CAT Guide and Beamline Directory

A Key to APS Collaborative Access Teams

November 2000
Argonne National Laboratory
<table>
<thead>
<tr>
<th>CAT Acronym</th>
<th>CAT Name</th>
<th>Sector</th>
<th>Beamline(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRI-CAT</td>
<td>Synchrotron Radiation Instrumentation</td>
<td>1</td>
<td>1-BM, 1-ID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2-BM, 2-ID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3-ID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>4-ID</td>
</tr>
<tr>
<td>DND-CAT</td>
<td>DuPont–Northwestern–Dow</td>
<td>5</td>
<td>5-BM, 5-ID</td>
</tr>
<tr>
<td>μ-CAT</td>
<td>Midwest Universities</td>
<td>6</td>
<td>6-ID</td>
</tr>
<tr>
<td>MHATT-CAT</td>
<td>Center for Real-Time X-ray Studies</td>
<td>7</td>
<td>7-BM, 7-ID</td>
</tr>
<tr>
<td>IMMW-CAT</td>
<td>IBM–MIT–McGill–Whitehead</td>
<td>8</td>
<td>8-BM, 8-ID</td>
</tr>
<tr>
<td>CMC-CAT</td>
<td>Complex Materials Consortium</td>
<td>9</td>
<td>9-BM, 9-ID</td>
</tr>
<tr>
<td>MR-CAT</td>
<td>Materials Research</td>
<td>10</td>
<td>10-ID</td>
</tr>
<tr>
<td>BESSRC-CAT</td>
<td>Basic Energy Sciences Synchrotron Radiation Center</td>
<td>11</td>
<td>11-ID, 12-BM, 12-ID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>12-ID</td>
</tr>
<tr>
<td>CARS-CAT</td>
<td>Consortium for Advanced Radiation Sources</td>
<td>13</td>
<td>13-BM, 13-ID</td>
</tr>
<tr>
<td></td>
<td>GeoSoilEnviroCARS</td>
<td>14</td>
<td>14-BM, 14-ID</td>
</tr>
<tr>
<td></td>
<td>BioCARS</td>
<td>15</td>
<td>15-ID</td>
</tr>
<tr>
<td>HP-CAT</td>
<td>High-Pressure</td>
<td>16</td>
<td>under development</td>
</tr>
<tr>
<td>IMCA-CAT</td>
<td>Industrial Macromolecular Crystallography Association</td>
<td>17</td>
<td>17-BM, 17-ID</td>
</tr>
<tr>
<td>Bio-CAT</td>
<td>Biophysics</td>
<td>18</td>
<td>18-BM, 18-ID</td>
</tr>
<tr>
<td>SBC-CAT</td>
<td>Structural Biology Center</td>
<td>19</td>
<td>19-BM, 19-ID</td>
</tr>
<tr>
<td>SER-CAT</td>
<td>Southeast Regional</td>
<td>22</td>
<td>under development</td>
</tr>
<tr>
<td>PNC-CAT</td>
<td>Pacific Northwest Consortium</td>
<td>20</td>
<td>20-BM, 20-ID</td>
</tr>
<tr>
<td>SGX-CAT</td>
<td>Structural GenomiX</td>
<td>31</td>
<td>under development</td>
</tr>
<tr>
<td>COM-CAT</td>
<td>Commercial</td>
<td>32</td>
<td>32-ID</td>
</tr>
<tr>
<td>UNI-CAT</td>
<td>A University–National Laboratory–Industry</td>
<td>33</td>
<td>33-BM, 33-ID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td>34-ID</td>
</tr>
</tbody>
</table>
CAT Guide and Beamline Directory

TABLE OF CONTENTS

Facility Overview	..	1
User Program	..	1
Summary Beamline/Scientific Programs Table	..	2
SRI-CAT (Sectors 1, 2, 3, and 4)	..	7
DND-CAT (Sector 5)	..	17
μ-CAT (Sector 6)	..	21
MHATT-CAT (Sector 7)	..	23
IMMW-CAT (Sector 8)	..	25
CMC-CAT (Sector 9)	..	27
MR-CAT (Sector 10)	..	31
BESSRC-CAT (Sectors 11 and 12)	..	33
CARS-CAT (Sectors 13, 14, and 15)	..	37
HP-CAT (Sector 16)	..	45
IMCA-CAT (Sector 17)	..	49
Bio-CAT (Sector 18)	..	53
SBC-CAT (Sector 19)	..	55
PNC-CAT (Sector 20)	..	59
SER-CAT (Sector 22)	..	63
SGX-CAT (Sector 31)	..	67
COM-CAT (Sector 32)	..	69
UNI-CAT (Sectors 33 and 34)	..	71
The Advanced Photon Source

Facility Overview

The Advanced Photon Source (APS), a national user facility for synchrotron radiation research, is located at Argonne National Laboratory, approximately 25 miles southwest of Chicago, Illinois. The APS is considered a third-generation synchrotron radiation facility (specifically designed to accommodate insertion devices to serve as radiation sources) and is one of three such facilities in the world. Currently, it is the most brilliant source in the United States for research in such diverse fields as biology, medicine, materials science, chemistry, geology, agriculture and soil science, physics, and manufacturing technology.

Researchers use the APS either as members of Collaborative Access Teams (CATs) or as Independent Investigators (IIIs). CATs are responsible for designing, building, and operating beamlines in one or more sectors, each sector consisting of an insertion-device (ID) beamline and a bending-magnet (BM) beamline. Each beamline is designed to accommodate a specific type of research program(s) and is optimized accordingly.

User Program

CAT members are entitled to use 75% of the available beam time to pursue CAT research goals. The remaining 25% of the available beam time must be made available to IIIs, who are selected by the CAT through a proposal process determined by each CAT and approved by the APS. Prospective IIIs submit proposals to the APS User Office via the World Wide Web (WWW) at the following address: http://www.aps.anl.gov/xfd/communicator/useroffice/lli_proposal.html. Each proposal is electronically logged in and reviewed according to the review process designated by the selected CAT. This document, the CAT Guide and Beamline Directory, was written to help prospective IIIs determine which beamlines are suitable for their specific experiments. Further information can be obtained from the APS User Office or the individual CATs (contact information is provided on the inside back cover of this document).
<table>
<thead>
<tr>
<th>Beamline</th>
<th>CAT</th>
<th>Scientific Focus</th>
<th>Programs</th>
<th>Source</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-BM</td>
<td>SRI</td>
<td>Synchrotron instrumentation and techniques, time-resolved studies</td>
<td>-Time-resolved studies, diffraction, and spectroscopy</td>
<td>BM</td>
<td>O</td>
</tr>
<tr>
<td>1-ID</td>
<td>SRI</td>
<td>Synchrotron instrumentation and techniques, high-energy x-rays, optics development</td>
<td>-High-energy x-ray scattering techniques</td>
<td>Und A</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-High-heat-load x-ray optics development</td>
<td>(3.3 cm)</td>
<td></td>
</tr>
<tr>
<td>2-BM</td>
<td>SRI</td>
<td>Synchrotron instrumentation and techniques, x-ray lithography, microtomography</td>
<td>-Deep x-ray lithography</td>
<td>BM</td>
<td>O</td>
</tr>
<tr>
<td>2-ID-B</td>
<td>SRI</td>
<td>Synchrotron instrumentation and techniques, imaging, coherence</td>
<td>-High-resolution imaging</td>
<td>5.5-cm</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Coherent scattering</td>
<td>Und</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Coherence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-ID-D/E</td>
<td>SRI</td>
<td>Synchrotron instrumentation and techniques, imaging, coherence</td>
<td>-High-resolution imaging</td>
<td>Und A</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Coherence-based techniques</td>
<td>(3.3 cm)</td>
<td></td>
</tr>
<tr>
<td>3-ID</td>
<td>SRI</td>
<td>Synchrotron instrumentation and techniques, resonant and non-resonant inelastic</td>
<td>-Nuclear resonant scattering</td>
<td>2.7-cm</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>scattering</td>
<td>-Inelastic x-ray scattering</td>
<td>Und</td>
<td></td>
</tr>
<tr>
<td>4-ID</td>
<td>SRI</td>
<td>Synchrotron instrumentation and techniques, production and use of polarized x-rays</td>
<td>-Development of polarization optics and techniques for 0.5 - 100 keV</td>
<td>Und A</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Development of high-heat-load front-end components</td>
<td>(3.3 cm) & Circularly Polarized Und</td>
<td></td>
</tr>
<tr>
<td>5-BM</td>
<td>DND</td>
<td>Crystallography, EXAFS, polymer scattering, tomography</td>
<td>-Materials science and engineering</td>
<td>BM</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Polymer science</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Crystallography</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Surface science</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Catalysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Imaging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-ID</td>
<td>DND</td>
<td>Crystallography, EXAFS, polymer scattering, tomography</td>
<td>-Materials science and engineering</td>
<td>Und A</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Polymer science</td>
<td>(3.3 cm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Crystallography</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Surface science</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Catalysis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 6-ID | μ | Materials science | -Magnetic scattering and spectroscopy
-liquid-surface studies
-surface scattering | Und A
(3.3 cm) | C |
| 7-BM | MHATT | Real-time x-ray studies | -Real-time x-ray studies
-X-ray microcharacterization
-X-ray photon correlation spectroscopy | BM | D |
| 7-ID | MHATT | Real-time x-ray studies | -Real-time x-ray studies
-X-ray microcharacterization
-X-ray photon correlation spectroscopy | Und A
(3.3 cm) | O
C |
| 8-ID | IMMW | Condensed matter physics, materials science | -Intensity fluctuation spectroscopy studies using coherent x-rays
-Time-resolved x-ray scattering
-X-ray scattering studies at very-low temperatures
-X-ray magnetic scattering | Und A
(3.3 cm) | O
C |
| 9-BM | CMC | Materials science | -EXAFS of complex materials
-X-ray surface scattering
-General diffraction | BM | D |
| 9-ID | CMC | Materials science | -SAXS from complex materials
-Liquid/solid surface scattering
-EXAFS
-General diffraction
-Magnetic and inelastic | Und A
(3.3 cm) | C |
| 10-ID | MR | Materials science, environmental science | -Spectroscopy of dilute environmental systems
-Combined techniques for in situ characterization of materials
-Zone plate microfocusing spectroscopy and imaging | Und A
(3.3 cm) | O
C |
| 11-ID | BESSRC | Spectroscopy, scattering, high-energy diffraction, magnetic Compton scattering | -Materials science: x-ray scattering, high-energy diffraction, dichroism, magnetism
-Geoscience
-Atomic physics
-Chemistry: spectroscopy (EXAFS, XANES), time-dependent spectroscopy of excited states | Elliptical Multipole Wiggler | O
C
II |

* O = operational (beamlines identified as operational may have facilities still being commissioned.)
C = commissioning
D = design / construction
II = accepting Independent Investigator proposals
BM = bending magnet
Und = undulator
<table>
<thead>
<tr>
<th>Beamline</th>
<th>CAT</th>
<th>Scientific Focus</th>
<th>Programs</th>
<th>Source</th>
<th>Status</th>
</tr>
</thead>
</table>
| 12-BM | BESSRC | Spectroscopy, x-ray scattering, diffraction | - Materials science: x-ray scattering, diffraction and spectroscopy
- Geoscience: mineral-liquid interface characterization by x-ray scattering and spectroscopy
- Chemistry: EXAFS and XANES spectroscopy of actinides and lanthanides
- Atomic physics | BM | O

| 12-ID | BESSRC | Materials science, atomic physics, geoscience | - Materials science: elastic and inelastic scattering, MOCVD, x-ray standing waves, electrochemistry
- Geoscience: mineral-liquid interface characterization
- Chemistry: small-angle scattering
- Atomic physics, spectroscopy | Und A (3.3 cm) | O

| 13-BM | CARS GSECARS | Geosciences, environmental science, soil science | - High-pressure diffraction in diamond-anvil cell
- High-pressure diffraction in multi-anvil press
- Microspectroscopy and XRF microprobe
- Microtomography | BM | O

| 13-ID | CARS GSECARS | Geosciences, environmental science, soil science | - High-pressure diffraction in diamond-anvil cell
- High-pressure diffraction in multi-anvil press
- Microspectroscopy and XRF microprobe
- Microcrystal diffraction
- Surface diffraction
- X-ray absorption fine structure spectroscopy | Und A (3.3 cm) | O

| 14-BM | CARS BioCARS | Structural biology | - Large unit cell (virus) crystallography
- Small unit cell (protein) crystallography
- MAD phasing
- Time-resolved crystallography
- Laue diffraction
- Study of microcrystals | BM | O

<table>
<thead>
<tr>
<th>14-ID</th>
<th>CARS BioCARS</th>
<th>Structural biology</th>
<th>See 14-BM</th>
<th>Wiggler A (8.5 cm)</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-ID</td>
<td>CARS ChemMint-CARS</td>
<td>Dynamic and structural condensed matter chemistry</td>
<td>Time-dependent chemical crystallography scattering, Static and time-dependent surface scattering studies of surface and interfacial properties, Small-angle and wide-angle x-ray scattering, Coherent x-ray scattering studies of dynamic properties</td>
<td>Und A (3.3 cm)</td>
<td>C</td>
</tr>
<tr>
<td>16-BM</td>
<td>HP</td>
<td>High-pressure research</td>
<td>White beam and monochromatic diffraction, EXAFS, Techniques development</td>
<td>BM</td>
<td>D</td>
</tr>
<tr>
<td>16-ID</td>
<td>HP</td>
<td>High-pressure research</td>
<td>Angle-dispersive microdiffraction, Nuclear resonance spectroscopy, Electronic spectroscopies, Single-crystal diffraction, Inelastic scattering, Techniques development</td>
<td>Und A (3.3 cm)</td>
<td>D</td>
</tr>
<tr>
<td>17-BM</td>
<td>IMCA</td>
<td>Pharmaceutical macromolecular crystallography</td>
<td>Structures of protein-ligand complexes, De novo protein structures, Drug design, Protein engineering, Crystallographic methods development</td>
<td>BM</td>
<td>O</td>
</tr>
<tr>
<td>17-ID</td>
<td>IMCA</td>
<td>Pharmaceutical macromolecular crystallography</td>
<td>See above</td>
<td>Und A (3.3 cm)</td>
<td>O II</td>
</tr>
<tr>
<td>18-ID</td>
<td>Bio</td>
<td>Static and dynamic studies of partially ordered biological systems</td>
<td>Fiber diffraction, X-ray scattering, X-ray absorption/emission spectroscopy, X-ray imaging and tomography</td>
<td>Und A (3.3 cm)</td>
<td>O</td>
</tr>
<tr>
<td>19-BM</td>
<td>SRC</td>
<td>Macromolecular crystallography</td>
<td>Structural biology</td>
<td>BM</td>
<td>O</td>
</tr>
<tr>
<td>19-ID</td>
<td>SBC</td>
<td>Macromolecular crystallography</td>
<td>Structural biology</td>
<td>Und A (3.3 cm)</td>
<td>O</td>
</tr>
</tbody>
</table>

* O = operational (beamlines identified as operational may have facilities still being commissioned.)
C = commissioning
D = design / construction
II = accepting Independent Investigator proposals
BM = bending magnet
Und = undulator
<table>
<thead>
<tr>
<th>Beamline</th>
<th>CAT</th>
<th>Scientific Focus</th>
<th>Programs</th>
<th>Source</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-BM</td>
<td>PNC</td>
<td>Materials science, environmental science</td>
<td>-Materials science</td>
<td>BM</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Environmental science</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Surface science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-ID</td>
<td>PNC</td>
<td>Materials science, environmental science</td>
<td>-Materials science</td>
<td>Und A</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Environmental science</td>
<td>(3.3 cm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-UHV/surface science, MBE growth</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-X-ray microbeams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22-BM</td>
<td>SER</td>
<td>Macromolecular crystallography</td>
<td>-Structural biology</td>
<td>BM</td>
<td>D</td>
</tr>
<tr>
<td>22-ID</td>
<td>SER</td>
<td>Macromolecular crystallography</td>
<td>-Structural biology</td>
<td>Und A</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3.3 cm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31-BM</td>
<td>SGX</td>
<td>Structural genomics</td>
<td>-Under development</td>
<td>BM</td>
<td>D</td>
</tr>
<tr>
<td>31-ID</td>
<td>SGX</td>
<td>Structural genomics</td>
<td>-Under development</td>
<td>Und A</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3.3 cm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32-ID</td>
<td>COM</td>
<td>Materials characterization</td>
<td>-Analytical materials characterization</td>
<td>Und A</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-"Fee-for-service" analyses</td>
<td>(3.3 cm)</td>
<td></td>
</tr>
<tr>
<td>33-BM</td>
<td>UNI</td>
<td>Materials science and condensed matter physics</td>
<td>-Materials science</td>
<td>BM</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Ceramic science</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Phase transitions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Surface science</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Thin-films structure and growth</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Materials physics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33-ID</td>
<td>UNI</td>
<td>Materials science and condensed matter physics</td>
<td>-Materials science</td>
<td>Und A</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Ceramic science</td>
<td>(3.3 cm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Phase transitions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Surface science</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Thin-films structure and growth</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Materials physics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34-ID</td>
<td>UNI</td>
<td>Microfocusing and coherent x-ray scattering</td>
<td>-Coherent x-ray diffraction</td>
<td>Und A</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Microbeam scattering</td>
<td>(3.3 cm)</td>
<td></td>
</tr>
</tbody>
</table>

* O = operational (beamlines identified as operational may have facilities still being commissioned.)
C = commissioning
D = design/construction
II = accepting Independent Investigator proposals
BM = bending magnet
Und = undulator
Sectors 1, 2, 3, and 4

Synchrotron Radiation Instrumentation CAT

Overview

SRI-CAT is organized into developers and scientific members, with the developers coming from the Experimental Facilities Division and the User Program Division of the APS, as well as from Purdue University, University of Houston, National Institute of Science and Technology, Lawrence Berkeley National Laboratory, Stanford Synchrotron Radiation Laboratory, Cornell High Energy Synchrotron Source, and many Australian institutions managed by the Australian Nuclear Science and Technology Organization. Scientific members whose interests match those of the developers are drawn from the synchrotron user community.

Research Focus

The principal mission of SRI-CAT is to develop new and unique forefront instruments and techniques to advance the use of synchrotron radiation. To that end, research programs involve the design, construction, and operation of standard and specialized insertion devices; diagnostics of radiation from these insertion devices; development of high-heat-load optics; the design, construction, and testing of various standard and modular beamline components; and the development of strategic instruments and techniques.

Among those instruments/capabilities are microbeam techniques, nuclear resonant spectroscopy, coherence-based techniques, the development of 0.5 to 4 keV scientific capabilities, the development of scientific capabilities at high energies (> 50 keV), development of time-resolved instrumentation and techniques, the development of ultrahigh-resolution inelastic scattering techniques, and the development of instrumentation and techniques for application of variably polarized x-rays from 0.5 keV to 100 keV.

CAT contacts:

Dennis Mills, Executive Director tel 630.252.5680 dmm@aps.anl.gov
Efi Gluskin, Program Director tel 630.252.4788 gluskin@aps.anl.gov
Trudy Bolin, CAT Manager tel 630.252.0801 boltric@aps.anl.gov
Linda Shoudis, Admin. Asst. tel 630.252.0160 ljs@aps.anl.gov
Beamline 1-BM / SRI-CAT

Scientific focus: Synchrotron instrumentation and techniques and time-resolved studies

Scientific programs: Time-resolved studies, dispersive diffraction, and spectroscopy

Bending magnet Source Characteristics (nominal)

<table>
<thead>
<tr>
<th>Source</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical energy</td>
<td>19.51 keV</td>
</tr>
<tr>
<td>Energy range</td>
<td>1.0 - 100.0 keV</td>
</tr>
<tr>
<td>On-axis peak brilliance at 16.3 keV</td>
<td>2.9×10^{15} pb/sec/mrad/um/0.1%bw</td>
</tr>
<tr>
<td>On-axis peak angular flux at 16.3 keV</td>
<td>9.6×10^{13} pb/sec/mrad/0.1%bw</td>
</tr>
<tr>
<td>On-axis peak horizontal angular flux at 5.6 keV</td>
<td>1.6×10^{8} pb/sec/mrad/0.1%bw</td>
</tr>
<tr>
<td>Source size at critical energy</td>
<td>$\Sigma x \leq 145 \mu$m</td>
</tr>
<tr>
<td>Source divergence at critical energy</td>
<td>$\Sigma \gamma \leq 36 \mu$m</td>
</tr>
<tr>
<td>1-BM acceptance</td>
<td>3.7 mrad</td>
</tr>
</tbody>
</table>

Optics & Optical Performance

- Standard mode
 - Vertical collimating mirror
 - 25.5 m from source
 - Bent cylinder
- PSL double-crystal monochromator
 - 27.2 m from source
 - Sagittal focus
 - Si(111) crystal
 - 1.5×10^{-4} energy resolution ($\Delta E/E$)
 - 35 mm beam offset
 - Water cooling
 - Focusing $\approx 0.25 \times 0.6$ mm
 - 9×10^{11} (photons/sec)/100mA at 10keV
- Vertical focusing mirror
 - 45.5 m from source
 - Cylindrical bend
- Dispersive crystal mode
 - Bent-crystal monochromator
 - 31.5 m from source
 - Horizontal focus
 - With or without first mirror

Experiment Stations

- 1-BM-A
 - First optics enclosure
 - Collimating mirror
 - PSL monochromator
- 1-BM-B
 - White, pink, and monochromatic beam station
 - Dispersive modes
- 1-BM-C
 - Monochromatic beam station

Detectors

- NaI scintillation counters
- Ionization chambers
- Si(Li) and Ge energy dispersive detectors
- CCDs
- Image plates

Beamline Controls and Data Acquisition

- Sun UNIX running EPICS with VME
- SPEC

Beamline Support Equipment/Facilities

- 6-circle Huber diffractometer
- Image plate reader

Beamline contacts:

<table>
<thead>
<tr>
<th>Name</th>
<th>Tel</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean Haeffner</td>
<td>630.252.0126</td>
<td>haeffner@aps.anl.gov</td>
</tr>
<tr>
<td>Peter Lee</td>
<td>630.252.0162</td>
<td>pilee@aps.anl.gov</td>
</tr>
<tr>
<td>Jin Wang</td>
<td>630.252.9125</td>
<td>wang@aps.anl.gov</td>
</tr>
</tbody>
</table>
Scientific focus: Synchrotron instrumentation and techniques, high-energy x-rays, and optics development

Scientific programs: High-energy x-ray scattering techniques and x-ray optics development

<table>
<thead>
<tr>
<th>Insertion-device Source Characteristics (nominal)</th>
<th>Experiment Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>1-ID-A</td>
</tr>
<tr>
<td>period</td>
<td>white beam first optics enclosure</td>
</tr>
<tr>
<td>length</td>
<td>Kohzu monochromator</td>
</tr>
<tr>
<td>effective K_{max} (at minimum gap = 10.5 mm)</td>
<td>1-ID-B</td>
</tr>
<tr>
<td></td>
<td>white beam station</td>
</tr>
<tr>
<td>energy range 1st harmonic</td>
<td>high-energy monochromator</td>
</tr>
<tr>
<td>energy range 1st - 5th harmonics</td>
<td>1-ID-C</td>
</tr>
<tr>
<td>on-axis peak brilliance at 6.5 keV</td>
<td>monochromatic beam station</td>
</tr>
<tr>
<td>Σ_x</td>
<td>2.9 - 13.0 keV</td>
</tr>
<tr>
<td>Σ_y</td>
<td>2.9 - 45.0 keV</td>
</tr>
<tr>
<td>Σ_x</td>
<td>9.6×10^{16} ph/sec/mm2/mm2/0.1% bw</td>
</tr>
<tr>
<td>Σ_y</td>
<td>359 µm</td>
</tr>
<tr>
<td>Σ_x'</td>
<td>21 µm</td>
</tr>
<tr>
<td>Σ_y'</td>
<td>24 µrad</td>
</tr>
<tr>
<td>Σ_x'</td>
<td>6.5 µrad</td>
</tr>
</tbody>
</table>

Optics & Optical Performance
- Kohzu double-crystal constant off-set monochromator
 - 30 m from source
 - 35 mm offset
 - liquid-nitrogen cooling
- 6–19 keV energy range Si(111)
- 1.8×10^{10} photons/sec at 10 keV on sample (unfocused)
- 10^{-4} energy resolution ($\Delta E/E$) at 10 keV
- 10–42 keV energy range Si(311)
- 7×10^{10} photons/sec at 19.2 keV, $\Delta E = 2.5$ eV
- 3×10^{10} photons/sec at 33.2 keV, $\Delta E = 4.5$ eV
- high-energy monochromator
 - 35 m from source
 - Si(111) limited tunability
 - 50–150 keV energy range
 - 1×10^{12} photons/sec at 100 mA
 - (1 x 1 mm2 at 60 m)
 - $\Delta E/E = 1 \times 10^{-3}$

Beamline contacts:
- Dean Haeffner
tel 630.252.0126
haeffner@aps.anl.gov
- Wah Keat Lee
tel 630.252.7759
wklee@aps.anl.gov
- Peter Lee
tel 630.252.0162
pilee@aps.anl.gov
- Sarvijit Shastri
tel 630.252.0129
shastri@aps.anl.gov
Beamline 2-BM / SRI-CAT

Scientific focus: Synchrotron instrumentation and techniques, x-ray lithography, and microtomography

Scientific programs: Deep x-ray lithography, x-ray microtomography, development of x-ray optics, beam diagnostics instrumentation, and x-ray microprobe studies

Bending Magnet Source Characteristics (nominal)

<table>
<thead>
<tr>
<th>Source</th>
<th>APS bending magnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Energy</td>
<td>19.51 keV</td>
</tr>
<tr>
<td>Energy Range</td>
<td>1.0 - 100.0 keV</td>
</tr>
<tr>
<td>On-axis peak brilliance at 16.3 keV</td>
<td>2.9×10^{15} ph/sec/mrad°mm%0.1%bw</td>
</tr>
<tr>
<td>On-axis peak angular flux at 16.3 keV</td>
<td>9.6×10^{13} ph/sec/mrad°0.1%bw</td>
</tr>
<tr>
<td>On-axis peak horizontal angular flux at 5.6 keV</td>
<td>1.6×10^{3} ph/sec/mrad%0.1%bw</td>
</tr>
<tr>
<td>Source size at critical energy</td>
<td>145 µm</td>
</tr>
<tr>
<td>Σ_x</td>
<td>38 µm</td>
</tr>
<tr>
<td>Source divergence at critical energy</td>
<td>6 mrad</td>
</tr>
<tr>
<td>Σ_y</td>
<td>47 µrad</td>
</tr>
<tr>
<td>2-BM acceptance</td>
<td>2.0 mrad</td>
</tr>
</tbody>
</table>

Optics & Optical Performance

- Vertical deflecting mirror
 - 24.9 m from source
 - 0.15° incident angle
 - Cr, Pt coatings
 - Plane figure

- Double multilayer monochromator
 - 27.4 m from source
 - Unfocussed

- Kohzu double-crystal monochromator
 - 28.8 m from source
 - Unfocussed

- Vertical deflecting mirror
 - 49.4 m from source
 - 0°–2° incident angle, variable
 - Pt coating
 - Plane figure

Experiment Stations

- 2-BM-A
 - White beam first optics enclosure
- 2-BM-B
 - Pink and monochromatic beam station

Detectors

- Energy dispersive detector
- Scintillation detector
- Ionization chambers
- Peltier-cooled CCD camera

Beamline Controls and Data Acquisition

- Sun UNIX running EPICS with VME; NT and MacOS workstations
- SPEC

Beamline Support Equipment/Facilities

- Precision scanning stage for x-ray lithography
- 6-circle diffractometer
- First x-ray tomography system

Beamline Contacts:

Derrick Mancini
Francesco DeCarlo
tel 630.252.0147
mancini@aps.anl.gov
tel 630.252.0148
decarlo@aps.anl.gov
Beamline 2-ID-B / SRI-CAT

Scientific focus: Synchrotron instrumentation and techniques, imaging, and coherence

Scientific programs: High-resolution imaging, coherent scattering, and interferometry

Insertion Device Source Characteristics (nominal)

<table>
<thead>
<tr>
<th>Source</th>
<th>5.5 cm undulator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>5.50 cm</td>
</tr>
<tr>
<td>Length</td>
<td>2.47 m</td>
</tr>
<tr>
<td>Effective K_{max} (at minimum gap = 10.5 mm)</td>
<td>6.57</td>
</tr>
<tr>
<td>Energy range 1st harmonic</td>
<td>0.4 - 7.0 keV</td>
</tr>
<tr>
<td>Energy range 1st - 5th harmonics</td>
<td>0.4 - 25.0 keV</td>
</tr>
<tr>
<td>On-axis peak brilliance at 4.0 keV</td>
<td>4.2×10^{18} ph/sec/mm2/mm/0.1%bw</td>
</tr>
<tr>
<td>Source size at 4.0 keV</td>
<td></td>
</tr>
<tr>
<td>Σ_x</td>
<td>359 μm</td>
</tr>
<tr>
<td>Σ_x'</td>
<td>21 μm</td>
</tr>
<tr>
<td>Source divergence at 4.0 keV</td>
<td></td>
</tr>
<tr>
<td>$\Sigma_{x'}$</td>
<td>24 μrad</td>
</tr>
<tr>
<td>$\Sigma_{x'}$</td>
<td>9.0 μrad</td>
</tr>
</tbody>
</table>

Optics & Optical Performance

- **high-heat-load mirror M1**
 - 29.5 m from source
 - 0.15° incident angle
 - Plane figure
 - Pt, Rh, and Si coatings
- **horizontal focusing mirror M2B**
 - 31.1 m from source
 - 1.25° incident angle
 - Spherical figure
 - Pt, Rh, multilayer coatings
- **vertical focusing mirror M3B**
 - 31.6 m from source
 - 1.25° incident angle
 - Cylindrical figure
 - Pt, Rh, multilayer coatings
- **multilayer spherical grating monochromator**
 - 46.8 m from source
 - 0.5–4.0 keV energy range
 - 600, 1200, and 1800 lines/mm gratings
 - 100–4000 resolution $E/\Delta E$
 - 1.5 mm hor. x 0.5 mm vert. beam size FWHM

Experiment Station

- **2-ID-B**

Detectors

- Absolute-calibrated photodiodes
- Avalanche photodiodes
- Dispersive LERge fluorescence detector
- Thinned/backside-illuminated CCD camera

Beamline Controls and Data Acquisition

- Sun UNIX running EPICS with VME
- PC NT running EPICS CCD camera controller

Beamline Support Equipment/Facilities

- Scanning/holographic microscope
- 2-circle goniometer
- Fast scan stage (0.8 nm resolution)
- Full-field imaging microscope

Beamline contacts:

<table>
<thead>
<tr>
<th>Name</th>
<th>Tel</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ian McNulty</td>
<td>630.252.2882</td>
<td>mcnulty@aps.anl.gov</td>
</tr>
<tr>
<td>Sean Frigo</td>
<td>630.252.9374</td>
<td>frigo@aps.anl.gov</td>
</tr>
</tbody>
</table>
Beamline 2-ID-D & 2-ID-E / SRI-CAT

Scientific focus: Synchrotron instrumentation and techniques, imaging, and coherence

Scientific programs: High-resolution imaging and coherence-based techniques

Insertion-device Source Characteristics (nominal)

<table>
<thead>
<tr>
<th>Source</th>
<th>Period</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undulator A</td>
<td>3.30 cm</td>
<td>2.47 m</td>
</tr>
<tr>
<td>Effective k_{max} (at minimum gap = 10.5 mm)</td>
<td>2.78</td>
<td></td>
</tr>
<tr>
<td>Energy range 1st harmonic</td>
<td>2.9 - 13.0 keV</td>
<td></td>
</tr>
<tr>
<td>Energy range 1st - 5th harmonics</td>
<td>2.9 - 45.0 keV</td>
<td></td>
</tr>
<tr>
<td>On-axis peak brilliance at 6.5 keV</td>
<td>9.6×10^{9} ph/sec/nrad/mm²/0.1% bw</td>
<td></td>
</tr>
<tr>
<td>Source size at 8.0 keV</td>
<td>359μm</td>
<td></td>
</tr>
<tr>
<td>Source divergence at 8.0 keV</td>
<td>21μm</td>
<td></td>
</tr>
</tbody>
</table>

Optics & Optical Performance

- **high-heat-load mirror M1**
 - 29.5 m from source
 - 0.15° incident angle
 - Plane figure
 - Pt, Rh, and Si coatings

- **Kohzu monochromator**
 - 62.0 m from source
 - 2–32 keV energy range Si(111)
 - 10^{-4} monochromaticity $\Delta E/E$
 - 4.2 mm hor. x 1.6 mm vert. beam size FWHM
 - $10^{11} - 10^{13}$ ph/sec flux at sample

- **Zone plate microprobe**
 - 71.0 m from source
 - 0.1 µm hor. x 0.1 µm vert. focus size
 - 10^{12} ph/sec/µm²/0.1% bw flux

Experiment Stations
- 2-ID-D
- 2-ID-E

Detectors
- Ionization chambers
- NaI scintillation detector
- Avalanche photodiodes
- CCD cameras

Beamline Controls and Data Acquisition
- Sun UNIX running EPICS with VME
- PC NT running EPICS CCD camera controller

Beamline Support Equipment/Facilities
- Optical table with six degrees of freedom
- Scanning microscope
- High-resolution x-ray spectrometer
- Kappa diffractometer

Beamline contacts:

<table>
<thead>
<tr>
<th>Name</th>
<th>Tel</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barry Lai</td>
<td>630.252.6405</td>
<td>blai@aps.anl.gov</td>
</tr>
<tr>
<td>Zhongzhou Cai</td>
<td>630.252.0144</td>
<td>cai@aps.anl.gov</td>
</tr>
<tr>
<td>Jorg Maser</td>
<td>630.252.1081</td>
<td>maser@aps.anl.gov</td>
</tr>
</tbody>
</table>
Beamline 3-ID / SRI-CAT

Scientific focus: Synchrotron instrumentation and techniques, resonant and non-resonant inelastic scattering
Scientific programs: Nuclear resonant scattering (inelastic nuclear resonant scattering, lattice dynamics of thin films, amorphous materials, and vibrational properties of biomolecules), and inelastic x-ray scattering (momentum-resolved lattice dynamic)

Insertion Device Source Characteristics (nominal)

<table>
<thead>
<tr>
<th>source</th>
<th>2.7 cm undulator</th>
</tr>
</thead>
<tbody>
<tr>
<td>period</td>
<td>2.70 cm</td>
</tr>
<tr>
<td>length</td>
<td>4.5 m</td>
</tr>
<tr>
<td>effective K_{mgs}</td>
<td>2.18</td>
</tr>
<tr>
<td>(at minimum gap = 8.5 mm)</td>
<td></td>
</tr>
<tr>
<td>energy range 1st harmonic</td>
<td>5.1 - 16.0 keV</td>
</tr>
<tr>
<td>energy range 1st - 5th harmonics</td>
<td>5.1 - 60.0 keV</td>
</tr>
<tr>
<td>on-axis peak brilliance at 7.9 keV</td>
<td>2.3 x 10^{19} pb/sec/mrad²/mm²/0.1%bw</td>
</tr>
<tr>
<td>source size at 8.0 keV</td>
<td>359 µm</td>
</tr>
<tr>
<td>Σ_{xy}</td>
<td>21 µm</td>
</tr>
<tr>
<td>source divergence at 8.0 keV</td>
<td>24 µrad</td>
</tr>
<tr>
<td>Σ_{x'y'}</td>
<td>6.9 µrad</td>
</tr>
</tbody>
</table>

Optics & Optical Performance
- Kohzu HLM-2 double-crystal monochromator diamond (111) nondispersive crystals water cooling
- high-resolution monochromator
 - energy resolution
 - 13.8 keV 6 meV
 - 14.4 keV 5.5, 2, 0.85, and 0.66 meV
 - 21.5 keV 1 meV
 - 23.8 keV 3.5, 1, and 0.5 meV
- Zeiss mirror
 - ZeroDur substrate
 - Pd coating
 - two groove, collimating and horizontal focusing
 - bendable for vertical focusing
 - 0.8 m length
- K-B focusing mirror

Experiment Stations
- 3-ID-A
 - white beam first optics enclosure
- 3-ID-B
 - monochromatic beam station
 - x-ray optics development
 - nuclear resonant scattering
- 3-ID-C
 - monochromatic beam station
 - inelastic x-ray scattering
- 3-ID-D
 - monochromatic beam station
 - nuclear resonant scattering

Detectors
- avalanche photodiodes
- PIN-diodes, Si, CdZnTe (Amptek)
- ionization chambers
- NaI
- Si(Li)

Beamline Controls and Data Acquisition
- VME-based motion control, EPICS software
- Graphical user interface: MEDM implemented on Sun workstations, Solaris operating system

Beamline Support Equipment/Facilities
- Kohzu high-angular resolution stages (12.5 mrad)
- 6-circle diffractometer
- optical tables
- Euler cradle
- misc. linear stages
- Oxford 7-T superconducting magnet/cryostat,
 - Oxford microscope cryostat
- optical tables

Beamline contacts: Erkan Alp
Wolfgang Sturhahn
tel 630.252.4775
tel 630.252.0163
eea@aps.anl.gov
sturhahn@aps.anl.gov
Beamline 4-ID / SRI-CAT

Scientific focus: Synchrotron instrumentation and techniques and use of polarized x-rays

Scientific programs: Development of polarization optics/techniques for 0.5–100 keV (magnetic circular dichroism, resonant magnetic scattering, and fluorescence), and development of high-heat-load front-end components.

Circularly Polarized Undulator (nominal)*

<table>
<thead>
<tr>
<th>Period</th>
<th>12.8 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>2.3 m</td>
</tr>
<tr>
<td>Effective K_{max} (for both horizontal and vertical fields)</td>
<td>2.65</td>
</tr>
<tr>
<td>Peak field B_{rms}</td>
<td>0.28 Tesla</td>
</tr>
<tr>
<td>Maximum currents at B_{max}</td>
<td>1.4 kA horizontal, 0.52 kA vertical</td>
</tr>
<tr>
<td>Energy range 1st harmonic (helical mode)</td>
<td>0.44 - 3.0 keV</td>
</tr>
<tr>
<td>Energy range 1st harmonic (linear mode)</td>
<td>0.8 - 3.0 keV</td>
</tr>
<tr>
<td>Energy range 1st - 5th harmonics (linear mode)</td>
<td>0.8 - 10.0 keV</td>
</tr>
<tr>
<td>On-axis peak circular brilliance at 1.5 keV</td>
<td>1.0×10^{8} ph/sec/mrad²/mm²/0.1%bw</td>
</tr>
<tr>
<td>On-axis peak linear brilliance at 1.9 keV</td>
<td>7.0×10^{9} ph/sec/mrad²/mm²/0.1%bw</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>0 - 10 Hz</td>
</tr>
<tr>
<td>Switching rise time</td>
<td>20 ms</td>
</tr>
<tr>
<td>Source size at 1.5 keV</td>
<td>359μrad</td>
</tr>
<tr>
<td>Source divergence at 1.5 keV</td>
<td>27 rad, 14.7 μrad</td>
</tr>
</tbody>
</table>

Insertion Device Source Characteristics (nominal)*

<table>
<thead>
<tr>
<th>Source</th>
<th>Undulator A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>3.36 cm</td>
</tr>
<tr>
<td>Length</td>
<td>2.47 m</td>
</tr>
<tr>
<td>Effective K_{max} (at minimum gap = 10.5 mm)</td>
<td>2.78</td>
</tr>
<tr>
<td>Energy range 1st harmonic</td>
<td>2.9 - 15.0 keV</td>
</tr>
<tr>
<td>Energy range 1st - 5th harmonics</td>
<td>2.9 - 45.0 keV</td>
</tr>
<tr>
<td>On-axis peak brilliance at 6.5 keV</td>
<td>9.6×10^{15} ph/sec/mrad²/mm²/0.1%bw</td>
</tr>
<tr>
<td>Source size at 8.0 keV</td>
<td>359μrad</td>
</tr>
<tr>
<td>Source divergence at 8.0 keV</td>
<td>24 rad, 6.9 μrad</td>
</tr>
</tbody>
</table>

Sector 4 will be equipped with two canted insertion devices, a standard Undulator A and an elliptically polarized undulator.

Optics & Optical Performance

Hard x-ray branch optics and optics performance

- Double-crystal monochromator
 - 3.0–50.0 keV energy range Si(111)
 - 5 mm hor. x 2 mm vert. acceptance
 - 1°–60$^\circ$ Bragg angle rotation range
 - 10 arcsec Bragg accuracy
 - 0.5 arcsec resolution
 - 10–35 mm beam offset, variable liquid-nitrogen cooling

Intermediate x-ray branch optics and optics performance

- Horizontal focusing mirror M1C
 - 28.6 m from source
 - 1.1$^\circ$ incident angle
 - Plane figure
 - Pt, Rh, Si, and multilayer coatings

- Horizontal focusing mirror M2C
 - 31 m from source
 - 1.1$^\circ$ incident angle
 - Spherical figure (R=1610 m)
 - Pt, Rh, Si, and multilayer coatings

Beamline contacts: John Freeland
tel 630.252.9614 freeland@aps.anl.gov
George Srajec
tel 630.252.3257 srajerg@aps.anl.gov

continued on pg. 15
Beamline 4-ID / SRI-CAT

Scientific focus: Synchrotron instrumentation and techniques and use of polarized x-rays

Scientific programs: Development of polarization optics/techniques for 0.5–100 keV (magnetic circular dichroism, resonant magnetic scattering, and fluorescence), and development of high-heat-load front-end components.

continued from pg. 14

• vertical focusing mirror M3C
 41.4 m from source
 1.00° incident angle
 spherical figure
 Rh coating

• multilayer spherical grating monochromator
 50 m from source
 0.5–3.0 keV energy range
 10^{-3}–10^{-4} monochromaticity $\Delta E/E$
 2.5 mm hor. x 0.25 mm vert. beam size
 10^{11}–10^{13} ph/sec flux at sample

Experiment Stations
• 4-ID-A
 white beam first optic enclosure
• 4-ID-B and -D
 white and monochromatic “hard” x-ray stations
• 4-ID-C
 soft x-ray station

Beamline Controls and Data Acquisition
• Sun UNIX running Epics with VME, SPEC

Beamline contacts: John Freeland tel 630.252.9614 freeland@aps.anl.gov
George Srajer tel 630.252.3257 srajer@aps.anl.gov
E.I. Du Pont de Nemours & Co–Northwestern University–The Dow Chemical Company CAT

Overview

The DND-CAT is a team of senior scientists and engineers formed jointly by the E.I. Du Pont de Nemours Co., Northwestern University, and the Dow Chemical Company to develop, build, and operate facilities dedicated to advancing x-ray research on new materials. The ability to characterize the increasing numbers of new and advanced materials with specifically engineered properties is closely coupled with the ability to analyze their molecular structure.

Research Focus

The scientific thrust of DND-CAT is concentrated in three main areas: the study of the atomic structure of bulk materials, the study of two-dimensional atomic structures (e.g., surfaces, interfaces, and thin films), and polymer science and technology.

Atomic Structure of Bulk Materials

In addition to crystallographic determinations of unknown compounds, this aspect of DND-CAT’s program concentrates on the determination of defects and local atomic arrangements in materials. For example, the arrangement of dopant atoms and other lattice defects in metals, catalysts, and semiconductors is under study. In addition, DND-CAT researchers are extensively studying catalysts under realistic conditions of high temperature and pressure. Catalysts of interest include supported metal and bimetallic catalysts (e.g., Pd, Pd-Re), zeolites, and catalysts for environmentally benign chlorofluorocarbons.

Study of Two-Dimensional Structures

The structure of surfaces at interfaces is a primary factor controlling the properties of materials in many technologically important applications. Some of these include catalysis, corrosion, tribology, crystal growth, and ion transport through biomembranes. DND-CAT researchers will use a custom-designed ultra-high-vacuum system to study buried interfaces, thin films, and surfaces to determine mechanisms of film growth, segregation at grain boundaries, surface melting, and other two-dimensional phenomena.

Polymer Science and Engineering

The third major area for DND-CAT is polymer physics, chemistry, and engineering. Areas of interest include solution characterization of polymers and their precursors, structure formation, polymer melt rheology, fiber formation, structure/property/processing relationships, and mechanical properties.

CAT contacts:

John Quintana, Director tel 630.252.0221 jq@nwu.edu
Jerrie Lea Hopf, Program Asst. tel 630.252.0222 jlhopf@nwu.edu
WWW Site http://tomato.dnd.aps.anl.gov/
Beamline 5-BM / DND-CAT

Scientific focus: Crystallography, EXAFS, polymer scattering, and tomography

Scientific programs: Material science and engineering, polymer science, crystallography, surface science, catalysis, and imaging

Bending Magnet Source Characteristics (nominal)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>APS bending magnet</td>
</tr>
<tr>
<td>critical energy</td>
<td>19.51 keV</td>
</tr>
<tr>
<td>energy range</td>
<td>1.0 - 100.0 keV</td>
</tr>
<tr>
<td>on-axis peak brilliance at 16.3 keV</td>
<td>2.9 x 10^{15} ph/sec/mrad/mm(^2)0.1%bw</td>
</tr>
<tr>
<td>on-axis peak angular flux at 16.3 keV</td>
<td>9.6 x 10^{13} ph/sec/mrad/0.1%bw</td>
</tr>
<tr>
<td>on-axis peak horizontal angular flux at 5.6 keV</td>
<td>1.6 x 10^{5} ph/sec/mradh/0.1%bw</td>
</tr>
<tr>
<td>source size at critical energy</td>
<td>145 (\mu)m</td>
</tr>
<tr>
<td>(\Sigma x)</td>
<td>38 (\mu)m</td>
</tr>
<tr>
<td>source divergence at critical energy</td>
<td>6 mrad</td>
</tr>
<tr>
<td>(\Sigma x')</td>
<td>47 mrad</td>
</tr>
</tbody>
</table>

Experiment Stations

- **5-BM-B**
 - Monochromatic beam station
- **5-BM-C**
 - Monochromatic and white beam beam station
 - Powder diffraction
- **5-BM-D**
 - Monochromatic and white beam station
 - General purpose station for EXAFS
 - Crystallography
 - X-ray scattering

Detectors

- Spectroscopy-grade ionization chambers
- Lytle detector
- Fuji BAS 2000 image-plate system
- Scintillation detectors
- Mar 135 mm CCD detector
- Spectra Source CCD camera for imaging applications
- EG&G Ortec Iglet solid-state detector

Beamline Controls and Data Acquisition

- Linux running custom control code for motors and actuators on all systems
- SPEC used to control diffractometers and surface-science instruments
- Vendor-supplied software used to control CCD detectors

Beamline Support Equipment/Facilities

- 4-circle diffractometer
- 2-circle powder diffractometer
- Mar CCD detector system
- Fuji BAS 2000 image-plate system

Beamline contacts:

<table>
<thead>
<tr>
<th>Name</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Quintana</td>
<td>tel 630.252.0221</td>
</tr>
<tr>
<td>JerrieLea Hopf</td>
<td>jlp@nwu.edu</td>
</tr>
</tbody>
</table>
Beamline 5-ID / DND-CAT

Scientific focus: Crystallography, EXAFS, polymer scattering, and surface science

Scientific programs: Material science and engineering, polymer science, crystallography, surface science, and catalysis

Insertion Device Source Characteristics (nominal)

<table>
<thead>
<tr>
<th>Source</th>
<th>Undulator A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>3.30 cm</td>
</tr>
<tr>
<td>Length</td>
<td>2.47 m</td>
</tr>
<tr>
<td>Effective K_{max}</td>
<td>2.78</td>
</tr>
<tr>
<td>(at minimum gap = 10.5 mm)</td>
<td></td>
</tr>
<tr>
<td>Energy range 1st harmonic</td>
<td>2.9 - 13.0 keV</td>
</tr>
<tr>
<td>Energy range 1st - 5th</td>
<td>2.9 - 45.0 keV</td>
</tr>
<tr>
<td>harmonics</td>
<td></td>
</tr>
<tr>
<td>On-axis peak brilliance</td>
<td>9.6 x 10^{15} ph/sec/mrad^2/mm^2/0.1% bw</td>
</tr>
<tr>
<td>Source size at 8.0 keV</td>
<td>359 μm</td>
</tr>
<tr>
<td>Source divergence at 8.0 keV</td>
<td>21 μm</td>
</tr>
<tr>
<td>Source divergence at 8.0 keV</td>
<td></td>
</tr>
<tr>
<td>Σx</td>
<td>24 μrad</td>
</tr>
<tr>
<td>Σy</td>
<td>6.9 μrad</td>
</tr>
</tbody>
</table>

Optics & Optical Performance
- 7-18 keV spectral range
- cryogenic Si(111) crystals
 fixed-gap channel cut configuration
- energy range limited due to crystal size

Experiment Stations
- 5-ID-B
 monochromatic general-purpose beam station
 4-circle Huber goniometer
 Mar CCD
 single-crystal diffraction
 EXAFS
- 5-ID-C
 monochromatic beam station
 surface science using custom UHV system
 surface scattering
 standing waves
- 5-ID-D
 small- and wide-angle scattering
 polymer scattering station

Detectors
- spectroscopy-grade ionization chambers
- Lytle detector
- Fuji BAS 2000 image-plate system
- scintillation detectors
- Mar 135 mm CCD detector
- Spectra Source CCD camera for imaging applications
- EG&G Ortec Iglet solid-state detector

Beamline Controls and Data Acquisition
- Linux running custom control code for motors and actuators for all systems
- SPEC used to control diffractometers and surface-science instruments
- Vendor-supplied software used to control CCD detectors

Beamline Support Equipment/Facilities
- 6-circle diffractometer
- 2-circle powder diffractometer
- custom UHV system
- Mar CCD detector system
- Fuji BAS 2000 image-plate system

Beamline contacts: John Quintana
tel 630.252.0221 jpq@nwu.edu
JerrieLea Hopf
tel 630.252.0222 jilhopf@nwu.edu
Midwest Universities CAT

Overview

The Midwest Universities CAT was organized in 1990. At present, its member institutions include Ames Laboratory/Iowa State University, University of Missouri at Columbia, Georgia Institute of Technology, Washington University, University of Wisconsin at Madison, Kent State University, State University of New York at Stony Brook, Michigan State University, and the Institut für Festkörperforschung Forschungszentrum Jülich GmbH. The main undulator line of the sector features a four-circle diffractometer for single-crystal work, a liquid surface reflectometer, and a new surface science chamber. In addition, a high-energy side station (30-120 keV) is currently under construction and will run in parallel with the main undulator line [3-22 keV for Si (111) monochromating crystals].

Research Focus

Research efforts are focused in the areas of magnetic scattering and spectroscopy, as well as in resonant- and nonresonant-scattering studies of magnetic materials. The technique of circular magnetic x-ray dichroism (CMXD) offers tremendous potential as a tool for studies of the electronic states associated with magnetic order in ferromagnetic materials of fundamental and technological interest. Resonant and nonresonant magnetic x-ray scattering measurements offer important and complementary means of determining magnetic structures in materials that are ill-suited, by reasons of size or chemical composition, to traditional neutron measurements (e.g., for magnetic structure studies of metastable phases and surfaces).

Research efforts in the surface-scattering program are centered on the study of the kinetics and growth of two-dimensional systems, the role of defects in epitaxy, ordered non-epitaxial overlayers, phase transitions, and investigations of liquid surfaces. The surface chamber constructed for this sector will enable surface-scattering investigations to expand into new areas: real-time growth characterization in a variety of growth environments, low-Z adsorbate systems, and two-dimensional surface kinetics. A liquid surface diffractometer will be used to probe the chemistry and physics of monolayer films at liquid surfaces, as well as of realistic models of biological membranes.

General scattering programs include microdiffraction techniques, coherent scattering, high-temperature processing of materials, studies of liquid crystals and polymers, and strain in thin films and interfaces.

Work on the high-energy side station will include techniques such as nonresonant magnetic scattering, radial distribution function analysis of disordered and partially ordered materials, and in situ time-resolved measurements of high-temperature materials processing.

CAT contacts:	Alan Goldman, Director	tel 515.294.3585	goldman@ameslab.gov
	Paul Miceli, Deputy Dir.	tel 573.882.8328	pfm@wald.physics.missouri.edu
	Doug Robinson, Beamline Scientist	tel 630.252.0247	drobinson@iastate.edu
	Laura Morisco, CAT Coordinator	tel 630.252.0243	
Beamline 6-ID / \(\mu \)-CAT

Scientific focus: Materials science

Scientific programs: Magnetic scattering and spectroscopy, liquid surface studies, and surface scattering

Insertion Device Source Characteristics (nominal)

<table>
<thead>
<tr>
<th>source</th>
<th>Undulator A</th>
</tr>
</thead>
<tbody>
<tr>
<td>period</td>
<td>3.30 cm</td>
</tr>
<tr>
<td>length</td>
<td>2.47 m</td>
</tr>
<tr>
<td>effective (K_{\text{max}}) (at minimum gap = 10.5 mm)</td>
<td>2.78</td>
</tr>
<tr>
<td>energy range 1st harmonic</td>
<td>2.9 - 13.0 keV</td>
</tr>
<tr>
<td>energy range 1st - 5th harmonics</td>
<td>2.9 - 45.0 keV</td>
</tr>
<tr>
<td>on-axis peak brilliance at 6.5 keV</td>
<td>(9.6 \times 10^{10}) ph/sec/mrad(^2)mm(^{-2})0.1% bw</td>
</tr>
<tr>
<td>source size at 8.0 keV</td>
<td>(\Sigma_x) 359 (\mu)m, (\Sigma_y) 21 (\mu)m</td>
</tr>
<tr>
<td>source divergence at 8.0 keV</td>
<td>(\Sigma_x) 24 (\mu)rad, (\Sigma_y) 6.9 (\mu)rad</td>
</tr>
</tbody>
</table>

Optics & Optical Performance

- Kohzu double-crystal constant-offset monochromator
 - 29.5 m from source
 - 3.2–20 keV energy range Si(111)
 - \(10^{-4} \) energy resolution (\(\Delta E/E \)) at 10 keV
 - 25 mm offset
 - liquid-nitrogen cooling

- 3-stripe vertically focusing 70 cm mirror
 - 60 cm active length (clear aperture)
 - Al, Rh, Pt coating stripes
 - 12, 23, 31 keV high-energy cutoffs at 0.15°
 - 1:1 vertical focusing (variable) at 6-ID-B
 - < 0.5 arcsec meridional slope error
 - < 5 arcsec sagittal slope error
 - 3 Å rms roughness

Experiment Stations

- **6-ID-A**
 - white beam first optics enclosure
 - Kohzu monochromator
- **6-ID-B**
 - monochromatic beam station
 - 4-circle diffractometer
 - liquid surface reflectometer
- **6-ID-C**
 - monochromatic beam station
 - UHV surface science chamber

Detectors

- NaI detectors
- ionization chambers
- 3-element Si energy dispersive array detector

Beamline Controls and Data Acquisition

- Sun UNIX running EPICS with VME
- SPEC control software

Beamline Support Equipment/Facilities

- 6K Displex
- polarization modifier
- polarization analyzer
- high-temperature furnace for powder diffraction

Beamline contacts:

Alan Goldman
tel 515.294.3585
goldman@ameslab.gov

Doug Robinson
tel 630.252.0247
drobinson@iastate.edu
Sector 7

MHATT-CAT

Center for Real-Time X-ray Studies

Overview

The Center for Real-Time X-ray Studies CAT (MHATT-CAT) was formed in 1989 as a university-industry partnership between the University of Michigan, Howard University, and Bell Laboratories (Lucent Technologies). MHATT-CAT’s facilities include two fully instrumented beamlines (one based on an undulator and the other on a bend magnet) to exploit the unique characteristics of the APS. A high-speed communications network between the participating institutions and the APS is planned to facilitate the involvement of students in the MHATT-CAT collaboration and to maximize participation in research at national user facilities.

Research Focus

MHATT-CAT’s research program is focused on time-dependent structural phenomena across a broad range of materials systems, including thin films, polymers, liquid crystals, and biomaterials. The undulator line serves as the host for microprobe studies of high-temperature superconductors, interconnects, and optical fibers; for the development of coherent x-ray scattering techniques; and for the application of ultrafast lasers. The sector is expected to develop into an international gathering point for scientists and engineers with strong interest in time-resolved structural studies.

CAT contact: Roy Clarke, Director WWW Site tel 734.764.4466 royc@umich.edu http://www.mhatt.aps.anl.gov
Beamline 7-ID / MHATT-CAT

Scientific focus: Real-time x-ray studies

Scientific programs: Real-time x-ray studies, x-ray microcharacterization, and x-ray photon correlation spectroscopy

<table>
<thead>
<tr>
<th>Insertion Device Source Characteristics (nominal)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>Undulator A</td>
</tr>
<tr>
<td>period</td>
<td>3.30 cm</td>
</tr>
<tr>
<td>length</td>
<td>2.47 m</td>
</tr>
<tr>
<td>effective K_{max} (at minimum gap = 10.5 mm)</td>
<td>2.78</td>
</tr>
<tr>
<td>energy range 1st harmonic</td>
<td>2.9 - 13.0 keV</td>
</tr>
<tr>
<td>energy range 1st - 5th harmonics</td>
<td>2.9 - 45.0 keV</td>
</tr>
<tr>
<td>on-axis peak brilliance at 6.5 keV</td>
<td>9.6 x 10^{18} ph/sec/mrad2/mm2/0.1% bw</td>
</tr>
<tr>
<td>source size at 8.0 keV</td>
<td>359 μm</td>
</tr>
<tr>
<td>Σ_x</td>
<td>21 μm</td>
</tr>
<tr>
<td>source divergence at 8.0 keV</td>
<td>24 μrad</td>
</tr>
<tr>
<td>Σ_y</td>
<td>6.9 μrad</td>
</tr>
</tbody>
</table>

Optics & Optical Performance
- BESSRC-type double-crystal fixed-exit HHL monochromator
 30 m from source
 5-50 keV energy range
 10^{-4} energy resolution ($\Delta E/E$) at 10 keV
 35 mm offset
 liquid-nitrogen cooling
- pink-beam mirror filter
 30 m from source (centered on HHL mono)
 6-10 keV energy range
 0.03 energy resolution ($\Delta E/E$)

<table>
<thead>
<tr>
<th>Experiment Stations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7-ID-A</td>
<td>white beam first optics enclosure</td>
</tr>
<tr>
<td></td>
<td>HHL monochromator</td>
</tr>
<tr>
<td>7-ID-B</td>
<td>white beam station</td>
</tr>
<tr>
<td></td>
<td>5 m x 7 m</td>
</tr>
<tr>
<td>7-ID-C</td>
<td>monochromatic and pink beam station</td>
</tr>
<tr>
<td></td>
<td>5 m x 7 m</td>
</tr>
<tr>
<td></td>
<td>diffraction</td>
</tr>
<tr>
<td>7-ID-D</td>
<td>monochromatic and pink beam station</td>
</tr>
<tr>
<td></td>
<td>5 m x 6 m</td>
</tr>
<tr>
<td></td>
<td>diffraction</td>
</tr>
</tbody>
</table>

Detectors
- NaI scintillation
- ionization chambers
- various CCD detectors
- Amptek Si detector

Beamline Controls and Data Acquisition
- EPICS
- SPEC
- k-Space Associates real-time CCD data acquisition
- LabView VI environment

Beamline Support Equipment
- Newport/Micro-Control 6-circle Kappa goniometer (7-ID-C)
- Huber 4-circle goniometer (7-ID-B)
- two xyz optical tables (4 ft x 6 ft)

Beamline contacts: Eric Dufresne tel 630.252.0274 dufresne@umich.edu
IBM-MIT-McGill-Whitehead CAT

Overview

IBM-MIT-McGill-Whitehead CAT (IMMW-CAT) was organized by individual scientists to build and operate a sector at the APS optimized to conduct many kinds of x-ray scattering research. The undulator beamline is well suited to small-angle scattering experiments; high-resolution, wide-angle scattering experiments; and experiments involving dynamic phenomena in materials science, condensed matter physics, and biological physics. The bending magnet beamline is being developed for macromolecular crystallography.

Research Focus

IMMW-CAT’s research spans a broad range of topics. Experiments conducted by CAT-member scientists fall primarily into the following areas:

1. Small-angle x-ray scattering studies, especially of soft matter.

2. Time-resolved x-ray scattering studies of bulk phase transition kinetics.

3. High-resolution, wide-angle diffraction studies of solid state materials, their phase behavior, and phase transitions.

4. Studies of equilibrium and non-equilibrium dynamics using the emerging technique of x-ray photon correlation spectroscopy (XPCS) and the development of XPCS-related coherent x-ray methods.

5. High-resolution x-ray diffraction studies of the structure of biologically important macromolecules (including MAD studies).

CAT contacts: Simon Mochrie, Director, tel 617.253.6588, simon@lindy.mit.edu
D. Mark Sutton, Deputy Dir., tel 514.398.6523, mark@physics.mcgill.ca
Beamline 8-ID / IMMW-CAT

Scientific focus: Condensed matter physics and materials science

Scientific programs: Intensity fluctuation spectroscopy studies using coherent x-rays, time-resolved x-ray scattering, x-ray scattering studies and very low temperatures, and x-ray magnetic scattering

<table>
<thead>
<tr>
<th>Insertion Device Source Characteristics (nominal)</th>
<th>Source:</th>
<th>Undulator A</th>
</tr>
</thead>
<tbody>
<tr>
<td>period</td>
<td>3.30 cm</td>
<td></td>
</tr>
<tr>
<td>length</td>
<td>2.47 m</td>
<td></td>
</tr>
<tr>
<td>effective K_{max} (at minimum gap = 10.5 mm)</td>
<td>2.78</td>
<td></td>
</tr>
<tr>
<td>energy range 1st harmonic</td>
<td>2.9 - 13.0 keV</td>
<td></td>
</tr>
<tr>
<td>energy range 1st - 5th harmonics</td>
<td>2.9 - 45.0 keV</td>
<td></td>
</tr>
<tr>
<td>on-axis peak brilliance at 6.5 keV</td>
<td>9.6×10^{18} ph/sec/mrad/°mm/0.1% bw</td>
<td></td>
</tr>
<tr>
<td>source size at 8.0 keV</td>
<td>Σ_x, 359 µm; Σ_y, 21 µm</td>
<td></td>
</tr>
<tr>
<td>source divergence at 8.0 keV</td>
<td>Σ_y, 24 µrad; Σ_y, 6.9 µrad</td>
<td></td>
</tr>
</tbody>
</table>

Optics & Optical Performance
- horizontally deflecting mirror
 - 29.2 m from source
 - 6–30 keV energy range
 - water cooling
- transmission diamond monochromator
 - 51.6 m from source
 - 6–30 keV energy range
 - $\Delta\lambda/\lambda=4 \times 10^{-6}$ energy resolution at 8 keV
 - symmetric Bragg diamond (111)
 - water cooling

Experiment Stations
- 8-ID-A
 - white beam first optics enclosure
- 8-ID-D
 - pink beam monochromator enclosure
- 8-ID-E
 - pink beam experimental station
- 8-ID-I
 - pink beam experimental end station

Detectors
- two PI direct detection CCD detectors
- PI optically coupled CCD detector
- photodiode array linear detector
- Amptek CZT and Si detectors

Beamline Controls and Data Acquisition
- Linux-based control system
- SPEC x-ray control software

Beamline Support Equipment/Facilities
- coherent small-angle scattering spectrometer
- time-resolved diffractometer
- He-3 cryostat on horizontally scattering spectrometer

Beamline contacts:
- Larry Lurio
 - tel 630.252.0281
 - larry@slate.imm.aps.anl.gov
- Simon Mochrie
 - tel 617.253.6588
 - simon@lindy.mi.;edu
- Mark Sutton
 - tel 514.398.6523
 - mark@physics.mcgill.ca
CMC-CAT

Complex Materials Consortium CAT

Overview

The Complex Materials Consortium CAT (CMC-CAT) was organized by individuals who share a common research interest in complex materials and a strong dedication to the use of the unique properties of synchrotron radiation to structurally and functionally characterize them. This organization was subsequently formalized into a consortium containing the following institutional members: Exxon Research and Engineering Company, University of Pennsylvania, Brookhaven National Laboratory, Princeton University, University of California at Santa Barbara, Los Alamos National Laboratory, Oak Ridge National Laboratory, and the University of Tennessee.

Research Focus

Complex materials, broadly defined, are materials that possess unique and novel properties by virtue of the complexity of their molecules and/or the complexity of interaction between their molecules. These materials include polymers, surfactants, liquid crystals, biomaterials, membranes, and thin molecular films of hydrocarbons on solid or liquid surfaces. They also include novel synthetic materials such as fullerenes, fibers, polymer composites, oxides, and zeolites. A basic understanding of the molecular structure, morphology, and molecular dynamics of such materials, particularly under non-equilibrium conditions or at interfaces, is essential for the development and optimization of novel materials and processes for industry. It is equally important for obtaining a complete theoretical description of the equilibrium and non-equilibrium behavior of complex, multicomponent systems.

At the APS, CMC-CAT uses several experimental techniques to study complex materials on a variety of length and time scales. The techniques include small-angle and wide-angle x-ray scattering, liquid surface spectrometry, x-ray surface scattering, x-ray spectroscopy, magnetic scattering, inelastic scattering, and x-ray microtomography and imaging. The studies depend on novel technical developments such as ultrafast-high-resolution two-dimensional imaging detectors, high-speed data inversion and image-processing algorithms, and novel x-ray microfocusing devices. Using such techniques, CMC-CAT researchers study phenomena such as the dynamic response of polymers, membranes, fibers, and fluids to applied stresses; the kinetics of phase separation in mixed systems; the formation of pitting, corrosion, and protective layers on metals in electrolytic solutions; the formation of novel surface structures on catalysts undergoing reactions; the formation of cracks and voids in composite materials; the properties of transition metal oxides; and the flow of fluids through microporous solids such as oil-bearing rocks or sand.

CAT contacts:
Doon Gibbs, Director
Thomas Gog, Assoc. Dir.
Chitra Venkataraman,
Beamline Scientist
tel 631.344.4608
tel 630.252.0320
tel 630.252.0327
doon@solids.phy.bnl.gov
gog@anl.gov
chitra@anl.gov
Beamline 9-BM / CMC-CAT

Scientific focus: Materials science

Scientific programs: EXAFS of complex materials, x-ray surface scattering, and general diffraction

Bending Magnet Source Characteristics (nominal)

<table>
<thead>
<tr>
<th>Source</th>
<th>APS bending magnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical energy</td>
<td>19.51 keV</td>
</tr>
<tr>
<td>Energy range</td>
<td>2.0 - 40.0 keV</td>
</tr>
<tr>
<td>On-axis peak brilliance at 16.3 keV</td>
<td>2.9×10^{18} ph/sec/mrad/mm/0.1%bw</td>
</tr>
<tr>
<td>On-axis peak angular flux at 16.3 keV</td>
<td>9.6×10^{15} ph/sec/mrad/0.1%bw</td>
</tr>
<tr>
<td>On-axis peak horizontal angular flux at 5.6 keV</td>
<td>1.6×10^8 ph/sec/mradh/0.1%bw</td>
</tr>
<tr>
<td>Source size at critical energy</td>
<td>145 μm</td>
</tr>
<tr>
<td>Σ_x</td>
<td>36 μm</td>
</tr>
<tr>
<td>Source divergence at critical energy</td>
<td>6 mrad</td>
</tr>
<tr>
<td>Σ_x^\prime</td>
<td>47 μrad</td>
</tr>
</tbody>
</table>

Optics & Optical Performance

- white beam slits (APS design L3-20)
- double-crystal, water-cooled Si monochromator
- toroidal mirror
- monochromatic slits (APS design L4)

Experiment Stations

- 9-BM-A
 - white beam first optics enclosure
- 9-BM-B
 - monochromatic beam station
 - EXAFS
- 9-BM-C
 - monochromatic beam station
 - surface diffraction
 - general diffraction

Detectors

- Smart 1500 CCD
- scintillation counters

Beamline Controls and Data Acquisition

- Sun UNIX running EPICS with VME, SPEC

Beamline Support Equipment/Facilities

- UHV surface apparatus
- EXAFS instrumentation

Beamline contacts:

<table>
<thead>
<tr>
<th>Contact</th>
<th>Tel</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas Gog</td>
<td>630.252.0320</td>
<td>gog@anl.gov</td>
</tr>
<tr>
<td>Chitra Venkataraman</td>
<td>630.252.0327</td>
<td>chitra@anl.gov</td>
</tr>
</tbody>
</table>
Beamline 9-ID / CMC-CAT

Scientific focus: Materials science

Scientific programs: SAXS from complex materials, liquid/solid surface scattering, EXAFS, general diffraction, and magnetic scattering

<table>
<thead>
<tr>
<th>Insertion Device Source Characteristics (nominal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
</tr>
<tr>
<td>period</td>
</tr>
<tr>
<td>length</td>
</tr>
<tr>
<td>effective K_{em} (at minimum gap = 10.5 mm)</td>
</tr>
<tr>
<td>energy range 1st harmonic</td>
</tr>
<tr>
<td>energy range 1st - 5th harmonics</td>
</tr>
<tr>
<td>on-axis peak brilliance at 6.5 keV</td>
</tr>
<tr>
<td>source size at 8.0 keV</td>
</tr>
<tr>
<td>source divergence at 8.0 keV</td>
</tr>
</tbody>
</table>

Optics & Optical Performance
Primary branch optics and optical performance
- white-beam slit
 4.5 mm x 4.5 mm input aperture
 2.1 mm x 2.1 mm max. output aperture
 ctr. of output aperture adjustable w/ input aperture

- double-crystal Si(111) monochromator
 30.5 m from source
 3.1–22.5 keV energy range
 25.0 mm beam offset
 10^{-4} energy resolution (ΔE/E) at 10 keV
 cryogenic cooling

- vertical-focusing mirror
 34.4 m from source
 flat figure with bender
 600 mm x 120 mm
 Au, Ni, Rh coatings
 0–4 mrad incident angle

Secondary branch optics and optical performance
- side-station monochromator
 28 m from source
 horizontal double crystal
 5–9.5 keV energy range
 water-cooled diamond crystal
 1000 mm horizontal beam offset
 10^{-4} energy resolution
- vertical-focusing mirror
- horizontal-focusing mirror

Experiment Stations
- 9-ID-A
 white beam first optics enclosure
- 9-ID-B & -C
 monochromatic beam station
 general diffraction
 SAXS
 EXAFS
 liquids

Detectors
- Smart 1500 CCD
- BNL 2D WIRE
- BNL 1D WIRE

Beamline Controls and Data Acquisition
- Sun UNIX running EPICS w/ VME, SPEC, etc.

Beamline Support Equipment/Facilities
- 6-circle diffractometer
- SAXS set up
- Bonse-Hart camera
- liquid surface reflectometer
- UHV surface apparatus

Beamline contacts: Thomas Gog
 Chitra Venkataraman
 tel 630.252.0320 gog@anl.gov
 tel 630.252.0327 chitra@anl.gov
Materials Research CAT

Overview

The Materials Research CAT (MR-CAT) is composed of groups from four universities (University of Florida, Illinois Institute of Technology, Northwestern University, and University of Notre Dame), a major corporation (Beyond Petroleum) and a federal research laboratory (Argonne National Laboratory/Chemical Technology and Environmental Research Divisions).

Research Focus

The scientific program of MR-CAT focuses on the study of advanced materials in situ as a means of characterizing their structure and electronic properties, as well as understanding their preparation. The primary research techniques of wide- and small-angle scattering, diffraction (single-crystal and powder), absorption spectroscopy (XFS), reflectivity, standing waves, diffraction anomalous fine structure (DAFS), and time-dependent and microfocus techniques are being used to study the following in situ:

- structural phase changes, especially in non-equilibrium systems
- disordered systems (e.g., alloys and amorphous materials)
- growth, recrystallization, surfaces, and interfaces of electronic materials
- catalysts (in situ time-dependent studies)
- structure of static and dynamic confined liquids
- organic thin films and self-assembling systems
- polymers (e.g., dynamics of block copolymers, single-fiber studies)

CAT contacts: Bruce Bunker, Director tel 219.631.7219 bunker.1@nd.edu
Carlo Segre, Deputy Dir. tel 312.567.3498 segre@iit.edu
Beamline 10-ID / MR-CAT

Scientific focus: Materials science and environmental science

Scientific programs: Spectroscopy of dilute environmental systems, combined techniques for *in situ* characterization of materials, and zone plate micro-focusing spectroscopy and imaging

Insertion Device Source Characteristics (nominal)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>Undulator A</td>
</tr>
<tr>
<td>period</td>
<td>3.30 cm</td>
</tr>
<tr>
<td>length</td>
<td>2.47 m</td>
</tr>
<tr>
<td>effective K_{max} (at minimum gap = 10.5 mm)</td>
<td>2.78</td>
</tr>
<tr>
<td>energy range 1st harmonic</td>
<td>2.9 - 13.0 keV</td>
</tr>
<tr>
<td>energy range 1st - 5th harmonics</td>
<td>2.9 - 45.0 keV</td>
</tr>
<tr>
<td>on-axis peak brilliance at 6.5 keV</td>
<td>9.6×10^{18} ph/sec/mrad2/mm2/0.1% bw</td>
</tr>
<tr>
<td>source size at 8.0 keV</td>
<td>Σ_x 359 µm, Σ_y 21 µm</td>
</tr>
<tr>
<td>source divergence at 8.0 keV</td>
<td>$\Sigma_{x'}$ 24 µrad, $\Sigma_{y'}$ 6.9 µrad</td>
</tr>
</tbody>
</table>

Experiment Stations

- **10-ID-A**
 white beam first optics enclosure monochromator
- **10-ID-B**
 monochromatic beam station
 all experiments 4 m x 12 m

Detectors

- Bruker 1k x 1k CCD
- Canberra Si energy-dispersive detector
- Daresbury/Lesker spectroscopy ionization chambers
- Lytle detectors
- 13-element Canberra/XIA Ge detector system

Beamline Controls and Data Acquisition

- Debien Linux running "MX"

Beamline Support Equipment/Facilities

- large Huber 8-circle goniometer with positioning
- X95 rail system for experiment alignment

Optics & Optical Performance

- Daresbury/Fisons monochromator
 30 m from source
 4–30 keV energy range Si(111)
 1st crystal, IIT-design, cryo cooling w/ pseudo-fixed offset crystal cage
 2nd crystal, 240 mm with Bragg normal motion
 10^{-4} energy resolution ($\Delta E/E$) at 10 keV
 35 mm offset
 liquid-nitrogen cooling

- harmonic rejection mirror

- zone plate focusing

Beamline contacts:
Bruce Bunker
Carlo Segre
tel 219.631.7219
tel 312-567-3498
bunker.1@nd.edu
segre@iit.edu
Basic Energy Sciences Synchrotron Radiation Center CAT

Overview

The Basic Energy Sciences Synchrotron Radiation Center CAT (BESSRC-CAT) includes scientists from the Chemistry and Materials Science Divisions at Argonne National Laboratory (ANL), researchers from the ANL geophysics program, and scientists from the Department of Physics at Northern Illinois University. Its two sectors are developed and instrumented to serve the research needs of users with particular interests in materials science, chemical science, atomic physics, solid-state physics, and geosciences. The facility's two sectors are equipped with seven separate instrumental stations. One sector consists of an undulator and bending magnet with four experiment stations. The other sector has an elliptical multipole wiggler and is split into three beamlines with three experiment stations.

Research Focus

Scientific areas of interest include time-resolved studies of photoexcited states in photosynthetic materials, real-time investigations of chemical reactions, and time-dependent studies of phase transformations in crystalline compounds. Structural studies of actinide materials, studies of ultra-small crystals, trace-element analysis, and surface and interface studies also form part of the research focus. Examples of studies conducted include radiation-induced surface modification, impurity clustering at grain boundaries, measurements of the electrical double layer at electrodes in electrochemical cells, concentration profiling at dissimilar interfaces, studies of the magnetic structure of ultrathin films, and others.

BESSRC-CAT has an MOCVD system in the undulator beamline for in situ growth studies of oxides and GaN and also an MBE system on line for structural studies of surfaces and interfaces under UHV conditions. There is an extensive research program in the use of small-angle x-ray scattering and anomalous small-angle x-ray scattering with particular emphasis on time-resolved measurements. BESSRC-CAT has established a research program directed towards the use of high-energy diffraction techniques to study the structure of materials. Additionally, an extensive research program is directed towards the use of circularly polarized x-rays in the study of the magnetic properties of materials, i.e., using XMCD, magnetic Compton scattering, and magnetic scattering.

CAT contacts:

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>Tel</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedro Montano</td>
<td>Director</td>
<td>630.252.1553</td>
<td>montano@anl.gov</td>
</tr>
<tr>
<td>Mark Beno</td>
<td>Deputy Dir.</td>
<td>630.252.3507</td>
<td>beno@anl.gov</td>
</tr>
<tr>
<td>Jeanne Cowan</td>
<td>Admin. Asst.</td>
<td>630.252.1553</td>
<td>cowan@anl.gov</td>
</tr>
</tbody>
</table>
Beamline 11-ID / BESSRC-CAT

Scientific focus: Spectroscopy, scattering, high-energy diffraction, and magnetic Compton scattering

Scientific programs: Materials science (x-ray scattering, high-energy diffraction, dichroism, magnetism), geoscience, atomic physics, and chemistry (spectroscopy [EXAFS, XANES], time-dependent spectroscopy of excited states)

Insertion Device Source Characteristics (nominal)

<table>
<thead>
<tr>
<th>source</th>
<th>elliptical multipole wiggler</th>
</tr>
</thead>
<tbody>
<tr>
<td>period</td>
<td>16.0 cm</td>
</tr>
<tr>
<td>length</td>
<td>2.8 m</td>
</tr>
<tr>
<td>number of poles</td>
<td>36, electromagnets</td>
</tr>
<tr>
<td></td>
<td>34, permanent magnets</td>
</tr>
<tr>
<td>effective K_x max</td>
<td>1.3</td>
</tr>
<tr>
<td>(at max. current = 1.15 kA,</td>
<td></td>
</tr>
<tr>
<td>$B_{max} = 0.087$ Tesla)</td>
<td></td>
</tr>
<tr>
<td>peak K_y max</td>
<td>14.4</td>
</tr>
<tr>
<td>(at minimum gap = 24.0 mm)</td>
<td></td>
</tr>
<tr>
<td>switching frequency</td>
<td>0 - 10 Hz</td>
</tr>
<tr>
<td>critical energy</td>
<td>59.1 keV</td>
</tr>
<tr>
<td>(at minimum gap = 24.0 mm)</td>
<td></td>
</tr>
<tr>
<td>energy range</td>
<td>5.0 - 200.0 keV</td>
</tr>
<tr>
<td>source size at critical energy</td>
<td>359 μm</td>
</tr>
<tr>
<td>$Σ_x$</td>
<td>21 μm</td>
</tr>
<tr>
<td>source divergence at critical</td>
<td>820 μrad</td>
</tr>
<tr>
<td>energy $Σ_x$, (FWHM 1.9 mrad, non-Gaussian)</td>
<td>47 μrad</td>
</tr>
</tbody>
</table>

Optics & Optical Performance
- focusing Bragg or flat Laue monochromator

- 11-ID-D
 modified standard BESSRC monochromator
 4.8–50 keV energy range Si(220)
 20 mm fixed offset
 cryo-cooled 1st and 2nd crystals
 mirrors
 Pt and Pd coatings
 2.8 mrad incident angle/Pt mirror
 4.0 mrad incident angle/Pd mirror

- 11-ID-B & -C
 Bragg or Laue horiz. deflecting monochromator
 40–200 keV energy range
 Si(311) or Si(220) crystal
 water/Ga cooling

Experiment Stations
- 11-ID-A
 white beam first optics enclosure
 double-crystal monochromator (for 11-ID-D)
 double (side-by-side) mirror system (for 11-ID-D)
 side-deflecting monochromator (for B & C stations)
- 11-ID-B
 magnetic Compton scattering
- 11-ID-C
 high-energy diffractometer
- 11-ID-D
 spectroscopy (EXAFS, XANES, dichroism)
 x-ray scattering

Detectors
- ionization chambers
- Bicron
- solid-state detectors (Si and Ge)
- Canberra 9-element Ge

Beamline Controls and Data Acquisition
- 11-ID-B & -C
 MacOS-EPICS
- 11-ID-B
 Solaris-EPICS
 SPEC
 MacOS
 Windows EPICS

Beamline Support Equipment/Facilities
- 11-ID-C
 high-energy diffractometer (vertical, post mono)
 diffractometer
 analyzer
 detector
- 11-ID-D
 spectroscopy table
 8-circle Huber ψ goniometer

Beamline contacts: Anneli Munkholm tel 630.252.0395 munkholm@anl.gov
Uta Ruetten tel 630.252.0383 ruett@msd.anl.gov
Mark Beno tel 630.252.3507 beno@anl.gov
Beamline 12-BM / BESSRC-CAT

Scientific focus: Spectroscopy, x-ray scattering, and diffraction

Scientific programs: Materials science (x-ray scattering, diffraction, spectroscopy), geoscience (mineral–liquid interface characterization by x-ray scattering and spectroscopy), chemistry (EXAFS and XANES spectroscopy of actinides and lanthanides), and atomic physics

<table>
<thead>
<tr>
<th>Bending Magnet Source Characteristics (nominal)</th>
<th>Experiment Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>APS bending magnet</td>
</tr>
<tr>
<td>critical energy</td>
<td>19.51 keV</td>
</tr>
<tr>
<td>energy range</td>
<td>1.0 - 100.0 keV</td>
</tr>
<tr>
<td>on-axis peak brilliance at 16.3 keV</td>
<td>2.9×10^{15} ph/sec/mrad/0.1%bw</td>
</tr>
<tr>
<td>on-axis peak angular flux at 16.3 keV</td>
<td>9.6×10^{13} ph/sec/mrad/0.1%bw</td>
</tr>
<tr>
<td>on-axis peak horizontal angular flux at 5.5 keV</td>
<td>1.6×10^{9} ph/sec/mrad/0.1%bw</td>
</tr>
<tr>
<td>source size at critical energy</td>
<td>145 μm</td>
</tr>
<tr>
<td>Σ_x</td>
<td>36 μm</td>
</tr>
</tbody>
</table>
| source divergence at critical energy | 6 mrad
| Σ_y | 47 μrad |

<table>
<thead>
<tr>
<th>Optics & Optical Performance</th>
</tr>
</thead>
</table>
| • BESSRC standard monochromator
 4–34 keV energy range Si(111)
 35 mm offset
 water cooling
 UHV vacuum compatibility |
| • Mirrors (removable double-mirror system)
 down deflection, flat figure, Pd coating
 up deflection, toroidal figure, Rh coating
 20 keV energy cutoff |

<table>
<thead>
<tr>
<th>Detectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ionization chambers</td>
</tr>
<tr>
<td>• Bicron</td>
</tr>
<tr>
<td>• Lytle detector</td>
</tr>
<tr>
<td>• solid-state detectors</td>
</tr>
<tr>
<td>• single-element Si and Ge</td>
</tr>
<tr>
<td>• Canberra 9-element Ge</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beamline Controls and Data Acquisition</th>
</tr>
</thead>
<tbody>
<tr>
<td>• SPARC station with Solaris operating system running EPICS with VME and SPEC software</td>
</tr>
<tr>
<td>• Windows NT running EPICS applications</td>
</tr>
<tr>
<td>• Macintosh with MacOS software running EPICS applications</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beamline Support Equipment/Facilities</th>
</tr>
</thead>
</table>
| • 12-BM-B
 6-circle Huber goniometer |

<table>
<thead>
<tr>
<th>Beamline contacts:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jennifer Linton tel 630.252.5007 linton@msd.anl</td>
</tr>
<tr>
<td>Mark Beno tel 630.252.3507 beno@anl.gov</td>
</tr>
<tr>
<td>Pedro Montano tel 630.252.6239 montano@anl.gov</td>
</tr>
</tbody>
</table>
Beamline 12-ID / BESSRC-CAT

Scientific focus: Materials science, atomic physics, and geoscience

Scientific programs: Materials science (elastic and inelastic scattering, MOCVD, x-ray standing waves, electrochemistry), geoscience (mineral–liquid interface characterization), chemistry (small-angle scattering), and atomic physics (spectroscopy)

Insertion Device Source Characteristics (nominal)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>Undulator A</td>
</tr>
<tr>
<td>period</td>
<td>3.30 cm</td>
</tr>
<tr>
<td>length</td>
<td>2.47 m</td>
</tr>
<tr>
<td>effective K_{max} (at minimum gap = 10.5 mm)</td>
<td>2.78</td>
</tr>
<tr>
<td>energy range 1st harmonic</td>
<td>2.9 - 13.0 keV</td>
</tr>
<tr>
<td>energy range 1st - 5th harmonics</td>
<td>2.9 - 45.0 keV</td>
</tr>
<tr>
<td>on-axis peak brilliance at 6.5 keV</td>
<td>9.6×10^{18} ph/sec/mrad°/mm°/0.1% bw</td>
</tr>
<tr>
<td>source size at 8.0 keV Σ_{xx}</td>
<td>359 µm</td>
</tr>
<tr>
<td>Σ_{yy}</td>
<td>21 µm</td>
</tr>
<tr>
<td>source divergence at 8.0 keV Σ_{xx}</td>
<td>24 µrad</td>
</tr>
<tr>
<td>Σ_{yy}</td>
<td>6.9 µrad</td>
</tr>
</tbody>
</table>

Optics & Optical Performance

- BESSRC standard monochromator
 - Si(111) crystal
 - 4–27 keV energy range
 - 35 mm offset
 - liquid-nitrogen cooling
 - 2nd crystal: Cu braid, liquid nitrogen cooling
 - UHV vacuum compatibility

- flat focusing monochromatic mirror
 - 40 m from source
 - Pt, Pd, and SiO$_2$ coatings
 - 2.5–4 mrad incident angle
 - ~100 µm focus in 12-ID-B

Experiment Stations

- 12-ID-A
 - white beam first optics enclosure
 - monochromator
 - quad photodiode
 - monochromator pinhole apertures

- 12-ID-B
 - spectroscopy
 - elastic and inelastic scattering
 - reflectivity
 - small-angle scattering

- 12-ID-C
 - atomic physics
 - small-angle scattering (low Q)

- 12-ID-D
 - MOCVD chamber
 - surface chamber
 - x-ray scattering

Detectors

- ionization chambers
- Bicron
- solid-state detectors
- single-element Si and Ge
- Canberra 9-element Ge
- 2-D proportional wire detector
- gold CCD camera

Beamline Controls and Data Acquisition

- 12-ID-B
 - Solaris running SPEC, Windows NT, and MacOS running EPICS applications

- 12-ID-C
 - Solaris running SPEC, Windows NT, and MacOS running EPICS applications

- 12-ID-D
 - Linux workstation running SPEC (non-EPICS version) and EPICS applications

Beamline Support Equipment/Facilities

- 12-ID-B
 - Huber 8-circle goniometer
 - spectroscopy
 - optics table
 - small-angle scattering instrumentation

- 12-ID-D
 - 6-circle goniometer
 - surface chamber
 - MOCVD apparatus

Beamline contacts:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jennifer Linton</td>
<td>linton@msd.anl.gov</td>
</tr>
<tr>
<td>Mark Beno</td>
<td>beno@anl.gov</td>
</tr>
<tr>
<td>Pedro Montano</td>
<td>montano@anl.gov</td>
</tr>
</tbody>
</table>
Overview

The Consortium for Advanced Radiation Sources (CARS) currently has four institutional members—The University of Chicago (the managing agent for CARS), Northern Illinois University, Southern Illinois University, and the Australian Nuclear Science and Technology Organization—and four national user groups—BioCARS for structural biology, GeoCARS for geophysical sciences, SoilEnviroCARS for soil/environmental sciences, and ChemMatCARS for chemistry and materials science. At present, CARS has developed or is developing five x-ray beamlines for use by the faculty and staff of its institutional members and national user groups for frontier research that exploits the unique characteristics of the APS as an x-ray source.

Research Focus

The scientific program and experiments carried out on CARS beamlines exploit the unique features of the x-rays emitted by both wiggler and undulator sources. Two main themes are 1) the study of samples with which x-rays interact very weakly because of their small size (area or volume), low concentration, large crystallographic unit cell dimensions, or necessity for monochromatic radiation of unusually narrow bandpass and 2) time-dependent studies of samples with which x-rays interact more strongly.

For BioCARS, the main thrust is to understand basic biological processes in structural terms. Experiments involve crystallographic studies of viruses, ribosomes, and other complexes with very large unit cells; studies of microcrystals; time-resolved crystallography; and phase determination by MAD techniques.

In GeoSoilEnviroCARS, research is designed to further knowledge of the composition, structure, and properties of earth and planetary materials and the processes they control. High-pressure research in both a diamond-anvil cell and a large-volume press; x-ray diffraction, scattering, and absorption spectroscopies from earth and planetary materials; and x-ray fluorescence microprobe analysis and microtomography should make possible major advances in understanding such diverse processes as earthquake development and nitrogen fixation in roots.

In ChemMatCARS, research focuses on several aspects of dynamic and structural condensed matter and materials chemistry. Research areas include surface and interfacial properties in soft condensed matter; molecular liquids and liquid metals; chemical crystallography with emphasis on dynamics of energy transfer, fast photochemical processes, and valence and element specific crystallography; the structure and properties of molecular aggregates; and interfacial and bulk properties of novel polymers and composites including supramolecular, mesoscopic, and nanometer structures.

CAT contacts:

- P. James Viccaro, Acting CAT Dir. tel 630.252.0464
- Keith Moffat, Assoc. Dir. tel 773.702.9950
- Wilfried Schildkamp, Assoc. Dir. tel 630.252.0445
- P. James Viccaro, Assoc. Dir. tel 630.252.0246
- Mark Rivers, Assoc. Dir. tel 630.252.0422
- Steve Sutton, Assoc. Dir. tel 630.252.0426
- Joy Talsma, Exec. Admin. tel 773.702.9506

viccaro@cars.uchicago.edu
moffat@cars.uchicago.edu
wilfried@cars.uchicago.edu
viccaro@cars.uchicago.edu
rivers@cars.uchicago.edu
sutton@cars.uchicago.edu
talsma@cars.uchicago.edu
Beamline 13-BM / GSE CARS-CAT

Scientific focus: Geosciences, environmental science, and soil science

Scientific programs: High-pressure diffraction in diamond-anvil cell, high-pressure diffraction in multi-anvil press, microspectroscopy and XRF microprobe, and microtomography

Bending Magnet Source Characteristics (nominal)

<table>
<thead>
<tr>
<th>source</th>
<th>APS bending magnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>critical energy</td>
<td>19.51 keV</td>
</tr>
<tr>
<td>energy range</td>
<td>1.0 - 100.0 keV</td>
</tr>
<tr>
<td>on-axis peak brilliance at 16.3 keV</td>
<td>2.9 x 10^12 ph/sec/mrad/mm(\theta)/0.1%bw</td>
</tr>
<tr>
<td>on-axis peak angular flux at 16.3 keV</td>
<td>9.6 x 10^13 ph/sec/mrad/mm(\theta)/0.1%bw</td>
</tr>
<tr>
<td>on-axis peak horizontal angular flux at 5.6 keV</td>
<td>1.6 x 10^8 ph/sec/mm(\theta)/0.1%bw</td>
</tr>
<tr>
<td>source size at critical energy</td>
<td>145 (\mu)m</td>
</tr>
<tr>
<td>source divergence at critical energy</td>
<td>6 (\mu)rad</td>
</tr>
</tbody>
</table>

Optics & Optical Performance

- VG double-crystal monochromator
 28 m from source
 Si(111) or Si(220) crystal
 water cooling
 \(+30 \text{ mm offset}\)

- vertical focusing mirror
 45 m from source
 Si substrate
 Pt, Rh, Si coatings
 internal water cooling
 elliptically bent flat geometry
 0-5 \(\mu\)rad grazing angle
 6.1 to 3.1 demagnification

- small Kirkpatrick-Baez microfocusing mirrors

Experiment Stations

- 13-BM-A
 white beam first optics enclosure

- 13-BM-B
 white beam second optics enclosure

- 13-BM-C
 monochromatic beam station
 diffraction
tomography

- 13-BM-D
 white or monochromatic beam station
 multi-anvil press high-pressure diffraction
tomography
 microprobe
 microspectroscopy

Detectors

- Canberra 16-element Ge detectors (two)
- Bruker 2K CCD detector
- Canberra single-element Ge and Si(Li) detectors
- Princeton Instruments visible light CCD cameras (two)

Beamline Controls and Data Acquisition

- Windows NT workstations running EPICS with VME
- SPEC, IDL, Bruker SMART and GADDS
- Princeton Instruments WinView and WinSpec

Beamline Support Equipment/Facilities

- 250-ton multi-anvil press with DIA and T-cup tooling (13-BM-D)
- laser Raman system in support laboratory

Beamline contacts: Mark Rivers
tel 630.252.0422 rivers@cars.uchicago.edu
Stephen Sutton
tel 630.252.0426 sutton@cars.uchicago.edu
Nancy Lazarz
tel 630.252.0423 lazarus@cars.uchicago.edu
Beamline 13-ID / GSECARS-CAT

Scientific focus: Geosciences, environmental science, and soil science

Scientific programs: High-pressure diffraction in diamond-anvil cell, high-pressure diffraction in multi-anvil press, microspectroscopy and XRF microprobe, microcrystal diffraction, surface diffraction, and x-ray absorption fine structure spectroscopy

<table>
<thead>
<tr>
<th>Insertion Device Source Characteristics (nominal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
</tr>
<tr>
<td>Period</td>
</tr>
<tr>
<td>Length</td>
</tr>
<tr>
<td>Effective K_{max} (at minimum gap = 10.5 mm)</td>
</tr>
<tr>
<td>Energy range 1st harmonic</td>
</tr>
<tr>
<td>Energy range 1st - 5th harmonics</td>
</tr>
<tr>
<td>On-axis peak brilliance at 6.5 keV</td>
</tr>
<tr>
<td>Source size at 8.0 keV</td>
</tr>
<tr>
<td>Source divergence at 8.0 keV</td>
</tr>
<tr>
<td>Detector Equipment</td>
</tr>
<tr>
<td>Beam divergence</td>
</tr>
</tbody>
</table>

Optics & Optical Performance

- VG double-crystal monochromator
 - 29 m from source
 - Si(220) crystal
 - Cryogenic cooling
 - +50 mm offset
- Vertical focusing mirror
 - 45 m from source
 - Si substrate
 - Pt, Rh, Si coatings
 - Internal water cooling
 - Kirkpatrick-Baez geometry
 - 0-5 mrad grazing angle
 - 6:1 to 3:1 demagnification
- Horizontal focusing mirror
 - 47 m from source
 - Si substrate
 - Pt, Rh, Si coatings
 - Internal water cooling
 - Kirkpatrick-Baez geometry
 - 0-5 mrad grazing angle
 - 7:1 to 3:1 demagnification
- Small Kirkpatrick-Baez microfocusing mirrors

Experiment Stations

- 13-ID-A
 - White beam first optics enclosure
- 13-ID-B
 - White beam second optics enclosure
- 13-ID-C
 - White or monochromatic beam station
 - X-ray absorption fine-structure spectroscopy
 - XRF microprobe
 - Microspectroscopy
 - Microcrystal diffraction
 - Surface diffraction
- 13-ID-D
 - White or monochromatic beam station
 - Multi-anvil press high-pressure diffraction
 - Diamond anvil cell high-pressure diffraction

Detectors

- Canberra 16-element Ge detectors (two)
- Bruker 2K CCD detector
- Canberra single-element Ge and Si(Li) detectors
- Princeton Instruments visible light CCD cameras (two)

Beamline Controls and Data Acquisition

- Windows NT workstations running EPICS with VME
- SPEC, IDL, Bruker SMART and GADDS
- Princeton Instruments WinView and WinSpec

Beamline Support Equipment/Facilities

- 13-ID-C
 - Newport general-purpose diffractometer
- 13-ID-D
 - Diamond-anvil cell with laser heating
 - Two-circle diffractometer
 - 1000-ton multi-anvil press w/ DIA and T-cup tooling
- Laser Raman system in support laboratory

Beamline contacts:

Mark Rivers
Stephen Sutton
Nancy Lazarz

tel 630.252.0422
tel 630.252.0426
tel 630.252.0423
rivers@cars.uchicago.edu
sutton@cars.uchicago.edu
lazarz@cars.uchicago.edu
Beaml ine 14-BM / BioCARS-CAT

Scientific focus: Structural biology

Scientific programs: Large unit cell (virus) crystallography, small unit cell (protein) crystallography, MAD phasing, time-resolved crystallography, Laue diffraction, and study of microcrystals

<table>
<thead>
<tr>
<th>Bending Magnet Source Characteristics (nominal)</th>
<th>14-BM-D optics and optical performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>APS bending magnet</td>
</tr>
<tr>
<td>critical energy</td>
<td>19.51 keV</td>
</tr>
<tr>
<td>energy range</td>
<td>1.0 - 100.0 keV</td>
</tr>
<tr>
<td>on-axis peak brilliance at 16.3 keV</td>
<td>2.9 x 10^{15} ph/sec/mrad/mm/0.1%bw</td>
</tr>
<tr>
<td>on-axis peak angular flux at 16.3 keV</td>
<td>9.6 x 10^{13} ph/sec/mrad/0.1%bw</td>
</tr>
<tr>
<td>on-axis peak horizontal angular flux at 5.6 keV</td>
<td>1.6 x 10^{8} ph/sec/mrad/0.1%bw</td>
</tr>
<tr>
<td>source size at critical energy</td>
<td>145 μm</td>
</tr>
<tr>
<td>Σ_x</td>
<td>36 μm</td>
</tr>
<tr>
<td>source divergence at critical energy</td>
<td>6 mrad</td>
</tr>
<tr>
<td>$\Sigma_{x'}$</td>
<td>47 mrad</td>
</tr>
</tbody>
</table>

Optics & Optical Performance
14-BM-C optics and optical performance
- 7–17 keV energy range
- 0.21 mm hor. x 0.35 mm vert. focal spot size
- CARS-design conical focusing mirror
 25.731 m from source (on orbit along 3 mrad line)
 Si substrate, Rh coating
 water cooling at midplane
 4.1 mrad design angle
 horizontal focus: focusing monochromator
 vertical focus: bender
- CARS-design bent Ge(111) monochromator
 46.6 m from source (along 3 mrad centerline)
 Ge(111) single crystal
 water cooling
 bent triangle horizontal focusing
- Misc. slits, collimators, filters, etc.

- 6.5–18.5 keV energy range
- 0.4 mm hor. x 0.6 mm vert. focal spot size
- CARS-design Si(111) double-bounce monochromator
 23.860 m from source (on orbit along 5 mrad line)
 6.5–18.5 energy range Si(111) crystal sets
 10^-4 energy resolution (ΔE/E) at 10 keV
 1.5 in. nominal offset (fixed-exit, up bounce)
 water cooling
- CARS-design cylindrical focusing mirror
 Si substrate, Rh coating
 water cooling at midplane
 25.731 m from source (variable height along 5 mrad line)
 4.1 mrad design angle
 horizontal focus: sagittal cylindrical figure
 vertical focus: bender mechanism
- misc. slits, collimators, filters, etc.

Experiment Stations
- 14-BM-A
 white beam first optics enclosure
 8.6 m x 1.8 m x 2.8 m (L x W x H)
- 14-BM-B
 pink beam optics enclosure
 7.6 m x 1.2 m x 2.8 m (L x W x H)
- 14-BM-C
 monochromatic beam station
 5.2 m x 3.7 m x 2.8 m (L x W x H)
 virus crystallography
- 14-BM-D
 pink or monochromatic beam station
 6.4 m x 2.2 m x 2.8 m (L x W x H)
 MAD phasing
 time-resolved Laue
 protein crystallography

Detectors
- 60° kappa diffractometer (14-BM-D)
- single-axis diffractometer (14-BM-C)
- ADSC Q1, ADSC Q4, MAR345 and off-line image plate detectors
- NaI scintillation detectors
- Ge detector

Beaml ine contacts: Keith Moffat tel 773.702.9950 moffat@cars.uchicago.edu
Wilfried Schildkamp tel 630.252.0445 schildkamp@cars.uchicago.edu
Gary Navrotsky tel 630.252.0444 navrotsky@cars.uchicago.edu

continued on pg. 41
Beamline Controls and Data Acquisition

- beamline controls: HP9000/778 HPUX 10.2 running EPICS via VME
- experiment: SGI 02 IRIX 6.3 running ADSC or MAR control software via in-house (kbscan>) software
- analysis: fast SGI 02 IRIX 6.5 running DENZO, MOSFILM, DPS, etc.

Beamline Support Equipment/Facilities

- cryo-coolers: Oxford CryoStream, Oxford CryoJet, MSC, and CARS LN$_2$/LHe$_2$ Cooler
- collimators, filters, slits, beam stop, CCD alignment camera
- beam position monitors (1 μm resolution)
- beam flux monitors
- BL3 facility, sample prep areas, cold room
Beamline 14-ID / BioCARS-CAT

Scientific focus: Structural biology

Scientific programs: Large unit cell (virus) crystallography, small unit cell (protein) crystallography, MAD phasing, time-resolved crystallography, Laue diffraction, and study of microcrystals

<table>
<thead>
<tr>
<th>Insertion Device Source Characteristics (nominal)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>wiggler A</td>
</tr>
<tr>
<td>period</td>
<td>8.50 cm</td>
</tr>
<tr>
<td>length</td>
<td>2.4 m</td>
</tr>
<tr>
<td>peak K_{max} (at minimum gap = 18.1 mm)</td>
<td>8.74</td>
</tr>
<tr>
<td>critical energy (at minimum gap = 18.1 mm)</td>
<td>35.9 keV</td>
</tr>
<tr>
<td>energy range (wiggler mode)</td>
<td>5.0 - 200.0 keV</td>
</tr>
<tr>
<td>energy range 1st harmonic (undulator mode)</td>
<td>0.2 - 4.0 keV</td>
</tr>
<tr>
<td>energy range 1st - 5th harmonics (undulator mode)</td>
<td>0.2 - 15.0 keV</td>
</tr>
<tr>
<td>on-axis peak brilliance at 2.7 keV (undulator mode)</td>
<td>2.0×10^{18} ph/sec/mrad/mm/0.1%bw</td>
</tr>
<tr>
<td>on-axis peak brilliance at 29.9 keV (wiggler mode at minimum gap = 18.1 mm)</td>
<td>1.1×10^{17} ph/sec/mrad/mm/0.1%bw</td>
</tr>
<tr>
<td>on-axis peak angular flux at 29.9 keV (wiggler mode at minimum gap = 18.1 mm)</td>
<td>5.4×10^{15} ph/sec/mrad/0.1%bw</td>
</tr>
<tr>
<td>source size at critical energy</td>
<td>359 µm</td>
</tr>
<tr>
<td>Σr</td>
<td>21 µm</td>
</tr>
<tr>
<td>source divergence at critical energy</td>
<td></td>
</tr>
<tr>
<td>$\Sigma r'$ (FWHM 1.2 mrad, non-Gaussian)</td>
<td>510 µrad</td>
</tr>
<tr>
<td>$\Sigma r'$</td>
<td>47 µrad</td>
</tr>
</tbody>
</table>

Optics & Optical Performance

- slits
- power filters

- CARS-design Si(111) monochromator
 - 28.013 m from source (on orbit along 0 mrad line)
 - double bounce
 - 6.5-18.5 energy range w/ Si(111) crystal sets
 - 10^{-4} energy resolution ($\Delta E/E$) at 10 keV
 - 1.5 in. offset (fixed-exit, down bounce)
 - water or liquid-nitrogen cooling

<table>
<thead>
<tr>
<th>Beamline contacts:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Keith Moffat</td>
<td>tel 773-702-9950</td>
</tr>
<tr>
<td>Wilfried Schildkamp</td>
<td>tel 630.252.0445</td>
</tr>
<tr>
<td>Gary Navrotsky</td>
<td>tel 630.252.0444</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Moffatt@cars.uchicago.edu</td>
<td></td>
</tr>
<tr>
<td>Schildkamp@cars.uchicago.edu</td>
<td></td>
</tr>
<tr>
<td>Navrotsky@cars.uchicago.edu</td>
<td></td>
</tr>
</tbody>
</table>

Experiment Stations

- **14-ID-A**
 - white beam first optics enclosure
 - 10.5 m x 1.7 m x 2.8 m (L x W x H)
- **14-ID-B**
 - pink or monochromatic beam station
 - 4.5 m x 2.6 m x 2.8 m (L x W x H)
 - MAD phasing
 - microcrystallography
 - virus/protein
 - Laue
 - time-resolved crystallography

Detectors

- ADSC Q4, MAR345 and off-line image plate detectors
- NaI scintillation detectors
- Ge fluorescence detector

Beamline Controls and Data Acquisition

- beamline controls: HP9000/778 HPUX 10.2 running EPICS via VME
- experiment: SGI 02 IRIX 6.3 running ADSC or Mar control software via in-house (kbscan> software
- analysis: Fast SGI 02 IRIX 6.5 running DENZO, MOSFILM, DPS, etc.

Beamline Support Equipment/Facilities

- cryo-coolers: Oxford CryoJet and CARS liquid-nitrogen/liquid-helium cooler
- collimators, filters, slits, beam-stop, CCD alignment camera
- beam position monitors (1 µm resolution)
- beam flux monitors
- BL3 facility, sample-prep areas, cold room
Beamline 15-ID / ChemMatCARS-CAT

Scientific focus: Dynamic and structural condensed matter chemistry
Scientific programs: Time-dependent chemical crystallography scattering, anomalous scattering, microcrystallography; static and time-dependent surface scattering, dynamic protein diffraction, and small beam probing of complex structural polymers; interfacial and bulk studies using small- and wide-angle x-ray scattering; and coherent x-ray scattering of polymer/metal nanocomposites, nano-colloidal, and opaque materials.

Insertion Device Source Characteristics (nominal)

<table>
<thead>
<tr>
<th>Source</th>
<th>Undulator A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>3.30 cm</td>
</tr>
<tr>
<td>Length</td>
<td>2.47 m</td>
</tr>
<tr>
<td>Effective K_{max} (at minimum gap = 10.5 mm)</td>
<td>2.78</td>
</tr>
<tr>
<td>Energy range 1st harmonic</td>
<td>2.9 - 13.0 keV</td>
</tr>
<tr>
<td>Energy range 1st - 5th harmonics</td>
<td>2.9 - 45.0 keV</td>
</tr>
<tr>
<td>On-axis peak brilliance at 6.5 keV</td>
<td>9.6×10^{18} pb/sec/mrad²/mm²/0.1% bw</td>
</tr>
<tr>
<td>Source size at 8.0 keV</td>
<td>359 µm</td>
</tr>
<tr>
<td>Σ_x</td>
<td>21 µm</td>
</tr>
<tr>
<td>Source divergence at 8.0 keV</td>
<td>24 μrad</td>
</tr>
<tr>
<td>Σ_x'</td>
<td>6.9 μrad</td>
</tr>
</tbody>
</table>

Experiment Stations
- 15-ID-A
 - white beam first optics enclosure
- 15-ID-B
 - white beam station crystallography
- 15-ID-C
 - pink beam station surface science
- 15-ID-D
 - SAXS/WAXS
 - 10 m L x 5.8 m H

Detectors
- Fuji image plates
- Bruker model 1500/1000 CCD
- Princeton Scientific model LN/CCD-1024SF CCD
- NaI
- ionization chambers
- avalanche photodiodes

Optics & Optical Performance
- Kohzu Seiki monochromator HLD-3
 - 3.1–22.5 keV energy range (for Si(111) and 25-mm offset)
 - 5°–40° angular range
 - 25–35 mm offset
cryo-cooled Si or water-cooled diamond modes
- Oxford/SESQ vertically focusing mirror (A)
 - water cooling
 - white beam compatible
- Oxford/SESQ water-cooled 2nd steering mirror (B)
- modes of operation:
 - 1) monochromator w/ or w/out mirror(s)
 - 2) white beam mirror operation
- high-energy-resolution monochromator $\Delta E/E \approx 10^{-5}$
 - used with Kohzu monochromator
- in-station optics
 - steering crystal or multilayer for surface science microfocusing optics

Beamline Controls and Data Acquisition
- EPICS and SPEC in addition to IDL, Windows NT and Sun Workstations running channel access with tools such as MEDM
- electronics VM- and NIM-based

Beamline Support Equipment/Facilities
- Huber 6-circle (15-ID-B & -C)
- liquid surface spectrometer (15-ID-C)
- monochromatic beam chopper for time-resolved studies
 - open time ~2.4 µsec
 - frequency ~ 1.3 kHz
 - attenuation ~2x10⁻⁷ at 33 keV
- Nd:YAG laser ($\lambda = 355$ nm, 400 µJ at 1000 Hz)

Beamline contacts:
- David Cookson
 - tel 630.252.0468
 - cookson@cars.uchicago.edu
- Timothy Graber
 - tel 630.252.0462
 - graber@cars.uchicago.edu
- Yifei Jaski
 - tel 630.252.0461
 - ruan@cars.uchicago.edu
- P. James Viccaro
 - tel 630.252.0464
 - viccaro@cars.uchicago.edu
High-Pressure CAT

Overview

The High-Pressure Collaborative Access Team (HP-CAT) currently has three institutional members: the Carnegie Institution of Washington (managing member), Lawrence Livermore National Laboratory, and the University of Nevada, Las Vegas. These members pool resources and share expertise for the development, construction, and operation of sector 16. The purpose of HP-CAT is to provide its members with facilities for state-of-the-art educational and research activities and to assist the members and general users in operating these facilities; the goal is to advance high-pressure research with synchrotron radiation. The ultimate aim of HP-CAT is to set up a world-leading high-pressure research center at the APS and to make it accessible to the scientific community.

Research Focus

Extreme pressure conditions radically alter the properties of materials. With the recent advances and developments in the technology of pressure vessels, which can now reach several hundreds of gigapascal (1 GPa = 10 kbar), the pressure variable promises to add a whole new dimension in fundamental physics, chemistry, earth and planetary sciences, and material science and technology. HP-CAT is dedicated to the scientific exploration of these fields with a common focus on the high-pressure dimension.

In ultrahigh pressure research, the power of an integrated approach is far greater than the sum of individual techniques. Comprehensive understanding of high-pressure phenomena relies on the combination of complementary measurements. HP-CAT integrates x-ray diffraction and spectroscopy with samples at high pressures and variable temperatures (from cryogenic conditions to thousands of degrees). These techniques include single-crystal structure refinement using energy-dispersive x-ray diffraction, high-resolution angle-dispersive polycrystalline x-ray diffraction, high-resolution x-ray emission spectroscopy, x-ray absorption spectroscopy, nuclear resonance forward scattering, inelastic x-ray scattering, and Compton scattering. The structural, vibrational, electronic, and magnetic properties of materials can thus be measured in situ for identifying novel phenomena and transitions at high pressures.

CAT contacts: Ho-Kwang (David) Mao, CAT Dir. tel 202.686.4454 mao@glaciology.ciw.edu Malcolm Nicol, HP-CAT Member tel 702.895.1725 nicol@physics.unlv.edu Choong-Shik Yoo, HP-CAT Member tel 925.422.5848 yoo1@llnl.gov Daniel Häusermann, Proj. Man. tel 630.252.0427 daniel.hausermann@anl.gov Markus Schwoerer-Bohning, Beamline Scientist tel 630.252.0411 schwoere@aps.anl.gov
Beamline 16-BM / HP-CAT

Scientific focus: Study of materials at high pressures in the fields of physics, chemistry, materials science, and planetary science

Scientific programs: Studies of materials under high pressure and variable temperature using diamond-anvil cells and other high-pressure devices by energy-dispersive diffraction from single crystals and powders and EXAFS

Bending Magnet Source Characteristics (nominal)

<table>
<thead>
<tr>
<th>Source</th>
<th>APS bending magnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical energy</td>
<td>19.51 keV</td>
</tr>
<tr>
<td>Energy range</td>
<td>1.0 - 100.0 keV</td>
</tr>
<tr>
<td>On-axis peak brilliance</td>
<td>(2.9 \times 10^{15}) pb/sec/mrad/%mm/0.1%bw</td>
</tr>
<tr>
<td>at 16.3 keV</td>
<td></td>
</tr>
<tr>
<td>On-axis peak angular flux</td>
<td>(9.6 \times 10^{13}) pb/sec/mrad/%0.1%bw</td>
</tr>
<tr>
<td>at 16.3 keV</td>
<td></td>
</tr>
<tr>
<td>On-axis peak horizontal</td>
<td>(1.6 \times 10^{10}) pb/sec/mrad/%0.1%bw</td>
</tr>
<tr>
<td>Angular flux at 5.6 keV</td>
<td></td>
</tr>
<tr>
<td>Source size at critical energy</td>
<td>145 (\mu m) 36 (\mu m)</td>
</tr>
<tr>
<td>Source divergence at critical</td>
<td>6 mrad 47 (\mu rad)</td>
</tr>
<tr>
<td>energy</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The design parameters of beamline 16-BM are currently undergoing detailed reviews. Hence, the general characteristics given below will be refined and altered in the near future. Therefore, these parameters should be regarded as indicative only.

Optics & Optical Performance

- water-cooled collimating mirror
- double-crystal monochromator
 - water-cooled 1st crystal
 - sagittally focusing 2nd crystal
- vertically focusing mirror
- small Kirkpatrick-Baez microfocusing mirrors

Experiment Stations

- 16-BM-B
 - White beam diffraction techniques using microfocusing

- 16-BM-C
 - EXAFS experiments

Detectors

- Ge and Si(Li) detectors
- other detectors to be defined

Beamline Controls and Data Acquisition

- Windows NT–UNIX–Linux workstations running EPICS with VME
- SPEC, IDL, and other suitable control and data acquisition programs

Beamline Support Equipment/Facilities

- custom-designed diffractometers and other sample handling stages
- diamond-anvil cells
- large-volume cell
- pressure measurement instrumentation
- cryostat
- optical spectrometers

Beamline contacts:

- Daniel Häusermann
 - Tel: 630.252.0427
daniel.hausermann@anl.gov

- Markus Schwoerer-Bohning
 - Tel: 630.252.0411
schwoere@aps.anl.gov
Beamline 16-ID / HP-CAT

Scientific focus: Study of materials at high pressures in the fields of physics, chemistry, materials science, and planetary science

Scientific programs: Studies of materials under high pressure and variable temperature using diamond-anvil cells and other high-pressure devices by microfocus angle-dispersive diffraction from single crystals and powders, nuclear resonance forward scattering, inelastic scattering, Compton scattering, and emission and absorption spectroscopy

<table>
<thead>
<tr>
<th>Insertion Device Source Characteristics (nominal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
</tr>
<tr>
<td>period</td>
</tr>
<tr>
<td>length</td>
</tr>
<tr>
<td>effective K_{max} (at minimum gap = 10.5 mm)</td>
</tr>
<tr>
<td>energy range 1st harmonic</td>
</tr>
<tr>
<td>energy range 1st - 5th harmonics</td>
</tr>
<tr>
<td>on-axis peak brilliance at 6.5 keV</td>
</tr>
<tr>
<td>source size at 8.0 keV</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>source divergence at 8.0 keV</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

NOTE: The design parameters of beamline 16-ID are currently undergoing detailed reviews. Hence, the general characteristics given below will be refined and altered in the near future. Therefore, these parameters should be regarded as indicative only.

Optics & Optical Performance
- fixed-exit double-crystal monochromator
 diamond(111)
 water-cooled
- two-crystal branching monochromator
 diamond(111)
 water-cooled
- small Kirkpatrick-Baez microfocusing mirrors
- four-reflections / high-resolution monochromator
- vertically and horizontally focusing long mirrors

Experiment Stations
- 16-ID-B
 monochromatic side-branch station for microbeam diffraction
- 16-ID-D
 white and monochromatic station for diffraction, spectroscopy, new techniques, and developments
- 16-ID-E
 white and monochromatic station for spectroscopy with high-resolution inelastic x-ray scattering spectrometer

Detectors
- avalanche photodiode system for nuclear scattering
- Si PIN diode system for inelastic scattering
- area detector for angle-dispersive diffraction (to be defined)
- other detectors to be defined

Beamline Controls and Data Acquisition
- Windows NT–UNIX-Linux workstations running EPICS with VME
- SPEC, IDL, and other suitable control and data acquisition programs

Beamline Support Equipment/Facilities
- custom-designed diffractometers and other sample handling stages
- diamond-anvil cells
- large-volume cell
- pressure measurement instrumentation
- cryostat
- laser-heating system
- optical spectrometers

Beamline contacts: Daniel Häusermann tel 630.252.0427 daniel.hausermann@anl.gov
Markus Schwoerer-Bohning tel 630.252.0411 schwoere@aps.anl.gov
Sector 17

Industrial Macromolecular Crystallography Association CAT

Overview

The Industrial Macromolecular Crystallography Association (IMCA) is a consortium of crystallographic groups from 12 companies with major pharmaceutical research laboratories in the United States. IMCA-CAT comprises both IMCA and the Center for Synchrotron Radiation Research (CSRRI) at the Illinois Institute of Technology. The 12 corporate members of IMCA are Abbott Laboratories; Bristol-Myers Squibb Pharmaceutical Research Institute; Glaxo Wellcome Research Institute; Eli Lilly and Company; Merck and Company, Incorporated; Monsanto / Searle; Pfizer Pharmaceuticals; Pharmacia and Upjohn, Incorporated; The Procter and Gamble Company; Schering-Plough Research Institute; SmithKline Beecham Pharmaceuticals; and Three-Dimensional Pharmaceuticals. IMCA-CAT is unusual in that a large fraction of research conducted by CAT members is expected to be proprietary. Member scientists function as competitors in the discovery research that arises from their data-collection efforts; however, they collaborate in methods development and collectively fund the operation of the beamlines.

Research Focus

Macromolecular crystallography is the primary research focus for IMCA, with the ultimate objective of facilitating the process of rational drug design. Traditional drug design methods involve testing thousands of compounds to determine biological activity. Rational drug design research attempts to elucidate biological processes in detail, which depends heavily on detailed knowledge of the atomic structure of the molecules involved. IMCA-CAT’s insertion-device beamline is designed primarily for monochromatic and multivavelength anomalous diffraction (MAD) experiments on small (<80 micrometer) protein crystals over an energy range of 6 to 20 keV. The bending-magnet line is designed mostly for monochromatic and MAD experiments on somewhat larger protein crystals over a similar energy range.

CAT contacts: Andy Howard, Director tel 630.252.0534 howard@iit.edu
John Chrzas, Assoc. Director tel 630.252.0522 john@metis.imca.aps.anl.gov
Virginia Brown, CAT Coordinator tel 630.252.0520 vbrown@metis.imca.aps.anl.gov
Beamline 17-BM / IMCA-CAT

Scientific focus: Pharmaceutical macromolecular crystallography

Scientific programs: Structures of protein–ligand complexes, de novo protein structures, drug design, protein engineering, and crystallographic methods development

<table>
<thead>
<tr>
<th>Bending Magnet Source Characteristics (nominal)</th>
<th>Experiment Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>APS bending magnet</td>
</tr>
<tr>
<td>critical energy</td>
<td>19.51 keV</td>
</tr>
<tr>
<td>energy range</td>
<td>1.0 - 100.0 keV</td>
</tr>
<tr>
<td>on-axis peak brilliance at 16.3 keV</td>
<td>2.9×10^{15} ph/sec/mrad²/mm²/0.1%bw</td>
</tr>
<tr>
<td>on-axis peak angular flux at 16.3 keV</td>
<td>9.6×10^{13} ph/sec/mrad²/0.1%bw</td>
</tr>
<tr>
<td>on-axis peak horizontal angular flux at 5.6 keV</td>
<td>1.6×10^{18} ph/sec/mrad²/0.1%bw</td>
</tr>
</tbody>
</table>
| source size at critical energy | \[
\begin{array}{c}
\sum x \\
\sum y
\end{array}
\] 145 μm 36 μm |
| source divergence at critical energy | \[
\begin{array}{c}
\sum x' \\
\sum y'
\end{array}
\] 6 mrad 47 μrad |

Optics & Optical Performance
- Daresbury double-crystal constant off-set monochromator
 - 28 m from source
 - 6–20 keV energy range Si(111)
 - 10^{-4} energy resolution ($\Delta E/E$) at 10 keV
 - 35 mm offset below orbital plane
 - water cooling
- sagittally bent 2nd monochromator crystal
- Daresbury vertically focusing mirror

Experiment Stations
- 17-BM-A
 - white beam first optics enclosure
- 17-BM-B
 - white/monochromatic beam station
 - monochromatic macromolecular crystallography

Detectors
- MAR345 image plate for crystallography
- fluorescence detector

Beamline Controls and Data Acquisition
- controls: Sun and Linux systems running EPICS with VME “MX” software (locally developed), running on UNIX
- data acquisition: proprietary software from Mar

Beamline Support Equipment/Facilities
- 4° chill room in wet lab
- user-accessible computers for data processing
- Oxford Instruments cryojet for sample cooling

Beamline contacts: Andrew Howard tel 630.252.0534 howard@iit.edu John Chrzas tel 630.252.0522 john@metis.imca.aps.anl.gov
Beamline 17-ID / IMCA-CAT

Scientific focus: Pharmaceutical macromolecular crystallography

Scientific programs: Structures of protein- ligand complexes, *de novo* protein structures, drug design, protein engineering, and crystallographic methods development

Insertion Device Source Characteristics (nominal)

<table>
<thead>
<tr>
<th>source</th>
<th>Undulator A</th>
</tr>
</thead>
<tbody>
<tr>
<td>period</td>
<td>3.30 cm</td>
</tr>
<tr>
<td>length</td>
<td>2.47 m</td>
</tr>
<tr>
<td>effective K_{max} (at minimum gap = 10.5 mm)</td>
<td>2.78</td>
</tr>
<tr>
<td>energy range 1st harmonic</td>
<td>2.9 - 13.0 keV</td>
</tr>
<tr>
<td>energy range 1st - 5th harmonics</td>
<td>2.9 - 45.0 keV</td>
</tr>
<tr>
<td>on-axis peak brilliance at 6.5 keV</td>
<td>9.6×10^{10} ph/sec/mrad²/mm²/0.1% bw</td>
</tr>
<tr>
<td>source size at 8.0 keV</td>
<td>Σ_{x}: 359 µm, Σ_{y}: 21 µm</td>
</tr>
<tr>
<td>source divergence at 8.0 keV</td>
<td>$\Sigma_{x'}$: 24 µrad, $\Sigma_{y'}$: 6.9 µrad</td>
</tr>
</tbody>
</table>

Experiment Stations
- 17-ID-A
 - white beam first optics enclosure
- 17-ID-B
 - monochromatic beam station
 - macromolecular crystallography
 - 3.5 m x 7 m

Detectors
- Mar 165-mm single-element CCD
- Bicron fluorescence detector

Beamline Controls and Data Acquisition
- controls: Sun and Linux systems running EPICS with VME "MX" software (locally developed), running on UNIX
- data acquisition: proprietary software from Mar

Beamline Support Equipment/Facilities
- 4°C chill room in wet lab
- Oxford cryo-stream system
- user-accessible computers for data processing

Optics & Optical Performance
- Daresbury double-crystal constant off-set monochromator
 - 28 m from source
 - 6–20 keV energy range Si(111)
 - 10^{-4} energy resolution ($\Delta E/E$) at 10 keV
 - 35 mm offset below orbital plane
 - liquid-nitrogen cooling
- vertically focusing mirror under development

Beamline contacts:

Andrew Howard
tel 630.252.0534
howard@it.edu

John Chrzas
tel 630.252.0522
john@metis.imca.aps.anl.gov

51
Biophysics CAT

Overview

The Biophysics CAT (Bio-CAT) is organized as a national research resource to be used primarily to study the structure of partially ordered biological molecules, complexes of biomolecules, and cellular structures under conditions similar to those present in living cells. The goal of this research is to determine the detailed mechanism of action of biological systems at the molecular level. The techniques used are x-ray fiber diffraction, x-ray scattering, x-ray absorption/emission spectroscopy, and advanced imaging techniques such as diffraction enhanced imaging. The research conducted at Bio-CAT's beamlines complements that done by other APS CATs (specifically, those that emphasize protein crystallography: BioCARS, IMCA-CAT, and SBC-CAT).

Research Focus

Many biological macromolecules (e.g., enzymes) and complexes (e.g., viruses) can be crystallized and subjected to classic crystallographic analysis. However, in living cells, most biological systems are noncrystalline, and many biological structures cannot be studied in this manner because they cannot be crystallized, are transiently formed, or have structures or dynamical behaviors that change upon crystallization. For example, comparison of x-ray absorption spectra from crystalline and solution enzyme samples has shown that the processes of crystallization can change the microstructures sufficiently that crystallographic structural analysis alone would lead to incorrect interpretations of the enzymes’ mechanisms of action.

All biological systems have some degree of spatial or dynamic order; this order can be probed by noncrystallographic diffraction and x-ray absorption. Of key interest to Bio-CAT scientists are the structures of small ordered domains such as single muscle fibers and connective tissues and studies of the time dependence of structural changes that occur as biomolecular complexes carry out their functions. Key research areas involve biological processes and systems of direct biomedical importance such as enzymes (particularly metalloproteins), DNA-binding proteins, proteins involved in gene expression, cell membranes, nerve cells, immune system components, the processes of cell transport, and cell motility.

CAT contacts: Grant Bunker, Director tel 312.567.3385 bunker@biozatl1.iit.edu
Thomas Irving, Deputy Dir. tel 312.567.3489 irving@biocat1.iit.edu
Clarendon Krolk, CAT Coord. tel 630.252.6549 krolk@bio-aps.anl.gov

53
Beamline 18-ID / Bio-CAT

Scientific focus: Static and dynamic studies of partially ordered biological systems

Scientific programs: X-ray fiber diffraction, x-ray scattering, x-ray absorption/emission spectroscopy, and x-ray imaging and tomography

<table>
<thead>
<tr>
<th>Insertion Device Source Characteristics (nominal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
</tr>
<tr>
<td>period</td>
</tr>
<tr>
<td>length</td>
</tr>
<tr>
<td>effective K_{max}</td>
</tr>
<tr>
<td>(at minimum gap = 10.5 mm)</td>
</tr>
<tr>
<td>energy range 1st harmonic</td>
</tr>
<tr>
<td>energy range 1st - 5th harmonics</td>
</tr>
<tr>
<td>on-axis peak brilliance at 6.5 keV</td>
</tr>
<tr>
<td>source size at 8.0 keV</td>
</tr>
<tr>
<td>(\Sigma_x)</td>
</tr>
<tr>
<td>source divergence at 8.0 keV</td>
</tr>
<tr>
<td>(\Sigma_{x'})</td>
</tr>
</tbody>
</table>

Optics & Optical Performance
- 3.5–35 keV energy range
- vertical beam size: 2 mm unfocused–0.02 mm focused
- horizontal beam size: 5 mm unfocused–0.01 mm focused
- Rosenbaum-Rock high-resolution monochromator #1
 6.5°–38° Bragg angle range
 1st crystal, Si(111), liquid-nitrogen cooling
 2nd crystal, Si(111), 10 mm wide (stabilized at 25°C, sagitally bent)
 7:1 demagnification
 35 mm beam offset (nominal)
 motorized tune, twist, & roll control
 (4 mm range, 50 nm resolution)

- Rosenbaum-Rock high-flux monochromator #2
 6.5°–38° Bragg angle range
 1st crystal, Si(400), liquid-nitrogen cooling
 2nd crystal, Si(400), 10 mm wide (stabilized at 25°C, sagitally bent)
 7:1 demagnification
 35 mm beam offset (nominal)
 motorized tune, twist, & roll control
 (4 mm range, 50 nm resolution)

- Rosenbaum-Rock vertical focusing mirror plane mirror substrate:
 ZeroDur
 1020 mm x 95 mm x 38 mm
 2 Å rms roughness
 4 μrad surface figure error, mounted
 Pt, none, and Pd coating stripes
 two motorized, encoded supports
 dynamic, independent bending mechanisms at both ends
 aberration correction via elliptical bending
 11:1 demagnification

Experiment Station
- 18-ID-D
 monochromatic beam station
 12 m x 5 m x 3 m

Detectors
- Fuji BAS 2500 image plate scanner
- 1024 x 1024 CCD detector with 60 μm pixels
- fast-time-slicing plastic scintillator array
- Lytle fluorescence detector
- multilayer fluorescence analyzer

Beamline Support Equipment/Facilities
- small-angle camera (up to 8 m camera length)
- Huber 4-circle (small), Huber 2-circle with quarter chi-segment
- Displex cryostat
- 3 ft x 5 ft optical table with five axes of motion

Beamline contacts: Grant Bunker
tel 312.567.3385 bunker@biocat1.iit.edu
Tom Irving
tel 312.567.3489 irving@biocat1.iit.edu
Clareen Krolik
tel 630.252.0549 krolik@bio.aps.anl.gov
Structural Biology Center

Structural Biology Center CAT

Overview

The Structural Biology Center CAT has constructed a national user facility at the APS for studies in macromolecular crystallography. Funded by the Department of Energy's Office of Biological and Environmental Research, the Structural Biology Center provides users with a full complement of instrumentation, ancillary facilities, software, and support staff to enhance the productivity of their research. The majority of beam time is allocated to Independent Investigators through a proposal process, with a small amount of time reserved for research and development activities by SBC-CAT staff members.

Research Focus

The principal focus of the SBC-CAT research program is macromolecular crystallography. Designed as a rapid-throughput facility, the Structural Biology Center provides researchers with the ability to use both standard crystallographic techniques and multiple energy anomalous dispersion (MAD) phasing methods.

One current major program focuses on the study of macromolecular assemblies, with an emphasis on molecular recognition and interaction between macromolecules. Specific projects include molecular chaperones (bacterial and archael chaperonins 60, human hsc70 chaperone), protein/nucleic acid complexes (trp repressor/operator systems), and multimeric enzymes.

CAT contacts: Andrzej Joachimiak, Director tel 630.252.3926 andrzejj@anl.gov WWW Site http://www.sbc.anl.gov
Beamline 19-BM / SBC-CAT

Scientific focus: Macromolecular crystallography

Scientific program: Structural biology

<table>
<thead>
<tr>
<th>Bending Magnet Source Characteristics (nominal)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>APS bending magnet</td>
<td></td>
</tr>
<tr>
<td>critical energy</td>
<td>19.51 keV</td>
<td></td>
</tr>
<tr>
<td>energy range</td>
<td>1.0 - 100.0 keV</td>
<td></td>
</tr>
<tr>
<td>on-axis peak brilliance at 16.3 keV</td>
<td>2.9 x 10^{15} ph/sec/mrad(\cdot)mm(^{0.1})bw</td>
<td></td>
</tr>
<tr>
<td>on-axis peak angular flux at 16.3 keV</td>
<td>9.6 x 10^{13} ph/sec/mrad(\cdot)mm(^{0.1})bw</td>
<td></td>
</tr>
<tr>
<td>on-axis peak horizontal angular flux at 5.6 keV</td>
<td>1.6 x 10^{13} ph/sec/mrad(\cdot)mm(^{0.1})bw</td>
<td></td>
</tr>
<tr>
<td>source size at critical energy</td>
<td>145 (\mu)m</td>
<td>36 (\mu)m</td>
</tr>
<tr>
<td>source divergence at critical energy</td>
<td>6 mrad</td>
<td>47 (\mu)rad</td>
</tr>
</tbody>
</table>

Optics & Optical Performance

- 6–20 keV standard spectral range
- 0.11 mm hor. x 0.06 mm vert. FWHM focused spot size
- Rosenbaum-Rock double-crystal monochromator
 - water cooled
 - sagitally focusing 2nd crystal
 - 6:1 demagnification
 - 6°–40° Bragg angle range
 - 1st crystals: Si(111), Si (220), Si(331)
 - 25 mm wide ea., common cooler carrier
 - 2nd crystals: Si(111), Si(220), Si(331)
 - exchangeable, 25 mm x 125 mm
 - 35 mm beam offset (nominal)

- Rosenbaum-Rock vertical focusing mirror
 - 9:1 demagnification
 - Zerodur plane mirror substrate
 - 1020 mm x 100 mm x 38 mm
 - 2 Å rms roughness
 - 1 \(\mu\)rad surface figure error
 - Pt, none, Pd coating stripes (35 mm wide ea.)
 - two motorized, encoded supports
 - dynamic, independent bending mechanism
 - at both ends
 - aberration correction via elliptical bending

Experiment Stations

- 19-BM-A
 - white beam first optics enclosure
- 19-BM-C
 - white beam optics enclosure
- 19-BM-D
 - monochromatic experiment station
 - kappa goniostat for macromolecular crystallography
 - guard slits
 - filter/shutter
 - detector support and positioner

Detectors

- SBC1 3k x 3k CCD
 - built by ANL-ECT
 - 210 mm x 210 mm active area
 - 1.8 sec readout

Beamline Controls and Data Acquisition

- Multiprocessor SG1 workstation, plus two UNIX work stations for data acquisition and data processing
- 3 HP workstations running EPICS, VME for beamline and detector control
- PMAC motor controller, software by ANL-ECT
- GUI for beamline control, data acquisition, and detector control by ANL-ECT

Beamline Support Equipment/Facilities

- Rosenbaum-Rock miniaturized kappa goniostat
- high-magnification alignment cameras (two)
- Rosenbaum-Rock high-precision detector support and positioner
- liquid-nitrogen cryosystem sample cooler

Beamline contacts: Randy Alkire
Stephan Ginell
Andrzej Joachimiak
tel 630.252.3865 alkire@anl.gov
tel 630.252.3972 ginell@anl.gov
tel 630.252.3926 andrzejj@anl.gov
Beamline 19-ID / SBC-CAT

Scientific focus: Macromolecular crystallography

Scientific program: Structural biology

<table>
<thead>
<tr>
<th>Insertion Device Source Characteristics (nominal)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>Undulator A</td>
</tr>
<tr>
<td>period</td>
<td>3.30 cm</td>
</tr>
<tr>
<td>length</td>
<td>2.47 m</td>
</tr>
<tr>
<td>effective K_{max} (\text{at minimum gap = 10.5 mm})</td>
<td>2.78</td>
</tr>
<tr>
<td>energy range 1st harmonic</td>
<td>2.9 - 13.0 keV</td>
</tr>
<tr>
<td>energy range 1st - 5th harmonics</td>
<td>2.9 - 45.0 keV</td>
</tr>
<tr>
<td>on-axis peak brilliance at 6.5 keV</td>
<td>9.6×10^{18} pb/sec/mrad4mm0.1% bw</td>
</tr>
<tr>
<td>source size at 8.0 keV</td>
<td>Σ_x 359 µm, Σ_z 21 µm</td>
</tr>
<tr>
<td>source divergence at 8.0 keV</td>
<td>$\Sigma_{x'}$ 24 µrad, $\Sigma_{y'}$ 6.9 µrad</td>
</tr>
</tbody>
</table>

Optics & Optical Performance
- 6–20 keV standard spectral range
- 0.08 mm hor. x 0.04 mm vert. FWHM focused beam size
- Rosenbaum-Rock monochromator #1
 high-resolution double-crystal sagittal focusing
 1st crystal, Si(220), liquid-nitrogen cooled
 2nd crystal, Si(220), 10 mm wide (stabilized at 25°C, sagitally bent)
 7:1 demagnification
 6.5°–38° Bragg angle range
 35 mm beam offset (nominal)
 motorized tune, twist, & roll control
 (4 mm range, 50 nm resolution)
- Rosenbaum-Rock monochromator #2
 1st crystal, Si(111), liquid-nitrogen cooled
 2nd crystal, Si(111), 10 mm wide, (stabilized at 25°C, sagitally bent)
 7:1 demagnification
 6.5°–38° Bragg angle range
 35 mm beam offset (nominal)
 motorized tune, twist, & roll control
 (4 mm range, 50 nm resolution)

Experiment Stations
- 19-ID-A white beam first optics enclosure
- 19-ID-C white beam optics enclosure
- 19-ID-D monochromatic experiment station
 kappa goniostat for macromolecular crystallography
 guard slits
 filter/shutter
detector support and positioner

Detectors
- SBC2 3k x 3k CCD
 built by ANL-ECT
 210 mm x 210 mm active area
 1.8 sec readout

Beamline Controls and Data Acquisition
- Multiprocessor SGI workstation, plus two UNIX workstations for data acquisition
- Three HP workstations running EPICS, VME for beamline and detector control
- PMAC motor controller, software by ANL-ECT
- GUI for beamline control & data acquisition, detector control by ANL-ECT

Beamline Support Equipment/Facilities
- Rosenbaum-Rock miniaturized kappa goniostat
- high-magnification alignment cameras (two)
- Rosenbaum-Rock high-precision detector support and positioner
- liquid-nitrogen cryosystem sample cooler

Beamline contacts:
- Randy Alkire, tel 630.252.3865, alkire@anl.gov
- Stephan Ginell, tel 630.252.3972, ginell@anl.gov
- Andrzej Joachimiak, tel 630.252.3926, andrzejj@anl.gov
Pacific Northwest Consortium CAT

Overview

The Pacific Northwestern Consortium CAT (PNC-CAT) includes a number of institutions in the Pacific Northwest regions of both the United States and Canada. Scientists from the lead institutions of the University of Washington, Pacific Northwest National Laboratories, and Simon Fraser University share several common research goals: specifically, a basic understanding of materials as related to their physical and chemical properties, the development of new strategies for environmental cleanup based on a fundamental understanding of the interaction of pollutants with the ambient environs, and structure-function properties of macromolecules.

Research Focus

Several innovative instruments, including an analytical x-ray microscope with submicron resolution and capability to measure diffraction, x-ray absorption fine structure (XAFS), and diffraction anomalous fine structure (DAFS), will enable investigators to characterize heterogeneous materials in new ways. These measurements can be combined with two- and three-dimensional imaging using absorption and phase contrast. UHV and MBE facilities are available for in situ investigations using surface diffraction and XAFS. Capabilities for time-resolved measurements in the subnanosecond scale are planned. These techniques and instruments will be used to investigate materials science and environmental problems, on both a fundamental and applied level.

CAT contacts:
Edward Stern, Director tel 206.543.2023 stern@phys.washington.edu
Daryl Crozier, Associate Dir. tel 604.291.4827 crozier@sfu.ca
Steve Heald, Dir. of Construction tel 630.252.9795 heald@aps.anl.gov
Beamline 20-BM / PNC-CAT

Scientific focus: Materials science and environmental science

Scientific programs: Material science, environmental science, and surface science

<table>
<thead>
<tr>
<th>Bending Magnet Source Characteristics (nominal)</th>
<th>Experiment Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>20-BM-A</td>
</tr>
<tr>
<td>APS bending magnet</td>
<td>white beam first optics enclosure</td>
</tr>
<tr>
<td>critical energy</td>
<td>20-BM-B</td>
</tr>
<tr>
<td>19.51 keV</td>
<td>monochromatic general purpose station</td>
</tr>
<tr>
<td>energy range</td>
<td></td>
</tr>
<tr>
<td>1.0 - 100.0 keV</td>
<td></td>
</tr>
<tr>
<td>on-axis peak brilliance at 16.3 keV</td>
<td></td>
</tr>
<tr>
<td>2.9 x 10^{15} ph/sec/mrad/%mm/0.1%bw</td>
<td></td>
</tr>
<tr>
<td>on-axis peak angular flux at 16.3 keV</td>
<td></td>
</tr>
<tr>
<td>9.6 x 10^{13} ph/sec/mrad/%mm/0.1%bw</td>
<td></td>
</tr>
<tr>
<td>on-axis peak horizontal angular flux at 5.6 keV</td>
<td>1.6 x 10^{6} ph/sec/mrad/%mm/0.1%bw</td>
</tr>
<tr>
<td>source size at critical energy</td>
<td></td>
</tr>
<tr>
<td>\Sigma_x</td>
<td>145 \mu m</td>
</tr>
<tr>
<td>36 \mu m</td>
<td></td>
</tr>
<tr>
<td>source divergence at critical energy</td>
<td></td>
</tr>
<tr>
<td>\Sigma_y</td>
<td>6 mrad</td>
</tr>
<tr>
<td>47 \mu rad</td>
<td></td>
</tr>
</tbody>
</table>

Optics & Optical Performance

- BESSRC-type monochromator
 29 m from source
 2–30 keV energy range
 1–2 x 10^{-4} energy resolution (\Delta E/E)
 35 mm offset
 water cooling
 2nd crystal: 4 mrad acceptance for sagittal focusing

- bent mirror (planned)
 26 m from source
 2–30 keV energy range
 2.7 mrad glancing angle

Beamline Contacts: Steve Heald
tel 630.252.9795 heald@aps.anl.gov
Dale Brewe
tel 630.252.0582 brewe@pnc.aps.anl.gov
Beamline 20-ID / PNC-CAT

Scientific focus: Materials science and environmental science

Scientific programs: Material science, environmental science, UHV/surface science-MBE growth, and x-ray microbeams

<table>
<thead>
<tr>
<th>Insertion Device Source Characteristics (nominal)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>Undulator A</td>
</tr>
<tr>
<td>period</td>
<td>3.30 cm</td>
</tr>
<tr>
<td>length</td>
<td>2.47 m</td>
</tr>
<tr>
<td>effective K_{max}</td>
<td>2.78</td>
</tr>
<tr>
<td>(at minimum gap = 10.5 mm)</td>
<td></td>
</tr>
<tr>
<td>energy range 1st harmonic</td>
<td>2.9 - 13.0 keV</td>
</tr>
<tr>
<td>energy range 1st - 5th harmonics</td>
<td>2.9 - 45.0 keV</td>
</tr>
<tr>
<td>on-axis peak brilliance at 6.5 keV</td>
<td>9.6 x 1016 ph/sec/mm/mrad/0.1°</td>
</tr>
<tr>
<td>source size at 8.0 keV</td>
<td></td>
</tr>
<tr>
<td>Σ_x</td>
<td>358 µm</td>
</tr>
<tr>
<td>Σ_y</td>
<td>21 µm</td>
</tr>
<tr>
<td>source divergence at 8.0 keV</td>
<td></td>
</tr>
<tr>
<td>Σ_x</td>
<td>24 µrad</td>
</tr>
<tr>
<td>Σ_y</td>
<td>6.9 µrad</td>
</tr>
</tbody>
</table>

Optics & Optical Performance
- BESSRC high-heat-load monochromator
 - 31 m from source
 - 3–27 keV energy range, Si(111)
 - 6–50 keV energy range, Si(311)
 - 1–2 x 10$^{-4}$ energy resolution ($\Delta E/E$), Si(111)
 - 0.5–1 x 10$^{-4}$ energy resolution ($\Delta E/E$), Si(311)
 - 35 mm offset
 - liquid-nitrogen cooling
 - \sim1013 ph/sec flux at 10 keV, Si(111)

- toroidal focusing mirror
 - 34 m from source
 - 3–30 keV energy range
 - Al, Rh, Pt coatings (selectable)
 - 2.2–2.7 mrad glancing angle
 - \sim400 x 200 µm (H,V) focal spot

- Kirkpatrick-Baez mirrors
 - 3–20 keV energy range
 - 1 µm or 5 µm focal spot (mirror dependent)
 - 4 mrad glancing angle
 - \sim1013 flux at 10 keV

Experiment Stations
- 20-ID-A
 - white beam first optics enclosure
- 20-ID-B
 - monochromatic beam station
 - microbeams
 - XAFS
- 20-ID-C
 - monochromatic beam station
 - diffraction
 - surface science

Detectors
- ionization chambers
- 13-element Ge detector
- NaI scintillation
- CCDs

Beamline Controls and Data Acquisition
- Sun UNIX with EPICS/VME
- Windows NT with LabView
- SPEC

Beamline Support Equipment/Facilities
- Huber surface diffractometer with UHV chamber (20-ID-C)
- MBE-capable surface XAFS, reflectivity and standing wave chamber (20-ID-B & C)
- diamond phase plate

Beamline contacts:
- Steve Heald
 - tel 630.252.9795
tel 630.252.0582
 - heald@aps.anl.gov
 - brewe@pnc.aps.anl.gov

61
Overview

SER-CAT, which represents institutions from the states of Alabama, Florida, Georgia, Kentucky, Missouri, North Carolina, South Carolina, Tennessee, and Virginia, as well as the Intramural Program of the National Institutes of Health, plans to build and operate a sector at the APS. The SER-CAT mission is to provide researchers from its member institutions with timely access to tunable, high-intensity x-rays for x-ray diffraction structural studies of biomolecules. SER-CAT plans to provide its users with a complete research facility, including a full complement of instrumentation, software, and support staff for high-throughput data collection and processing. SER-CAT also plans to provide 25% of its beam time to outside users through its Independent Investigator program via a proposal process.

Research Focus

The principal focus of the SER-CAT research program is macromolecular crystallography. The SER-CAT beamline designs are based on those of SBC-CAT; researchers will be able to use both traditional and multiple wavelength anomalous dispersion (MAD) techniques for structure determination and investigation.

The research interests of SER-CAT researchers are varied, ranging from DNA, protein and virus structures, to catalysts and basic materials science.

CAT contacts:

Bi-Cheng Wang, CAT Director tel 706.542.1747 wang@BCL1.bmb.uga.edu
Craig Smith, CAT Coordinator tel 205.934.7233 smith@gold.cmc.uab.edu
Gerold Rosenbaum, Project Dir. tel 630.252.0643 rosenbaum@anl.gov
John Unik, Project Administrator tel 630.252.0640 junik@anl.gov
Beamline 22-BM / SER-CAT

Scientific focus: Macromolecular crystallography

Scientific program: Structural biology

Summary reflects projected performance parameters and planned equipment and hardware.

Bending Magnet Source Characteristics (nominal)

<table>
<thead>
<tr>
<th>source</th>
<th>APS bending magnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>critical energy</td>
<td>19.51 keV</td>
</tr>
<tr>
<td>energy range</td>
<td>1.0 - 100.0 keV</td>
</tr>
<tr>
<td>on-axis peak brilliance at 16.3 keV</td>
<td>2.9×10^{13} ph/sec/mm²mm²0.1%bw</td>
</tr>
<tr>
<td>on-axis peak angular flux at 16.3 keV</td>
<td>9.6×10^{14} ph/sec/mm²0.1%bw</td>
</tr>
<tr>
<td>on-axis peak horizontal angular flux at 5.6 keV</td>
<td>1.6×10^{16} ph/sec/mm²0.1%bw</td>
</tr>
<tr>
<td>source size at critical energy</td>
<td>Σx</td>
</tr>
<tr>
<td></td>
<td>Σy</td>
</tr>
<tr>
<td>source divergence at critical energy</td>
<td>$\Sigma x'$</td>
</tr>
<tr>
<td></td>
<td>$\Sigma y'$</td>
</tr>
</tbody>
</table>

• Rosenbaum-Rock vertical focusing mirror
 9:1 demagnification
 ULE plane mirror substrate
 1020 mm x 100 mm x 38 mm
 2 Å rms roughness
 1 μrad surface figure error
 Pt, none, Pd coating stripes (35 mm wide ea.)
 two motorized, encoded supports for angle and height adjustments
 dynamic, independent bending mechanism at both ends
 aberration correction via elliptical bending

Experiment Stations

• 22-BM-A
 white beam enclosure
• 22-BM-C
 white beam optics enclosure
• 22-BM-D
 monochromatic experiment station
 kappa goniostat for macromolecular crystallography
 adjustable collimator slits
 filter/shutter
 detector support and positioner

Detectors

• CCD area detector

Beamline Controls and Data Acquisition

• detector control and interface hardware and software to be defined
• beamline control and data acquisition software to be defined
• computers to be defined
• DC-servomotor; PMAC motor controller
• electrometer amplifiers; VME-based, computer-controlled V/F converter and scaler
 (ANL-ECT design)

Beamline Support Equipment/Facilities

• Rosenbaum-Rock miniaturized kappa goniostat
• high-magnification alignment cameras (two)
• Rosenbaum-Rock high-precision detector support and positioner
• liquid-nitrogen cryosystem sample cooler

Optics & Optical Performance

• 6–20 keV standard spectral range
• 0.11 mm hor. x 0.06 mm vert. FWHM focused spot size

• Rosenbaum-Rock double-crystal monochromator
 water cooling
 1st crystals: Si(111), Si (220), Si(331)
 25 mm wide ea., common cooler carrier
 2nd crystals: Si(111), Si(220), Si(331)
 sagittal focusing
 exchangeable
 125 mm L x 25 mm W
 6:1 demagnification
 6°–40° Bragg angle range
 35 mm beam offset (nominal)

Beamline contacts: Gerd Rosenbaum
John Gonczy

tel 630.252.0643 rosenbaum@anl.gov
tel 630.252.0642 gonczy@anl.gov

64
Beamline 22-ID / SER-CAT

Scientific focus: Macromolecular crystallography

Scientific program: Structural biology

Summary reflects projected performance parameters and planned equipment and hardware.

Insertion Device Source Characteristics (nominal)

<table>
<thead>
<tr>
<th>source</th>
<th>Undulator A</th>
</tr>
</thead>
<tbody>
<tr>
<td>period</td>
<td>3.30 cm</td>
</tr>
<tr>
<td>length</td>
<td>2.47 m</td>
</tr>
<tr>
<td>effective K_{max} (at minimum gap = 10.5 mm)</td>
<td>2.78</td>
</tr>
<tr>
<td>energy range 1st harmonic</td>
<td>2.9 - 13.0 keV</td>
</tr>
<tr>
<td>energy range 1st - 5th harmonics</td>
<td>2.9 - 45.0 keV</td>
</tr>
<tr>
<td>on-axis peak brilliance at 6.5 keV</td>
<td>9.6×10^{18} ph/sec/mrad²/mm²/0.1% bw</td>
</tr>
<tr>
<td>source size at 8.0 keV</td>
<td>$\sum x^2$ = 359 μm, $\sum y^2$ = 21 μm</td>
</tr>
<tr>
<td>source divergence at 8.0 keV</td>
<td>$\sum x'$ = 24 μrad, $\sum y'$ = 6.9 μrad</td>
</tr>
</tbody>
</table>

Optics & Optical Performance

- 6–20 keV standard spectral range
- 0.08 mm x 0.04 mm vert. FWHM focused beam size
- Rosenbaum-Rock monochromator
 - high-resolution double-crystal sagittal focusing
 - 1st crystal, Si(220), liquid-nitrogen cooling
 - 2nd crystal, Si(220), 10 mm wide (stabilized at 25°C, sagittally bent)
 - 7:1 demagnification
 - 6.5°–38° Bragg angle range
 - 35 mm beam offset (nominal)
 - motorized tune, twist, & roll control
 (4 mm range, 50 nm resolution)

- Rosenbaum-Rock vertical focusing mirror
 - 11:1 demagnification
 - ULE plane mirror substrate
 - 1020 mm x 100 mm x 38 mm
 - 2 Å rms roughness
 - 1 μrad surface figure error
 - Pt, none, and Pd coating strips (35 mm wide ea.)
 - two motorized, encoded supports
 - dynamic, independent bending mechanism at both ends
 - aberration correction via elliptical bending

Experiment Stations

- 22-ID-A
 - white beam enclosure
- 22-ID-C
 - white beam optics enclosure
- 22-ID-D
 - monochromatic experiment station
 - kappa goniostat for macromolecular crystallography
 - adjustable collimator slits
 - filter/shutter
 - detector support and positioner

Detectors

- CCD area detector

Beamline Controls and Data Acquisition

- detector control and interface hardware and software to be defined
- beamline control and data acquisition software to be defined
- computers to be defined
- DC-servomotor; PMAC motor controller
- electrometer amplifiers; VME-based, computer-controlled V/F converter and scaler
 (ANL-ECT design)

Beamline Support Equipment/Facilities

- Rosenbaum-Rock miniaturized kappa goniostat
- high-magnification alignment cameras (two)
- Rosenbaum-Rock high-precision detector support and positioner
- liquid-nitrogen cryosystem sample cooler

Beamline contacts:
Gerd Rosenbaum
John Gonczy

<table>
<thead>
<tr>
<th>tel</th>
<th>rosenbaum@anl.gov</th>
</tr>
</thead>
<tbody>
<tr>
<td>630.252.0643</td>
<td>rosenbaum@anl.gov</td>
</tr>
<tr>
<td>tel 630.252.0642</td>
<td>gonczy@anl.gov</td>
</tr>
</tbody>
</table>
SGX-CAT

Structural GenomiX CAT

Overview

Structural GenomiX CAT (SGX-CAT) is designed for high-throughput crystallography in support of a proprietary research program in structural genomics. Funded entirely by Structural GenomiX (SGX), a San Diego-based biotechnology company, SGX-CAT is the first beamline facility at the Advanced Photon Source to be owned and operated by a single commercial entity. SGX is in the business of translating genome sequence information into protein structures for use in medicine, agriculture, and bioprocessing. The company will employ SGX-CAT to solve thousands of protein structures for use in drug and compound design by its customers. The SGX-CAT facility will include two undulator beamlines and a bending magnet beamline. The first undulator beamline is slated for completion in 2001.

Research Focus

The research focus of SGX-CAT is macromolecular crystallography. Structural GenomiX concentrates on proteins of interest to pharmaceutical, agricultural, and industrial enzyme customers, and it uses a structural genomics approach to achieve high throughput. Protein structures solved using SGX-CAT will be used to facilitate drug and compound design for Structural GenomiX customers. The SGX-CAT beamlines are designed to accommodate the high-throughput goals of Structural GenomiX. In particular, they will be optimized for rapid multiwavelength anomalous diffraction (MAD) experiments on small (~50 micron) selenomethionyl protein crystals.

CAT contacts: Kevin D'Amico, Director tel 630.252.3959 kdamico@aps.anl.gov
COM-CAT

Commercial CAT

Overview

The Commercial Beamline Collaborative Access Team (COM-CAT) will be specializing in the application of synchrotron radiation to industrial problems. COM-CAT plans to operate a general-purpose beamline as an analytical service laboratory, providing both materials analysis and data interpretation for problems that require synchrotron radiation techniques for their solution. Funds for beamline construction were provided by the State of Illinois. Beamline operations will ultimately be funded on a fee-for-service basis.

Research Focus

Analyses based on synchrotron radiation are generally applicable to problems in materials science. Industrial companies have used synchrotron facilities to examine a wide variety of materials, including polymers, catalysts, candidate drugs, and biomolecules. COM-CAT expects to provide a convenient means to use synchrotron analysis capabilities to industrial organizations who either do not have current access to a beamline or require rapid turnaround of samples.

COM-CAT will, in its initial stages, construct and operate a single undulator beamline. To provide as broad a range of analytical capabilities as possible, the experimental facilities will consist of three permanent stations devoted to spectroscopy, single-crystal diffraction, small-angle scattering, and x-ray fluorescence. Zone plates will be used when microfocusing is required. To maximize use of the available beam, each table will have a permanent basic configuration. To use a downstream station, the upstream tables will be lowered below the flight path of the x-ray beam.

COM-CAT is also involved in outreach to the general industrial community. It has organized a workshop on industrial applications of synchrotron radiation and will provide on-site introductions to synchrotron radiation for potential customers.

CAT contacts:
Kevin D'Amico, Director
Stephen Wasserman, Deputy Dir.
Cindy Doran, Secretary
tel 630.252.3959
tel 630.252.3527
tel 630.252.5564
kdamico@sps.anl.gov
srw@anl.gov
doran@aps.anl.gov
Beamline 32-ID / COM-CAT

Scientific focus: Materials characterization

Scientific programs: Analytical materials characterization and capability for commercial customers

<table>
<thead>
<tr>
<th>Insertion Device Source Characteristics (nominal)</th>
<th>Experiment Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>Undulator A</td>
</tr>
<tr>
<td>period</td>
<td>3.30 cm</td>
</tr>
<tr>
<td>length</td>
<td>2.47 m</td>
</tr>
<tr>
<td>effective K_{max} (at minimum gap = 10.5 mm)</td>
<td>2.78</td>
</tr>
<tr>
<td>energy range 1st harmonic</td>
<td>2.9 - 13.0 keV</td>
</tr>
<tr>
<td>energy range 1st - 5th harmonics</td>
<td>2.9 - 45.0 keV</td>
</tr>
<tr>
<td>on-axis peak brilliance at 6.5 keV</td>
<td>9.6×10^{18} ph/sec/mrad²/mm²/0.1% bw</td>
</tr>
<tr>
<td>source size at 8.0 keV</td>
<td>359μm</td>
</tr>
<tr>
<td>Σ_x</td>
<td>21μm</td>
</tr>
<tr>
<td>Σ_y</td>
<td></td>
</tr>
<tr>
<td>source divergence at 8.0 keV</td>
<td></td>
</tr>
<tr>
<td>Σ_x</td>
<td>24 μrad</td>
</tr>
<tr>
<td>Σ_y</td>
<td>6.9 μrad</td>
</tr>
</tbody>
</table>

Optics & Optical Performance
- L5-90 standard component primary aperture
- Kohzu HLD-3 monochromator
- horizontally focusing mirror
 - Pd, Pt coating stripes

Experiment Stations
- **32-ID-A**
 - white beam first optics enclosure
- **32-ID-B**
 - white beam station
 - monochromatic experiments
 - spectroscopy
 - scattering
 - crystallography

Detectors
- Lytle detector
- multi-element energy dispersive detector
- ionization chambers
- scintillation counters
- CCD area detector

Beamline Controls and Data Acquisition
- Linux PC running SPEC

Beamline Support Equipment/Facilities
- 6-circle diffractometer; spectroscopy instruments
- crystallography station

Beamline contacts:
- Kevin D'Amico
 - tel 630.252.3959
 - kdamico@aps.anl.gov
- Stephen Wasserman
 - tel 630.252.3527
 - srw@anl.gov
A University-National Laboratory-Industry CAT

Overview

The UNI-CAT is a collaboration between scientists from the University of Illinois, the Oak Ridge National Laboratory, the National Institute of Standards and Technology, and UOP Research and Development. The UNI-CAT mission is to instrument and operate x-ray research facilities at the APS that provide advanced x-ray techniques to a diverse scientific community. This goal is achieved through the development of two sectors at the APS that are designed for cutting-edge x-ray studies in materials, physics, chemistry, biology, and geology. This is a multipurpose scattering facility capable of high-resolution scattering with excellent energy resolution and beam-focusing optics. Special capabilities in the UNI-CAT sectors also include a dedicated surface/interface diffraction station equipped with a molecular-beam epitaxy and chemical-vapor deposition facility, an ultra-small-angle x-ray scattering apparatus, an x-ray microscope, a topography station, a dedicated insertion-device beamline for microfocus and coherent x-ray diffraction, instrumentation for time-resolved x-ray scattering experiments, and reactive environment x-ray absorption spectroscopy.

Research Focus

The primary research areas of UNI-CAT members encompass materials sciences and condensed matter physics, and include techniques such as structural crystallography, diffuse x-ray scattering, magnetic x-ray scattering, ultra-small-angle x-ray scattering, x-ray microscopy, millivolt resolution spectroscopy, surface and interface scattering, absorption spectroscopy, x-ray topography, microbeam techniques, coherent x-ray diffraction, and time-resolved techniques. These research tools permit UNI-CAT scientists and collaborators to explore fundamental structure/property relationships in bulk solids, at surfaces, and at internal interface boundaries.

CAT contacts:
Haydn Chen, Director
tel 217.244.4666
unicat@uimrl7.mrl.uiuc.edu
Paul Zschack, Associate Dir.
tel 630.252.0860
zschack@anl.gov
Beamline 33-BM / UNI-CAT

Scientific focus: Materials science and condensed matter physics

Scientific programs: Materials Science, ceramic science, phase transitions, surface science, thin-film structure and growth, and materials physics

<table>
<thead>
<tr>
<th>Bending Magnet Source Characteristics (nominal)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>APS bending magnet</td>
</tr>
<tr>
<td>critical energy</td>
<td>19.51 keV</td>
</tr>
<tr>
<td>energy range</td>
<td>1.0 - 100.0 keV</td>
</tr>
<tr>
<td>on-axis peak brilliance at 16.3 keV</td>
<td>2.9×10^{15} ph/sec/mrad°mm°0.1%/bw</td>
</tr>
<tr>
<td>on-axis peak angular flux at 16.3 keV</td>
<td>9.6×10^{13} ph/sec/mrad°0.1%/bw</td>
</tr>
<tr>
<td>on-axis peak horizontal angular flux at 5.6 keV</td>
<td>1.6×10^{13} ph/sec/mrad/0.1%/bw</td>
</tr>
<tr>
<td>source size at critical energy Σ_x</td>
<td>145 μm</td>
</tr>
<tr>
<td>Σ_y</td>
<td>36 μm</td>
</tr>
<tr>
<td>source divergence at critical energy Σ_x'</td>
<td>6 mrad</td>
</tr>
<tr>
<td>Σ_y'</td>
<td>47 μrad</td>
</tr>
</tbody>
</table>

Optics & Optical Performance
- 4–40 keV energy range
- collimating mirror
- double-crystal monochromator
- focusing mirror

Experiment Stations
- 33-BM-B
 EXAFS
topography station
- 33-BM-C
general purpose scattering station

Detectors
- NaI scintillation counters
- gas-filled proportional counters (Xe, Ar)
- ionization chambers

Beamline Controls and Data Acquisition
- Sun UNIX running EPICS with VME, SPEC

Beamline Support Equipment/Facilities
- topography station (33-BM-B)
- EXAFS table (33-BM-B)
- Huber 4-circle diffractometer (33-BM-C)

Beamline contact: Paul Zschack tel 630.252.0860 zschack@anl.gov

72
Beamline 33-ID / UNI-CAT

Scientific focus: Material Science and condensed matter physics

Scientific programs: Material science, ceramic science, phase transitions, surface science, thin-films structure and growth, and materials physics

<table>
<thead>
<tr>
<th>Insertion Device Source Characteristics (nominal)</th>
<th>Experiment Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>Undulator A</td>
</tr>
<tr>
<td>period</td>
<td>3.30 cm</td>
</tr>
<tr>
<td>length</td>
<td>2.47 m</td>
</tr>
<tr>
<td>effective K_{max} (at minimum gap = 10.5 mm)</td>
<td>2.78</td>
</tr>
<tr>
<td>energy range 1st harmonic</td>
<td>2.9 - 13.0 keV</td>
</tr>
<tr>
<td>energy range 1st - 5th harmonics</td>
<td>2.9 - 45.0 keV</td>
</tr>
<tr>
<td>on-axis peak brilliance at 6.5 keV</td>
<td>9.6 x 10^{18} ph/sec/mm²/mrad²/bw</td>
</tr>
<tr>
<td>source size at 8.0 keV</td>
<td></td>
</tr>
<tr>
<td>Σ_x</td>
<td>359 μm</td>
</tr>
<tr>
<td>Σ_y</td>
<td>21 μm</td>
</tr>
<tr>
<td>source divergence at 8.0 keV</td>
<td></td>
</tr>
<tr>
<td>Σ_x'</td>
<td>24 μrad</td>
</tr>
<tr>
<td>Σ_y'</td>
<td>6.9 μrad</td>
</tr>
</tbody>
</table>

Optics & Optical Performance
- focused beam size 280 μm hor. x 100 μm vert.

- PSL double-crystal monochromator
 45 m from source
 4.0–4.0 keV energy range Si(111)
 10^{-4} energy resolution (∆E/E)
 20–35 mm beam offset
 liquid-nitrogen cooling
 variable sagittal focus

- vertical focusing mirror
 2.0–4.0 mrad angle of incidence
 Pt, Si, Rh coating stripes
 variable vertical focus

- harmonic rejection mirror
 2.0–4.0 mrad angle of incidence
 Pt, Si, Rh coating stripes

Beamline contact: Paul Zschack
tel 630.252.0860 zschack@arl.gov
Beamline 34-ID / UNI-CAT

Scientific focus: Microfocussing and coherent x-ray scattering

Scientific programs: Coherent x-ray diffraction, microbeam scattering, and x-ray microprobe

<table>
<thead>
<tr>
<th>Insertion Device Source Characteristics (nominal)</th>
<th>Experiment Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>Undulator A</td>
</tr>
<tr>
<td>period</td>
<td>3.30 cm</td>
</tr>
<tr>
<td>length</td>
<td>2.47 m</td>
</tr>
<tr>
<td>effective K_{max} (at minimum gap = 10.5 mm)</td>
<td>2.78</td>
</tr>
<tr>
<td>energy range 1st harmonic</td>
<td>2.9 - 13.0 keV</td>
</tr>
<tr>
<td>energy range 1st - 5th harmonics</td>
<td>2.9 - 45.0 keV</td>
</tr>
<tr>
<td>on-axis peak brilliance at 6.5 keV</td>
<td>9.6×10^8 ph/sec/mrad²/mm²/0.1% bw</td>
</tr>
<tr>
<td>source size at 8.0 keV</td>
<td>350 μm</td>
</tr>
<tr>
<td>source divergence at 8.0 keV</td>
<td>24 μrad</td>
</tr>
<tr>
<td></td>
<td>6.9 μrad</td>
</tr>
</tbody>
</table>

Optics & Optical Performance

- beamline under design
- beam-splitting mirrors
- monochromators

Experiment Stations

- 34-ID-C
 - coherent beam diffraction station
- 34-ID-E
 - microbeam scattering station

Detectors

- various CCD cameras
- NaI scintillation counters

Beamline Controls and Data Acquisition

- To be determined

Beamline Support Equipment/Facilities

- Kappa diffractometer with surface science capability (34-ID-C)
- microbeam scattering table (34-ID-E)

Beamline contacts:

- Paul Zschack: tel 630.252.0860, zschack@anl.gov
- Ian Robinson: tel 217.244.2949, robinson@uimrl7.mrl.uiuc.edu
- Gene Ice: tel 423.574.2744, icege@ornl.gov
Directory

<table>
<thead>
<tr>
<th>Building</th>
<th>Sector(s)</th>
<th>Phone</th>
<th>Fax</th>
<th>E-Mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>APS User Office</td>
<td>401</td>
<td>n/a</td>
<td>630.252.9090</td>
<td>630.252.9250</td>
</tr>
<tr>
<td>BESSRC-CAT</td>
<td>Basic Energy Sciences Synchrotron Radiation Center</td>
<td>433</td>
<td>11, 12</td>
<td>630.252.1553</td>
</tr>
<tr>
<td>Bio-CAT</td>
<td>Biophysics</td>
<td>435</td>
<td>18</td>
<td>630.252.0549</td>
</tr>
<tr>
<td>CARS-CAT</td>
<td>Consortium for Advanced Radiation Sources GeoSoilEnviroCARS BioCARS ChemMatCARS</td>
<td>434</td>
<td>13, 14, 15</td>
<td>630.252.0450</td>
</tr>
<tr>
<td>CMC-CAT</td>
<td>Complex Materials Consortium</td>
<td>433</td>
<td>9</td>
<td>630.252.0320</td>
</tr>
<tr>
<td>COM-CAT</td>
<td>Commercial</td>
<td>438</td>
<td>32</td>
<td>630.252.0840</td>
</tr>
<tr>
<td>DND-CAT</td>
<td>DuPont-Northwestern-Dow</td>
<td>432</td>
<td>5</td>
<td>630.252.0222</td>
</tr>
<tr>
<td>HP-CAT</td>
<td>High-Pressure</td>
<td>434</td>
<td>16 (under devel.)</td>
<td>630.252.0427</td>
</tr>
<tr>
<td>IMCA-CAT</td>
<td>Industrial Macromolecular Crystallography Association</td>
<td>435</td>
<td>17</td>
<td>630.252.0520</td>
</tr>
<tr>
<td>IMMW-CAT</td>
<td>IBM–MIT–McGill–Whitehead</td>
<td>432</td>
<td>8</td>
<td>630.252.0281</td>
</tr>
<tr>
<td>MHATT-CAT</td>
<td>Center for Real-Time X-ray Studies</td>
<td>432</td>
<td>7</td>
<td>630.252.0209</td>
</tr>
<tr>
<td>MR-CAT</td>
<td>Materials Research</td>
<td>433</td>
<td>10</td>
<td>219.631.7219</td>
</tr>
<tr>
<td>μ-CAT</td>
<td>Midwest Universities</td>
<td>432</td>
<td>6</td>
<td>630.252.0247</td>
</tr>
<tr>
<td>PNC-CAT</td>
<td>Pacific Northwest Consortium</td>
<td>435</td>
<td>20</td>
<td>630.252.9795</td>
</tr>
<tr>
<td>SBC-CAT</td>
<td>Structural Biology Center</td>
<td>435</td>
<td>19</td>
<td>630.252.0560</td>
</tr>
<tr>
<td>SER-CAT</td>
<td>Southeast Regional</td>
<td>363A</td>
<td>22 (under devel.)</td>
<td>630.252.0640</td>
</tr>
<tr>
<td>SGX-CAT</td>
<td>Structural GenomiX</td>
<td>438</td>
<td>31 (under devel.)</td>
<td>630.252.3959</td>
</tr>
<tr>
<td>SRI-CAT</td>
<td>Synchrotron Radiation Instrumentation</td>
<td>431</td>
<td>1, 2, 3, 4</td>
<td>630.252.0160</td>
</tr>
<tr>
<td>UNI-CAT</td>
<td>A University-National Laboratory-Industry</td>
<td>438</td>
<td>33, 34</td>
<td>630.252.0860</td>
</tr>
</tbody>
</table>

To call an insertion-device beamline, dial 630.252.18XX

To call a bending-magnet beamline, dial 630.252-17XX (where XX is the sector number)