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Sector layout

B Offers three times as many ID beamlines — one long and 2 short IDs per
sector

— Offers increased length for main ID straight section — 8 m available for
ID (compared to 5 m presently)

— Offers two 2.1-m long straight sections (about 1 m available for ID), one
is parallel to present BM beamline

B Could provide a three-pole wiggler for beamlines that still want bending-
magnet-like source
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Beta functions

M [attice is triple-bend achromat, bending angles are chosen to make
second short ID parallel to the present BM beamline

M Lattice has 6 quadrupoles and 10 sextupoles
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Table of parameters

APSx3 APS
Energy (GeV) 7 7
Emittance (nm rad) 1.44 2.51
Effective emittance (nm rad) 1.67 3.1
Betatron tune X 50.11 36.20
Betatron tune Y 19.44 19.26
Chromaticity X -129 -92
Chromaticity Y -62 -45
Energy spread 1.41x10-3 0.96x10-3
Energy loss per turn (MeV) 9.1 5.4
Momentum compaction 1.19x104 2.81x104
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Magnets

Bending magnets L(m) | Angle (mrad)| B (T) | K1 (1/m2) | G (T/m)
BO 1427 | 67.847 111 | 0370 | -8.64
B1 1225 |  19.385 037 | -0289 | -6.75
Quadrupoles L (m) K1 (1/m2) | G (T/m)
Ql1 0.25 -1.545 -36.1
Ql2 0.40 1.042 453
QDF 0.40 1.860 43.4
Sextupoles L (m) K2 (1/m?) | G (T/m?)
S1 0.2 57.4 1340
S2 0.2 67.2 1569
SE 0.2 -106.9 2496
SF 0.2 89.3 2085
SD 0.2 -35.4 827
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DA requirements

B Booster emittance is assumed to be 30 nm rad (about one half of the
present value)

B Required dynamic aperture for injection:

6c,,+50 + 2 mm (septum) + 0.5 mm (margin) = 7.7 mm

stored

B Center of injected bunch — injection amplitude (for injection simulation):

3oc,;T50 + 2 mm (septum) + 0.5 mm (margin) = 5.4 mm

stored
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Dynamic aperture

B Due to very high sextupole strength, higher-order sextupole effects are
important — simple minimization of main harmonics is not enough

B Due to very high symmetry, optimization of ideal lattice DA is pointless —
errors are required to excite resonances (especially tilts)

B Three sextupole families are available for DA optimization; dynamic
aperture was optimized using genetic optimization algorithm
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Tune shift with amplitude

B Higher-order terms of tune shift with amplitude are large and impossible
to suppress

B We don’t expect particles beyond integer resonance to survive full-scale
6D tracking with synchrotron damping
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Horizontal phase space

B Phase space shape emphasizes strength of higher-order sextupole

resonances
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DA with errors

B Quadrupole fractional errors of 5x10-4 and tilts of 5x10-4 rad were used.
This set of errors represents the level of symmetry breaking that is
routinely achieved at APS after lattice and coupling correction (5% beta
function beating)

B 50 different seeds were calculated
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Injection simulation

B Realistic 3-D gaussian bunch with 65 and 30 nm rad emittance and
matched beta functions is used for tracking (1000 particles, 1000 turns)

B |njection is simulated as just initial deviation of the bunch — no kickers
B Lattice with errors is used (one seed only)
B No synchrotron radiation
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Momentum DA

B Single particle tracking, momentum deviation only
B With RF cavity, without synchrotron radiation for simplicity

B Tracking starts from different locations along the lattice, momentum
deviation is increased until the limit is found
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Lifetime

B Lifetime is calculated using Haissinski equation
B Assumed coupling is 1%, RF voltage is 13 MV
B Bunch length is comparable to the present APS
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Conclusions

B APSx3 lattice provides increased length for ID straight sections — from 5
mto8m

B APSx3 provides additional two 2-m long straight sections (for approx. 1-m
long ID), one located at present BM beamline

B Improves beam emittance by a factor of 2

B Dynamic aperture suitable for injection can be achieved, however
injection efficiency with the present booster might not be 100%

B Lifetime that is enough for topup can be achieved with low chromaticity
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