
Use of National Facilities in 
Technology Development for Energy 
and Transportation 
Ernie Hall
Chief Scientist
GE Global Research



2 /
Ernie Hall/NUFO /

6/11/2009

GE … a heritage of innovation
Founded in 1892

$180 billion in annual revenues 

Only company in Dow Jones index 
originally listed in 1896

300,000 employees worldwide

36,000 technologists

50,000th US patent in 1978

$5.7 billion technology spend (2006)
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Four segments aligned for growth
GE Capital NBC UniversalInfrastructure 

- Technology
Infrastructure

- Energy

Energy
Oil & Gas
Water

Aviation
Transportation
Healthcare
Security, Sensing, Inspection
Lighting, Appliances, Industrial
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Affordable, reliable & environmentally 
responsible 

Energy technology objectives

Driving cost of electricity 
down 
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Sustainable Energy
Developing new ways to power an energy-hungry, eco-conscious 
world

CO2 Capture

BiofuelsSolar

Energy Storage

Win 
d

Cleaner Coal
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Fuel burn 20%

Emissions (NOx) 85%

Noise 55%

Cost of ownership 30%

Reliability 50%

6

Aviation technology objectives 
cleaner, quieter, faster, affordable
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Hybrid locomotive

Sets new standards in fuel 
efficiency, environmental 
performance
Leverages unique GE 
electro-chemistry for 
battery… increases power 
3x and energy 2x 
Provides additional 10% 
NOx and CO2 reduction
Improves fuel efficiency 10%
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Global Research: market-focused 
R&D
First US industrial lab

Began 1900 in Schenectady, NY

Founding principle … improve 
businesses through technology

One of the world’s most diverse 
industrial labs

Cornerstone of GE’s commitment  to technology
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3,000 technologists strong

Global Research Center
Niskayuna, NY

John F. Welch Technology 
Center
Bangalore, India
China Technology Center 
Shanghai, China

Global Research – Europe
Munich, Germany
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Discovery of synchrotron 
radiation at GE Research Center 
(1947)

A long history of innovative approaches to 
materials characterization…

TEM

Electron Microprobe

X-ray Microscope

General 
Electric 
synchrotron 
accelerator 
built in 1946
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Materials characterization using synchrotrons and neutrons

We use a variety of techniques at various 
national facilities to characterize a wide range of 
materials

APS (USA)

NIST (USA)

FRM-II (Germany)

SSRF (Shanghai)

NCEM (USA)
NSLS (USA)

GE CTC
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GE usage… “research between basic and applied

• Use model / non-proprietary systems 
to develop key mechanistic, structure- 
property correlations

• Use a variety of facilities, beamlines, 
collaborators optimized for task

• Different access models

• Geographic accessibility plays a role

• Constant pressure on research 
budgets 

Typical GE usage:
• High-resolution XRD
• High-pressure/ 

temperature XRD
• High-energy XRD
• XAFS
• SAXS
• Pair-distribution 

function (PDF)
• Synchrotron 

microtomography
• X-ray microscopy
• X-ray microprobe 
• Prompt gamma-ray 

activation analysis
• Neutron diffraction
• Neutron radiography
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Industrial Needs – are they different?
• Varies by segment:  pharma, chemical, semiconductor, 
energy/infrastructure/materials

• Mixed long and short terms needs

• Less-flexible sample conditions

• In-situ measurements and custom-designed setups

• Quick access and short turnaround time

• Productivity

• Reliable and usable results and solutions

• Spectrum of knowledge/capabilities of users
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Neutron data from a half-charged 
cell, FRM-II, TUM (Hoffmann, 
Gilles)

Stress-Spec, FRM-II

Neutron diffraction of Na-MCl2 battery – phase distribution

M + NaCl

MCl2

Na

BASE

“Reaction front” will move 
during charge/discharge
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Fe

Diagonal scan with neutron beam to 
reveal the chemistry change in a half- 
charged battery cell.

2NaCl + Fe  FeCl2 + 2Na   
(300°C)

charge

discharge
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In-situ XRD diffraction from battery 
cells 
X17B NSLS BNL 

white 
X-rays

Energy
resolved
detector

Interaction volume 
0.1mm H x 1 mm D x 3mm W

Raster up & down 6mm

1) Diagonal scans at 
end of (dis)charge

2) Single point 
during (dis)charge

Maccor 
(Charge & 
Discharge)

Temp 
controller
@ 300°C

Slits
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In-situ diffraction pattern 
during charging (beam is 
fixed to a point inside the 
cell)
Evolution of MCl2 and 
disappearance of NaCl 
with charging 

Zhong Zhong (BNL), 
Mark Croft (Rutgers), Job 
Rijssenbeek (GE-GRC)
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In-situ powder diffraction: hydrogen storage material

J. Rijssenbeek, G. Soloveichik, J.-C. Zhao (GRC-N), J. Hanson (BNL), J-H Her, 
P. Stephens (SUNY Stony Brook), Q. Huang, C. Jones, B. Toby (NIST) 

mar345

RGA-200

2D XRD data

XRD Mass spec

H2 (2000 psi)
RGA

Heater (500 C)

TCsample

X7B, NSLS, USA
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Wednesday, Nov 14, 2007, 6:20:16 PM

Size distribution of nano-oxides by small-angle x-ray scattering

5-ID (DND-CAT), APS

Steve Weigand (APS DND- 
CAT), Anthony Ku (GE-GRC), 
Todd Striker (GE-GRC), Pat 
Willson (GE-GRC), Jim Ruud 
(GE-GRC)
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Oxide Dispersion Strengthened A

Fe, Ni or Cu Nano-sized oxide
(less than 1 wt%) 

TEM micrograph

•XRD phase analysis
•TEM sample: from a tiny 
area
•SAXS sample: thin and 
small

Conventional analyses

Cast oxide dispersion strengthened (ODS) alloys
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100 
mm

Scan sample

Cast oxide dispersion strengthened (ODS) alloys

Transmission HE-XRD
• Phase identification
• Oxide dispersion in macro scale

HE-SAXS
• Oxide dispersion in micro scale
• Oxide size and size distribution

AlYO3 and Al5 Y3 O12

Cross-section of ingot
A few mm thick
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Thermal Barrier Coatings (TBC)

7-8YSZ

• Polymorphs: tetragonal, cubic and 
monoclinic

• Separation of tetragonal and cubic peaks
• Determination of lattice parameters and 

c/a’: transformable (t) and non- 
transformable (t’)

• Texture: difficult with conventional XRD.  

YS 
Z
Bond coat
Superalloy substrate

Wayne Hasz (GE-GRC), Curt Johnson (GE-GRC), Don Lipkin (GE-
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• Tetra = 49.9 wt%
• Cubic = 47.9 wt%
• Mono = 2.2 wt%
• Tetra c/a’ = 1.0154  t’
• Tetra c/a’  4.4 mol% YO1.5
• Tetra c/a’  thermal history
• Cubic a  14.0 mol% YO1.5
• Peak width  micro-strain
• Peak position  macro-strain

Thermal Barrier Coatings (TBC)

Performance DOE

x x x
x x x
x x x
x x x
x x x

Temperature

Ti
m

e

TBC analyses may involve large 
number of measurements

or

Rietveld refinement
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Non-destructive residual stress measurement

Residual stress is a key concern for 
turbine lifing, and measuring residual 
stress accurately and non- 
destructively is an important industrial 
need the HE-synchrotron can offer.

Incident X-ray

Diffracted X-ray



Obtain depth profile by layer removal

Incident X-ray

Diffracted X-ray



Obtain depth profile by moving sample

More accurate and sample 
can be used for further tests or 
uses
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Non‐destructive residual stress analysis
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12 (samples) x 2 (locations) x 10 (steps) = 240 images in 12 
hours

Compressive 
stress for most 
specimens

Stress free for some

100 m

ND residual stress measurement: an industrial 
case

Ulrich Lienert (APS), Bill Carter (GE-GRC), Mike Henry 
(GE-GRC)
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Residual stress measurement

• An analytical tool – not a science, for most cases
• Scientifically challenging areas:


 
3D x-ray microscope – measuring single grains



 
Microdiffraction – 3D strain mapping



 
Non-crystalline materials via PDF method

• Technically challenging areas:


 
Non-destructive strain tensor measurement



 
Samples with complicated geometry



 
Large samples



 
Productivity – many samples
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Stewardship of National 
Facilities – testimony before 
Congress

• National user facilities are of immense importance to 
industrial technology development

• Individual companies are not capable of building and 
maintaining individual facilities

• The relationship with DOE / BES / OS is good, is 
moving forward, but there are areas for improvement.
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An ideal model for industrial access…
• Wide variety of research stations in good working order, 
staffed by experts, with standardized equipment/software

• Clear and simple website information on modes and 
mechanisms of industrial access

• Can accommodate research, characterization, process 
development, problem solving, proprietary studies

• Simple and straightforward proprietary agreements

• Special support for small businesses (students):  experts to 
help design experiments, choose samples, conduct 
experiments, interpret data; travel money?
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On behalf of GE, thank you for all of the 
support in our past interactions, and 

moving forward with us into the future
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Battery:

Ralph Gilles (FRM-II)
Michael Hoffmann (FRM-II)
Martin Mühlbauer (FRM-II)
Zhong Zhong (BNL)
Mark Croft (Rutgers)
Job Rijssenbeek (GE-GRC)

H-storage:

Jon Hanson (BNL)
Peter Stephens (Stony 
Brook)
J-H Her (Stony Brook)
Qingzheng Huang (NIST)
Brian Toby (NIST)
Job Rijssenbeek (GE-GRC)
Grigorii Soloveichik (GE- 
GRC)

SAXS:

Steve Weigand (APS DND-CAT)
Anthony Ku (GE-GRC)
Todd Striker (GE-GRC)
Pat Willson (GE-GRC)
Jim Ruud (GE-GRC)

Residual Stress:

Ulrich Lienert (APS)
Bill Carter (GE-GRC)
Mike Henry (GE-GRC)

TBC:

Wayne Hasz (GE-GRC)
Curt Johnson (GE-GRC)
Don Lipkin (GE-GRC)
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