## Fitting Nuclear and Magnetic Scattering in GSAS with aPmmm Nuclear Phase and a P1 Magnetic Phase

In this example, one crystallographic phase will be modeled with the observed crystallographic symmetry (Pmmm) and that phase will be used to compute the nuclear scattering only. Later, a second phase will be added for the magnetic scattering computation. However, no symmetry will be applied for that phase, so parameters in that phase will need to be fixed or constrained to manually apply the correct symmetry. Only the atoms that scatter magnetically (Fe1 and Fe2) need to be included in this phase, but all atoms in the unit cell will be required as input.

Note that the initial steps in this example are the same as those used in the "Nuclear and Magnetic Scattering in GSAS with a Pmmm Nuclear Phase and a Fmm'm' Magnetic Phase" example until the step labeled "Input Magnetic Phase." One may begin at that point by loading the file PMMM.EXP from the previous exercise.

#### Input model for Nuclear Scattering Phase

The first step in the refinement is to start a new refinement by creating a new experiment file. Start EXPGUI and enter a new file name (screen image) then click on the "Create" button to then create a new, empty, experiment file (screen image) and enter a title.

The first step in creating an GSAS refinement is to create a phase. This can be done from this information:

Atom positions as fractional coordinates for YBa2Fe3O8.
Space group: Pmmm
Lattice constants: a=3.925, b=3.907, c=11.786
Element Label x y z Occupancy
Y Y1 0.5 0.5 0.5 1
Ba Ba1 0.5 0.5 0.167 1
Fe Fe1 0 0 0 1
Fe Fe2 0 0 0.34 1
O O1 0 0 0.181 1
O O2 0.5 0 0.383 1
O O3 0 0.5 0.380 1
O O4 0 0.5 0 0.853
O O5 0.5 0 0 0.978
However, considerable typing can be avoided by importing the phase from a provided CIF, `YBaFeO_Pmmm.cif` (found in file `YBAFEO.zip`).

Go to the Phase panel (screen image) and press the "Add Phase" button. To input the information from the CIF, click on the "PowderCell .CEL file" menu button to bring up a menu of choices (screen image) and select "Crystallographic Information File (CIF)" which brings up a window where the file `YBaFeO_Pmmm.cif` can be selected. (screen image); click on "Open" after the file is selected. Click on "Continue" on the add new phase (screen image) and on the Check symmetry windows (screen image) and then "Add Atoms" on the Adding atoms... window (screen image) and the phase has been added, just like that. Finally, make sure the "Refine Cell" option is not selected, (screen image) so that the unit cell parameters will be refined until later, after the background and scale factor are first brought into the right range.

#### Input Diffraction Data

The second step in almost every GSAS refinement is to input diffraction data (or select data parameters in a simulation). This is done from the Histogram panel (screen image). Click on the "Add New Histogram" button which brings up the add new histogram window (screen image). Press the Select file to select the appropriate GSAS data file in the Open window (screen image); press the open button and the file names for the both the data file and the instrument parameter files are loaded (you might see messages about file conversions if the download process has stripped non-printing characters needed from the files.). Finally, change the data range to utilize a maximum two-theta of 152 degrees on the add new histogram window, which eliminates the last very wide peak from use in the refinement (the fit would also progress well were this peak included) (screen image). Press "Add" on this window and the diffraction data are now included in the refinement Finally, change the background function to type 1 with 6 terms by pressing the "Edit Background" button (this is the authors' preference -- but other settings could be selected.) (screen image). Finally, confirm that the "Refine background" option is selected so that the background will be fit (screen image).

#### Start Initial Fit of Experimental Parameters

The fit can now be started, by pressing the "powpref" (screen image) and "genles" buttons (screen image). Note that pressing each button starts a program in another window and then (unless the default settings have been changed) after each run has been completed, the extra window is closed and the "Load New" button is pressed on the Reload screen (screen image). Note that after the two cycles of refinement, the chi2 value drops to approximately 44.

At this point the unit cell is refined, by selecting the the "Refine Cell" option on the Phase panel (screen image). Press the "genles" button and note that the fit improves to a chi2 value of approximately 30 (screen image). The two-theta zero is now refined using the "Refine zero" control on the Histogram panel (screen image). Press the "genles" button and note that the fit improves to a chi2 value of approximately 28.

#### Start Initial Fit of Structural Parameters

At this point an initial fit of the structure is performed (although some researchers might delay this until the magnetic modeling is included). While under normal conditions, it would be wise to add refinement of variables over the course of several refinement runs, in this case the model is quite stable with respect to refinement and this can be done in a single run. Before starting the refinement, however, Uiso values for like element types are grouped together to reduce the number of parameters. This is done with the Constraints panel (screen image). To set up the constraint on the Fe atoms, Press on the "New Constraints" button, then select them by dragging over them with the mouse and select UISO in the Variable menu button (screen image) and press "Save". Repeat this with the O atoms, Press on the "New Constraints" buttton by dragging over those atoms with the mouse; then select UISO in the Variable menu button (screen image) and press "Save". The Constraints panel will then list the two constraints (screen image).

To refine the nuclear model, select all atoms on the phase panel (the right mouse button will do this) and click on the X and U "Refinement Flag" buttons (screen image) so that all atom positions can be optimized in addition to 4 Uiso values (1 for the Fe atoms, 1 for the O atoms, 1 for the Y atom and 1 for the Ba atom). Note that the atom positions will only be optimized as far as allowed by symmetry, so the Ba position at (1/2,1/2,1/2) will not actually change. Then set the F (fractional occupancy) flag for O8 and O9 only (screen image). Press the "genles" button and note that the fit improves to a chi2 value of approximately 21 (screen image). A view of the fit in LIVEPLOT shows the profile terms need some refinement (which will be done later) and there is significant missing intensity for several low angle reflections (screen image) -- not surprising, since magnetic scattering is not included.

#### Save work under new name

Before going any further, lets save the project under a new name, so that it is easy to compare later work to the non-magnetic model, or so that it is easy to go back to this point to proceed with an alternate magnetic model. To do this, use the "Save As" option in the EXPGUI "File" menu item. This opens an experiment file window, where the new name to be used is specified (screen image). The name PmmmP1 was selected here, since the nuclear structure will be modeled in space group Pmmm and the magnetic structure in P1 and a new experiment file, named PMMMP1.EXP is created.

#### Input Magnetic Phase

At this time, EXPGUI does not implement many of the controls needed for magnetic structure fitting. Nonetheless, as will be shown here. it is still possible to use EXPGUI for many steps, and then use EXPEDT for steps that cannot be done at present in EXPGUI.

To add a separate magnetic phase, the phase will be added as a standard (nuclear scattering-only) phase using EXPGUI, then EXPEDT is used to change a flag so that it contribributes only as a magnetic scatterer. A large number of constraints on atomic, unit cell and profile parameters are needed. Some of these values can be set from EXPGUI, but others must be set from EXPEDT.

The magnetic phase is described using:

Atom positions as fractional coordinates for magnetic atoms in YBa2Fe3O8.
Space group: P1
Lattice constants: a=2an, b=2bn, c=2cn
LabelxyzMoment, mx
Fe1a10.00.00.03.5
Fe1a20.50.50.03.5
Fe1a30.50.00.53.5
Fe1a40.00.50.53.5
Fe1b10.00.00.5-3.5
Fe1b20.50.50.5-3.5
Fe1b30.50.00.0-3.5
Fe1b40.00.50.0-3.5
Fe2a10.00.00.17-3.5
Fe2a20.50.50.17-3.5
Fe2a30.00.0-0.17-3.5
Fe2a40.50.5-0.17-3.5
Fe2a50.50.00.33-3.5
Fe2a60.00.50.33-3.5
Fe2a70.00.5-0.33-3.5
Fe2a80.50.0-0.33-3.5
Fe2b10.50.00.173.5
Fe2b20.00.50.173.5
Fe2b30.50.0-0.173.5
Fe2b40.00.5-0.173.5
Fe2b50.00.00.333.5
Fe2b60.50.50.333.5
Fe2b70.00.0-0.333.5
Fe2b80.50.5-0.333.5
Note that in the above an (etc.) refers to the a dimension of the primitive, nuclear cell. Thus, before starting, make note of the unit cell parameters (a, b & c) in the initial nuclear phase (screen image). The fractional z coordinate of the second Fe atom in the nuclear phase is assumed to be 0.34 (0.17=0.34/2 and 0.33=0.5-0.34/2). For convenience, the z coordinate of the second Fe atom and the Fe Uiso values in the nuclear phase will be reset to match the values input to the magnetic phase.

As before, to save time, the basic phase information can be read from a CIF, `FeOnly_P1.cif` (found in file `YBAFEO.zip`), though in this case some editing of the input information will be needed.

• First, the phase is loaded by clicking on the "Add Phase" button on the Phase panel. To input the information from the CIF, click on the "PowderCell .CEL file" menu button to bring up a menu of choices and select "Crystallographic Information File (CIF)" which brings up a window where the file `FeOnly_P1.cif` can be selected. (screen image); click on "Open" after the file is selected.
• In the add new phase window, change the a, b & c parameters to be twice those of the first phase, then click on "Continue" on the add new phase (screen image). Then press "Continue" on the Check symmetry window. This causes the Adding atoms... window to be displayed. (screen image). Press the "Add Atoms" button on this window to add the phase.

Rather than change all 24 atoms in this new phase to match the two Fe atoms in phase 1, it is easier to edit the two atoms in Phase 1. In the Phase panel, select Phase 1, then

• Change Uiso for both Fe atoms to 0.025, to match the newly entered atoms
• Change the zcoordinate of the second Fe atom to 0.34 to match the coordinates for the Fe2a and Fe2b atoms in phase 2 (screen image)

#### Setup Magnetic Phase

To change the flag for the second phase, the EXPEDT program is used. This can be invoked from EXPGUI, by pressing the EXPEDT button or from the Powder and Xtal menus. In EXPEDT, use the following commands:

1. Y
2. P
3. P
4. m 2
5. c
6. x x x x
where command 1) [Y] indicates the correct file has been selected to be edited; command 2) [P] enters the powder menu; command 3) [P] moves from the powder to the phase edit submenu; command 4) [m 2] selects the second phase to have the magnetic flag changed; command 5) [c] sets the phase to be mangentic-only; command 6) [x x x x] returns to the main menu. Note that 4 "x" characters are not needed in the final command, but extra characters are ignored.

EXPEDT prompts the user to supply a one-letter command, where inputting a blank line provides further information on what the options are (as demonstrated below). Note that commands can be combined onto the same line (usually) and can in many cases be spread over more than one line.

The input to and output from EXPEDT are shown below. User-typed input is emphasized by display in this font: Input

```
|------------------------------------------|
|       Program EXPEDT Version MacOSX      |
| A menu driven routine to edit .EXP files |
| Distributed on Thu Sep 30 14:58:36 2004  |
|------------------------------------------|

|---------------------------------------------------------------|
|            Allen C. Larson and Robert B. Von Dreele           |
|      Manuel Lujan, Jr. Neutron Scattering Center, MS-H805     |
|      Los Alamos National Laboratory, Los Alamos, NM  87545    |
|                                                               |
| Copyright, 2000, The Regents of the University of California. |
|---------------------------------------------------------------|

The last history record is :
HSTRY 18 EXPGUI 1.74 1.42 (8 changes) -- 07/29/05 15:30:35

Is this the file you wish to use? (<?>,D,K,Q,R,Y) >Y P P
Experiment title:
Y Ba2 Fe3 O7+delta: Pmmm nuclear phase
The last history record is :
HSTRY 18 EXPGUI 1.74 1.42 (8 changes) -- 07/29/05 15:30:35

There is phase information present
Name of phase no. 1
from /Users/toby/proj/ybafe/YBaFeO_Pmmm.cif
The phase is non-magnetic
Name of phase no. 2
from /Users/toby/proj/ybafe/FeOnly_P1.cif
The phase is non-magnetic
Enter phase edit command(<?>,\$,D,E,F,M,I,L,R,S,X) >m
Give phase number for phase type flag toggle  >2
The phase is non-magnetic
Enter phase type (<?>,A,B,C,L,X,Z) >c
The phase is magnetic.
Only magnetic peaks will be generated in the powder patterns
Enter phase type (<?>,A,B,C,L,X,Z) >x x x x
EXPEDT data setup option (<?>,D,F,K,L,P,R,S,X) >
```

One more X command could now be entered to exit EXPEDT, but since the next step will continue in EXPEDT, this is not necessary.

#### Setup Magnetic Symmetry and Moments

In the previous step, phase 2 was flagged as magnetic, but the magnetic symmetry menu must be entered, so that the appropriate symmetry computations are performed, even though there is no apparent change visible to the user. Once the magnetic symmetry is established, the magnetic moments for each magnetic atom are supplied.

In EXPEDT, use the following commands:

1. L A
2. P 2
3. M
4. S
5. x
6. m 1 3.5 0 0
7. m 2 3.5 0 0
8. m 3 3.5 0 0
9. m 4 3.5 0 0
10. m 5 -3.5 0 0
11. m 6 -3.5 0 0
12. m 7 -3.5 0 0
13. m 8 -3.5 0 0
14. m 9 -3.5 0 0
15. m 10 -3.5 0 0
16. m 11 -3.5 0 0
17. m 12 -3.5 0 0
18. m 13 -3.5 0 0
19. m 14 -3.5 0 0
20. m 15 -3.5 0 0
21. m 16 -3.5 0 0
22. m 17 3.5 0 0
23. m 18 3.5 0 0
24. m 19 3.5 0 0
25. m 20 3.5 0 0
26. m 21 3.5 0 0
27. m 22 3.5 0 0
28. m 23 3.5 0 0
29. m 24 3.5 0 0
30. x
31. L
32. x x x x
Note that if EXPGUI were to be started at this point, the first command would be "Y" to indicate that the correct file has been selected to be edited. Command 1) [L] enters the least-squares menu and then [A] moves from the least-squares to the atoms edit submenu; command 2) [P 2] selects the second phase command 3) [M] moves to the magnetism editing submenu; command 4) [S] moves to the magnetism symmetry submenu; command 5) [L] lists the magnetic symmetry information and exits from the magnetic symmetry submenu back to the magnetism editing submenu since in this case (P1) there are no possible spin flips; command 6-29) [m N M 0 0 ] sets the magnetic moment for atom N to M Bohr magnetrons. Note that in this case, there are no symmetry constraints on magnetic moment, so components are needed in the x, y and z directions. Command 30) [x] returns to the atoms edit menu; command 31) [L] lists the atoms in the current phase (#2) -- this command is optional; command 32) [x x x x] returns to the main menu.

The input to and output from EXPEDT are shown below. User-typed input is emphasized by display in this font: Input

``` EXPEDT data setup option (<?>,D,F,K,L,P,R,S,X) >L A
Phase No. 1; Phase has      9 atoms; Title: from /Users/toby/proj/ybafe/YBaFeO_
Give atom editing command
(<?>,\$,C,D,E,F,I,K,L,M,P,S,T,U,V,X,+,-,*,/) >P 2
Phase No. 2; Phase has     24 atoms; Title: from /Users/toby/proj/ybafe/FeOnly_
Give atom editing command
(<?>,\$,C,D,E,F,I,K,L,M,P,S,T,U,V,X,+,-,*,/) >M
Enter magnetism editing option (<?>,A,C,L,M,S,X) >S

These changes may alter the allowed moment orientations and constraints.

All of the following data refer to the current space group symbol
Spin flip editing commands are
C n - Change spin flip "n"
L   - List the current spin flip info
X   - Exit to the atom magnetic data editing menu
Enter spin flip editing command (<?>,C,L,X) >L
No antisymmetry operations are allowed
Enter magnetism editing option (<?>,A,C,L,M,S,X) >m 1 3.5 0 0
Fe1a     0.000000 0.000000 0.000000
No magnetic moment is currently defined
Constraints on the moment are  1 1.00 2 1.00 3 1.00
New moment = 3.50000 0.00000 0.00000   3.500  90.000   0.000
Enter magnetism editing option (<?>,A,C,L,M,S,X) >m 2 3.5 0 0
Fe1a     0.500000 0.500000 0.000000
No magnetic moment is currently defined
Constraints on the moment are  1 1.00 2 1.00 3 1.00
New moment = 3.50000 0.00000 0.00000   3.500  90.000   0.000
Enter magnetism editing option (<?>,A,C,L,M,S,X) >

Enter magnetism editing option (<?>,A,C,L,M,S,X) >x
Phase No. 2; Phase has     24 atoms; Title: from /Users/toby/proj/ybafe/FeOnly_
Give atom editing command
(<?>,\$,C,D,E,F,I,K,L,M,P,S,T,U,V,X,+,-,*,/) >L
SER TYPE    X       Y       Z      FRAC   NAME    UISO    CODE  STSYM MULT FXU
MX      MY      MZ     MCODE
1 FE+3 0.00000 0.00000 0.00000 1.00000 Fe1a     0.02500 I        1     1 000
3.500   0.000   0.000
2 FE+3 0.50000 0.50000 0.00000 1.00000 Fe1a     0.02500 I        1     1 000
3.500   0.000   0.000
3 FE+3 0.50000 0.00000 0.50000 1.00000 Fe1a     0.02500 I        1     1 000
3.500   0.000   0.000
4 FE+3 0.00000 0.50000 0.50000 1.00000 Fe1a     0.02500 I        1     1 000
3.500   0.000   0.000
5 FE+3 0.00000 0.00000 0.50000 1.00000 Fe1b     0.02500 I        1     1 000
-3.500   0.000   0.000
6 FE+3 0.50000 0.50000 0.50000 1.00000 Fe1b     0.02500 I        1     1 000
-3.500   0.000   0.000
7 FE+3 0.50000 0.00000 0.00000 1.00000 Fe1b     0.02500 I        1     1 000
-3.500   0.000   0.000
8 FE+3 0.00000 0.50000 0.00000 1.00000 Fe1b     0.02500 I        1     1 000
-3.500   0.000   0.000
9 FE+3 0.00000 0.00000 0.17000 1.00000 Fe2a     0.02500 I        1     1 000
-3.500   0.000   0.000
10 FE+3 0.50000 0.50000 0.17000 1.00000 Fe2a     0.02500 I        1     1 000
-3.500   0.000   0.000
Enter  to continue or "Q" to quit >
SER TYPE    X       Y       Z      FRAC   NAME    UISO    CODE  STSYM MULT FXU
MX      MY      MZ     MCODE
11 FE+3 0.00000 0.00000-0.17000 1.00000 Fe2a     0.02500 I        1     1 000
-3.500   0.000   0.000
12 FE+3 0.50000 0.50000-0.17000 1.00000 Fe2a     0.02500 I        1     1 000
-3.500   0.000   0.000
13 FE+3 0.50000 0.00000 0.33000 1.00000 Fe2a     0.02500 I        1     1 000
-3.500   0.000   0.000
14 FE+3 0.00000 0.50000 0.33000 1.00000 Fe2a     0.02500 I        1     1 000
-3.500   0.000   0.000
15 FE+3 0.00000 0.50000-0.33000 1.00000 Fe2a     0.02500 I        1     1 000
-3.500   0.000   0.000
16 FE+3 0.50000 0.00000-0.33000 1.00000 Fe2a     0.02500 I        1     1 000
-3.500   0.000   0.000
17 FE+3 0.50000 0.00000 0.17000 1.00000 Fe2b     0.02500 I        1     1 000
3.500   0.000   0.000
18 FE+3 0.00000 0.50000 0.17000 1.00000 Fe2b     0.02500 I        1     1 000
3.500   0.000   0.000
19 FE+3 0.50000 0.00000-0.17000 1.00000 Fe2b     0.02500 I        1     1 000
3.500   0.000   0.000
20 FE+3 0.00000 0.50000-0.17000 1.00000 Fe2b     0.02500 I        1     1 000
3.500   0.000   0.000
Enter  to continue or "Q" to quit >
SER TYPE    X       Y       Z      FRAC   NAME    UISO    CODE  STSYM MULT FXU
MX      MY      MZ     MCODE
21 FE+3 0.00000 0.00000 0.33000 1.00000 Fe2b     0.02500 I        1     1 000
3.500   0.000   0.000
22 FE+3 0.50000 0.50000 0.33000 1.00000 Fe2b     0.02500 I        1     1 000
3.500   0.000   0.000
23 FE+3 0.00000 0.00000-0.33000 1.00000 Fe2b     0.02500 I        1     1 000
3.500   0.000   0.000
24 FE+3 0.50000 0.50000-0.33000 1.00000 Fe2b     0.02500 I        1     1 000
3.500   0.000   0.000
Phase No. 2; Phase has     24 atoms; Title: from /Users/toby/proj/ybafe/FeOnly_
Give atom editing command
(<?>,\$,C,D,E,F,I,K,L,M,P,S,T,U,V,X,+,-,*,/) >x x x x
EXPEDT data setup option (<?>,D,F,K,L,P,R,S,X) >
```

Alternately, it is possible to read the commands from a file, in this case file `EnterMoments.txt` (found in file `YBAFEO.zip`) contains commands 4-27, so that it becomes possible to use the following input to EXPEDT to accomplish the same steps:
1. L A
2. P 2
3. M
4. S
5. L
6. @r
7. EnterMoments.txt
8. x
9. x x x x
which produces this output:
``` EXPEDT data setup option (<?>,D,F,K,L,P,R,S,X) >L A
Phase No. 1; Phase has      9 atoms; Title: from /Users/toby/proj/ybafe/YBaFeO_
Give atom editing command
(<?>,\$,C,D,E,F,I,K,L,M,P,S,T,U,V,X,+,-,*,/) >P 2
Phase No. 2; Phase has     24 atoms; Title: from /Users/toby/proj/ybafe/FeOnly_
Give atom editing command
(<?>,\$,C,D,E,F,I,K,L,M,P,S,T,U,V,X,+,-,*,/) >M
Enter magnetism editing option (<?>,A,C,L,M,S,X) >S

These changes may alter the allowed moment orientations and constraints.

All of the following data refer to the current space group symbol
Spin flip editing commands are
C n - Change spin flip "n"
L   - List the current spin flip info
X   - Exit to the atom magnetic data editing menu
Enter spin flip editing command (<?>,C,L,X) >L
No antisymmetry operations are allowed
Enter magnetism editing option (<?>,A,C,L,M,S,X) >@r
Enter the name of your macro file: EnterMoments.txt
Enter magnetism editing option (<?>,A,C,L,M,S,X) > m 1 3.5 0 0
Fe1a     0.000000 0.000000 0.000000
No magnetic moment is currently defined
Constraints on the moment are  1 1.00 2 1.00 3 1.00
New moment = 3.50000 0.00000 0.00000   3.500  90.000   0.000
Enter magnetism editing option (<?>,A,C,L,M,S,X) > m 2 3.5 0 0
Fe1a     0.500000 0.500000 0.000000
No magnetic moment is currently defined
Constraints on the moment are  1 1.00 2 1.00 3 1.00
New moment = 3.50000 0.00000 0.00000   3.500  90.000   0.000
Enter magnetism editing option (<?>,A,C,L,M,S,X) >

Enter magnetism editing option (<?>,A,C,L,M,S,X) > m 23 3.5 0 0
Fe2b     0.000000 0.000000-0.330000
No magnetic moment is currently defined
Constraints on the moment are  1 1.00 2 1.00 3 1.00
New moment = 3.50000 0.00000 0.00000   3.500  90.000   0.000
Enter magnetism editing option (<?>,A,C,L,M,S,X) > m 24 3.5 0 0
Fe2b     0.500000 0.500000-0.330000
No magnetic moment is currently defined
Constraints on the moment are  1 1.00 2 1.00 3 1.00
New moment = 3.50000 0.00000 0.00000   3.500  90.000   0.000
Enter magnetism editing option (<?>,A,C,L,M,S,X) > The macro file is empty, reading from the terminal is resumed.
Enter magnetism editing option (<?>,A,C,L,M,S,X) >x
Phase No. 2; Phase has      4 atoms; Title: from /Users/toby/proj/ybafe/FeOnly_
Give atom editing command
(<?>,\$,C,D,E,F,I,K,L,M,P,S,T,U,V,X,+,-,*,/) >x x x x
EXPEDT data setup option (<?>,D,F,K,L,P,R,S,X) >
```

#### Check Magnetic Form Factor

For this example, GSAS already has the correct magnetic form factor loaded for atom type FE+3, but it is always a good idea to check this. In some cases, the magnetic form factor for a problem will need to be loaded. Many magnetic form factors can be found in the International Tables of Crystallography, Volume C in section 4.4.5. Note that GSAS uses the terms A1, B1, A2, B2, A3, B3, and C for the terms labeled A, a, B, b, C, c and D in the International Tables. GSAS terms A4 and B4 are not used in the International Tables and should be specified as zero.

In EXPEDT, use the following commands:

1. L F M
2. FE+3
3. C
4. .3972 13.244 .6295 4.903 -.0313 .35 0 0 .0044
5. N
6. U
7. x x x x

Note that if EXPGUI were to be started at this point, the first command would be "Y" to indicate that the correct file has been selected to be edited. Command 1) [L] enters the least-squares menu; command 2) [F] moves from the least-squares to the form factor submenu; command 3) [M FE+3] opens editing of the magnetic form factor for Fe3+ command 4) [C] specifies that the saved values will be changed, the values [.3972 13.244 .6295 4.903 -.0313 .35 0 0 .0044] specify the new <j0> coefficients. command 5) [n] indicates that the <j2> terms will not be changed. command 6) [U] specifies that the entered coefficients are to be saved. If this U is not entered, the original values will not be changed and the new values are ignored -- use care to remember to enter this command. Command 7) [x x x x] returns to the main menu. The input to and output from EXPEDT are shown below. User-typed input is emphasized by display in this font: Input

``` EXPEDT data setup option (<?>,D,F,K,L,P,R,S,X) >L
Select editing option for Least Squares calculation
(<?>,A,B,F,H,L,O,R,S,T,X) >F
Form factor editing options - (<?>,M,N,R,S,X) >M
Enter atom type  >FE+3
F-factor is expressed in the form :
A(I)*EXP(-B(I)*SQ) + C , I=1 to 4
F-factor is expressed in the form :
[A(I)*EXP(-B(I)*SQ) + C]*SQ , I=1 to 4
where SQ is (Sin theta/lambda)**2
Magnetic form-factor coeffs. for FE+3 are
A1,B1,A2,B2  =   0.39720  13.24400   0.62950   4.90300
A3,B3,A4,B4,C=  -0.03140   0.35000   0.00000   0.00000   0.00440
mff(0) =    0.99970
Magnetic form-factor coeffs. for FE+3 are
A1,B1,A2,B2  =   1.36020  11.99800   1.51880   5.00300
A3,B3,A4,B4,C=   0.47050   1.99100   0.00000   0.00000   0.00380
Lande g factor =   2.00
Magnetic form factor editing options - (<?>,A,C,E,G,L,P,R,U,X) >C
Enter A(1) & B(1) >.3972 13.244
Enter A(2) & B(2) >.6295 4.903
Enter A(3) & B(3) >-.0313 .35
Enter A(4) & B(4) >0 0
Enter C >.0044
Do you want to modify the  values (Y/)? >n
F-factor is expressed in the form :
A(I)*EXP(-B(I)*SQ) + C , I=1 to 4
F-factor is expressed in the form :
[A(I)*EXP(-B(I)*SQ) + C]*SQ , I=1 to 4
where SQ is (Sin theta/lambda)**2
Magnetic form-factor coeffs. for FE+3 are
A1,B1,A2,B2  =   0.39720  13.24400   0.62950   4.90300
A3,B3,A4,B4,C=  -0.03130   0.35000   0.00000   0.00000   0.00440
mff(0) =    0.99980
Magnetic form-factor coeffs. for FE+3 are
A1,B1,A2,B2  =   1.36020  11.99800   1.51880   5.00300
A3,B3,A4,B4,C=   0.47050   1.99100   0.00000   0.00000   0.00380
Lande g factor =   2.00
Magnetic form factor editing options - (<?>,A,C,E,G,L,P,R,U,X) >U
Magnetic form factor editing options - (<?>,A,C,E,G,L,P,R,U,X) >x x x x
EXPEDT data setup option (<?>,D,F,K,L,P,R,S,X) >
```

#### Setup Cell Constraints

So that the unit cell for the two phases will not be treated as independent variables, constraints are needed to force the two sets of unit cell parameters to change together. Note that since the second phase has dimensions double to that of the first, the shifts applied to the second phase should be double that of the first. However, the actual parameters that GSAS refines are not lattice parameters, but rather are the reciprocal metric tensor terms, where the diagonal terms, RM11, RM22 & RM33, are equal to a*2, b*2 and c*2. Since the ratio of (a*N2):(a*M2) is 4:1, we use this ratio for our shifts. Further, since the magnetic cell has been input with P1 symmetry, the off-diagonal terms in the reciprocal metric tensor must be "fixed" (locked against refinement), so that the cell angles remain at 90o. In EXPEDT, use the following commands:

1. L
2. O
3. L
4. K
5. I 1,RM11,4 2,RM11,1 (+blank line)
6. I 1,RM22,4 2,RM22,1 (+blank line)
7. I 1,RM33,4 2,RM33,1 (+blank line)
8. L
9. X
10. p 2 F
11. i rm12
12. i rm13
13. i rm23
14. L
15. x x x x
16. x
Note that if EXPGUI were to be started at this point, the first command would be "Y" to indicate that the correct file has been selected to be edited. Command 1) [L] enters the least-squares menu; command 2) [O] moves from the least-squares to the least-squares overall parameters submenu; command 3) [L] moves to the lattice parameters controls submenu; command 4) [K] enters the lattice constraints submenu; command 5-7) [I 1,RMxx,4 2,RMxx,1] constrains the shifts to reciprocal lattice tensor element RMxx to be a factor of four larger for shifts applied to phase 1 compared to phase 2. Note a blank line is needed to terminate input of each constraint. Command 8) [L] lists the constraints that have been input (optional); command 9) [X] exits the constraints menu; command 10) [p 2 F] enters the lattice hold menu for phase 2; commands 11-13) [i RMxx] fix the off-diagonal terms; command 14) [L] lists the fixed parameters (optional); command 15) [x x x x] returns to the main menu; command 16) [x] exits EXPEDT

The input to and output from EXPEDT are shown below. User-typed input is emphasized by display in this font: Input

``` EXPEDT data setup option (<?>,D,F,K,L,P,R,S,X) >L O L
Editing of lattice parameters
WARNING - If lattice parameters are changed you should rerun POWPREF

Phase no. 1
Title: from /Users/toby/proj/ybafe/YBaFeO_Pmmm.cif
A, B, C, Alpha, Beta, Gamma          To be refined as allowed by symmetry
3.924120   3.907684  11.797731   90.0000   90.0000   90.0000
Damping flag = 0
Enter lattice parameter editing command (<?>,\$,C,D,F,K,L,P,V,X) >K
Editing recip. metric tensor constraints:
Enter recip. metric tensor constraint editing command (<?>,D,I,L,X) >I
For each linear constraint term, enter phase no., variable name, and coefficient
End the list with a
Phase no., var_name, &  coeff.? >1,RM11,4
Phase no., var_name, &  coeff.? >2,RM11,1
Phase no., var_name, &  coeff.? >
Enter recip. metric tensor constraint editing command (<?>,D,I,L,X) >i
For each linear constraint term, enter phase no., variable name, and coefficient
End the list with a
Phase no., var_name, &  coeff.? >1,RM22,4 2,RM22,1
Phase no., var_name, &  coeff.? >
Enter recip. metric tensor constraint editing command (<?>,D,I,L,X) >i
For each linear constraint term, enter phase no., variable name, and coefficient
End the list with a
Phase no., var_name, &  coeff.? >1,RM33,4 2,RM33,1
Phase no., var_name, &  coeff.? >
Enter recip. metric tensor constraint editing command (<?>,D,I,L,X) >L
LEQV RMTN  1 1    RM11     4.0000 2    RM11     1.0000
LEQV RMTN  2 1    RM22     4.0000 2    RM22     1.0000
LEQV RMTN  3 1    RM33     4.0000 2    RM33     1.0000
Enter recip. metric tensor constraint editing command (<?>,D,I,L,X) >x
Enter lattice parameter editing command (<?>,\$,C,D,F,K,L,P,V,X) >p 2 F
New phase selected

Phase no. 2
Title: from /Users/toby/proj/ybafe/FeOnly_P1.cif
A, B, C, Alpha, Beta, Gamma          To be refined as allowed by symmetry
7.848240   7.815368  23.595463   90.0000   90.0000   90.0000
Damping flag = 0
There currently no recip. metric tensor parameters being held for this phase
Enter option (<?>,D,I,L,X) >i RM12
Enter option (<?>,D,I,L,X) >i RM13
Enter option (<?>,D,I,L,X) >i RM23
Enter option (<?>,D,I,L,X) >L
Parameters being held constant are
1 "2   RM12" 2 "2   RM13" 3 "2   RM23"
Enter option (<?>,D,I,L,X) >x x x x
EXPEDT data setup option (<?>,D,F,K,L,P,R,S,X) >x
STOP EXPEDT terminated successfully statement executed
Press Enter to continue
```

After the EXPEDT window is closed since EXPEDT has changed the experiment file, (unless the Autoload EXP option is set) there is a prompt to load the information from this changed file: press the "Load new" button to continue (screen image).

#### Setup Atomic Constraints

The Fe2a & Fe2b atoms in the magnetic phase should move in concert with the Fe4 atom in the nuclear phase, where the shift on the atoms in phase 2 will be +/-50% of the shift on Fe4 in phase 1. The atoms at z=0.17 and z=-0.33 will have shifts in the same direction as the shift on Fe4 and and the shift on Fe4b will be the atoms at z=-0.17 and z=0.33 will have shifts in the opposite direction. Create a constrint in the Constraints menu, by pressing the "New Constraint" button to open the Edit Constraint window. Press the "New Column" button four times create four additional (five total) constraint subwindows. Select Phase 1, Fe4, variable Z and multiplier 2.0 in one column, Select a multiplier of 1.0 for Z of atoms 9-10, 15-18 and 23-24 and a multiplier of -1.0 for Z of atoms 11-14 and 19-22. (screen image). Then press the "Save" button to enter the new constraint.

Likewise, the constraint on the Uiso for the Fe atoms is expanded to include all the Fe atoms in the second phase. This is done by clicking on the first "edit" button to amend the first constraint. On the Editing Constraint #1 window, press the "New Column" button, select Phase 2 in the new column, select all atoms; the Variable selection defaults to Uiso and the Multiplier value defaults to 1.0 (screen image). Then press the "Save" button to enter the modified constraint (screen image).

#### Fix Atomic Parameters

The commands above constrain the z values of the phase 2 atoms, but it should be noted that the x and y locations of these atoms are not constrained by the P1 symmetry. However, these coordinates should not be refined, so that the positions match that of Fe3 & Fe4. For the Fe1a and Fe1b atoms, this is easy. Simply do not set the X flag and these positions will not change. For the remaining atoms, the X flag must be set so that the z values of the phase 2 atoms, can vary in concert with atom Fe4 in phase 1. This is done in EXPEDT using the following sequence of commands:

1. Y
2. L A
3. P 2
4. F
5. i 9 x
6. i 10 x
7. i 11 x
8. i 12 x
9. i 13 x
10. i 14 x
11. i 15 x
12. i 16 x
13. i 17 x
14. i 18 x
15. i 19 x
16. i 20 x
17. i 21 x
18. i 22 x
19. i 23 x
20. i 24 x
21. i 9 y
22. i 10 y
23. i 11 y
24. i 12 y
25. i 13 y
26. i 14 y
27. i 15 y
28. i 16 y
29. i 17 y
30. i 18 y
31. i 19 y
32. i 20 y
33. i 21 y
34. i 22 y
35. i 23 y
36. i 24 y
37. L
38. x x x x
where command 1) [Y] indicates the correct file has been selected to be edited; command 2) [L] enters the least-squares menu and then [A] moves from the least-squares to the atoms edit submenu; command 3) [P 2] selects the second phase command 4) [F] moves to the fix parameters submenu; command 5-36) [i N x/y] fixes the x or y parameter of atom N, so that this value does not change when the atom position is varied. command 37) [L] lists the held parameters in the current phase (#2) -- this command is optional; command 38) [x x x x] returns to the main menu; command 39) [x] exits EXPEDT.

The input to and output from EXPEDT are shown below. User-typed input is emphasized by display in this font: Input

```                  |------------------------------------------|
|       Program EXPEDT Version MacOSX      |
| A menu driven routine to edit .EXP files |
| Distributed on Thu Sep 30 14:58:36 2004  |
|------------------------------------------|

|---------------------------------------------------------------|
|            Allen C. Larson and Robert B. Von Dreele           |
|      Manuel Lujan, Jr. Neutron Scattering Center, MS-H805     |
|      Los Alamos National Laboratory, Los Alamos, NM  87545    |
|                                                               |
| Copyright, 2000, The Regents of the University of California. |
|---------------------------------------------------------------|

The last history record is :
HSTRY 22 EXPEDT  MacOSX Jul 30 13:49:37 2005 File cleanup only

Is this the file you wish to use? (<?>,D,K,Q,R,Y) >y l a p 2
Experiment title:
Y Ba2 Fe3 O7+delta: Pmmm nuclear phase
The last history record is :
HSTRY 22 EXPEDT  MacOSX Jul 30 13:49:37 2005 File cleanup only

Phase No. 1; Phase has      9 atoms; Title: from /Users/toby/proj/ybafe/YBaFeO_
Phase No. 2; Phase has     24 atoms; Title: from /Users/toby/proj/ybafe/FeOnly_
Give atom editing command
(<?>,\$,C,D,E,F,I,K,L,M,P,S,T,U,V,X,+,-,*,/) >f
There currently no parameters being held for this phase
Enter option (<?>,D,I,L,X) >i 9 x
Enter option (<?>,D,I,L,X) >i 10 x
Enter option (<?>,D,I,L,X) >i 11 x

Enter option (<?>,D,I,L,X) >i 23 y
Enter option (<?>,D,I,L,X) >i 24 y
Enter option (<?>,D,I,L,X) >L
Parameters being held constant are
1(2  9X   )  2(2 10X   )  3(2 11X   )  4(2 12X   )  5(2 13X   )  6(2 14X   )
7(2 15X   )  8(2 16X   )  9(2 17X   ) 10(2 18X   ) 11(2 19X   ) 12(2 20X   )
13(2 21X   ) 14(2 22X   ) 15(2 23X   ) 16(2 24X   ) 17(2  9Y   ) 18(2 10Y   )
19(2 11Y   ) 20(2 12Y   ) 21(2 13Y   ) 22(2 14Y   ) 23(2 15Y   ) 24(2 16Y   )
25(2 17Y   ) 26(2 18Y   ) 27(2 19Y   ) 28(2 20Y   ) 29(2 21Y   ) 30(2 22Y   )
31(2 23Y   ) 32(2 24Y   )
Enter option (<?>,D,I,L,X) >x x x x
Phase No. 2; Phase has     24 atoms; Title: from /Users/toby/proj/ybafe/FeOnly_
EXPEDT data setup option (<?>,D,F,K,L,P,R,S,X) >x
```

Alternately, it is possible to read the commands from a file, in this case file `FixFePos.txt` (found in file `YBAFEO.zip`) contains commands 5-36, so that it becomes possible to use the following input to EXPEDT to accomplish the same steps:
1. L A
2. P 2
3. F
4. @r
5. FixFePos.txt
6. L
7. x x x x
8. x
which produces this output:
```                 |------------------------------------------|
|       Program EXPEDT Version MacOSX      |
| A menu driven routine to edit .EXP files |
| Distributed on Thu Sep 30 14:58:36 2004  |
|------------------------------------------|

|---------------------------------------------------------------|
|            Allen C. Larson and Robert B. Von Dreele           |
|      Manuel Lujan, Jr. Neutron Scattering Center, MS-H805     |
|      Los Alamos National Laboratory, Los Alamos, NM  87545    |
|                                                               |
| Copyright, 2000, The Regents of the University of California. |
|---------------------------------------------------------------|

The last history record is :
HSTRY 22 EXPEDT  MacOSX Jul 30 13:49:37 2005 File cleanup only

Is this the file you wish to use? (<?>,D,K,Q,R,Y) >y l a p 2
Experiment title:
Y Ba2 Fe3 O7+delta: Pmmm nuclear phase
The last history record is :
HSTRY 22 EXPEDT  MacOSX Jul 30 13:49:37 2005 File cleanup only

Phase No. 1; Phase has      9 atoms; Title: from /Users/toby/proj/ybafe/YBaFeO_
Phase No. 2; Phase has     24 atoms; Title: from /Users/toby/proj/ybafe/FeOnly_
Give atom editing command
(<?>,\$,C,D,E,F,I,K,L,M,P,S,T,U,V,X,+,-,*,/) >f
There currently no parameters being held for this phase
Enter option (<?>,D,I,L,X) >@r
Enter the name of your macro file: FixFePos.txt
The commands will be read from FixFePos.txt

Enter option (<?>,D,I,L,X) > i 9 x
Enter option (<?>,D,I,L,X) > i 10 x
Enter option (<?>,D,I,L,X) > i 11 x
Enter option (<?>,D,I,L,X) > i 12 x
Enter option (<?>,D,I,L,X) > i 13 x

Enter option (<?>,D,I,L,X) > i 23 y
Enter option (<?>,D,I,L,X) > i 24 y
Enter option (<?>,D,I,L,X) > The macro file is empty, reading from the terminal is resumed.
Enter option (<?>,D,I,L,X) >L
Parameters being held constant are
1(2  9X   )  2(2 10X   )  3(2 11X   )  4(2 12X   )  5(2 13X   )  6(2 14X   )
7(2 15X   )  8(2 16X   )  9(2 17X   ) 10(2 18X   ) 11(2 19X   ) 12(2 20X   )
13(2 21X   ) 14(2 22X   ) 15(2 23X   ) 16(2 24X   ) 17(2  9Y   ) 18(2 10Y   )
19(2 11Y   ) 20(2 12Y   ) 21(2 13Y   ) 22(2 14Y   ) 23(2 15Y   ) 24(2 16Y   )
25(2 17Y   ) 26(2 18Y   ) 27(2 19Y   ) 28(2 20Y   ) 29(2 21Y   ) 30(2 22Y   )
31(2 23Y   ) 32(2 24Y   )
Enter option (<?>,D,I,L,X) >x x x x
Phase No. 2; Phase has     24 atoms; Title: from /Users/toby/proj/ybafe/FeOnly_
EXPEDT data setup option (<?>,D,F,K,L,P,R,S,X) >x
```

#### Constrain Phase Fractions

GSAS scale factors are proportional to the number of scatters present in the unit cell. Since the unit cell of the magnetic phase is eight times larger than that of the nuclear phase, the scattering from this phase will be over counted. To prevent this (so that magnetic moments are scaled properly with respect to the nuclear scattering), the phase fraction of the second phase is lowered by the ratio of the unit cell volumes (1/8). This is done by changing the Phase Fraction for Phase 2 on the Scaling panel (screen image). Make sure that the scale factor is refined, but not either of the phase fractions.

#### Phase 2 Refinement Flags

Constraints have been established on the unit cell and the atomic parameters of phase 2. It is important to set the refinement flag and damping values to be the same for constrained parameters. Since unit cell paremeters, Uiso values and Fe4 z are refined in phase 1, the same must be done in phase 2. On the phase panel, select phase 2, noting that EXPGUI now shows that the phase is magnetic-only directly below the phase selection buttons.

• Click on the "Refine Cell" checkbutton.
• Also, turn on the X flags for Fe atoms 9-24, so that the z coordinates refine, and turn on the U flag for all atoms. (screen image).

Note that the first two Fe atoms in the magnetic phase will not change position regardless of the X flag, as they are on special positions with no degrees of freedom.

#### Refine with Magnetic Phase

Since a new phase has been added to the refinement, it is necessary to run POWPREF (screen image). and then GENLES (screen image). The fit improves from the previous chi2 value of approximately 21 to a new value of approximately 15, as the low-angle magnetic lines are now computed with more intensity, as can now be seen in LIVEPLOT (screen image).

#### Constrain and Refine Profile Constraints

From the previous LIVEPLOT result, it is clear that the profile is a major source of differences between the observed and computed diffraction data. While it is possible to have different ordering ranges for the nuclear and magnetic ordering, in most cases, it is best to have the same parameters, for both the nuclear and magnetic phases.

A quick check of the Profile panel shows that the profile termes are the same for both phases because they are still at their default values, having not been refined. (screen image). To constrain the profile terms to refine to be the same, select the Constraints panel and the click on the lower Profile tab and then press the "Add Constraint" button (screen image). This will open the New Profile Constraint window (screen image). Select GU, GV & GW to be constrained (none of the other terms need to be refined); then press the "Continue" button. In the next window, select both phases in the top part of the window and press the "Save" button (screen image). This generates the constraints, which show up on the Constraint panel (screen image).

Select the check buttons for GU, GV & GW in both phases (screen image) and then start GENLES (screen image). The fit improves from the previous chi2 value of approximately 15 to a new value of approximately 3.4. Running POWPREF and then GENLES again causes chi2 to drop from 3.4 to 2.6 just due to the expansion of the peak shape range from POWPREF. Subsequent refinement cycles improves chi2 slightly, to 2.45 (screen image).

#### Constrain & Refine Magnetic Moment

In most magnetic refinements, one wishes to refine magnetic moments. It should be noted that the Fe1a and Fe1b atoms are symmetry related, as is the case for Fe2a and Fe2b. One could consider treating the two Fe1 atoms as having different moments from the two Fe2 atoms, but this makes little chemical sense, since there is no reason to expect either site to have an accumulation of off-valence Fe atoms. Further, due to the pseudo-symmmetry of the cell, there are few reflections that distinguish the two non-equivalent Fe scatterers. Thus, it is best to treat all Fe atoms as having a single magnetic moment. EXPGUI can be used to set up constraints on the magnetic moments, by creating a new atom constraint on the Constraints panel, where a shift multiplier of 1.0 is applied to MX for atoms in phase 2 with positive MX value (atoms 1-4, 17-24) and a shift multiplier of -1.0 is applied to MX for atoms in phase 2 with negative MX value (atoms 5-16) (screen image).Press the "Save" button and the constraint appears (screen image).

Changing the refinement flag for the magnetic moments must currently be done from EXPEDT. Also, since symmetry does not constrain the magnetic components in y and z directions, that must also be done in EXPGUI. Alas, GSAS does not allow enough parameters to be fixed to allow the coordinates and magnetic moments to both be held in this model, so the previously-entered holds are deleted. The following EXPGUI commands are used:

1. Y L
2. A
3. P 2
4. v 1:24 M
5. F
6. D 1:32
7. i 1 my
8. i 2 my
9. i 3 my
10. i 4 my
11. i 5 my
12. i 6 my
13. i 7 my
14. i 8 my
15. i 9 my
16. i 10 my
17. i 11 my
18. i 12 my
19. i 13 my
20. i 14 my
21. i 15 my
22. i 16 my
23. i 17 my
24. i 18 my
25. i 19 my
26. i 20 my
27. i 21 my
28. i 22 my
29. i 23 my
30. i 24 my
31. i 1 mz
32. i 2 mz
33. i 3 mz
34. i 4 mz
35. i 5 mz
36. i 6 mz
37. i 7 mz
38. i 8 mz
39. i 9 mz
40. i 10 mz
41. i 11 mz
42. i 12 mz
43. i 13 mz
44. i 14 mz
45. i 15 mz
46. i 16 mz
47. i 17 mz
48. i 18 mz
49. i 19 mz
50. i 20 mz
51. i 21 mz
52. i 22 mz
53. i 23 mz
54. i 24 mz
55. x x x x
56. x
where command 1) [Y] indicates the correct file has been selected to be edited; Command 2) [L] enters the least-squares menu; command 3) [A] moves from the least-squares to the atoms submenu; command 4) [P 2] selects the second phase command 5) [v 1:24 M] sets the M flag (refine magnetic moment) for atoms 1 through 24 (all atoms in the phase). command 6) [F] enters the menu to fix atomic parameters; command 7) [D 1:32] delete previous commands to fix the atom x & z coordinates command 8-55) [i N Mx] inserts a constraint on the MY or MZ parameter for atom N; command 56) [x x x x] returns to the main menu; command 57) [x] exits EXPEDT

As a shortcut, the commands to fix parameters (7-54) are read from file `FixMoments.txt` (found in file `YBAFEO.zip`).

The input to and output from EXPEDT are shown below. User-typed input is emphasized by display in this font: Input

```                  |------------------------------------------|
|       Program EXPEDT Version MacOSX      |
| A menu driven routine to edit .EXP files |
| Distributed on Thu Sep 30 14:58:36 2004  |
|------------------------------------------|

|---------------------------------------------------------------|
|            Allen C. Larson and Robert B. Von Dreele           |
|      Manuel Lujan, Jr. Neutron Scattering Center, MS-H805     |
|      Los Alamos National Laboratory, Los Alamos, NM  87545    |
|                                                               |
| Copyright, 2000, The Regents of the University of California. |
|---------------------------------------------------------------|

The last history record is :
HSTRY 31 GENLES  MacOSX Jul 26 19:08:40 2005 Sdsq= 0.724E+04 S/E= 0.118E-0

Is this the file you wish to use? (<?>,D,K,Q,R,Y) >Y
Experiment title:
Y Ba2 Fe3 O7+delta: Pmmm nuclear phase
The last history record is :
HSTRY 31 GENLES  MacOSX Jul 26 19:08:40 2005 Sdsq= 0.724E+04 S/E= 0.118E-0

EXPEDT data setup option (<?>,D,F,K,L,P,R,S,X) >l a p 2
Phase No. 1; Phase has      9 atoms; Title: from /Users/toby/proj/ybafe/YBaFeO
Phase No. 2; Phase has     24 atoms; Title: from /Users/toby/proj/ybafe/FeOnly
Give atom editing command
(<?>,\$,C,D,E,F,I,K,L,M,P,S,T,U,V,X,+,-,*,/) >v 1:24 M
SER TYPE    X       Y       Z      FRAC   NAME    UISO    CODE  STSYM MULT FXU
MX      MY      MZ     MCODE
SER TYPE    X       Y       Z      FRAC   NAME    UISO    CODE  STSYM MULT FXU
MX      MY      MZ     MCODE
1 FE+3 0.00000 0.00000 0.00000 1.00000 Fe1a     0.00570 I  U     1     1 000
3.500   0.000   0.000       M
2 FE+3 0.50000 0.50000 0.00000 1.00000 Fe1a     0.00570 I  U     1     1 000
3.500   0.000   0.000       M
3 FE+3 0.50000 0.00000 0.50000 1.00000 Fe1a     0.00570 I  U     1     1 000
3.500   0.000   0.000       M
4 FE+3 0.00000 0.50000 0.50000 1.00000 Fe1a     0.00570 I  U     1     1 000
3.500   0.000   0.000       M
5 FE+3 0.00000 0.00000 0.50000 1.00000 Fe1b     0.00570 I  U     1     1 000
-3.500   0.000   0.000       M
6 FE+3 0.50000 0.50000 0.50000 1.00000 Fe1b     0.00570 I  U     1     1 000
-3.500   0.000   0.000       M
7 FE+3 0.50000 0.00000 0.00000 1.00000 Fe1b     0.00570 I  U     1     1 000
-3.500   0.000   0.000       M
8 FE+3 0.00000 0.50000 0.00000 1.00000 Fe1b     0.00570 I  U     1     1 000
-3.500   0.000   0.000       M
9 FE+3 0.00000 0.00000 0.16998 1.00000 Fe2a     0.00570 I XU     1     1 000
-3.500   0.000   0.000       M
10 FE+3 0.50000 0.50000 0.16998 1.00000 Fe2a     0.00570 I XU     1     1 000
-3.500   0.000   0.000       M
Enter  to continue or "Q" to quit >
SER TYPE    X       Y       Z      FRAC   NAME    UISO    CODE  STSYM MULT FXU
MX      MY      MZ     MCODE
11 FE+3 0.00000 0.00000-0.16998 1.00000 Fe2a     0.00570 I XU     1     1 000
-3.500   0.000   0.000       M
12 FE+3 0.50000 0.50000-0.16998 1.00000 Fe2a     0.00570 I XU     1     1 000
-3.500   0.000   0.000       M
13 FE+3 0.50000 0.00000 0.33002 1.00000 Fe2a     0.00570 I XU     1     1 000
-3.500   0.000   0.000       M
14 FE+3 0.00000 0.50000 0.33002 1.00000 Fe2a     0.00570 I XU     1     1 000
-3.500   0.000   0.000       M
15 FE+3 0.00000 0.50000-0.33002 1.00000 Fe2a     0.00570 I XU     1     1 000
-3.500   0.000   0.000       M
16 FE+3 0.50000 0.00000-0.33002 1.00000 Fe2a     0.00570 I XU     1     1 000
-3.500   0.000   0.000       M
17 FE+3 0.50000 0.00000 0.16998 1.00000 Fe2b     0.00570 I XU     1     1 000
3.500   0.000   0.000       M
18 FE+3 0.00000 0.50000 0.16998 1.00000 Fe2b     0.00570 I XU     1     1 000
3.500   0.000   0.000       M
19 FE+3 0.50000 0.00000-0.16998 1.00000 Fe2b     0.00570 I XU     1     1 000
3.500   0.000   0.000       M
20 FE+3 0.00000 0.50000-0.16998 1.00000 Fe2b     0.00570 I XU     1     1 000
3.500   0.000   0.000       M
Enter  to continue or "Q" to quit >
SER TYPE    X       Y       Z      FRAC   NAME    UISO    CODE  STSYM MULT FXU
MX      MY      MZ     MCODE
21 FE+3 0.00000 0.00000 0.33002 1.00000 Fe2b     0.00570 I XU     1     1 000
3.500   0.000   0.000       M
22 FE+3 0.50000 0.50000 0.33002 1.00000 Fe2b     0.00570 I XU     1     1 000
3.500   0.000   0.000       M
23 FE+3 0.00000 0.00000-0.33002 1.00000 Fe2b     0.00570 I XU     1     1 000
3.500   0.000   0.000       M
24 FE+3 0.50000 0.50000-0.33002 1.00000 Fe2b     0.00570 I XU     1     1 000
3.500   0.000   0.000       M
Phase No. 2; Phase has     24 atoms; Title: from /Users/toby/proj/ybafe/FeOnly_
Give atom editing command
(<?>,\$,C,D,E,F,I,K,L,M,P,S,T,U,V,X,+,-,*,/) >F
Parameters being held constant are
1(2  9X   )  2(2 10X   )  3(2 11X   )  4(2 12X   )  5(2 13X   )  6(2 14X   )
7(2 15X   )  8(2 16X   )  9(2 17X   ) 10(2 18X   ) 11(2 19X   ) 12(2 20X   )
13(2 21X   ) 14(2 22X   ) 15(2 23X   ) 16(2 24X   ) 17(2  9Y   ) 18(2 10Y   )
19(2 11Y   ) 20(2 12Y   ) 21(2 13Y   ) 22(2 14Y   ) 23(2 15Y   ) 24(2 16Y   )
25(2 17Y   ) 26(2 18Y   ) 27(2 19Y   ) 28(2 20Y   ) 29(2 21Y   ) 30(2 22Y   )
31(2 23Y   ) 32(2 24Y   )
Enter option (<?>,D,I,L,X) >d 1:32
32 hold parameters deleted - remaining holds renumbered
Enter option (<?>,D,I,L,X) >@r
Enter the name of your macro file: FixMoments.txt
The commands will be read from FixMoments.txt

Enter option (<?>,D,I,L,X) > i 1 my
Enter option (<?>,D,I,L,X) > i 2 my
Enter option (<?>,D,I,L,X) > i 3 my
Enter option (<?>,D,I,L,X) > i 4 my
Enter option (<?>,D,I,L,X) > i 5 my
Enter option (<?>,D,I,L,X) > i 6 my
Enter option (<?>,D,I,L,X) > i 7 my
Enter option (<?>,D,I,L,X) > i 8 my
Enter option (<?>,D,I,L,X) > i 9 my
Enter option (<?>,D,I,L,X) > i 10 my
Enter option (<?>,D,I,L,X) > i 11 my
Enter option (<?>,D,I,L,X) > i 12 my
Enter option (<?>,D,I,L,X) > i 13 my
Enter option (<?>,D,I,L,X) > i 14 my
Enter option (<?>,D,I,L,X) > i 15 my
Enter option (<?>,D,I,L,X) > i 16 my
Enter option (<?>,D,I,L,X) > i 17 my
Enter option (<?>,D,I,L,X) > i 18 my
Enter option (<?>,D,I,L,X) > i 19 my
Enter option (<?>,D,I,L,X) > i 20 my
Enter option (<?>,D,I,L,X) > i 21 my
Enter option (<?>,D,I,L,X) > i 22 my
Enter option (<?>,D,I,L,X) > i 23 my
Enter option (<?>,D,I,L,X) > i 24 my
Enter option (<?>,D,I,L,X) > i 1 mz
Enter option (<?>,D,I,L,X) > i 2 mz
Enter option (<?>,D,I,L,X) > i 3 mz
Enter option (<?>,D,I,L,X) > i 4 mz
Enter option (<?>,D,I,L,X) > i 5 mz
Enter option (<?>,D,I,L,X) > i 6 mz
Enter option (<?>,D,I,L,X) > i 7 mz
Enter option (<?>,D,I,L,X) > i 8 mz
Enter option (<?>,D,I,L,X) > i 9 mz
Enter option (<?>,D,I,L,X) > i 10 mz
Enter option (<?>,D,I,L,X) > i 11 mz
Enter option (<?>,D,I,L,X) > i 12 mz
Enter option (<?>,D,I,L,X) > i 13 mz
Enter option (<?>,D,I,L,X) > i 14 mz
Enter option (<?>,D,I,L,X) > i 15 mz
Enter option (<?>,D,I,L,X) > i 16 mz
Enter option (<?>,D,I,L,X) > i 17 mz
Enter option (<?>,D,I,L,X) > i 18 mz
Enter option (<?>,D,I,L,X) > i 19 mz
Enter option (<?>,D,I,L,X) > i 20 mz
Enter option (<?>,D,I,L,X) > i 21 mz
Enter option (<?>,D,I,L,X) > i 22 mz
Enter option (<?>,D,I,L,X) > i 23 mz
Enter option (<?>,D,I,L,X) > i 24 mz
Enter option (<?>,D,I,L,X) > The macro file is empty, reading from the terminal
is resumed.
Enter option (<?>,D,I,L,X) >x x x x
EXPEDT data setup option (<?>,D,F,K,L,P,R,S,X) >x
```

• The "X" refinement flags must then be removed for the Fe atoms in phase 1 (screen image) and phase 2 (screen image).
• The refinement is then started with GENLES. The magnetic moments shift only slightly (as can be seen from the LSTVIEW output) and the chi2 value drops only slightly (screen image).

#### Further Model Improvements

At this point the refinement has progressed significantly, but for publication one might wish to obtain a slightly better fit. To do this, the number of background parameters can be increased to the point where little improvement is seen by adding more terms, say to around 12-14 terms. The profile can be improved further by switching to profile type 2 or 3 and allowing the LX term to refine (don't forget to add a profile constraint). One would also want to alternate between refining the Fe atoms z coordinate and their MX value, in case there is any correlation in the values. There is also a minor impurity phase, BaFeO3, that can be included (Pm3m, a=4.0875, Ba: 0,0,0; Fe 1/2,1/2,1/2; O 1/2,1/2,0). Note that the phase fraction for this phase can be refined, and later the unit cell, but the Uiso should be fixed at a reasonable level, such as the default of 0.025. With these additions, the fit can be improved to a reasonable chi2 = 1.9 and very good R(F2) = 0.046.