Materials Physics and Engineering

How can we make today’s materials safer and more efficient? Can we combine key experiments with computational tools to design and engineer new materials? Such questions, which are at the core of materials research, are addressed with x-rays by users and staff of the Materials Physics and Engineering (MPE) group. The MPE group operates Sector 1 of the Advanced Photon Source, which consists of the insertion device beamline 1-ID and bending magnet beamline 1-BM.

1-ID delivers high-brilliance, high-energy x-rays above 50 keV, providing a unique combination of penetration power and high spatio-temporal resolution. These characteristics are exploited with two primary techniques (i) high-energy diffraction microscopy (HEDM) and (ii) combined high-energy small- and wide-angle x-ray scattering (HE-SAXS/WAXS). HEDM reveals information on single grains (size, shape, orientation, strain) within polycrystalline aggregates, while HE-SAXS/WAXS reveals similar grain-averaged information over a wide range of size scales (0.1-100 nm). Incident x-ray beams can be focused down to the micron-level, and 3-dimensional information can be achieved either in direct space, using a conical-slit system (~100 micron resolution), or through reconstruction algorithms. These techniques rely on area detectors for efficient data collection with temporal resolutions down to 10msec, and are often used with thermo-mechanical environments, to enable studies of ‘real materials in real conditions’.