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Topics 
• Introduction 
• General Lattice Choices 

– Scaling 
• Lattice Optimization 

– Design 
– Specific Lattice Solutions 

• Related Topics 
– Emittance Control 
– Injection Methods 
– Beam-based Correction 

• Summary 
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• Diffraction Limited Storage rings 
• Energy recovery linac (ERL) 
• Free electron laser (FEL) 
 
 
 
Figures of merit 

• Average and peak flux 
• Average and peak brightness 
• Pulse repetition rate 
• Temporal coherence 
• Bandwidth 
• Spatial coherence 
• Pulse duration 
• Synchronization  
• Tunability 
• # beamlines 
• Beam stability 

Report on Future Light Sources (2008/2009) 

Future generations of light sources will likely 
utilize novel techniques for producing 
photons tailored to application needs 

Different operating modes 
Optical manipulation of particle beams 
Use of multiple, complementary facilities 
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≥2 orders of magnitude 
progress in brightness between 
generations 
• First Generation: Parasitic, 

use of dipole sources 
• Second Generation: 

Dedicated, dipoles, later 
wigglers, higher flux 

• Third Generation: Dedicated, 
optimized for undulators, 
high average brightness 

• Fourth Generation: three 
approaches (linear/ring); high 
coherence 
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Advances in Light Source Performance 
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Strengths of Ring Based Light Sources 

• Stability: High positional and photon energy stability 
• Tunability: Easy and rapid photon energy tunability 
• Access: Serves ~ 40 instruments simultaneously 
• Quasi-CW Operation - Long pulses at high repetition rates: 

- Advantage for important classes of experiments 

~  2 nanoseconds 

~ 100 picoseconds  ~nanojoule 
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Moving to Ever Brighter Ring Sources 

France: ESRF-II (2020): 6 GeV,  
160 pm x 3 pm, 200 mA  (New) 

BNL: NSLS-II (2014): 3 GeV,  
1000pm x 8 pm, 500 mA (New) 

Sweden: MAX-4 (2016): 3 GeV,  
230 pm x 8 pm, 500 mA (New) 
 

Brazil: SIRIUS (2016/17): 3 GeV,  
280 pm x 8 pm, 500 mA (New) 
 

ALS-U: 2 GeV, 50 pm x 50 pm,  
500 mA  (Upgrade proposal) 
 

APS-U: 6 GeV, 60 pm x 8 pm,  
200 mA  (Upgrade Proposal) 
 

Other international upgrades: Japan (Spring 8, 6 GeV), China (BAPS, 5 GeV), Germany (PETRA-III), 
France (SOLEIL), Switzerland (SLS, 2.4 GeV), Italy (ELETTRA) and others are developing plans 

NSLS-II  MAX-IV SIRIUS 

APS-U ALS-U 
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ERSF-II 

Double-bend achromat + damping wigglers First new multi-bend achromat rings 

1st multi-bend achromat  
ring upgrade 

U.S. Proposals 
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Brightness and Equilibrium Emittance 
 • Spectral brightness: photon density in 6D phase space 

 
 
 
 
 

• Horizontal (natural) emittance determined by balance between 
radiation damping and quantum excitation due to synchrotron 
radiation in all magnets: 
 
 
 

• How to minimize emittance? 
– Reduce dispersion and beta function in bend magnets (wigglers/undulators) 
– Achieved by refocusing beam ‘inside’ bending magnets -> need space 
– ‘Split’ bending magnets -> multi bend achromats 
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Brightness, Coherent Fraction, Diffraction 
Limit  

DLSRs produce photon beams with dramatically larger 
coherent fraction due to reduced horizontal emittance 

80 pm @ 1 keV 
8 pm @ 10 keV diffraction limited emittance 

Brightness is inversely proportional to convolution of 
electron beam sizes and divergences and diffraction 
emittance 
 
 
 
 
 
Coherent fraction = ratio of diffraction-limited emittance 
to total emittance 
 

Electron   Photon 
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 Natural Emittance / Coupling 
Emittance scaling with energy and circumference: 
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Emittance reduction with damping wigglers: 

Need to find optimum balance between emittance, energy spread, 
momentum compaction factor, collective effects (e.g. microwave 
instability, intra beam scattering 

Coupling / Transverse Emittance Redistribution: 
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Scaling 

10 

M. Borland 

• However, more and more magnet require magnets to 
become stronger (quadupoles about quadratically, 
sextupoles even quicker) 

– Engineering limits 
– Nonlinear dynamics 

• Energy scaling is complex (magnet strength, C) 
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Scaling (2) 
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R. Bartolini 

ALS 

APS-U 

• Slope of optimized parameter sets indicates 
that this merit function is too simple 
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 Common Lattice Options 
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• Early 3rd generation SR sources all used 
double/triple bend achromats (some with 
gradient dipoles) 

• Later optimization included detuning from 
achromatic condition (Optimizing effective 
emittance) 

• New designs (including DLSRs) employ MBA 
• Damping wigglers can help (emittance, 

damping time, IBS) but trade energy spread 
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History of TME / MBA 

• Work in 1990 to find theoretical minimum emittance structures – Einfeld, et al. EPAC 
1996, PAC 1997 

• MBA is a modification of this, with (detuned) TME structure in the middle of the arc 
and (short) matching sections at ends 

• Originally considered challenging (“chromaticity wall”) 
• Max-4 is first full implementation of MBA 
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Lattice Optimization Methods 
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Collective Effects 
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Lattice optimization – Some examples 
• GLASS – Global Analysis of All Stable Solutions 

•Tool to look for optimum lattice solution for 
highly periodic lattices (few parameters) 

• MOGA – Multi Objective Genetic Algorithms 
•Usefulness for accelerators first 
demonstrated for photo injectors (Bazarov et 
al./Cornell)  
•Optimum solution with moderate computation 
time for larger dimensional parameter spaces 
•Integrated optimization of linear+nonlinear 
lattice possible 

•Resonance Driving Terms 
•High order achromats 
•Phase cancellation 
•Multi-sector cancellation 
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Simultaneous Optimization of linear 
and nonlinear Lattice 

16 

ALS, C. Sun APS-U, M. Borland 
• Challenge: space of stable solutions vs. quadrupole gradients very sparse 
• In general case not possible to just include quads as parameters, but rather lattice 

parameters + lattice fit 
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Resonance Driving Terms 

• Quite effective, but often not the global optmimum (as 
shown by subsequent MOGA optimization) 

• Optimization can have choices: Which driving terms to 
miminize? 
– Example: optimize for small/large detuning with amplitude?  

Folds in frequency map? 
17 

J. Bengtsson: 5 cell 2nd order achromat, 
Chromatic driving terms 

Y. Cai: 4th order achromat 
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Intra Beam Scattering 
• Intra Beam Scattering is potentially a very significant 

effect at DLSRs 
– Mitigation typically involves some combination of increased vertical 

emittance, bunch lengthening (harmonic cavities), faster damping times 
(damping wigglers, normal IDs, …). 

– Optimum solution for smallest quantum excitation does not necessarily 
minimize IBS emittance growth -> include in lattice optimization 
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Example: ALS-U, 2 GeV, Harmonic Cavities, full coupling, full set of insertion 
devices, no damping wigglers 

Beam Current [A] 
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Example MBA Lattices 

19 

APS-U - HMBA, swap-out,  
M. Borland 

ALS-U – 9BA, octupoles, 
swap-out, H. Tarawneh, C. Steier PEP-X – 7BA, 4th order achromat, Y. Cai 

Max-4 – 7BA, octupoles, 
M. Eriksson ESRF-2- HMBA,  

P. Raimondi 
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(Hybrid) Multibend Achromat 

• Chromaticity correction only in high dispersion area 
– Acceptable sextupole strength 

• Fixed phase advance between 2 high dispersion areas (sextupole 
chancellation) 

• Use of longitudinal gradient dipoles 
– Helps to reduce emittance further 
– Longer than other dipoles, highest field radiation in straights 

• Use of special high beta straight for accumulation (ESRF), swap-out in 
symmetric straight (APS-U) 
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Longitudinal Gradients 

• Allow reduction in emittance and larger dispersion in 
chromatic correction section 

• Potential draw backs: 
– Non-trivial to build 
– Longer 
– Highest field in line with straights (for HMBA) 

21 

ESRF-2 APS-U 

βx  βy  η 

longitudinal  
gradient  
bend 

anti-bend 

A. Streun 
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Damping Wigglers 

• Help to reduce the equilibrium emittance – without reducing momentum compaction 
factor 

• Also decrease damping time (beneficial for IBS) 
• Possible tool to control vertical emittance (vertical wiggler, vertical dispersion) 
• Increase energy spread (reduces higher undulator harmonics) 
• Can impact dynamic aperture 
• Occupy space, increase RF need, need to handle high power synchrotron light 
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Other Methods of Emittance Control 
• If ring is diffraction limited in horizontal plane, vertical 

emittance does not need to be smaller 
– Very different from current rings which run with emittance ratios 

between 0.1% - few % 
– Intrabeam scattering and Touschek lifetime require the vertical 

emittance to not be too small 

• User experiments sometimes prefer round beams 
• Control of vertical emittance is needed 

– Coupling control (reduces horizontal emittance, fine with swap-
out, but challenging with asymmetric apertures for off-axis 
injection, limits tune choices) 

– Vertical Dispersion (local/global) – routinely used in light sources 
right now, but only up to maybe 10% emittance ratio    

– Damping Wigglers (spurious or intrinsic vertical dispersion) 
– Moebius ring / emittance exchange / … 

 23 
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Anti-Bends 

• Very new proposal 
• Allows more control over momentum compaction factor 

as well as separate control of beta-function and 
dispersion 

24 

βx  βy  

dispersion: 
anti-bend 
off / on 

relaxed TME cell, 5°, 2.4 GeV, Jx ≈ 2 
Emittance:  500 pm / 200 pm 

A. Streun, SLS 
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3PW, Superbends, … 

• MBA lattices might have weak field dipoles 
• 3PW or Superbends allow to extend spectrum to harder photon energies 
• Can also help to reduce the emittance (longitudinal gradient dipole) – if 

done right 
• Need to create space in lattice, correct for potential symmetry distortion 
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ALS-U 

L. Liu, 
SIRIUS 

ESRF-II 
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Injection Methods 

26 

• Accumulation 
– Traditional injection scheme for light sources 
– Requires sufficiently large dynamic aperture (at injection point) 
– Smallest emittance lattices might have sufficient momentum 

aperture (lifetime) but not sufficient dynamic aperture 
 

• On-Axis Swap-out 
– Bunch (or bunch-train) is replaces with fresh bunch (or bunch-

train) 
– Recycle or dump spent buncges 

• Added complexity 

– Requires fast kickers to minimize (potential) fill pattern gaps 
• Might impact the range of possible fill patterns 

– In use for commissioning or damping rings 
– Many potential advantages 
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Fast kicker magnets 

storage ring bunches transferred to accumulator 
accumulator bunches transferred to storage ring 

New accumulator ring 

New ALS storage ring 

Swap-out injection was first proposed by M. Borland for possible 
APS upgrades 

Swapping accumulator and storage ring beams 

27 



C. Steier, DLSR 2014, DLSR Lattices, 2014-11-19 

ALS-U storage ring and accumulator ring  

Today’s ALS storage ring 

Use of Swap-Out Enables Many Advantages  
On-axis swap-out 
injection: 
 
• Further optimization of 

lattice (smaller emittance) 
• Round beams (more useful 

shape and reduced 
emittance growth) 

• Magnet field requirements 
relaxed (cost benefit) 

• Vacuum chambers with 
small and round apertures            
(better undulator 
performance) 

• Reduced injection losses 
(better performance) 
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Swap-Out Options 

29 

100% injection efficiency in simulations for 
realistic lattice errors and large kicker errors 
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Beam Based Correction is Important 
• Beam based measurements are essential to improve performance 

of low emittance lattices 
• Allow calibration of linear, coupled, nonlinear models 
• Based on model predictions, can optimize lattices (symmetrization, 

coupling correction, …) 
• Some measurements also provide model independent guidance for 

optimization (tune, chromaticity choice, …) 
• Standard bag of tools – developed over the last 15 years 

– First turn trajectories, Turn-by-turn data, Response matrix analysis, frequency 
maps, tunescans, rf-scans, resonance driving terms, … 

– Improvements in diagnostics (BPMs, …) have improved resolution substantially 
(particularly of first turn measurements) 

• Quantitatively evaluating these methods at the design stage of a 
lattice is essential to understand error tolerances for magnets, 
alignment, power supplies, … and how far one can push the lattice 
towards low emittance 
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Summary 
• Lattice design techniques have matured over last 20 years 

– Parallel computing as well as advanced methods 

• Use of Multi-bend Achromat Lattices promises much 
smaller equilibrium emittances in moderately sized rings 

• Many detailed lattice design choices can be made 
– All have their strengths and drawbacks 
– Diverse set of solutions will be with us for the future 

 

• We can confidently look into a bright future 
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Backup Slides 
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Summary 

33 
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Features of DLSRs 
• Some enabling features for further evolution of rings geared towards 

delivering diffraction limited (i.e. transversely coherent) spontaneous 
emission – very high average brightness: 

• Multi Bend Achromat design 
– Advanced lattice design techniques as well as beam based optimization 

techniques 
• Multi objective genetic algorithms, simultaneous linear+nonlinear lattice optimization, driving terms, 

higher order achromats, frequency maps, parallel computing, use of octupoles, … 

• Compactness and high magnet strength enabled by smaller magnet 
apertures 

– better vacuum system design (NEG coating, …) 
– better magnet tolerances (wire edm, laser cutting, …)  

• State-of-the-art Insertion Devices 
• Low impedance vacuum system (based on ability to accurately 

model components)  

34 
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Features of DLSRs 
• Besides having diffraction limited emittance (and “round beams”), other features 

of USRs and their photon beams include: 
• Short bunches:  momentum compaction factor for USRs is factor of >10 lower, 

allowing (quasi) isochronous transport (but: harmonic cavities)  
• Special operating modes: USRs open up the potential of implementing many 

special modes of operation (with potential for simultaneous use), including 
– Single/few-turn, sub-ps bunch mode 
– Crab cavity short pulse scheme (shorter bunches plus smaller emittance might allow 

much shorter pulses compared to SPX) 
– 100-1000 turn mode, enabling very low emittance with reduced dynamic aperture, 

requiring injection of fresh electrons from a superconducting linac operating without 
energy recovery (e.g. ~1 mA @ few GeV)  

– localized bunch compression systems with components located in long straight sections 
– bunch tailoring with low alpha, non linear momentum compaction, multiple RF 

frequencies 
– lasing in an FEL located in a switched bypass, where the post-lasing electron bunches 

are returned to the storage ring for damping 
– partial lasing at soft X-ray wavelengths using the stored beam, requiring high peak 

current created by localized bunch manipulation 
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Features of DLSRs 
• “Long” lifetime:  If transverse emittances are small enough the 

available transverse momentum is insufficient to scatter outside of 
momentum acceptance, so fewer particles are lost from the bucket, 
and Touschek lifetime increases to a few hours. Can be helped by 
damping wigglers and harmonic cavities (bunch length/density, IBS) 

• Damping wigglers:  If a low field strength of dipole magnets in 
large-circumference, low- to medium-energy USRs is chosen, the 
electron energy loss per turn from the dipoles is low, leading to long 
damping times.  These damping times can be reduced by adding 
high-field wigglers which, if situated in straight sections having no 
dispersion, also reduce beam emittance by a factor of 2 or more. 

• On-axis injection:  As ring emittance is reduced, so is the dynamic 
acceptance for injected particles. Beam can be injected into a small 
dynamic acceptance on-axis if necessary (“swap-out” injection).   
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Comparison of merit functions for 
dynamics optimization 
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