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1) Introduction 
 
This paper provides concise guidelines for an in-situ strain/texture experiment which is 
part of the Neutron/Synchrotron Summer School. A comprehensive description of the 
field is not intended.  
Polycrystalline materials encompass large groups of materials such as metals, ceramics 
and minerals. The field of interest is the understanding of the behavior of such materials 
under thermo-mechanical processing, e.g. rolling, annealing, … . We concentrate here on 
the internal strains and stresses as well as grain orientation aspects (texture). The 
properties depend in many cases on the local position within the sample and may be 
mapped if the spatial resolution of the probe is sufficient. 
The dynamical behavior at surfaces is often not representative of the bulk due to effects 
such as stress relaxation or abnormal grain growth. The interest here is on bulk properties 
which may determine quantities as diverse as mechanical strength or the critical current 
in superconducting tapes. Therefore a bulk penetrating probe is required such as high 
energy X-rays (40 to 100 keV). Third generation high energy synchrotrons like the APS 
provide high energy X-rays of unprecedented brilliance enabling high spatial resolution 
and, in combination with 2D-detectors, fast data acquisition. High energy X-rays are 
therefore particularly suited for in-situ investigations and rather complementary to 
neutrons which in general provide even higher penetration power but substantially 
coarser spatial resolution and slower data acquisition. 
 
2) Stress and strain 
 
Polycrystalline bodies deform when subjected to external or internal loads. The 
deformation is manifested in displacements of the points in the body from their initial 
(unloaded) positions – that is the strain. As long as the loads are small the deformation is 
recoverable – elastic strain. For large loads the material undergoes plastic deformation in 
addition to the elastic one. Diffraction techniques (neutrons and X-rays) are the method 
of choice for quantifying the elastic strain. With some restrictions the elastic strain is 
directly proportional to the stress. 
 
2.1) Definition of stress and strain tensors in continuum mechanics 
Stress: Consider a homogeneous cube subject to an external force F applied to one of its 
faces with cross section A, cf. fig. 1. Then by definition the stress σ is σ = F/A. The force 
can be applied along the normal to the plane (normal force) or along one of the two in-
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plane directions (shear force). As there are three directions (x1, x2, x3) this leads to the 
stress tensor concept 
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Fig. 1: The resolved forces Fi and the 
corresponding stresses σij on the faces of a 
unit cube in static equilibrium.  cf. Noyan 
and Cohen p. 16.  
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By convention, the second index defines the normal of the plane in which the stress acts 
and the first index indicates its direction. For the normal forces a positive stress indicates 
a tensile stress and a negative a compressive stress state. Symmetry requires the tensor to 
be symmetric. Stresses are measured in MPa or GPa.   
 
Strain: Consider a line segment in a homogeneous body along the direction x, cf. fig. 2. 
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Fig. 2: Definition of the displacement 
∆u of a line segment of length ∆x 
when subject to a uniform load. From 
Noyan and Cohen p. 17. 
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In the unloaded position the distance between points NN’ is ∆x. After subjecting a 
uniform load to the body the distance becomes ∆x + ∆u, where u is the displacement. The 
strain in the direction shown is then defined as 
 

( )
dx
du

x
uxex =

∆
∆

→∆= 0lim  .       (2) 

 
Analogously to the definition of the stress tensor we can now define a tensor 
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where eij is defined as the displacement in the i direction for an initial line segment 
aligned with the principal direction j. However, when subject to load any rigid body will 
in general rotate at the same time as it distorts. In order to obtain the strain associated 
with distortion the rotation part must be removed. This can be accomplished by making 
the tensor symmetrical (see e.g. Noyan and Cohen). The strain tensor is then defined as 
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It is instructive to distinguish between a deformation leading to shape changes – 
distortion – and one leading to dimensional change only, without a change in shape – 
dilatation. The normal strains εii contain the dilatation part ∆ = ε11 + ε22 + ε33. The average 
∆/3 is known as the hydrostatic strain. By subtracting the hydrostatic strain from the 
original strain tensor we get the so-called deviatoric strain tensor. Strains are 
dimensionless figures, often quoted in units of microstrains (multipla of 10-6). 
 
For a homogeneous material the stress tensor σij can be derived from the strain tensor by 
Hooke’s law 
 

∑=
kl klijklij C εσ          (5) 

 
where Cijkl is the compliance tensor, containing the elastic constants. Cijkl is a tensor of 
rank 4, that is it contains 34 = 81 elements. In general symmetry reduces the number of 
independent elements substantially, e.g. for cubic systems there are only 3.  
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3) Partitioning of stresses and strains in a polycrystalline material 
 
Stresses and strains in polycrystalline materials are caused by externally applied loads 
and /or by incompatibilities of the constituent phases. Frequently different phases show 
different elastic and plastic behavior, thermal expansion or phase transitions. Thus, 
stresses and strains are often introduced during materials processing and are called 
residual stresses/strains if no external load is applied.   
The building blocks of polycrystalline materials are grains which are considered here as 
small single crystallites (in reality grains are not perfect crystals but have a mosaicity 
which increases with deformation). Single crystals deform in general anisotropic under 
elastic and plastic loads. Because the grains in a polycrystalline material have in general 
different orientations (as described by the texture), they will deform differently under an 
applied load. Thus even a single phase material may consists of elastically and plastically 
heterogeneous units which are however constrained to form a continuous body. The 
microscopic strain and stress fields in polycrystalline materials are therefore 
discontinuous and interactions may arise between grains which are the subject of ongoing 
research and beyond the scope of this paper.  
A modified version of equation (5) can be applied utilizing the conventional partitioning 
of the stresses and strains into macro- (type I) and micro-stresses/strains (type II & III), 
cf. fig. 3.  
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Fig. 3: Conventional stress 
partitioning within a two phase 
(α, β) material. The abscissa 
indicates spatial position 
within the sample and the 
histogram bars indicate the 
stress state in single grains. 
Brackets <σ> indicate volume 
averaging. From Hauk, p. 60. 
 

 
 
Macrostress, σI, is defined as the volume average over a statistically representative 
number of grains (the averaging volume should be small compared to the length scale 
over which the macroscopic stress field varies). Type II stresses, <σΙΙ>α,β, are defined as 
the deviation of the volume averaged phase stress from the macrostress σI. The sum of 
type II stresses over all phases is therefore zero. Note that each grain of a particular phase 
may have a different stress state due to the fact that the grains have different orientations 
and may interact with neighboring grains. Type III stresses, σIII, are defined as the local 
variations within a single grain. Equation (5) holds for the averaged phase stresses and 
strains <σΙΙ>α,β if the elastic constants reflect the orientational distribution (texture) of the 
grains. For random orientation distribution, the so called quasi-isotropic case, the elastic 
constants have been tabulated for many materials.  
For the interpretation of diffraction experiments, the elastic constants depend also on the 
investigated lattice planes as indexed by the Miller indices hkl. The hkl dependency 
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reflects the selective nature of the diffraction process and the elastic anisotropy of the 
crystallites (i.e. there are stiff and weak directions). The so-called X-ray Elastic Constants 
can be calculated from single crystal elastic constants assuming some model describing 
the crystallite coupling. Limiting cases assume that there is only dilatation but no 
distortion of the grains (Voigt model) and that all grains are subjected to the same stress 
(Reuss model). The Hill model takes the average of the Voigt and Reuss models and is 
found to be close to measured X-ray Elastic Constant in many cases. 
 
 
4)   High-energy synchrotron radiation 
 
High-energy X-rays offer a unique tool for materials characterization, based on the 
following characteristics: 
 
4.1) Penetration power 
The penetration depth of high energy X-rays into several materials is presented in fig. 4.  
In the transmission mode, penetrations of 1-2 mm are almost universally available, while 
depths in the range of cm are possible for lighter materials.  The penetration power in 
reflection mode is a factor of sin(2θ)/2 smaller than for the transmission case. 

 

 
 
 
 
 
Fig. 4: Penetration power of 
high energy X-rays. 
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4.2) Small Bragg angles 
Due to the short wavelengths employed, Bragg’s law (see equation (6)) implies that 
diffraction angles for low indexed reflections (d >1 Å) are about 5-10 degrees.  This 
compression of the scattering to the forward direction permits access to a large q-range, 
simultaneously, with an area detector.  From the perspective of strain measurements, at 
such low angles susceptibility to certain systematic errors is high.  These can be mitigated 
by using a calibrant powder, of known d-spacing, and employing long sample-detector 
distances (order of m), which has the additional benefit of increasing the momentum (and 
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thus strain) resolution.  Ideally, the detector should have a large area, in order to fulfill 
requirements of both large q-range and long sample-detector distances. 
 
4.3) Spatial resolution 
Recent efforts, specifically at the ESRF, have demonstrated the ability to create gage 
volumes with high energy X-rays on the order of 1x5x200 µm3, using focussing optics 
and conical slit assemblies.  In combination with high penetration depths, such probe 
volumes offer truly unique abilities for depth-resolved materials studies.  In practice, the 
minimal gage volume is often determined by the ‘continuum requirement’ that the gage 
volume should contain 1000-3000 diffracting grains.  Such grain-averaged information 
will be used in these Neutron/X-ray School experiments.  Below this level, methods are 
being developed to track diffraction spots arising from individual grains.  For further 
information on these concepts, the reader is referred to (http://www.risoe.dk/afm/synch/). 
 
4.4) Kinematical scattering 
Another major advantage of high energy X-rays is that extinction and polarization terms 
generally associated with diffraction are negligible.  For light elements this is often true 
also for absorption.  Hence, the integrated intensity becomes directly proportional to 
diffracted volume and structure factors. 
 
4.5) Strain measurements with high energy X-rays 
Polycrystalline materials consist of crystalline grains which give rise to a diffracted beam 
when aligned suitably in respect to a monochromatic incident beam of wavelength λ. 
This is described by Bragg’s equation 
 

λθ =sin2d   .        (6) 
 
By measuring the scattering angle θ we obtain therefore the interatomic spacing of the 
diffracting lattice planes d. The strain of this diffracting grain in direction of the 
scattering vector q (i.e.  the projection of the strain tensor on the scattering vector) is then 
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where the last equality follows from a partial differentiation of eq. (6) which is valid as 
elastic strains are small. Strain should generally be measured to an accuracy of ±10-4. 
This requires an accurate determination of the scattering angle by finding the center of 
the diffraction peak. In practice d is often measured by comparison to a calibration 
standard which eliminates most systematic errors. Note that an accurate knowledge of the 
strain free lattice spacing d0 is required by eq. (7). Accurate d0 values are often difficult to 
obtain and the separation of the strain into hydrostatic (d0 dependent) and deviatoric (d0 
independent) parts is one way to deal with this problem.  
 
Strain is a tensor and the determination of all its components requires at least 
measurements in six independent directions. The appropriate treatment involves three co-
ordinate systems (crystallite-, sample-, and laboratory-systems) and the respective 
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transformation matrices. Here only a simplified description pertaining to the actual 
experiment will be given. The geometry of the experimental setup is shown in fig. 5.  
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Fig. 5: (a) Scattering geometry of the experimental setup. x,y,z define the laboratory co-
ordinate system, z being parallel to the incident beam, x is in the horizontal plane 
pointing outwards from the storage ring, and y is perpendicular to both z and x. The 
scattering vector q and the diffracted beam for a diffracting grain are indicated by solid 
arrows. Note that all scattering vectors coinciding on a cone with large opening angle 
(indicated by the dashed scattering vectors) are detected simultaneously on a 2D-detector.  
(b) Sample coordinate system si. The orientation of the sample coordinate system with 
respect to the laboratory system is shown for ω = ψ= φ= 0.  
 
 
The direction of the scattering vector in the laboratory system is given by two angles η 
and 2θ. Circular diffraction rings are recorded on the 2D-detector if only hydrostatic 
strains are present, but distorted rings result from deviatoric strains. The sample 
orientation in the laboratory system is defined by the three angles ω, ψ, and φ as shown in 
fig. 5b, cf. He et al.. For the present experiment the strain tensor in the sample coordinate 
system will be obtained by a least-square-fitting of the relative distortion of the 
diffraction rings (function of η and 2θ) to component equations as given by He et al..  
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5) Texture 
Texture refers to the statistical orientation of grains (or sub-grains) in a polycrystalline 
sample.  
 
5.1) Coordinate systems 
Crystallite system: This system describes the symmetry of the individual crystallites. For 
cubic symmetry, the [100], [010], and [001] directions are chosen.  
Sample system: This system is fixed to the sample. In metallurgical applications, the 
sample system is defined by the rolling direction (RD), the transverse direction (TD), and 
the normal direction (ND).  
“Omega” system: This system is particular to the actual experimental setup. It is fixed to 
the ω-rotation table. At ω = 0 deg, RD is parallel to the beam, TD is perpendicular to the 
beam and in the horizontal plane, and ND points up.   
Laboratory system: This system is fixed to the incoming beam. The convention used by 
polefigure.m is: x is parallel to the beam, y is perpendicular to the beam and in the 
horizontal plane, and z points up (note that the “standard” APS definition is different).  
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Fig. 6: Definition of the coordinate systems and rotation axes. Laboratory system (x,y,z). 
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5.2) Euler angles and ODF 
 
The crystallographic orientation of a given grain or subgrain can be defined by 3 
parameters. The most common representation of the 3-dimensional “orientation space” is 
by Euler angles (Fig. 7).  
 
The Orientation Distribution Function (ODF) gives the density (probabillity) to find 
grains oriented with a particular orientation (as defined by the 3 Euler angles).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Fig. 7: Definition of the Euler angles 
describing the rotation between the 
crystallite and sample coordinate 
systems. (from Randle & Engler) 

 
 
5.3) Polefigures 
Polefigures are a 2-dimensional representation of the 3-dimensional orientation of 
crystallites in a sample.  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 8: Representation of the crystallite 
orientation by two angles α and β. Note that the 
rotation around the pole-axis is not defined.  
(from Randle & Engler) 
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Fig. 9: Presentation of the 
{100} poles of a cubic crystal in 
the stereographic projection. 
(from Randle & Engler) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Fig. 10: Stereographical 
projection. (from Randle & 
Engler) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Fig. 11: Polefigure measurement 
with high energy X-rays. 
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6) Material under investigation:  Duplex steel 
 
Duplex stainless steels, consisting of approximately equal amouts of ferrite and austenite, 
often combine the best features of austenitic and ferritic stainless steels and are 
established as products ranging from heat exchangers and paper machines to chemical 
tankers and pressure vessels and pipes.  In most cases duplex steels are selected because 
they combine high strength and corrosion resistance.  The growing use of such steels has 
increased demand for understanding their mechanical behavior. 
 
In a two-phase material like duplex stainless steel, the microstructure is inhomogeneous, 
and each phase will have a different response to an applied strain.  Since the constituent 
phases have different coefficients of thermal expansion, thermal residual stresses are 
formed during cooling from processing temperatures.  Differential elastic and plastic 
responses will lead to additional phase stresses during loading.  Monitoring the combined 
effects of residual and applied strains on the deformation response is a primary goal of 
these experiments. 
 
The microstructure of the duplex steel being measured is shown in fig. 12(a).  The 
material was first hot rolled at 1050 C, and then quenched to avoid precipitation of 
secondary phases (this can be confirmed from phase analysis with your XRD 
measurements), and finally cold-rolled to 1.5 mm thickness.  The microstructure is 
heavily banded as a result of the hot rolling, with austenitic islands existing in a ferrite 
matrix.  The grain sizes are on the order of ten microns, and grains exhibit some preferred 
orientation (this can also be verified in your measurements, by non-uniform intensities 
around the diffraction rings).  The volume fractions, determined from point counting, are 
55 +- 5% ferrite and 45 +- 5% austenite.  Due to the microstructural anisotropy, the 
mechanical properties vary in different directions.  For details of these and other 
mechanical properties, and results of laboratory x-ray stress measurements of surface 
layers, see the attached reference by Johansson et al.. 

 
 
Fig. 12: Duplex microstructure and sample geometry (dimensions in mm).  RD= rolling 
direction, ND=normal direction to rolling axis and TD= transverse direction. 
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The sample geometry for our experiments is shown in fig. 12(b).  Electro-discharge 
machining was used for sample cutting, to minimize damage of machined layers, and 
dimensions were chosen to comply with ASTM standards for tensile testing.  One sample 
is cut such that the loading direction (LD) is along the transverse direction, and for the 
remaining samples LD is along the rolling direction.  
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