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AC Motion and Long Term Drift Specification

= Beam stability specification driven by MBA rms beam size’
= AC Stability defined as 10% minimum MBA beam size in a given

band at ID source points
Minimum expected beam sizes for MBA lattice

0] o o) o)
X X y y

17 um 2.6 prad 4 pm 1.7 yrad

Beam Stability Goals for MBA lattice

ACrms AC rms Motion Long Term Drift Long
Motion (0.01-1000 Hz) (7 Days) Term Drift
(0.01-1000 Hz) (7 Days)
Horizontal 1.7 um rms 0.26 prad rms 1 umrms 0.6 prad rms
(>6 um) (>1.7 urad) (>~10 pum) (>~2.8 urad)
Vertical 0.4 pum rms 0.17 prad rms 1 pm rms 0.5 prad rms
(>3 um) (>0.85 urad) (>~10 pum) (>~2.8 urad)

Present Storage Ring Performance
IAPS MBA Accelerator Systems Working Assumptions and Parameter List
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AC Motion and Long Term Drift Specification

Beam stability for MBA is challenging (factor 3 — 10 compared to present)
Replace RF BPM electronics with commercially available (or equivalent)
— Present Bergoz system at PO, P1 bpms near ID only good at low frequency

— Present BSP-100 (FPGA) bpms in arc are good for AC but have bunch pattern
dependence at DC

MBA GRID/Canted undulator Xray BPM Development

— Improve signal/noise over existing photoemission (PE) bpms

— Reduce systematic gap dependent errors over existing (PE) bpms
Mechanical motion measurement system development

— Measure long term drift

— Inform the mechanical engineering vacuum chamber design for MBA
Orbit feedback system development

— Increase closed-loop BW from 100 to 1000 Hz

— Increase sampling rate from 1.5 to 20 kHz

— Increase bpm number from 160 to > 600 (rf and Xray bpms)

— Double fast correctors per sector and unify slow and fast correctors in a single
feedback algorithm
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Diagnostics System Overview (Sector 27 R&D Testing)
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RF BPM Electronics

Use commecially available bpm
electronics from Instrumentation
Technologies

— Libera Brilliance+: 570 RF bpms _——
Libera Photon: 50 X-ray bpms
Lab measurements indicate good

performance:

— ~100 nm or less rms noise (0.01-1
kHz)

— ~100 nm Or IeSS Iong term drift (2_4 Zl_:I1. Buttoanype Call(brotion IFUCJ(OI’ Used><
days) )

Also investigating NSLS-II solution

Plan is to use electronics that already
exist and we can purchase and/or modify

for our MBA upgrade application oy | | B
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RF BPM Electronics

APS BSP-100 Module Libera Brilliance@APS
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Note: Noise measurement used small-aperture rotated
button geometry, with horizontal calibration factor.

G. Decker, BIW10
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Mechanical Motion Sensing System
Installed in sector 27 insertion
device vacuum chamber

— Hydrostatic sensor detects
relative vertical ground motion

— Capacitative detectors sense
horizontal and vertical vacuum
chamber motion (PO bpms)

Can detect mechanical motion
as small as 20 nm

Plan to add a similar system to
the GRID XBPM in S27

.......
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Mechanical Stability 102 mA, 24 Singlets Top-Up
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Mechanical Motion Sensing System Data
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Mechanical Motion Sensing System Data
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GRID Xray BPM System

Installed in sectors 27 and 35 Front
Ends
— Use hard X-ray fluorescence from Cu

— S/N is ~50 times greater than existing
photoemission BPMs

Gap dependent systematic error
reduced by ~>10

Expect pointing stability to improve by
a similar factor

Photon trajectory
X-ray bpm
(Zero Weighting)

Rf bpm Electron trajectory
e | ~______“Good” orbit
at rf bpms

Rf bpm X-ray bpm
Rf bpm ID Weighted
\ [ ! =
Rf bpm Displaced orbit
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GRID Xray BPM System

XBPM
Detector mount Pre-mask (Cu) target
assembly w/ slit (Ta) absorber
water cooling  Shielding
Detector \ Spacer (Cu) \
Detector
module
Chamber \

Ag thin-film X-ray

Visible
light

HUNIHAdY

A0S

|

Principle of Pinhole camera Diodes Aperture

Source
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GRID Xray BPM System
Design: GRID-XBPM Assembly ;

XBPM1

Beam

"/’:?/ Bellows
“ (+ 12.7 mm)

Granite
Base

Total weight: ~1,760kg (~5,000lb)
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GRID Xray BPM System
XBPM Signal /Background Ratio
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Orbit Feedback System Development
Motivated by MBA beam stability requirements

Investigating the possibility to upgrade existing system before MBA

Developed an MBA R&D plan in sector 27 of the SR:

— Installed Libera B+ on four ID PO bpms and testing now with existing
feedback system

— Installed GRID X-BPM and testing it now
— Installed mechanical motion sensing system in 27 |ID vacuum chamber
— Plan a 4x4 bpm/fast corrector test at higher sampling rate next year

Developing a FPGA based prototype double sector controller (DSC)
processor

Investigating alternative DSP/FPGA uTCA based DSC processor
hardware

Investigating a way to unify fast and slow correctors in a single
feedback algorithm’

'J. Carwardine, Workshop on Next-generation Fast Orbit Feedback Systems for Storage Rings, May 9, 2013 APS/CNM/EMC Users
Meeting
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Source Points and Fast Correctors

= Sector X-ray source points - ()
= Sector X-Ray beamlines - ——
= Fast correctors - ()

Insertion Insertion

Devi D (3PW) Devi ID
evice (ID) ID Beamline Beamline evice (ID)

Three-Pole Wiggler
(3PW)

Fast Correctors Fast Correctors

Curved FODO / 3PW Section

L-Bend L-Bend

4 Quads, 4 straight QF magnets, 4 Quads,
3 Sext. 3 Q-bend magnets, 1 3PW 3 Sext.
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Fast Orbit Feedback Concept

Insertion Insertion

Wl Device Wl Device
1 - RIL 1R - e e

3PW Sector N 3PW | Sector N+1
Source Point

Source Point

4-Bump Geometry - ID

4-Bump Geometry - 3PW

Using two correctors between I Fast Steering Corrector

squrce pomts-prowdets .each source mmmm  Insertion Device
with the required position and angle

degrees of freedom

Arc Magnets
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Feedback System Architecture
=Consists of 20 VME crates plus a

master crate and reflective memory

*Existing RTFB system DSPs:
— Read a vector of bpm data during

read phase
— Multiply bpm vector by inverse
response matrix . Double-Sector Slave Station
— Apply PID regulator/filtering and
update sector correctors S e e
— Write bpm data to reflective 0dd Sector | _2™ 297 | £ en Sector
memory during write phase 2 it e
*Datapool I0C updates RTFB bpm B HEH . Kray
setpoints for band overlap = bl i Rt
compensation » tocmgaean

Reflective Memaory Network
(29 Mbyte/sec fiber ring)

*"New DSC will “plug” into here

— New bpm electronics/corrector
interface

— DSC-DSC fast communications
network
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Unified Feedback Machine Studies Results

Concept is to correct the orbit using both systems configured

to correct down to DC

— RTFB system corrects fewer spatial modes but very fast

— Datapool corrects many spatial modes slowly

— How develop the algorithm so the systems work together without
fighting in the band where they overlap (~0.2-5 Hz)?

Took an experimental approach first:

— Configured RTFB to correct down to DC with its operations set of bpms
and correctors

— Measured the datapool response matrix for datapool correctors and
bpms with RTFB running down to DC

Resulting datapool response matrix is band-diagonal

— RTFB corrects most of the orbit via local bumps

— The left over response at bpms within the bumps is what RTFB cannot
correct

Took the inverse datapool response matrix and ran both
systems to DC
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Unified Feedback Machine Studies Results
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Summary

Beam stability requirements are challenging

APS has developed a comprehensive beam stability R&D

program featuring:

— New bpm electronics

— New GRID/Canted undulator X-ray bpms

— Mechanical motion sensing of vacuum chamber position

— Tunnel air temperature stabilization

— Beam size and relative size measurement (coupling
feedback)

— Feedback system hardware and algorithm development

Unified feedback concept looks interesting and we are

pursuing studies (need to restart the simulation effort)

Sector 27 testing in the next year will help flesh out details
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