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• SR beam parameters and stability criteria 

• Photon-electron relationships 

• Electron beam properties 

• Stability time scales 

• Basic stability requirements 

Photon and Electron Beam Stability Requirements for Storage Ring Light Sources 
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SR Beam Parameters 

Photon beam parameters of interest to experimenter include:   
• position and pointing accuracy on small apertures and samples 
• beam size  

both of these affect intensity constancy at the sample 
• angle and divergence at optical components and sample 

contribute to resolution of energy, scattering angle, intensity 
• energy and energy bandwidth  

contribute to energy resolution of experiment 
• photon pulse time-of-arrival and bunch length 

for timing experiments 
• polarization 
• coherence 
• lifetime 
• ….. 

Beam stability characterized in 6-D 
phase space:   (x, x′, y, y′, E, t) 
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Beam stability requirements depend on:   
• beam line optical configuration and apertures 
• sample size 
• measurement technique and instrumentation 
• data acquisition time scale 
• data averaging and processing methods 

 

Stability is relative: 

• flux constancy with respect to apertures within the 6-D 
acceptance phase space of the experiment 

 

While stability requirements vary, generic requirements can be 
estimated from criteria common to many experiments 

Beam Stability Criteria 
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Beam Stability Criteria – cont. 

Today, sources of photon beam instability can be divided 
into 2 categories: 

• those associated with beam line optical components and 
experimental apparatus 

    the beam line staff’s problem! 

• those associated with the electron beam  

    the accelerator staff’s problem! 
 

In the future, for DLSRs, accelerator and beam line stability 
should be a joint challenge, perhaps requiring integrated 
stabilizing systems 

meeting stability requirements will be everyone’s problem! 
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SR Generic Beam Line 

slits/ 
collimator 

mirror 

monochromator 

could be more apertures (slits, etc) than shown 
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from M. Newville, CARS, U. Chicago, 2002 

XAFS Measurement 

SR requirements: 
intensity stability:  10-3 

energy resolution: 10-4 
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X-ray Microscopy and Micro-diffraction 
Focus spot size to micron level to examine single micron-sized structures 

white or monochromatic light, 100-1000 eV 
SR requirements: 
intensity stability:  10-3 

focused position stability:  <1 µm 
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ALS BL 7.3.1.1 (X-PEEM) 

PLS EPU6 

Circular Dichroism Beam Lines 

SR requirements: 
intensity stability:  <10-4 

focused position stability:  < 1 µm  

RCP-LCP 
absorption 
differences: 
10-3-10-4 
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low 
mosaicity 
crystal 

high mosaicity crystal 

Macromolecular Crystal Diffraction Patterns 

SR requirements: 
intensity stability:  10-3 

energy resolution: 10-4 
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Femtosecond X-ray Spectroscopy and Diffraction 
H. Padmore, ALS 

Timing stability requirement:  pump-probe timing synchronization < ~50 fs, 
or else be able to measure actual shot-shot synchronization to that level  
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Coherence Experiments 
Speckle pattern produced by scattering of transversely coherent 
photons in sample: 
 
 
 
 
 
 
Longitudinal coherence length > sample thickness to obtain coherent 
speckle pattern 
 
 
Longitudinal coherence length increased using narrow bandwidth 
monochromator: 
 lcoh = λph(λ/∆λ)mono = ~20 µm for 2 Å photons SR requirements: 

intensity stability at 
sample:  ~10-3 

e- monochromator 
∆λ/λ = ~10-5 

10 µm  
pinhole  

2 µm  
sample  
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X-ray Intensity Interferometry 
T. Ishikawa 

Hambury Brown-Twiss Interferometer at SPring-8 

∆E/E = 10-8! 

asymmetric 
reflections 

(avalanche photodiodes) 

∆E/E = 10-8! 
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Photon-Electron Relationships – Photon Emission 
K-J Kim 

Dipole spectral flux density (per horizontal mrad, integrated over vertical angle): 

 
 
 
 
Wiggler spectral flux density: 
 
 
 
 

Undulator spectral flux density: 
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Photon-Electron Relationships – cont. 
Photon beam divergence: 
 

  σ′ph(L) = σ′ph(0) = [σ′e-
2 + σ′Ψ2]1/2  

 

  σ′e- = [εγ(s) + (η′δ)2]1/2  
  
  
 for dipoles and wigglers: 
 
 

 
  
  
 for planar undulators:  
 (on-axis, central cone) 
 
 n = harmonic #    Lu = undulator length    λu = undulator period     Nu = # periods    K = ~1 
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Photon-Electron Relationships – Photon Energy 

Dipole critical energy: 
 
 
 
Wiggler critical energy: 
     where θ is horizontal viewing angle, 
     K = δ/γ-1, ratio of wiggler deflection angle δ to 

    beam opening angle  

 
Undulator harmonics: 
 
 
 
 

n = harmonic number   λu = undulator period   Nu = # periods    θ = hor or vert view angle 

for zero-emittance, zero-energy-spread electron beam 
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Undulator Radiation 

Angular distribution of 1st harmonic:  

K-J Kim, from X-ray Data Booklet, LBNL 
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Photon-Electron Relationships - Polarization  

• SR from dipole is linearly polarized in horizontal plane when viewed 
 in this plane 

• Polarization is elliptical when viewed out of horizontal plane 
 rotation sense reverses as vertical angle changes from positive to negative 

• Elliptical polarization can be decomposed into horizontal and vertical 
 components: 

K-J Kim, from X-ray Data Booklet, LBNL 
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Photon-Electron Relationships 
Photon beam size: 
• unfocused, vertical plane:  
  (assume depth of field = 0) 
 

  σph(L) = [σph(0)2 + L2σph′2]1/2  
 
  σph(0) = [σe-

2 + σdiff
2(λ)]1/2 

 

 i.e  the convolution of electron beam size and diffraction-limited apparent 
 size of a single electron (quadrature sum of 2 Gaussian distributions).  

 
   
 

  σe- = [εβ(s) + (η(s)δ)2]1/2 

 
• focused (1:m, m = magnification):  
 

  σph(L) = mσph(0)    (~insensitive to angle) 
  
  σ′ph(L) = -σ′ph(0)/m     
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Photon-Electron Relationships – cont. 

Photon beam size – cont. 
  
 
 
 
 
• Off-axis view of ID radiation adds to focused beam size due to extended source 

 

• On-axis beam size has additional terms arising from wiggle amplitude and ID 
length: 
 
 
 

• DIpole source size is slightly increased from finite depth of field and orbit arc 
 

LID 

θ 

LIDθ 

from I.V.Bazarov 
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Photon-Electron Relationships – cont. 

Beam line steering: 
 
• pointing parameters (1st order) for  
 unfocused photon centroid: 
 
  ∆yph(L) = ∆ye- + L∆y′e-   

  ∆y′ph(L) = ∆y′e-  

 

 
• focused (1:m) photon centroid: 
 
  ∆yph(L) = m∆ye-   

  ∆y′ph(L) = -∆y′e-/m 
 

∆ye- 

L 

∆yph(L) 

∆y′e- 

L 

∆ye- ∆yph(L) 

∆y′e- ∆y′ph(L) 
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L is large in some cases….. 

SPring-8 
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Electron beam characterized by conjugate variable pairs in 6-D phase 
space: 
     x, x′  y, y′  E, t (or φ) 

     --------  transverse ----------                  longitudinal 

For each conjugate pair, beam occupies phase space ellipse of constant 
area - or emittance (A = πε)   

  transverse:    

 
 e- beam size: 

   

 e- divergence:   

 

 longitudinal: 
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Electron Beam Properties 
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Electron Beam Properties – cont. 

Have coupling between phase space planes: 
 

• H-V by skew quads, orbit in sextupoles, resonances, ID changes 

• longitudinal-transverse (energy-orbit, ∆x = η∆E/E) 

• photon energy dependent on orbit through IDs 

• photon polarization dependent on vertical orbit through dipole 

• etc. 
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Experiment Sensitivity to Electron Beam Parameters 

Response of experiment observable parameters to source point 
electron beam parameters:  sensitivity matrix M(i,j) 

    [∆Pexp(i)] = [M(i,j)] [∆Pe-(j)] 
 where 
 
 ∆Iph 

 ∆Eph 
 ∆Eph/Eph (rms) 
 ∆σx 

 ∆σy 

[∆Pexp(i)]  =  ∆σ′x 

 ∆σ′y 

 ∆σz 

 ∆x 
 ∆y 
 ∆x′ 
 ∆y′ 
 ∆tbunch 

 polarization 
 coherence 

 

  
  

 ∆Ie- 
 ∆Ee-  
 ∆Ee-/Ee- (rms) 
 ∆σx 

 ∆σy 

 [∆Pe-(i)]  =  ∆σz 

 ∆σ′y 

 ∆σz 

 ∆θrot 

 ∆x 
 ∆y 
 ∆x′ 
 ∆y′ 
 ∆t bunch 
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Beam Position Instability and Emittance Growth from Orbit Motion 

 For disturbance time scale << experiment integration time:  
       (effective "blow-up" of emittance ellipse) 

  ε = εo + εcm  ∆ε/ε = εcm/εo 
 

 For disturbance time scale > experiment integration time: 
          ("coherent displacement" of nominal emittance ellipse) 
   ε (envelope) = εo +2√ εo εcm + εcm  ∆ε/ε ≅ 2 √ εcm/εo       

   (εcm<< εo;  L. Farvacque, ESRF) 

       Note:  can apply similar analysis to other phase space dimensions 

vertical
aperture

y′

y

εo

εcm

εeff
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• Disturbance time scale << experiment integration time:  

 Orbit disturbances blow up effective beam σ and  σ′, reduce intensity at 
 experiment, but do not add noise 

     For ∆ε/ε = εcm/εo < ~10%:   ∆ycm(rms) < ~0.3 σy ∆y′cm(rms) < ~0.3 σy' 

   Note:  can have frequency aliasing if don't obey Nyquist…. 

• Disturbance periods ≥ experiment integration time: 

   Orbit disturbances add noise to experiment 

      For ∆ε/ε = ~2√ εcm/εo <~10%:  ∆ycm(rms) < 0.05 σy       ∆y′cm(rms) < 0.05 σy'   

• Disturbance periods >> experiment time (day(s) or more): 

   Realigning experiment apparatus is a possibility 

• Sudden beam jumps or spikes can be bad even if rms remains low 

   Peak amplitudes can be > x5 rms level 

Beam Stability Time Scales 
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Most demanding stability requirements:  
•  Orbit disturbance frequencies approximately bounded at high end by data 
 sampling rate and a low end by data integration and scan times 

    ⇒ noise not filtered out 

 

Data acquisition time scales: 
• Most experiments average for 100 ms or more 

• Some experiments average over much shorter times (e.g. 100 kHz) 

   ⇒ sensitive to synchrotron oscillations (~10 kHz) 

•   Acquisition rates are increasing, averaging times decreasing 

      MHz for turn-turn measurements 

   single-shot acquisition for pulsed sources (e.g. pump-probe) 

Beam Stability Time Scales – cont. 
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Stability Tolerances 

• Tolerance budget for electron beam parameters contributing to instability of a 
 specific photon beam parameter can be derived from stability sensitivities, 
 assuming random uncorrelated effects: 

 
 
  
 ptol = tolerance for parameter p, psen = sensitivity to parameter p 
 

• e.g., to obtain <0.1% intensity stability, must reduce tolerances for orbit, 
 beam size and energy stability below their sensitivity levels by ~1/√3 (0.57) 

 

• Can increase tolerance for difficult parameters by reducing tolerance for easy 
 parameters  
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Long term (weeks-years):     
 •  ground settlement (mm)    •  seasonal ground motion   (< mm, sometimes more) 
  

Medium term (minutes-days):  
 •  diurnal temperature (1-100 µm) •  river, dam activity   (1-100 µm) 

•  crane motion   (1-100 µm)   •  machine fills (heating, BPM intensity dependence)  
•  fill patterns       (1-100 µm)  •  RF drift (microns) 

•  coupling changes  •  gravitational earth tides   (∆C = 10-30 µm)    

 

Short term (milliseconds-seconds): 
•  ground vibration, traffic, trains, etc. (< microns, <50 Hz typ) 
 ground motion amplified by girder + magnet resonances  (x~20 if not damped) and by lattice (x ~5+) 

   ⇒ nm level ground motion can be amplified close to µm level 
•  cooling water vibration (microns) •  rotating machinery (air conditioners, pumps)  (microns) 

•  booster operation (microns) •  insertion device changes (1-100  µm) 

•  power supplies  (microns)  •   vac chamber vibration from BL shutters, etc. (microns) 
  

High frequency (sub-millisecond):  
 •  high frequency PWM and pulsed power sources  (microns) 

 •  synchrotron oscillations (1-100  µm) •  single- and multibunch instabilities  (1-100  µm) 

Some Electron Orbit- and Size-Perturbing Mechanisms 
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Intensity Stability 

Want high level of flux (F) constancy through aperture or steering 
accuracy to hit small sample  (sample size on order of beam size σ) 

    ∆F/F  < 10-3  (typical) 

  Note:  some experiments require   < 10-4 flux constancy 
 e.g. photoemission electron spectroscopy combined with dichroism  
 spectroscopy (subtractive processing of switched polarized beam signals)       

 

Flux variations caused by  
• orbit instability 
• beam size instability 
• energy instability 
• other 
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Intensity variations for beam with Gaussian size σ due to position motion dy from the 
center and beam size change dσ for various sized apertures. 
 

Photon Intensity Noise after Aperture
Beam Size Change
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Photon Intensity Noise after Aperture
Beam Position Change
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Noise factor (position) = |F0-Fdy|/F0  ~ dy2 

For noise factor (intensity stability) <0.1%: 
dy < 5% σy  (<1.5% σy for 0.01% stability) 

Noise factor (size) = |Fσ0-Fσ0+dσ|/Fσ0  ~ dσ   

For noise factor <0.1%: 
dσ  < 0.1% σy  (<0.01% σy for 0.01% stability) 

 

Intensity Stability after Apertures 

Note:  4GSR beam size may be small enough to eliminate small apertures, 
relaxing beam position and size stability requirements. 
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Photon energy resolution after monochromator:  <10-4 – 10-5 

• Angle of incidence on monochromator 

• Beam size on dispersive monochromator 

• other… 

Undulator line energy and width 
•Line wavelength = λn = n λu(1+k2/2)/2γ2  ⇒ d λn/ λn = -2 ∆E/E 

•Natural line width = δ λn/λn = 1/Nn     (N = # periods, n = harmonic) 
  

Undulator energy affected by: 

• Synchrotron oscillations 

• RF frequency stability and  
 phase noise 

• Orbit through ID 

• other… 

Bph

ph

E
E

θ
θ∆

=
∆

Photon Energy Stability and Resolution 

⇒   ∆y′cm < ~1-10 µrad  

• for <10% line width increase (N = 100, n = 7)   
   ⇒ ∆E/E (rms) < ~3 x 10-4 

• for <10-4 coherent energy shift (N = 100, n = 7)  
 ⇒ ∆E/E (coherent) < ~7 x 10-5 

     Note:  for 10-5 resolution  
  ⇒  ∆E/E (coherent) < ~7 x 10-6   

  (⇒   ∆φ  < 0.01o for SPEAR 3) 
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Timing and Bunch Length Stability 

Bunch time-of-arrival stability (∆tbunch): 

 ∆tbunch < ~0.1 of critical time scale in experiment  (pump-probe sync, etc.)   
  - or - 
 ∆tbunch  < ~0.1 bunch length   

 whichever is larger 

 (  bunch length = ~10-100 ps for rings, 10-100 fs for linac FELs and ERLs) 
 

Time-of-arrival variations caused by energy oscillations: 
      
      ⇒  ∆E/E (coherent) < 2 x 10-5  for SPEAR3 
            < 2 x 10-3 for APS-U 
 
 

Bunch length variations associated with changes in energy spread 
cause beam size variation:   
   ∆E/E (rms) < 10-3   ⇒  ∆σbunch <  5% σbunch 
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Source Stability Relationships 
Can derive basic some basic relationships experimental observables and 
beam properties based simple (1st-order) dependencies (-- = 2nd order): 
 
 
 
 
 
 
  
 

e- orbit 
e- size/ 
rotation 

e- energy/ 
energy spread 
(& RF stability) 

ID field 
(esp EPUs)  parameters 

intensity 
(pointing, beam size, 

emission) 
x x x x 

energy and 
energy resolution x x  

(dispersive monos) 
x x 

timing, bunch 
length 

-- 
(pseudo 1-bunch?) 

x x -- 

polarization x  
(dipole, EPU) 

-- -- x 

coherent fraction -- x x 
ID high harmonics 

-- 

Not included:  accelerator lattice stability, lifetime stability, other 
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User observable - electron observable sensitivity matrix 
M. Green, Aladdin 

Photon 



Beam Stability Requirements - Summary 
(subject to change after DLSR ‘14 Workshop) 

Parameter Present Future trend 

intensity stability < 0.1% < 0.01% 
steering accuracy < 5-10% σe-, σ′ph < 2% σe-, σ′ph 
beam size stability < few % σph  < 0.1% σph 
energy resolution 10-4 10-5 
timing stability  < 10% bunch length < 10% bunch length 

min data avg time order 1 ms order 0.1 ms (ring) 
single shot (FEL) 

   
emittance ~5-20 nm-rad ~0.05-0.2 nm-rad 
e- beam size (vert) ~30-300 µm ~3-30 µm 
ph beam divergence ~10-200 µrad ~0.5-10 µrad 
e- bunch length ~10-100 ps 1-100 fs (FEL)  
   
e- position stability (vert) ~1-5 µm ~0.1-1 µm 
e- angle stability ~1-10 µrad ~0.05- 0.5 µrad 
e- bunch length stability ~1-10 ps ~10-100 fs (FEL) 
e- energy stability  < 10-4  (∆φ < 0.1o) < 5 x 10-5  
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Conclusion 

Storage ring stability requirements are stringent:  
• intensity stability < 0.1%   
• pointing accuracy < 5% beam dimensions 
• photon energy resolution < 10-4 
• timing stability < 10% bunch length 

Requirements are becoming more difficult to meet for 4GSRs: 
x 5-10 more stringent stability  
• faster data acquisition time-scales  
• fast-switched polarization, ID changes 
• short bunch and other special operating modes 

Stability that can be reached by mechanical design alone is limited: 
• feedback is ultimately needed for accelerator and beam line components 

(integrated) 
• demands for passive stability can be relaxed, possibly resulting in a lot of 

cost savings in facility construction 
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