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Vanadium can be either beneficial or toxic to humans, depend-
ing on its oxidation state and concentration, and its toxicity in-
creases with increasing oxidation state. Under environmental
conditions in natural and drinking water, vanadium dominately
exists in either the *4 or *5 oxidation state as aquatic species of
vanadyl (VO,*) or vanadate (VO,*), respectively. Under some-
what reducing conditions, vanadyl (V") species may be stable de-
pending upon pH (Wehrli and Stumm, 1989), under oxidizingcon-
ditions, V¥ (vanadate) is stable across almost the entire pH range
and both ions can coexist depending on the redox potential and
pH of the water and their concentrations.

The California Department of Public Health, Drinking Water Pro-
gram posteda notification level for vanadium in drinking water
of 5 micrograms/L in 2007 (http://www.cdph.ca.gov/drinking
water/Pages/default.aspx) because of the growing body of evi-
dence regarding its toxicity to humans from ingestion of drink-
ing water. Recently, the accumulation of vanadium, up to as
much as 2% by weight, has been reported for corrosion deposits
in lead drinking water pipes from numerous United States public
drinking water systems. Thus, there is a potential reservoir for
human exposure, should vanadium mobilize as a result of drink-
ing water treatment changes to meet new or more stringent
regulations.

This study presents the first detailed look at vanadium speciation
and distribution in lead drinking water pipe corrosion by-
products. Diverse synchrotron-based techniques, including bulk
XANES (X-ray absorption near edge spectroscopy, n-XANES,
u-XRD (X-ray diffraction), and u-XRF (X-ray fluorescence) map-
ping along with scanning electron microscopy - energy disper-
sive X-ray analysis (SEM-EDX), and wet chemical analyses were
utilized in this study.
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Eh-pH diagram showing the predominance areas of
the aqueous vanadium species following the Wehrli
and Stumm (1989) model, computed assuming dis-
solved vanadium species activities of 0.1 mg/L, 25°
C,and an ionic strength of zero.

Twenty seven of the 32 corrosion by-product layers had
sufficient material for ICP-OES analysis. The vanadium
concentrations ranged from <40 to 8,5000 ppm with an
average concentration of 2756 ppm. Ten of the corrosion
by-product layers were previously analyzed by ICP-OES
(Schock et al., 2008) and 16 additional corrosion by-
product layers were analyzed for this sudy by the USGS.
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Three of the lead pipe samples with their in-situ corrosion by-products from two DWDS's were ana-
lyzed with p-XRD, pu-XRF, and p-XANES to identify vanadium-rich phases and their location within the
corrosion by-products. Two samples (DCADMNW 1and DCRNW3) are from a DWDS supplied by surface
water and the other (MAREFRE1) by groundwater. Micro-XRF mapping of DCRNW3 and MAREFRE1 de-
termined regions of discrete high vanadium concentrations. Vanadium appears to be mainly in the
outer most portions of the corrosion by-products. One location, in sample DCRNW3 and three location
in DCADMNW?1 produced p-XRD traces that support the identification of vanadinite.
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CONCLUSIONS
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4)

This study presents the first known identification of vanadinite in
lead pipe corrosion by-product that form in DWDS.

The overall distribution of vanadinite in lead corrosion by-
products was predominantly in the surface layers (n = 8 of 13)
however it was present in four of the intermediate and two of the
basal layers. The intermediate and basal layers where vanadinte is
present are from samples that are from the same DWDS. This
water utility implemented a treatment change in 2004 which re-
sulted in a system-wide destabilization of the lead corrosion by-
products. As the corrosion by-products were re-stabilizing, they
may have been exposed to bulk waters which contained vana-
dium and lead ions that appear to have precipitated out as vana-
dinite.

Based on the growing body of information indicating the adverse
impacts of vanadyl (VO32-) and vanadate (VO43-) on human
health lead corrosion by-products in any DWDS should be evalu-
ated to ascertain if vanadinite is present. Dislodgement of pieces
of these corrosoin by-products or their chemical breakdown
could mobilize vanadium to provide an unexpected and unmoni-
tored detrimental human exposure event.

Conceivably vanadate and other V oxyanions may sorb to other
distribution system surfaces, particularly those with iron or man-
ganese oxyhydroxides, which are often present as pipe surfaces
or post-treatment deposits and are more prevalant than lead ser-
vice lines. The extent to which V has accumulated in or on those
materials has not been assessed, but logically it should also be in-
vestigated to determine occurrence and consequently the level
of concern.
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