ver-
tical plane is unaffected by energy spread.

Beam Stability at Synchrotron Light Sources

Beam Size and Angular Divergence

oy = JBygy
O, = JY & = Oy
y — AYy&y T 77
A
(generally) (when ay, = 0)

_J 2 2
O, = /By&x+N Op

_J 2 2
CIx' - yxgx"'r] 06

Twiss parameter relations
1+ 0(2(5)

B(s)

¥(s) = a(s) =-B(s)/2
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Emittance vs. Courant-Snyder Invariant

The emittance Sy is a property of an ensemble of charged particles stored in a
ring (or accelerated in a Linac):

The quantity

is the amplitude of a single particle’s betatron oscillation:

y(s) = [Wy By(s)]"? cos[yy(s) - Wo,]

Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glenn Decker and Bob Hettel
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Array Display Tool (Difference w.r.t. St 5)

File

Options

SE H AVERAGE ERROR EPM®S Cmm SDEY': 0, o0g AYG: 0, e MAX: -0,125

0,500 ADiv Centers 0, 00

Horizontal Difference Orbit

SE % AVERAGE ERROR BPMTS Cmmd SDEY: 0,113 AMG: 0,002 MAX: -0,2E0

| 0, 00cE

Vertical Difference Orbit

Steering Corrector S8B:V4

I 0, 00CE Interval: I 3,00 sector: I B
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Photon Emittance

In the limit of a zero-emittance charged particle beam, the emitted photon beam
will have a characteristic equivalent opening angle o'y, .

v

.EW . 2D0"ph o
T -

- D >

Integrated over all frequencies, o'y, is approximately equal td/y (= 0.608 /y for

a bending magnet source in the vertical plane). This photon angular divergence
gets added in quadrature to the electron beam angular divergence to arrive at the
total photon angular divergence 2 ,- for a finite emittance beam:

_ 2 "2
2y = ch'Jr(Gph)
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Single-Wavelength Angular Divergence

For an insertion device, the source is extended along the direction of motion by an
amount equal to the device length L = N A

—ART—AN » 2D0'yp,

< o
- D >
2 2
+ L
Y y
N 1Y
L /

For a single wavelength, (e.g. the undulator’s first harmonic), destructive interfer-
ence occurs between two waves separated by an angle 8 when the path length

difference /2 .| 2_| approaches half a wavelength
y +L —-L
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Diffraction Limited Source Size and Angular Divergence

Path length difference
O 2 2 A AT
/y2+|_2_|_:LD 1+>L/_2—1E:%’_L:§D Va2 = AL

Even for a zero-emittance electron beam, the photon beam will be observed to
have an apparent beam size of approximately Y,,» = AL

In addition it will be observed to have an effective angular divergence given by

OAr/2 - ﬁ
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Photon Emittance

A more careful calculation gives the diffraction-limited rms source size and angu-

lar divergence
_ JAL )
Oph = 4_ Gph' = E

The product of the two yields the diffraction-limited photon emittance

A

e = GphOph. = 4—_’_[

ph
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Undulator Diffraction-Limited Source Size and Angular Divergence

For an undulator, the fundamental wavelength A, is

A 2
)\1 = I—Z +K—||%
2y 2
y = £z K =0.934 Bpax(T) A p(cm) L = NAp
mc

So

0]

_ L AlDJ(1+K2/2)N . [ﬁ _1[1+K%2
PR AT Ay 2 P AL Ty 2N

Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glenn Decker and Bob Hettel



Overall Photon Beam Size, Convolving Electron Beam Parameters
and Diffraction Limited Parameters

g =AML _ )\ID/\/(1+K2/2)N
Ph A 4Ty 2

. :ﬁ:;/w
ph L yN 2N

_ 2 2

oy = JBygy Oy = «/BXEX““V] O5

_ 2 2

Oy = WYy Oy = A/szx”l' Os

_ 2 2 _ 2 2
z, = A/O-y+(o-ph) 2, = A/ox +(Opn)
_ [2 N2 _ [ 2
IV «/Oy'J’(Gph) 2, = A/O-X'+(O-ph)
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An approximate brightness formula [4] is then given by

F

H =
(2?1‘) EE_-[,-tEfyt

.:Fﬂ —_ f] . 143 . 1['14 NQﬂI

I 15 the circulating current in Amps and ¢}.{< 1) is a factor depending on K [4]
B is in units of photons/(s - mm? - mrad? - 0.1%BW)

On resonance (2% =0): f; = 0.5 (central cone, highest brightness on axis)

Off resonance (2% = —-L: f; =1 (ring, highest average brightness)
Here ¢, =2>,> and g,=%,2

w. Joho, SLS, http://slsbd.psi.ch/pub/sisnotes/sls0495.ps
[4] K. Kim, AIP 184, 1989, p. 565
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