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- Resonant Contrast
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Current Status: XRIM?2

XRIM-2 Optical Configurationiessyces @

Condenser :
« Kirkpatrick-Baez Mirror pair to illuminate the sample.
: - : : Objective Lens @&
Adjustable field of view and numerical aperture. (Frosnel Zone Plte) @
13um x 13 um
1.7 mrad

1400 um x 800 um
~ 20 urad

(Kirkpatrick-Baez Mirrors)

Condenser Sample : Z

:“( > € >
600 mm 60 mm 1400 mm

X-ray Beam
E=10keV

Specs :

« lllumination = 13 x 13 um? or larger.

* NA=1.8 mrad or less.

* 6 x 1012photons/sec, >10x higher flux density than XRIM-1.



Current Status: XRIM?2
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XRIM Example: Bi,Se,/Graphene/SiC(001):

Thin film diffraction:

Graphene
SiC (001)

~30 nm thin film of Bi,Se; MBE grown on

epitaxial graphene/SiC(001).

Q-dependent image contrast: changes

structure  (e.g., Bi,Seg, SIC, graphene,

etc).

Bi,Se,
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SiC (006

Laanait et al., Manuscript in preparation; in collaboration with J. Emery (CSE/ANL), L. Li (UW Milwaukee), K. Gaskill (Naval Research Labs)




XRIM Example: Bi,Se,/Graphene/SiC(001):
N-slit Diffraction

Thickness distribution:

» Convert image intensity to spatially resolved measurement
of Bi,Se; film thickness.
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Needed Improvements: XRIM2

XRIM-2 Optical Conﬁgu ratio Optical CCD

Condenser :
* Kirkpatrick-Baez Mirror pair to illuminate the sample. Objective Lens @&
+ Adjustable field of view and numerical aperture. (Frosnel Zone Plte) @
13 um x 13 um
1.7 mrad

1400 um x 800 um
~ 20 urad

Condenser Sample : Z

(Kirkpatrick-Baez Mirrors)

:“( > € >
600 mm 60 mm 1400 mm

- Next generation objective lens (multilayer Fresnel zone plate)
- High (~50%) efficiency at ~10keV (less damaging)
- ~10% efficiency near 17keV (enables in-situ observations)
- Requires robust in-house synthesis capability
- Robust mechanical stability (achieve high resolution for long exposure times)



Imaging Interfacial Heterogeneity with Combined XRIM/CDI/Ptychography

Opportunity:

Understanding the reactivity of spatially
heterogeneous interfaces in complex environments
remains a general challenge (e.g., catalysis, growth,
geochemistry, etc.)

Challenge:

Directly observe changes of interfacial structure,
topography, composition during reactions through
observations with high-spatial resolution.

4GSR Strength:

- High coherent flux enables robust imaging of
interfacial heterogeneity through complementary
observations by (incoherent) XRIM and (coherent)
CDI/Ptychography.

- XRIM provides real-time direct space images with a
large (~10 um x10 um) field of view.

- CDI/Ptychography provides higher spatial resolution

imaging of individual features of interest from XRIM
images (e.g., red highlighted region).

XRIM Configuration:

Optical CCD g
Objective Lens
EFreIsnl\ Zone Plate) &

Sample .
Condenser "y
(Kirkpatrick-Baez Mirrors)

Bi,Se; Quantum Layers: Film Thickness Map
(films grown on Graphene/SiC(001))

X-ray Beam
E=10keV

2 4000 BIZSE3 Film CTR:

1x10° -
— (00L) Truncation Rod ~ sic (oos)

Reflectivity (;

#layers 5%




Imaging Interfacial Heterogeneity with Combined XRIM/CDI/Ptychography

XRIM Configuration:
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Imaging Interfacial Heterogeneity with Combined XRIM/CDI/Ptychography

CDI/Ptychography Configuration:

Slit down to coherent beam

CDI schematic from: Pfeifer et al., Nature 442, 63-66 (2006)



Elemental Contrast in X-ray Reflection Interface Microscopy:

Interfacial Topography:

N X-ray CCD Camera\/\

Objective Lens
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XRIM Image:
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Resonant scattering provides an elemental contrast mechanism

- Enables the ability to spatially resolve elemental/chemical heterogeneity

- Orbital ordering and domain structures can be visualized with polarization contrast

1]

*Fenter et al., Nature Physics 2(10) 700-704 (2006)
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Grand Challenge Science

on Diffraction-Limited Storage Rings :\,l

General Characteristics:

1) High degree of spatial heterogeneity
2) In-situ (water, solvents, etc.)

3) Beam-sensitive components (organics)

—> Requires high brilliance photon beam for spatially-resolved studies
(e.g., highly focused beam, coherent flux, or both)

= Increased sensitivity to perturbations from radiation chemistry
(i.e., “beam damage”)




Flux Densities for Current and Expected Experiments:
Unfocused undulator beam: ~10% y/(1000 um)?/sec
Bragg CDI (Sector 34): ~10° v/0.5 um?/sec

XRIM1 (focused incoherent beam): ~10% y/(13 um)?/sec
XRIM2 (focused incoherent beam): ~6x10'2 y/(13 um)?/sec
NanoProbe (focused coherent beam): ~10° y/(35 nm)?/sec

MBA Lattice (focused coherent beam): ~ 100*nanoprobe

= 108 y/um?sec

= 2x10° y/um?sec
(soon ~ 1019 y/um?sec)

=10° y/um?sec
= 4x10'° y/um?sec

= 8x10*! y/um?sec

= 8x10% y/um?sec



XRIM1 of Orthoclase in Water:

Orthoclase CTR:
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- Orthoclase is highly radiation resistant in an unfocused undulator beam

but “dies” in the XRIM1 beam
Fenter et al., Journal of Applied Physics, 2011



XRIM_2 of Calcite in Water:

Gcos
(104) — /

R'[Q*sin(Qc/2))?

Reflectivity

Q@A™

In-situ XRIM imaging of a CaCO,(104) single crystal in calcite-saturated water solution.
Changes are caused by reaction with X-ray induced radiolysis products (e.g., OH radical and
hydrated electron) generated by photoelectrons from the calcite.

(Each image is a 1 sec exposure, 0.5 sec sleep time, shown at 24 fps).

XRIM Movie: Laanait et al., in preparation: Calcite CTR data from Fenter et al., Geochim. Cosmochim. Acta, 2012



Mechanism of Radiation Damage at Solid-Liquid Interfaces:

Aqueous solution

Radiation , 4

products O ' ~30pm ® '

(e.g., OHe) '@

8 Q

®

X-ray ®; ‘_'_ Diffusion

' ® ' Length
2 o/ Photo- Damage event
electron
Substrate crystal

Beam parameters (at 10 keV):
Adsorbed dose:

XRIM1: XRIM2: MBA Focused Beam:
~10° Grey/sec ~6x107 Grey/sec  ~10'! Grey/sec

- Radiation chemistry is the “high heat load problem” of the APS upgrade



Opportunities with Coherent X-rays

Direct measurement of antiferromagnetic domain
fluctuations

0. G. Shpyrko', E. D. Isaacs™”, J. M. Logan®, Yejun Feng®, G. Aeppli®, R. Jaramillo®, H. C. Kim?®, T. F. Rosenbaum®,
P. Zschack®, M. Sprung?, S. Narayanan® & A. R. Sandy®
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Contents lists available at SciVerse ScienceDirect

Electrochimica Acta

journal homepage: www.elsevier.com/locate/electacta
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Study of electrode surface dynamics using coherent surface X-ray scattering

Hoydoo You?®*, Michael Pierce®-?, Vladimir Komanicky®<, Andi Barbour?, Chenhui Zhu?
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Ci\ Hex domain motion in Vacuum @ 300 K

<3=’; Hex step motion in 18 mQ H,0 @ 300 K

CZ,' Hex in 0.1 M HCIO, @ 300 K or in vacuum @~1000 K

‘—— Hex step motion in 1 M HCIO, with 0.1 mM KI @ 300 K ]
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Real-Time Studies of Adsorption Kinetics At the Muscovite-Water Interface
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./'I' rr\L 4
1.16} fast flow slow flow i =E_ + 1
: amL/min [ E=Ert0.1
- 1.12}
5 | (soln exchange:
“; 50% in 3 sec
£108 99%in30sec) | Z
E 1.04| »
o n o
1 n -
4 2 4 6 8
Time (min)
one-way valves .. . . .
Efﬂueni\"/ <‘ - Intrinsically slow ion exchange kinetics
.\ \“, N i : even though elementary process is most
sf 0 . . ..
%}\ < - /\ &xe"‘ likely intrinsically fast (~nano-sec).
0
Xy . .
W L .y - Due to collective behavior?
focusing | [
mirror

- May be amenable to XPCS studies at

Muscovite steady state

Solution 2

Lee, J. Synch. Rad. (2012).



Real-Time Studies of RTIL Switching at Graphene Surfaces
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Unexpectedly slow kinetics of RTIL evolution in time
- Interesting for XPCS measurements??

Uysal et al., in review (2013).



Substantial Opportunities:

- Real-time XRIM
- multilayer monochromators, AE/E = 1073
~higher efficiency optics
- Resonant contrast in XRIM

- Combined XRIM/CDI/Ptychography
- Interfacial XPCS

Challenges:

There are numerous critical needs to enable this capability:

- To make state of the art optics (objective lens) to minimize beam perturbations
and to enable higher energy imaging (for in-situ studies).

- To achieve a high degree of mechanical stability (dedicated instrument).

— Create a concerted research program to understand, and control, radiation
chemistry in order to enable in-situ imaging with <100 nm spatial resolution in non-
trivial environments.



