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1. Introduction and Summary 
 
The ceramic beam chambers in the sections of the kicker magnets for the beam injection and 

extraction in the Advanced Photon Source (APS) are made of alumina. The inner surface of the 
ceramic chamber is coated with a conductive paste. The choice of coating thickness is intended 
to reduce the shielding of the pulsed kicker magnetic field while containing the electromagnetic 
fields due to the beam bunches inside the chamber, and minimize the Ohmic heating due to the 
fields on the chamber [1]. The thin coating generally does not give a uniform surface resistivity 
for typical dimensions of the ceramic chambers in use. The chamber cross section is a circular or 
an elliptic shape. The chamber or its wall thickness refers to the conductive coating in the 
following sections. 

This note calculates the penetration of the kicker magnetic field inside the beam chamber. 
The kicker field is assumed to be a half-sine pulse and be spatially uniform over the chamber 
dimensions. The purpose of the calculation is to be able to deduce the average surface resistivity 
of a chamber by fitting the measured magnetic field data with the calculation inside the chamber. 
In the following section, assuming that the coating thickness d is much smaller than the classical 
skin depth δ, the penetrated field inside the chamber is calculated by subtracting the shielding 
field due to the eddy currents. In Section 3, for the kicker fields parallel and perpendicular to the 
axis of a circular beam chamber, the fields inside the chamber with an arbitrary wall thickness 
are calculated. For both directions of the kicker fields, the approximations made for d << δ 
achieve the same results as given in Section 2. For elliptic chambers, the calculations for the 
vector potentials are not completed because of the tedious approximation procedure with 
Mathieu functions. Instead, the results in Section 2 and the time constants calculated for the 
elliptic geometries in Table 1 could be used for the purpose of this note. 

 
2. Simplified Solution 
 

The two-dimensional cross section of a circular cylinder is depicted in Fig. 1. The 
conducting-wall thickness, d = b – a, is greatly exaggerated compared to its inner and outer radii, 
a and b, and the main body of the chamber (ceramic) is not shown. The kicker magnetic field 
By(t) is applied perpendicular to the chamber axis. Neglecting the eddy current distributions near 
both ends of the chamber, the eddy currents in the chamber are assumed to be parallel to its axis. 
For a simple calculation of the eddy current shielding, we will follow the textbook by Smythe 
[2]. The eddy currents due to the inducing kicker field By(t′), at time t′ before the present time t, 
reduce the field inside the chamber at time t. The eddy currents have been decaying out 
exponentially from the time t′ with a time constant τ. Then the field inside the chamber at time t, 
Bi(t), may be calculated by subtracting the shielding field due to the eddy currents from the kicker 
field By(t): 
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where ∂⁄∂t is replaced with −∂⁄∂ t′  before the integration by parts. If By(t−t′) = 0 for t ≤ t′, from 
the convolution theorem the Laplace transform of Eq. (1) with Laplace variable p is given by 
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 For an inducing kicker field of a half-sine wave with a pulse width to = π⁄ω and its Laplace 

transform, 
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 we calculate the inverse Lapace transform of Eq. (2): 
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where 1tan ( ),φ ωτ−=  and the time constant τ has to be calculated for the specific geometry of the 
circular chamber. 

 Table 1 lists the time constants for a few different chamber geometries.  The resistances and 
inductances are calculated for a unit length of the chamber. The magnetic field inside the 
chamber is assumed to be spatially uniform under a uniform time-varying external field. For the 
kicker fields both perpendicular and parallel to the chamber axis, the table lists the same 
expression of the time constant for the circular chamber, with a vacuum permeability oµ  and 

conductivity σ, as  
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where the surface resistivity, Rs=1/σd,  assumes that the coating thickness d is less than the 
classical skin depth δ. For σ =1×10-6 S/m and ω = 1×106, for example, δ is approximately 0.4 
mm compared to d = 2×10-3 mm for Rs = 0.05Ω [3]. 

Figure 2 shows the magnetic fields inside a circular beam chamber, relative to the kicker 
field, calculated from Eq. (5) for the time constants of the chamber, 0.25 µs, 0.5 µs, and 1 µs. 
The kicker field is a half-sine wave with a pulse-width 4 µs (ω = π/4×106). The peak field for τ 
=1 µs is approximately 0.815 of that for the applied kicker field with a phase delay of 0.8 µs.  
 
3. Circular Beam Chamber 
 

a. Kicker Magnetic Field Perpendicular to the Chamber Axis 
 

For the inducing kicker magnetic field applied perpendicular to the chamber axis, as shown in 
Fig. 1, the eddy currents in the chamber are only in the direction of the chamber axis as assumed 
in the previous section. This would be the case when the chamber is relatively long compared to 
the diameter of the chamber, and the eddy currents near both ends of the chamber are neglected. 
Then, the vector potential of the field, which induces the eddy currents in the conducting wall, 
must be parallel to the chamber axis. 

We choose a circular cylindrical coordinate system (r,θ,z) such that the z-axis coincides with 
the axis of the chamber. Then, from the Maxwell’s equations we have:  
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where µ  is the permeability of the chamber and the displacement current is neglected for a pulse 

width on the order of 10-6s. Since the vector potential A(r,θ,t) has the z-component only and does 
not depend on the z-coordinate, from now on the subscript z for the vector potential will be 
omitted for brevity.  

In order to have Br = oµ Hy(t)sinθ and Bθ = oµ Hy(t)cosθ for r→∞, we may express the vector 

potential Ao for the outer region of the chamber, r ≥ b, as 
 

A H t r
D

ro o y= − +µ θ{ ( ) }cos ,        (9) 

 
where oµ Hy(t) is the applied kicker field and D is a constant to be determined from boundary 

conditions. If we assume that the field in the inner region of the chamber, r ≤ a, is uniform for 
uniform surface resistivity of the chamber, the potential Ai for r ≤ a may be written  
 

( ) cos .i o iA H t rµ θ= −           (10) 

  



Combining Eqs. (7) and (8) for the chamber region a ≤ r ≤ b with a permeability µ  and 

conductivity σ, the equation for the vector potential A we want to solve is 
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Writing the vector potential for the chamber region in the form of 
 

( , ) cos( )A R r t nθ=           (12) 
  
and substituting it to Eq. (11), we have the Laplace transform of the equation for R(r,t)  
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with 1/ 2( ) .q pµσ=   From Eqs. (9) and (10), it is obvious that we have to choose the circular 
harmonic number n = 1 for the spatially uniform kicker field. Hence, the solution of Eq. (13) is 
given by 
 

R r p FI qr GK qr( , ) ( ) ( ),= +1 1         (14) 
 
where I1(qr) and K1(qr) are modified Bessel functions of the first and second kinds of the first 
order, and F and G are constants to be determined. From the boundary conditions of the magnetic 
flux densities and the magnetic intensities at r = a and b, and using the relations 
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for the vector potentials, Ao, A, and Ai, we finally have the field inside the chamber, Hi(p): 
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For a wall thickness of chamber d = b − a, much smaller than the classical skin depth, Eq. 
(16) may be approximated, after the Taylor expansion of I1(qr) and K1(qr) near r = a or b to the 
first order in d. Then using recurrence and Wronskian relations for the modified Bessel functions, 
we have: 
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where / .r oµ µ µ=  The inverse Laplace transform of Eq. (17) for the kicker field of a half-sine 

wave (Eq. (3)) and its Laplace transform (Eq. (4)) give the same form as Eq. (5) but with a 
different expression for the time constant τ: 
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For rµ = 1, Eq. (18) is reduced to Eq. (6). It should be noted that when rµ  is on the order of  

a/d (103, for example), the time constant reduces to approximately one-half of Eq. (6). When the 
kicker field has to be expressed in terms of the nth circular harmonics, the solution for Eq. (13) 
may be given by a linear combination of order n of the modified Bessel functions, and the time 
constant will be reduced to τ/n.  
 

b. Kicker Magnetic Field Parallel to the Chamber Axis 
 

When the chamber axis is not perfectly aligned perpendicular to the kicker field, there will be 
a field component parallel to the axis, oµ Hz(t). Let us assume that the field penetrated inside the 

chamber, oµ Hi(t), is parallel to the axis. This requires that the surface resistivity of the chamber 

be relatively uniform so that the eddy current due to oµ Hz(t) in  the region of the chamber, a ≤ r ≤ 

b, be in the azimuth direction. After the Laplace transform of the following Maxwell’s equations 
in the cylindrical coordinates, 
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 the equation to be solved for Hz is given by 
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where q is the same parameter defined for Eq. (13). The solution may be expressed in terms of 
order zero of the modified Bessel functions, I0(qr) and K0(qr): 
 

0 0( , ) ( ) ( ).zH r p fI qr gK qr= +  

 
Using Eq. (19), we have the following relations for the magnetic field, oµ Hi, for the region r ≤ a: 
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 Together with the continuity conditions for Hz(r,p) at r = a and b, we obtain 
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The approximation made for Eq. (16) can be applied to Eq. (20) to find 
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and the inverse transform of which, for a half-sine wave pulse, gives the same results as Eq. (5) 
with a time constant τ  
 

τ µσ=
1

2
ad .             (21) 

 
For rµ = 1, the time constants for Hz(t) and Hy(t) are the same. For rµ  >>1, it should be noted 

that the time constant for Hz(t) increases with rµ , while that for Hy(t) decreases with 

1/(2+ rµ d/a). 
 
4. Elliptic Beam Chamber 

 
For a beam chamber of elliptic cross section as shown in Fig. 3, we use elliptic coordinates: 
 

1cosh ( / ),w i z hξ η −= + =  
or (cosh cos sinh sin ),z x iy h iξ η ξ η= + = +        (22) 

with  1/ 2 1/ 2/ / 2 (cosh 2 cos 2 ) .h h dz dw hξ η ξ η= = = −  

  
A constant value of ξ  represents a confocal ellipse with major and minor axes, 2 coshh ξ and 

2 sinh ,h ξ  and foci at (x, y) = (±h, 0). 

When the kicker magnetic field oµ Hy(t)  is parallel to the minor axis of the chamber, the 

equation to be solved for the vector potential A (subscript z is omitted for brevity) for the 
chamber region  1 2ξ ξ ξ≤ ≤  in Fig. 3  is given by 
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After the Laplace transform, the desired form for the vector potential may be expressed as 
A q q q( , , ) ( , ) ( , )ξ η ξ η= Ξ Θ . Then we have two Mathieu equations: 
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where c is the arbitrary separation constant and q hq= ( / )1

22  is a positive parameter with 
1/ 2

1 ( )q pµσ= . 

Outside of the chamber region 2 ,ξ ξ≥  where q = 0, we should have c = n2 (n: odd integers) 

in order to have a periodicity of 2π for the vector potential, A A( , ) ( , )ξ η ξ η π= + 2 . Additional 
conditions of 
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require that n = 1, and the vector potential Ao for the outside may be written as 
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where an(p) are constants to be determined.  Inside the chamber 1ξ ξ≤ , the vector potential and 

the magnetic field components oµ Hη and oµ Hξ, must be continuous near both sides of the 

interfocal line ( 0ξ → ):  
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Then the only permissible form of Ai, with the magnetic field at the chamber axis oµ Hi(t) 

may be written as 
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where n has to be odd integers to have the periodicity of 2π in η,  and bn are constants to be 
determined. 

For the region of the chamber wall 1 2ξ ξ ξ≤ ≤ , the solutions for Eq. (24) are Mathieu 

functions by writing −q for q or (π/2−ξ) for ξ. Here we choose only the cosine series for Θ(η,q): 
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where the series B r2 1

1
+  is a function of q. The solutions for Eq. (25), by writing (πi/2+η) for η, are 

modified Mathieu functions of the first kind for q negative. Hence, the function Ξ(ξ) may be 
expressed in terms of two independent series of the modified Bessel functions [4]: 
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where f and g are constants to be determined.  For h→ 0, ξ→ ∞, and h coshξ→ a, the argument 

2 coshq ξ  approaches q1a in Eq. (31), and the terms for r = 0 converge to Eq. (14) for the 

circular chamber. 
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Table 1. Time constants of magnetic field decays for a few different chamber geometries. 
The coating of the chamber wall is assumed to have a uniform surface resistivity Rs = 
1/σd. The applied magnetic field outside the chamber is spatially uniform (see Figs. 1 and 
3). The field direction is perpendicular to the chamber axis for all chamber geometries 
except Chamber Geometry b. 

______________________________________________________________________ 

Chamber Geometry R L τ = L/R 
a. Circular, radius a 2

πσad
 

µ
π
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b. Circular, radius a, field 
     parallel to the axis  

2π
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c. Rectangular, width w 2
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d. Elliptic, major axis 2a, 
    minor axis 2b 
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                      (b/a)2 = 0.75 f1 = 1.07  f2 = 1.10 f3 = 1.03 
                                   0.5          1.15         1.26       1.09 
                                   0.25        1.26       1.55       1.23 
                                   0.1        1.35       1.97       1.46 
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Fig. 1. Cross section of a circular chamber in a pulsed vertical kicker magnetic field By(t). 
The chamber wall thickness d = b − a, which is greatly exaggerated in the figure 
compared to the radius, is a coating of conducting material. Bi(t) denotes field penetrated 
inside the chamber. The positive x-axis is the reference for the azimuthal angle θ of the 
cylindrical coordinate system (r, θ, z). 
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Fig. 2. Magnetic fields inside a circular chamber calculated from Eq. (5) for the time 
constants 0.25 µs, 0.5 µs, and 1 µs. The magnetic fields are relative to the kicker field of 
a half-sine wave of a 4-µs pulse-width. 
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Fig. 3. Cross section of an elliptic chamber in a pulsed vertical kicker magnetic field 
By(t). The chamber wall thickness ξ2−ξ1, which is greatly exaggerated in the figure 
compared to the minor or major axes, is a coating of conducting material. The foci are 
located at (x,y) = (±h,0). 
 


