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Introduction Organic Electronics

OLEDs, OFETs, OTFTs, ..Applications and future fads
There has been an explosion of interest in organic electronics because of low-cost applications in devices such as field-effect transistors, flexible thin- fsee Frrest, Nature 428,911 2004)]
film transistors and light emitting diodes (see panel on right). Despite significant progress in the field, a fundamental understanding of the mechanism

of charge transport in organic semiconductors is still lacking at this time. The recent development of field-effect transistors (FETs) using molecular .MP'
crystals has provided a means to study the intrinsic electronic properties of organic semiconductors. Rubrene (5,6,11,12-tetra-phenyl-tetracene;
C,,Hyg), in particular, has shown to be an excellent organic semiconductor with high charge carrier mobility in FET devices. In order to elucidate the
role of surface structure in these materials, we have carried out a surface x-ray diffraction study of rubrene using the high-intensity micro-focused
beam at 20-ID.
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The physics of single-crystal organic FETS is largely determined by
the structure at or near the surface of the crystal. In the present
study, we addressed the following fundamental questions:

Consistent with other AFM measurement:
— Is the crystal structure at the surface the same as within the bulk? Single-Crystals: Menard et al., Adv. Mater. 16, 23 (2004).
— What is the arrangement and conformation of rubrene molecules at Thin-Films: Haemori et al., Jpn. J. Appl. Phys. 44, 3740 (2005)
and near the surface?

X-rays are more sensitive to the atomic structure at and near the

~ Is there intercalation of oxygen at the surface? crystal surface, and can probe below the surface.
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Analysis and Results Conclusions

‘The total complex structure factor is given by

The data rule out the presence of a *We measured a large set of crystal truncation rods from the free
the coerent sum of contributions from the . -

bulk and surface sirueturo facors single layer of endoperoxide at the surface of single-crystal rubrene.
surface.

‘The contribution from the surface is calculated
by adding individual layers to the complex Y Photo-oxidation Reaction
structure factor.

) ) ) The Bragg rods are well-described by a surface roughness model,
Orlythe sarbon stoms are included inthe unit i # I Sample #1 sample #2 Sl Sl consistent with AFM imaging of the surface.

‘Thermal disorder is included using the “odd layer®  even layer” B=05 - Ramamurihy et al, Chem. Rev. 87, 483 (1987).

anisotropic Debye-Waller factors determined s - T « Data —— Endoperoxide (100%) There is no indication of inter-molecular relaxation of the unit cell at the
by bulk crystallographic studies. o

el surface.

Close to the Bragg peaks,
the scattering is insensitive
to the surface structure and 8
this region can be used to
normalize the data. 5
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There is no indication of significant levels of endoperoxide residing at
the surface.

Structure Factor|*

+ Normalized Data
— Ideal Surface
(BulkCTR)

¢
1(rlu)

o

+«COBRA analysis of these data (in progress) may provide more
detailed information about the structure at the crystal surface,
including thermal disorder.
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« The two samples show different degrees of surface roughness.
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