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Structural Analyses Using In-Situ High Energy
(30 keV — 90 keV) X-ray Scattering

B Provides New Approach to Critical, High-Impact Science:
— Solar Fuels
— Catalysis (chemical energy conversion)
— Energy Storage (batteries)
— Materials Chemistry

B Large User Community
— Committed DOE/International Energy Research Communities
— DOE-Hubs (JCAP, Battery), EFRCs (ANSER, IACT, ...)

m Distinguishing Capability for APS Among U.S. Light Sources
— Highlight point in competition for next generation storage ring



MBA Lattice Upgrade, New Opportunities:

= Solar Fuels and Electrochemical Energy Conversion
= Structural Analyses Using In-Situ High Energy
(30 keV — 90 keV) X-ray Scattering

Example: “Artificial Leaf” / Solar Fuels Technology

®m High-Priority, National/International
Needs Research

® Fundamental Research:
— Complex Chemistry,
Heterogeneous Catalysts,
Interfacial Processes

®m Applied Research:
— Device Physics, In-situ

//Web.m|t.edu_/newsc')fflce/ZOﬁ/aﬁlmal-leaf—OQBO.html Analyses, Prototype StUd ies

Nocera et. al. Science 2008, 321, (5892), 1072-1075

m Structure Underlies Discovery of
Chemistry for Sustainable Energy



N
Challenges for Solar Fuels Science/Technology

® Interfacial thin films ( < um)

m Catalysts = Amorphous films / crystalline defect materials /
molecular

m Spatially inhomogeneous

®m Structure, Assembly, and Catalytic Mechanisms Unknown

Opportunities from MBA Lattice Storage Ring:

B Collimated, um (< um, focused) high energy X-ray beam:

— In-situ thin-film X-ray structure characterization for atomic scale
structure (pair distribution function, PDF analysis)

— Local spatial resolution/mapping of structure/chemistry within
catalyst films

m High flux, brilliance:

— High-throughput data acquisition:
Path for new materials discovery, eg., structural analyses coupled to
combinatorial syntheses:

— Dynamics\Time-resolved characterization:
Path to discovery of 15t principles and rational design of new
materials, eg., follow assembly and catalytic reaction mechanisms:



Amorphous, electrochemically-deposited water-splitting
catalysts. Two examples:

O Cobalt-phosphate Water-oxidation Catalyst
Kanan & Nocera Science, 2008, 321, 1072.

Co(NO3), —
Solution + Oxidation
precursors: KHPO,, pH 7

0 Amorphous Iridium Oxide Water-oxidation Catalyst

Artificial
Leaf

Nocera et. al.,
Science 2011,
334, (6056), 645-
648

SEM Pingwu Du and

CNM, ANL

Blakemore, Brudvig, Crabtree et al.
(2011) Chem. Sci. 2, 94.

Highly active
water-splitting
;@- catalyst
: | 24 Oxidation . amorphous
Solution H O/flr“‘OH . film ($0.45 per
precursors: 2 H,0 2 W\ e

S EM Andrew Winter,
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Amorphous Co-Pi OEC Catalyst Film Structure
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= High resolution (0.1 A) atomic pair correlation s Tede 18
= Multi-scale 0 A to 100s nm
= PDF probes another length scale- Fills gap between XAFS and SEM

A



Comparison Experiment and Model PDF for

Co-Phosphate OEC Film

Single layer, 13-14 Co atom, “edge-sharing” cobaltate lattice domain model:
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Du, Kokhan, Chapman, Chupas, Tiede, JACS (2012) 134: 11096-11099.



Opportunity for model refinement

based on PDF

Single layer, 13-14 Co atom, “edge-sharing” cobaltate lattice domain model:
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Du, Kokhan, Chapman, Chupas, Tiede, JACS (2012) 134: 11096-11099.




PDF Guided Structure Refinement

Single layer, 13-14 Co atom, “edge-sharing” cobaltate lattice domain models:

1.0

¥ 13-14 Co atom
cobaltate , octahedral
CoOg, lattice domain

® Defect sites, eq., .
single cubane 5
Inclusion

0.0

These distortions from
crystalline structure
improve fits to data

experiment
model 2
model 3
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Du, Kokhan, Chapman, Chupas, Tiede, JACS (2012) 134: 11096-11099



Refining the model based on PDF data

ANSER

Solar Energy Research Center
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Refining the model based on PDF data

ANSER

Solar Energy Research Center
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“Artificial Leaf” Technology o
Combined X-ray

Solar Fuels, Water-Spllttlng Catalysts spectroscopy/PDF Analysis:
Electrochemically-Processed from Small —~ “Auxiliary” Ligands Provide
Molecule Precursors Biomimetic Function
¢
Artificial Leaf
. A
(MIT/Harvard)
Cobalt-oxide/phosophate amorphous film
//weB.mit.édq/nemi§office/201 /aﬂficial-leaf-09 \ E |
Nocera et. al. Science 2008, 321, (5892), 1072
Iridium-oxide amorphous film Photosynthetic Water-

\ splitting CaMnO, cluster
g \ G. Brudvig, R. Crabtree
(Yale)




PDF Detection of Structural Dynamics- Correlation
to Function

Newton, Chapman, Thompsett, Chupas

JACS (2012)134: 5036
Current State-of-the-Art PDF:

= Resolution of Pt-Pt spacing a)m N )
within surface Pt-Ox layer 277" 1 ST
coupled to catalysis R P 3
276 P e §
= 1wt % Pt on Al,O, catalyzing 2.75 .;i‘ : gaz
CO oxidation during cyclic IS .
“redox” operation. 83
S T10 20 30 40 50¢/s Area (3.34)

- Caplllary rea.'Ctor Figure 3. (a) The CO, production and average Pt—Pt bond length
(macrOSCOpIC) through a single redox modulation. (b) The steady-state CO,

production is correlated with the non-fcc feature at 3.3 A.

= Seconds timescale resolution

o 14



\___________________________________________________
Opportunities for MBA Lattice Upgrade:

Extend High Energy PDF:

" In-situ, interfacial, thin film structural characterization
" Spatial profiling, mapping
® Enhanced time-resolved capabilities

= |nvestigation film assembly, repair

= Catalytic mechanisms

= Provide structure-based design principles

o 15



CNTs

N
Present Limitations-

Structures on Electrodes- Solar Device Architectures

» OEC films on planar electrodes

Xiaoyi Zhang (11-1D-D) A

15 pum
vertically >0.5um

focused X-ray Co-OEC
16 keV
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In-situ Film, A 0.2 pm
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4 april 2013

glass

1000
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3 mm

60 keV

= Resolve x-ray scatting for in-situ film
when > 0.5 um

=  Suggest stacking varies from ex-situ

= Not applicable to thin films/

molecules 16
—
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Atomic Scale, High Resolution Requires High
Energies

W Effect of Q-range on PDF resolution:
terminal 60 kev
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Present Limitations-

Structures on Electrodes- Solar L

CNTs

= OEC films on planar electrodes

Xiaoyi Zhang (11-1D-D) A

15 pum
vertically
focused X-ray

16 keV

Co-Borate

10000
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4 april 2013

1000

Powde r, 12 july 2012

60 keV

= Resolve x-ray scatting for in-situ film

when > 0.5 um
=  Suggest stacking varies from ex-situ

= Not applicable to thin films/
molecules

In-situ Film, Vv

60 keV
~ 300 pm
Vertical beam height
(no focus)
> 0.5 um
Co-OEC
0.2 um
ITO
glass

3 mm

18
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In-situ thin-film solar catalyst device characterization

Atomic Pair Distribution Function (PDF)

Enabling Capabilities of Ultra Storage
Ring Light Source:

Coherent, focused high energy X-ray
More useable photons than synchrotron
Spatially profiled structure
High-throughput measurements-
combine with combinatorial synthesis
Time-resolved: follow assembly, reaction
mechanisms

X-ray Scattering
0Al<q<30At

Z-direction profiling

A

Dynamic, Interfacial

Thin-Film Catalyst Incident

focused

Photo-anode Layer

X-ray beam

Support
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\\
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Proposed Work-
Build Thin Layer, Molecular Layer Catalysts on-
Nanostructured Electrodes with Difference PDF

= Micron-scale vertical, nanostructured electrodes

ACS Appl. Mater. Interfaces 2013, 5, 360 Wallentin et al Science 2013 Zhang et al APL 2008

InP Silicon Carbon nanotubes
» Semiconductor nanoparticles- structured semiconductors
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Challenges for Solar Fuels Science/Technology

® Interfacial thin films ( < um)

m Catalysts = Amorphous films / crystalline defect materials /
molecular

m Spatially inhomogeneous

®m Structure, Assembly, and Catalytic Mechanisms Unknown

Opportunities from MBA Lattice Storage Ring:

B Collimated, um (< um, focused) high energy X-ray beam:

— In-situ thin-film X-ray structure characterization for atomic scale
structure (pair distribution function, PDF analysis)

— Local spatial resolution/mapping of structure/chemistry within
catalyst films

m High flux, brilliance:

— High-throughput data acquisition:
Path for new materials discovery, eg., structural analyses coupled to
combinatorial syntheses:

— Dynamics\Time-resolved characterization:
Path to discovery of 15t principles and rational design of new
materials, eg., follow assembly and catalytic reaction mechanisms:

a 21
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