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APS short pulse project: 1-ps, 10°%pulse, AE/E ~1% P U:%I;;;S E
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Concept: A. Zholents, P. Heimann, M. Zolotorev, J. Byrd, NIM A425 (1999).
Simulation for APS: M. Borland, PRSTAB 8, 074001 (2005).
Cavity design/machine studies: A. Nassiri, V. Sajaev, K. Harkay ...

(L. Young)
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Time scales for atoms and molecules

PULESE
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Layout for a ps hard x-ray science beamline P U*_I:; S E
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Many atomic processes are P U*-']%a-S E
sub-picosecond... —

Electron Dynamics Nuclear Dynamics
fundamental time scale electron dynamics fundamental time scale for vibrational motion
Atomic time unit = 24 attoseconds vibrational period: T, = 10 -100 fs

'./- “The Born-Oppenheimer approximation may be

irrelevant. We don’t yet have a language to
describe the physics these experiments can probe”
-- W. Kohn

Explanations of Organic Photochemistry

\0'5\ appealing to conical intersections and
. N ) “Intersystem crossings” are largely poetry
—

Attosecond-pulse probing

Direct attosecond probe of atomic
electron correlation Hu and Collins, PRL
(2006)

Theory
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... but X-ray FEL stability is an issue P U-f]g—_s E
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Data from FLASH courtesy of Y. Acremann, PULSE Institute, 2008
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Tunable, polarized, picosecond x-rays at 6.5 MHz P U:L; S E

* Time resolution from current 100 ps to 1 ps
« All in situ x-ray techniques: spectroscopy, scattering, with 1-ps resolution

* Increase data collection rates by up to 6500x
(standard time resolved studies at ~1 kHz)

» High rep rate perfect for rapidly replenishible targets or reversible processes
(AMO, chemistry, condensed matter, devices)

*Synchrotron-like stability
- microfocus techniques: x-rays to 10 microns
- microfocus — reduced laser power requirements
- new high rep-rate, high power laser sources available

AMO: v, = 300 m/s — transit time ~ 30 ns - (30 MHz)
Chem: v;,, = 3 m/s — transit time ~ 3 ps - (300 kHz)
CM: recovery time = variable ~ 10 ns

Devices: recovery time = variable ~ 10 ns
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Many amo processes on the angstrom scale are

2
in the range 1012<t<101°s PUESE

e All molecular rotational dynamics

27t/ AE ~10* t010°7 ~0.5-50ps

atomic

e Cluster dynamics

d /v, where lnm<d <100nm

e Spin dynamics

- B where 1 tesla < B <100 tesla

e Dipole-dipole interactions
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Diffraction from laser-aligned molecules P U-_‘E— S E

jet-cooled
molecules

Image plate

Aligning laser pulse ~120 ps, 102W/cm?, 30um,1 kHz
# aligned molecules in volume ~ 106-1010

APS: 106 x-rays/pulse, 0.01% BW, 100 ps, 1kHz
APS: 108 x-rays/pulse, 1% BW, 100 ps,1kHz

Time to acquire image:1.5 hrs w/108/pulse

APS Picosecond Source: 109 x-rays/pulse, 1% BW, 1 ps,6MHz
Time to acquire the same image: 1.5 minutes
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Impulsive alignment PUESE
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Time-resolved alignment of Br, P U-i- S E
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X-ray scattering - laser-aligned Br, = PUESE
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Alignment of complex molecules PUZESE

3-D alignment w/elliptically polz’d fields
3,4 dibromothiophene
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J.J. Larsen et al., PRL 85, 2470 (2000)

Field-free 3D Alignment - K. Lee et al. PRL (2006) P

Xiz
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Polarization EXAFS
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Molecular orientation
 enhance EXAFS oscillations
e determine atomic background
e determine bond angles

Linda Young, Robin Santra
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Diffuse X-ray Scattering of Molecular PULSE
Dynamics in Solution —

Experiment
Theory B
Difference

Bridged C,H,I +1

Experiment
Theory
Difference

A

Anti C,H,I +1

C,H,L, + hv T——> C,H,I+1

Difference Radial Intensity, rAS(r)

Difference Diffraction Intensity, gAS(q)
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(a) Photoionization

Neon Dimer £
o
£
(b) lnterat;)mic Coulombic Decay
‘ 0 1 2 3 4 5
- Kinetic energy [eV]
(c) Coulomb Explosion .Theory: Santra et a|1
PRL 85, 4490 (2000)
= JCP 121, 8393 (2004)
> BExperiment: T. Jahnke et al.,
PRL 93, 163401 (2004)
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COLTRIMS: Needs high rep rate PU—_—‘E;SE

Principle of COLTRIMS

- P
S
IIIII

Delay-Line- i Bl e
Ancde Cerift-Tube =il

Helmholtz-
Cails

In COLTRIMS (Cold Target Recoil lon Momentum Spectroscopy) the ions and
electrons are guided in a crossed electric and magnetic field to position sensitive
detectors while the momentum information of the charged particles is conserved.
This records many-particle correlations, one molecule at a time

(Moeller, TU-Berlin)
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ICD viewed with COLTRIMS ~ PU%SE

ICD m Ne : The experiment

Cold Target Recoil Ion Momentum Spectroscopy Theoretical calculation of S. Scheit er al.
(COLTRIMS) expertment of Démer's group, JCP 121, 8393 (2004)
PRI 93, 163401 (2004) /
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Dipole-dipole interaction covers large range intime P U:IE SE

ICD widths in MgNe and CaNe
i . . . Vitali Averbukh,

| S Heidelberg
u Blue — MgNe
T Red — CaNe _

Full curves — ADC(2e), T, =21 @ |H-E | X, )

Dashed curves — virtual photon transfer predictions. I', . = (371/41) (c/w)? I'INEUW“'RE
M=Mg Ca
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|ICD can initiate cluster dynamics P U:-‘E—S E

# Van der Waals clusters O
- * T ¥ Oﬁo
MgNe, CaNe, Ne . Ne Ar . ...
n n 114 O
* - confirmed experimentally: Hergenhahn and coworkers. PRL 940, ]"“]'_IE?
203401 (2003); Bjérneholm. Svensson and coworkers, PRL 93, 173401 octahedral

(2004); Dorner and coworkers, PRL 93, 163401 (2004).

% Hydrogen bonded clusters

(ED) (.

¥ - experiments being planned

#% Endohedral fullerenes

Ne@C,, At@C,, ...

e

Vitali Averbukh, Heidelberg
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Cluster excitation PUESE

e Impulsive excitation of phonon modes

e Oscillations interrogate nanoscale elastic properties;
few alternative techniques are available.

e Shape and size dependence may lead to an
understanding about how these features affect
material properties at the nanoscale.

e Vibrational damping yields the dephasing time for
the vibrational motion, which can provide
iInformation about how the particles mechanically
interact with their environment.
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Vibrational modes in nanorods. PUESE

Extensional Mode (Fundamental)
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Breathing Mode (Fundamental)
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% Hartland GV. 2006.
Annu. Rev. Phys. Chem. 57:403-30
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| Nanorod wiggles PUESE
L.

S

Transient absorption data for gold
nanorods with different lengths: (a) 46 = 6

Cowwiee i nm, (b) 61 + 5 nm, (c) 75 + 6 nm, and (d)
’ 89 + 7 nm. The two traces in each panel
I b ' - correspond to experiments performed on

.-'_W “M\/\\f\/ the red or blue sides of the longitudinal
g | _l plasmon resonance. (e) Period versus
|\/\N |W length for the gold nanorods.

L

= Lampri = (nmj
IE——_———m—m—m—m—

|h Hartland GV, 2006, SPX at ANL 23
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PULESE
.

20 nm

{111}

ﬂ Hartland GV. 2006.
Annu. Rev. Phys. Chem. 57:403-30

Figure 14 (Top) HRTEM
image of a selected gold
nanorod produced by seed-
mediated growth (68). {111}
lattice fringes characteristic of
imaging the 110 and 111
crystallographic zones can be
seen on the lower half of the
rod. (Bottom left)
Corresponding diffraction
pattern from the rod. The
outlined hexagon of {220}
spots arises from diffraction
from the 111 zone, and the
smaller reciprocal lattice inside
this arises from the 110 zone.
The drawing at the bottom
right shows the structure of the
rods.
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Atomic motion In bio-clusters P U—_Sﬁ;;s E

CO Photo-
dissociation
from
Myoglobin
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More exotic: Two-dimensional X-ray P U*—"]E;-S E
correlation spectroscopy (2DXCS) —

Correlation spectroscopy has been very successful in NMR, and IR
and UV/Visible

Vary delays in a coherent time-resolved all-x-ray four-wave mixing
signal

k. o~y __tl;__ Iy - I3 .
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2 - — — =

k _ ‘l‘l 1‘2 T3 '!'4

Spectrum is displayed as 2D Fourier transform

S5 (Qs, 12, 0 / f dt1dE3 S (L, ta, 1y )Pl

Strong individual absorption contribute to the diagonal part of
2DXCS

Weak signatures of interactions emerge as “cross peaks”
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More exotic EIT PUESE
| b+
lath =
E
2
Requires tunable pulses;
Overlap with driving field
Picosecond pulses are an advantage
Narrow bandwidth is an advantage
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AMO science opportunities at 1ps P U-i"f;;s E

Evolution of structure following excitation
e Formation or destruction of interatomic order
Transient properties of nanostructures

e Polarization and tuning are essential for probing atomic
magnetism

Quantum optics at short wavelengths
e Restricted to weak-x-ray fields: Transparency?
Coherent control
e Perfect time scale for studies of rotational alignment
e Optimal laser source for this remains a challenge
Reaction microscopy
e Benefits from high rep rate
e Could use shorter pulses
Multidimensional spectroscopy

May 9, 2008 SPX at ANL 29



