Argonne National Laboratory

Advanced Photon Source
Sector 9

Argonne Home > Advanced Photon Source >

Real-Time Shape Evolution of Nanoimprinted Polymer Structures during Thermal Annealing


Ronald L. Jones, Tengjiao Hu, Christopher L. Soles, Eric K. Lin, Ronald M. Reano, Stella W. Pang, Diego M. Casa

NANO LETTERS
6 (8), July, 1723-1728 (2006).
View Full Text (.pdf)

Abstract:
The real-time shape evolution of nanoimprinted polymer patterns is measured as a function of annealing time and temperature using critical dimension small-angle X-ray scattering (CD-SAXS). Periodicity, line width, line height, and sidewall angle are reported with nanometer resolution for parallel line/space patterns in poly(methyl methacrylate) (PMMA) both below and above the bulk glass transition temperature (T-G). Heating these patterns below T-G does not produce significant thermal expansion, at least to within the resolution of the measurement. However, above T-G the fast rate of loss in pattern size at early times transitions to a reduced rate in longer time regimes. The time-dependent rate of polymer flow from the pattern into the underlying layer, termed pattern "melting", is consistent with a model of elastic recovery from stresses induced by the molding process.

U.S. Department of Energy UChicago Argonne LLC Office of Science - Department of EnergyOffice of Basic Energy Sciences - Department of Energy
Privacy & Security Notice | Contact Us | Site Map