
MBj'jUScnpt has been authored
by the U. S. Government

I
under No. W-31·109-ENG-38.
AccOrd~ng}~, S. Government retains a
noneXC}l';',,,..Ei, _¥~free Hcense to publish
or roduce th, rll.!-OJished form of this
contribution, or others to do so, for
U. S. Governme_n_'. P_'U~ip_o_se_s. _____ -,

LS Note No. 190

Development of General Purpose Data ACquisition Shell (GPDAS)

Y. Chung and K. Kim

Advanced Photon Source
Argonne National Laboratory

Argonne, IL 60439

Table of Contents

1. Introduction... 1

2. Configuration.......... 2

3. Starting and Programming in GPDAS .. 2

4. Constants and Variables ... 4

5. System Global Variables .. 6
6. Alias Definition .. 6

7. History Mechanism 7

8. Show and Save ... 7

9. Input and Output .. 8

10. Operators and Functions 8

11. Subroutines ... 8

12. Command Flow Control... 9

13. Graphics .. 10

14-. Windows ... 11

15. GPIB and Device Drivers .. 11

16. Help Facility .. 12

Appendices

A. GPDAS.CFG (GPDAS Configuration File) ... 14

B. GPDAS Shell Command Syntax ... 16

C. Special Characters and System Global Variables 21

D. I/O Command Syntax .. 22

E. Operator Syntax 23

F. Graphics Command Syntax 26

G. Window Command Syntax ... 27

H. GPIB Command Syntax 28

I. Device Driver Command Syntax 29

J. Script Example SORTCAP.SCR .. 32

K. Script Example RADTRIG.SCR .. 41

L Introduction

GPDAS (General Purpose Data Acquisition Shell) has grown out of a need for a

command interpreter and a programming environment designed to handle streamlined

data acquisition and analysis in a flexible laboratory measurement setting. Although most

operating systems on various platforms provide a command interpreter and certain

levels of programmability, there are none specifically designed for a laboratory

environment dedicated to data acquisition, analysis, and device control that requires

command flow control, communication with external devices, and storage and archiving

of acquired dara.
Usually a dedicated, stand-alone application, though limited in its scope of

capabilities, would be developed for such purposes. The drawback of this approach,

however, is that such applications provide little flexibility to adapt to different laboratory

environments or different configurations of devices, especially in the R&D phase which

calls for frequent changes in the measurement procedures.

An interpreter-based shell can be a very convenient tool for device control and

data acquisition through the user command input as well as via sCript files containing

several commands. By incorporating the native operating system, such as UNIX or MS­

DOS, it can take advantage of existing utility programs for file manipulation and data

analysis. Hardware-level debugging and script programming can also be facilitated by

utilizing interactive mode, aliases, variables, and history mechanisms. In consideration of

the interpreter's relatively slow execution time, some routines requiring high speed can

be separated as module programs, or utilities, and called from scripts. Modularization of

an application into several small utilities is also a good programming strategy since they

are easy to debug, don't take up much memory space, and can be used in other

contexts.

The current version of GPDAS runs on MS-DOS-based microcomputers. The

.software package consists of a shell, utilities, and script programs. The computer system

for magnet measurement at APS, for instance, currently uses GPDAS and consists of a

Compaq 386/20e microcomputer equipped with 4 MB RAM, a 40 MB hard drive, a 44 MB

removable hard drive, a 5.25" 1.2 MB floppy drive, a 3.5" 1.44 MB floppy drive, and a

VGA monitor. The system is linked to other computers through Ethernet for data

transfer and communication. Text and PostScript graphics files are downloaded to laser

printers using an AppleTalk connection.

1

\

The shell can be directly interfaced with PC boards in order to control the data

acquisition devices. In conjunction with the magnet measurement system, software

drivers for 1EEE-488, a multifunction board, and an ADC/DAC are built into the shell.

The shell can be interfaced to other types of boards through source level modification.

Developed with such possibilities in mind, the internal structure of the shell is highly

modularized to facilitate such changes.

This note is fntended as an abbreviated introduction to the concept and the

structure of GPDAS and assumes the reader has a certain level of familiarity with

programming in general. The structure of the following sections consists of brief

explanations of the concepts and commands of GPDAS, followed by several examples.

Some of these are tabulated in the appendices at the end of this note.

2 Configuration

When started, GPDAS reads in several setup parameters from the configuration

file. The default configuration file has the same name and is in the same directory as the

shell application, with the file extension ".CFG". The syntax of this file and the meaning

of each parameter are shown in Appendix A. Default values are used for unspecified

parameters. If the file cannot be located in the present working directory, default values

are used for the parameters that are essential in starting up the shell. The configuration

parameters for the device drivers, e.g., GPIB and ATMIO, are read in the first time those

drivers are called.

3. Starting and Progrnmming in GPDAS

The shell is started by typing in the name of the shell program with extension

".EXE" at the DOS prompt. It takes the configuration file name as the only optional

argument preceded by "_h".

Ex. 3.1: Starting up the GPDAS shell at DOS prompt.

C:\> mm name of the shell program is mm.exe and the
configuration file name is mm.cfg.

C:\> diag -h gpdas.cfg name of the shell program is
diag.exe and the configuration
file name is gpdas.cfg.

2

The shell can be programmed to perform desired tasks either interactively or

non-interactively. In the interactive mode commands are entered through the keyboard,

while in non-interactive mode the shell reads commands from a script and executes

them. The user interface of the interactive mode is very similar to that of the native

operating system, MS-DOS.

The syntax of the commands must conform to DASL (Data Acquisition Shell

Language), a high-level programming language developed for GPDAS. Commands not

understood by the shell are passed to MS-DOS for further processing. These shell

commands are listed in Appendix B. Script programming is easier than developing new

applications; therefore, debugging of hardware and testing of measurement procedures

are simplified.

Ex.. 3.2: Sample commands at the shell prompt level.

GP-C:\DAS 1> dir/w

GP-C:\DAS 2> for #i = 0, 10, 1 {

GP-C:\DAS 3>

#j = sin (#i * 3.14 / 10);
write line to screen #i #j;
}

A script should begin with the "procedure" command followed by the script

name and a left curly bracket. This signifies the beginning of the script. The left curly

bracket must be matched by a right bracket at the end of the script, which is the

implicit end of the script. The "end" command explicitly terminates the script

execution. Each command in a script must end with a semicolon (;). A line that begins

with an exclamation mark (0 is a comment line and is ignored. If a line starts with an

exclamation mark and an asterisk 0*), all the following characters up to "*!" are ignored.

An example script is shown in Ex. 3.3.

A sample script.

procedure sample.scr

'* A sample script displaying numbers from 0 to N.

3

*
*
* !

Syntax:
run sample;

define ws write line to screen;
define NN 10;

Begin the loop.

for #i = 0, NN, 1 {
ws "The number is" #i;

}
end;

Design objectives of the shell include:

<I> Interactive mode for user command input

01> Non-interactive mode for script execution

01> Definition of command aliases

01> History of commands

<I> Assignment of variables and arrays (integer, long, float, double, and string) in RAM

and virtual memory

01> Backup of aliases, history, and variables in script format

01> Mathematical, logical, and text string operations

<I> Input and output

II> Command flow control

<I> Device interface

<III Windowing capability

01> Graphics capability

Other utility applications have also been developed as integral parts of the

software package. These include: PostScript graphics, graphical monitoring, file

management, background printing, and device control.

4. Constants and Variables

There are five types of constants and variables: integer, long integer, float, double,

and string, as shown in Table 4.1. Integer constants range from -32,768 (-215) to 32,767

(215 - 1), while long integers range from -2,147,483,648 (-231) to 2,147,483,647 (231 - 1).

Double type constants are distinguished from the float type constants by the presence

of the exponent C'e') character.

4

The string constants are surrounded by two double quotes ("). They are character

arrays of user-definable length (256 by default) and are terminated by a null character

(hexadecimal 0). Some special characters, such as the double quote (") and carriage

return, can be embedded in a string constant when prefaced by the back-single-quote C)

character. These special characters are listed in Appendix C. String constants can

contain any ASCII codes (OxOO - OxFF) preceded by the tilde (-) character. Examples are

shown in Ex. 4.2.

Explicit declaration of variables is optional, and the types of variables that appear

without prior declarations are determined as follows: variables that start with characters

'i' through 'n' are long integers; all others are doubles by default. The declaration of

variables can be placed anywhere, not only at the beginning of the shell or scripts.

Variables should be preceded by a '#' character, and assignment of values to

variables is done through the equal (=) sign. Arrays of variables can be declared by

specifying the dimensions in square brackets ([D. The contents of variables may be

stored either in RAM (random access memory) or in the virtual memory file on disk to

save main memory (i.e. RAM) space, especially when allocating arrays of large size. The

default location is specified in the configuration file. To override the default, either "/v"

(for virtual memory) or "/m" (for main memory) may be specified in the allocation

command. Binary data files can be loaded into variables by including a "/I" option in the

allocation command as shown in Ex. 4.1.

Ex. 4.1: Declaration and initialization of variables.

float #k, #x = 100.0;
float/m #coeff[5] = {O.l, 0.2, 0.3};
float/v #data[lOOO];

float/l/v #olddata = olddata.vmf;

Type Size (bytes) Examples

Integer 2 0,1,-10,32767,-32768

Long integer 4 1,-10,2147483647

Float 4 1.0,3.5, -100.2

Double 8 le+20, -3.4e-15

allocated in RAM
allocated in
virtual memory
load the data in
a binary file

String user-defined "This is a string.", "'IIABC'II", "A'tB'tC"

Table 4.1: Valid constant types in GPDAS.

5

Ex. 4.2: String constants.
write line to screen "-07"; sound a beep.
write line to screen "-C4-C4-C4-C4-C4-C4-C4-C4-C4-C4-C4";

draw a line.

5. System Global Variables

System global variables are declared at the beginning of the shell startup and

become accessible to the shell and all scripts. Currently, there are 10 such variables, as

listed in Appendix C.

Ex. 5.1: Use of the system global variables.

gpib read file from hpna to #$vmdir I I hpdat.vmfi
float/l/v #hpdat = hpdat.vmf;

6. Alias Definition

Commands and parts thereof may be defined as single-word aliases to simplify

the interactive command input and script programming. When a predefined alias is

encountered in a command string, the interpreter expands the alias and substitutes the

arguments, if there are any. No space is allowed in the alias in the "define" command. In

case of multiple commands, the aliases must be surrounded by curly brackets ({ }), which

are stripped away before being stored in the alias file.

Ex. 6.1: Defining aliases.

define nn 100;
define ws write line to screen from;
define grna gpib write line to hpna from;
define ad(a,b) «a)+(b»;
define bpmtest(file,mseq) run bpm -f file -m mseq;
define for loop {

for #i = 0, nn, 1 {
write line to screen #i;

}

Command aliases can also be assigned to the functions keys (Fl - FlO) by using the

"defkey" command. Pressing one of the functions keys will display the command string

and prompt for execution or further modification.

6

Ex. 6.2:: Function key assignment.

defkey f1 dir/w;
defkey f2 {copy *.c b:\; copy;.h b:\; copy *.obj b:\}

7. History Mechanism

All user commands entered at prompts are recorded in series in a history file for

future retrieval and navigation through the commands. These commands are retrieved

by using the up key (1), the down key (J..), and the exclamation mark (0. Pressing the up

key displays the command previous to the current one, and pressing the down key

displays the command after the current one in a cyclic manner. The exclamation mark

(0 is used to to recall the n-th command recorded in the history file.

Ex. 7.1: Retrieving a past command.

!10<cr> will display the 10-th command since startup.

8. Show and Save

Variables, aliases, and history can be displayed and saved to files for later use with

the "show" and "save" commands. Wild characters 1*1 and I?' are used to specify several

variables, aliases, and previous commands. Data can be saved to binary files using the

"/b" option. When saving variables, it is important that the name of the variable to be

saved is at the end of the command.

Ex. 8.1: Showing and saving variables, aliases and history.

int #i, #k;
double #x[100], #y[100] f #cx[100], #cy[100];
show variable #k, #x[*);
save variable to var.scr #k #x;
save /b variable to cx.vmf #cx;
save /b variable to cy.vmf #cy;
show variable #c*; ! show variables starting with #c.
save variable to varc.scr #c*;! save variables starting

I with #c.
show define do*; ! show aliases starting with do.
save define to aliases.scr *; ! save all aliases.
show history 17; ! show commands numbered between 10 and

19.

7

9. Input and Output

The native operating system, such as MS-DOS, provides input/output (I/O)

capabilities to peripheral devices and the built-in device drivers provide I/O capabilities

to external devices as explained in Section 15. In addition to these, several commands

can be used to create, open, read from, and write to disk files and the console. The

relevant commands are: "open", "close", "read", "write", and "file". The command

"file" has two subcommands: "find" and "go". The syntax for these commands are

tabulated in Appendix D.

Ex. 9.1: I/O to disk file and the console.

open/n test.txt;
write line to test.txt "This is a test string.";
close test.txt;
write line to screen from "This is a test string.";

10. Operators and Functions

There are several operators and functions that are built into the shell. These

operate on numerical and logical entities and strings. The list of built-in operators and

functions is given in Appendix E.

Ex. 10.1: Operators and functions.

#x 1. 0;
#y sin (#x + sin (#x»;
int #ia[10] = {Or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
#std = arrstdev (#ia);

11. Subroutines

Subroutines are separated from the main procedure of the script by the

"subroutine" heading, and the "call" command invokes the execution of a subroutine. A

subroutine begins with a left curly bracket (0 and ends with a right curly bracket 0).
Since the aliases and variables are used globally among the main procedure and the

subroutines, no arguments are passed between the calling routine and the one called.

The "return" command simply makes the script execution resume at the point where

8

the subroutine was called. If there is no return command, the subroutine returns when

the end bracket is encountered.

1% 11.1: Calling a subroutine.

call test;

subroutine test
{

write line to screen "This is a test.";
return;

}

12 Command Flow Control

There are seven commands for command flow control (if, elseif, else, do, for,

while, and goto). These commands must be immediately followed by a curly bracket (D

and a matching bracket 0) at the end. They can also be nested within each other to an

indefinite degree.

If, elseif, and else are conditional flow control commands. If the expression in the

parentheses is non-zero, the commands surrounded by the curly brackets are executed;

otherwise, the following command is executed.

1% 12.1: Conditional flow control commands: if, elseif and else

#i 100;
if (#i .It. 10)

write line to screen "#i is less than 10.";
}
elseif (#i .It. 100) {

write line to screen "#i is less than 100.";
}
else {

write line to screen "#i is greater than or equal to
100.";
}

For an unconditional jump to a labeled location in a script, the "goto" command

can be used. A label is identified by a colon (:) after the label name. Script execution

cannot jump across nested loops using the "goto" command.

9

Ex:. 12.2: Unconditional flow control command: goto

if (#i) {
goto exit;

}

exit
return;

Other useful flow control commands are: do, while, and for. The "do" command

is matched by a "while" condition statement at the end of the loop. After the

commands within the curly brackets are executed, the "while" condition is tested. If it is

true, the script execution restarts at the beginning of the loop. Otherwise, it continues

with the next command. Therefore, the lido" loop is executed at least once. For the

"while" command, the condition is tested first, and the execution continues with the

loop or skips the entire loop depending on the result. In case of the "for" command,

the initial and final values and the increment are given at the beginning of the loop.

When the value of the variable goes outside the range specified by the initial and final

values, the loop execution terminates.

Ex:. 12.3: Flow control commands: do, while and for

#i 0;
do {

write line to screen #i;
inc #i;

} while (#i .It. 10);

while (#i .gt. 0) {
write line to screen #i;
dec #i;

for #i = 0, 10, 1 {
write line to screen #i;

}

13. Graphlcs

In order to accomplish simple graphical tasks, a set of graphics commands was

included in the shell. Once the shell is put in the graphics mode, the "graff command

can draw various kinds of graphical entities on the screen. This command is ignored if

10

the shell is in the text mode. The "graf' command is followed by various subcommands.

The syntax for the graphics commands is listed in Appendix F.

Ex. 13.1: Graphics-related commands.

graf setorigin 0 0;
graf moveto 100 100;
graf lineto 200 200;

14. Windows

Text strings, including all printable ASCII characters, can be drawn on a window

using the window-related commands. The colors of the window background and the

text can be assigned for each output. The "create" subcommand creates a window but

does not display it on the screen. The window is displayed with the "show"

subcommand. Each window has a unique title which must be specified for each

command to direct the text output to the proper destination window. The syntax for

the window-related commands is listed in Appendix G.

Ex. 14.1: Window-related commands.

window create win1 0 1 14 30 10 80 20;
window write win1 2 2 50 3 "This is win1.";
window show winI;

window delete *; deletes all windows.

15. GPm and Device Drivers

For communication with external devices, there are four drivers built in the shell:

GPIB, ATMIO, ATDIO and NEAT. The corresponding commands are "gpib", "atmio" ,

"atdio ll
, and "neat", respectively. GPIB (General Purpose Interface Bus) is a popular

parallel bus architecture for data acquisition, ATMIO is a multifunction board with AID

and D/A converters with analog I/O, and ATDIO provides high-speed 32-bit parallel

digital I/O interface. These boards are manufactured by National Instruments. NEAT is a

stepper motor driver board manufactured by New England Affiliated Technologies.

11

The driver commands are followed by various subcommands, such as "read" and

"write", as tabulated in Appendices Hand 1. Device drivers may be added to or deleted

from the shell with minor modifications to the initialization routines in the source code.

Even though the device drivers are integrai parts of the shell, each has a separate

and independent command syntax, as defined by its programmer. In some cases, it is

desirable not to evaluate the variables used in the device command, e.g, when reading a

string from an external device and storing it in a string variable. By putting an ampersand

(&) in front of/the variable, the interpreter does not evaluate the variable when parsing

the command.

The "gpib" command is used for I/O and device control for external GPIB

devices. Several I/O options allow downloading and uploading data either to a string

variable ("line") or to a file ("file" and "ffile"). The command syntax and the functions of

subcommands are tabulated in Appendix H.

Ex. 15.1: GPIB commands.

define gwna
define grna
define gfna

gpib write line to hpnai
gpib read line from hpna;
gpib read file from hpna;

gwna "idn?";
grna #str; #str is a variable of string type.
gwna .. formS";
gwna "outpform";
gfna d:\hpdat.vmf upto 0;

16. Help Facility

Extensive on-line help is available to reference the command syntax and other

features of GPDAS. The help information, contained in a text file with a user-definable

name ("GPDAS.HLP" by default), must conform to the following format. A main topic,

usually a command, is preceded by a dollar sign ($). A subtopic is then preceded by a

double dollar sign ($$), a subsubtopic is preceded by a triple dollar sign ($$$), and so on.

This facilitates updating the on-line help information.

Ex. 16.1: Help file format.

$ DEFINE alias [(argl, arg2, ... , argn)] expr
Defines alias to string 'expr'.

$$ Examples
define cp copy;
define cpall {

12

}

copy *,c b:\;
copy *.h b:\;

define add(a,b) «a)+(b»;

$ GPIB
Invokes the GPIB function.

$$ abort
gpib abort dev
Make a GPIB device stop listening.

$$$ Example
gpib abort hpna;

From Ex. 16.1, the command "help define" will display everything from

"DEFINE" up to the double dollar sign followed by a list of available sUbtopics. Typing

in "help gpib abort" will display everything from "abort" up to the triple dollar sign,

followed by a list of available subsubtopics.

Listings of sample scripts SORTCAP.SCR and RADTRIG.SCR are in Appendices J
and K, respectively.

13

Appendix A. GPDAS.CFG (GPDAS Configuration File)

prompt = "GP-{pwd} {mem} {cnum}>
t

login = "c:\das\mms\login,scr"
logout = ""
help = "c:\das\mms\gpdas.hlp"
history = "gpdas,hst"
vmdir = "f:\dasvm"
vmfile = "f:\dasvm\vm,dat"
alfile = "f:\dasvm\al,dat"
dos = "c:\command /e:512 /c "
memory "virtual"

string 256
buffer 1024
command = 512
stack = 4
shell alias = 128
scr alias = 32
variable = 32
nhistory = 64
vmsize 512000
alsize 512000
window 8

cflow = 8
label = 32
subroutine
block

board = gpib

16

device = gpibO
addr = 0
eos = 10
timeout = 10

device = tesla
addr = 1
eos = 10
timeout = 10

board = atmio

channel 2
voltmax 10,
voltmin = -10,
scalemax = 1000,

t

" ! prompt
{pwd} : present working directory
{mem} : memory available
{cnum}: command number
name of the login file
name of the logout file
name of the help file
name of the history file
directory for virtual files
virtual file for variables
virtual file for aliases
dos command
default memory for variables

length of strings in bytes
length of the command buffer
maximum length of a command
size of the operand stack
size of the shell alias block
size of the script alias block
size of the variable block
number of commands in history
size of the variables virtual file
size of the aliases virtual file
maximum number of windows

depth of the command flow control
size of the label allocation block
size of the subroutine allocation

'\n'. Do not use '\r',

14

scalemin = 900.

channel 3
voltmax 10.
voltmir1 -100
scalemax 1000.
scalemin = 500.

board = atdio

device PSCON
addr ",;, Ox14

device = ADCON
addr = Ox18

15

AppendixB. GPDAS Shell Command Syntax

Commands Syntax Function

? ? command Substitute all applicable aliases and evaluate all

expressions, but do not execute the

command.

label : Designates a label position for use with' goto'

command.

variable[index] = value Sets the value of a variable[index].

add add variable [by] expr add 'expr' to 'variable'.

atdio atdio subcommand ... atdio device command. See Appendix 1.

atmio atmio subcommand ... atmio device command. See Appendix 1.

bkp bkp Set a breakpoint in a script file for debugging.

break break Break out of the loop while executing the

script.

call call subroutine Call a subroutine in the current script.

close close filename Close a file already open for I/O.

command command expr Invokes the GPDAS command interpreter.

'expr' is evaluated before execution.

continue continue Go to the beginning of the loop and continue.

countl countl [on I off] Turn line counting on or off. If the line

counting is on, screen output will pause after

each screenful of output.

deassign deassign [define I Remove currently allocated aliases or

defkey I variable] arg1, variables.

arg2, ... , argn

debug debug [on I off] Turn on or off the feature of debugging the

internal stack operation.

dec dec variable Decrease the value of a 'variable' by 1.

define define alias[(arg1, arg2, Defines alias to string 'expr'. 'expr' may be

... , argn)] expr multiple commands, in which case 'expr'

must be surrounded by curly brackets ({ D.
defkey defkey fkey expr Assign a command to a function key (FI -

FlO).

16

Commands Syntax

div div variable [by] expr

do do { ... } while (expr)

dos

double

dup

dos expr

(double [lv/m) variable

[dimen] [= { ... ll;

double/l[lv /m] variable

= virtual_filename

dup [on I off]

if, elseif, else if (exprl) { .. }

elseif (expr2) { .. }

else (expr3) { .. }

end end

file file subcommand

float float [lv/m] variable

[dimen] [= { ... }];

Function

Divide 'variable' with 'expr'.

Execute the commands in { '" } while 'expr' is

non-zero.

Invokes the DOS command interpreter.

'expr' is evaluated before execution.

Allocate double variables. All variables are

initialized to 0 unless specified. If the variable

is an array, only the unspecified elements will

be initialized to O.

Turn the duplication mode on/off. The

duplicated command shows the interpreted

command on the screen.

Conditional command flow control. The

commands in { .,. } will be executed if the

conditional statement is true.

Terminate the execution of the sCript and

return to the calling script or the shell.

Operate on file position pointers. See

Appendix D.

Allocate float variables. All variables are

initialized to 0 unless specified. If the variable

floatll[/v /m] variable = is an array, only the unspecified elements will

for

goto

gpib

graf

help

inc

virtual_filename be initialized to O.

for var = inicexpr,

fin_expr, inc_expr { ... }

goto label

gpib subcommand

graf subcommand

help [command_name

I function name]

inc variable

Execute the commands in { ... } at an

incremental step of 'inc_expr' for 'var',

starting with 'inicexpr'.

Unconditional command flow control. Will

jump to the specified label unconditionally.

Invokes the GPIB function. See Appendix H.

Invokes several graphics-related commands.

See Appendix F.

Display help information about commands or

built-in functions.

Increase the value of 'variable' by 1.

17

Commands Syntax Function

int int [lv/m] variable

[dimen] [= { ... }];

int/I[lv /m] variable =

virtual_filename

Allocate integer variables. All variables are

initialized to 0 unless specified. If the variable

is an array, only the unspecified elements will

be initialized to o.
long

monitor

muI

neat

open

pause

pickopt

procedure

read

return

run

long [lv/m] variable

[dimen] [= { ... }];

Allocate long variables. All variables are

initialized to 0 unless specified. If the variable

long/l[lv/m] variable = is an array, only the unspecified elements will

virtual_filename be initialized to o.
monitor [on I off] Turn the device monitor on or off.

mul variable [by] expr Multiply 'expr' to 'variable'.

neat subcommand Invokes the NEAT function. See Appendix 1.

open [la/b/nJ filename Open a file for I/O. See Appendix D.

pause [option] Pause execution of a script. With option = 1

or none a message will appear on the screen

for prompt.

pickopt opt desc var

[accepc var]

procedure proc_name

read [word I line] from

file_name [to] variable

return

run [li/d/ol script

Pick up the option string from the run

command. The optional variable accepC var

is set to 1 if opt was in the command.

Signifies the beginning of the script.

Read a word or a line from the console or a

file. See Appendix D.

Return from the current subroutine to the

calling subroutine.

Execute a script. The script file has an

extension ".SCR" by default.

Ii: Include the script in the current script or

the shell. The aliases and the variables are

shared between the calling and the called

scripts.

/d: Run in the debugging mode.

/0: Run the compiled script.

18

Commands Syntax Function

save save [laib/e/s/t] [define Save the currently defined aliases, history, or

I history I variable] [to] variables ('srce') to the file 'dest'.

dest srce Options:

show

string

show [Is] [define I

defkey I variable] [v]

string [lv/m] variable

[dimen] [= { ... }]j

fa: The output will be appended to an existing

file. If the file does not exist, a new one

will be created.

ib: The output will be in binary form.

Applies when saving variables.

/e: No !inefeed character will be added after

each element when saving variables.

Is: Displays only the names of aliases,

variables, and function keys assigned.

It: The output will be in text form. Applies

when saving variables.

Shows the content of 'v'.

Option:

Is: Displays only the names of aliases, .

variables, and function keys assigned.

Allocate string variables. All variables are

initialized to null unless specified. If the

string/i[lv/m] variable = variable is an array, only the unspecified

virtualjilename elements will be initialized to null.

sub sub variable [by] expr

subroutine subroutine sub_name

video video [graphics I text]

wait wait [until I for I to]

time

Subtract 'expr' from 'variable'.

Signifies the beginning of a subroutine.

Switch between the graphics and the text

mode for screen output.

Pause the execution of a sCript and wait

Options:

until: will wait until the specified datetime.

'time' is in the form "h:m:s mld/y".

for: wait for the specified time in seconds

starting now.

to: wait for the specified time in seconds,

starting from the beginning of the script.

19

Commands Syntax

while while (expr) { ... }

Function

Execute the commands in { ... } while 'expr' is

non-zero.

window window subcommand Invokes several window-related commands.

write write [char I word I

; line I file] [to] dest

[from] srce

See Appendix G.

Output the string in srce to 'dest', which is the

destination file name. See Appendix D.

Table B.l: List of the GPDAS shell commands.

20

AppendixC.

Character

'0

'b

'f

'n

r

'x

Spedal Cha.ract:ers and System Global Variables

Null character (NULL)

Backspace (BS)

Form feed (FF).

Carriage return (CR).

line feed (LF).

Horizontal tab (TAB)

Contents

same as x. x is any character other than above.

Table C.1: list of special characters.

Name

#$alfile

#$helpfile

#$historyfile

#$loginfile

#$logoutfile

#$maxstrsize

#$maxwindow

#$memvirtual

#$vmdir

#$vmfile

Type

string

string

string

string

string

integer

integer

integer

string

string

Contents

Name of the file containing aliases definitions.

Name of the help file.

Name of the history file.

Name of the login file.

Name of the logout file.

Size of string variables and constants.

Maximum number of windows that can be created.

Default location of variables and aliases. 1 if disk, 0

if RAM.

Directory name holding virtual memory files with

extensions ".VMX", (X = I, L,F,D,S).

Name of the file containing virtual variables.

Table C.2: list of system global variables.

21

AppendixD. I/O Command Syntax

Commands Syntax

open open [lalb/nl filename

read

write

file find

file go

read [word I line] from

file_name [to] variable

write [char I word I line

i file] [to] dest [from] srce

file find dest [in] srce

file go to [beginning I

current I end] [off foffl

[in] srce

Open a file for I/O.

Options:

Function

fa: append mode. The subsequent I/O will be

directed to the end of the file.

Ib: binary mode. The file will open in binary

mode.

In: new me. If a me of the same name already

exists, it will be deleted and a new file will

be created.

Read a word or a line from the console or a

file. 'file_name' can be "screen" or the name

of a file or the string variable for file name. It

is important that the name of the variable is at

the end of the command.

Output the string in file 'srce' to 'dest', which

is the destination file name. If 'dest' is

"screen", the output will be directed to the

standard I/O. Otherwise, 'dest' must be the

name of the file that has been already opened

by the 'open' command.

Find string 'dest' in a file 'srce' and reposition

the file pointer.

Go to the specified offset location in file

'srce'.

Table D.l: The commands for I/O to disk files and the console. The file name for the

console is "screen". The characters in square brackets are optional.

22

AppendixE.

Operator

a+b

a-b

a"'b

alb
a%b

al\b

.not. a

a .It. b

a .Ie. b

a .gt. b

a.ge.b

a.eq.b

a.ne.b

a .and. b

a .or. b

int(a)

long (a)

float (a)

double (a)

string (a)

capital (a)

btoi (a)

itob (a)

htoi (a)

itoh (a)

picknum (s,n)

pickchar (s,n)

pickword (s,n)

format (s, al,a2,

.. , an)

Type Function and Example

arithmetic addition; #X = #y + 2

arithmetic subtraction; #x = #y - 2

arithmetic multiplication; #x = #y '" 2

arithmetic dIvision; #x = #y I 2

modulus (remainder after division); #X = #y % 2

power; #X = #y 1\ 0.5

integer logical negation; if (.not. #1)

integer true if a is less than b; if (#x .It. 2)

integer

integer

integer

integer

integer

integer

integer

integer

long

float

double

string

string

integer

string

integer

string

string

string

string

true if a is less than or equal to b; if (#x .Ie. 2)

true if a is greater than b; if (#x .gt. 2)

true if a is greater than or equal to b; if (#x .ge. 2)

true is a is equal to b; if (#s .eq. "this")

true is a is not equal to b; if (#s .ne. "this")

true if both a and b are true; if (#1 .and. #j)

true if either a or b is true; if (#i .or. #j)

type cast to integer; #x = int (2.4);

type cast to long integer; #x = long (2.4);

type cast to float; #x = float (2);

type cast to double float; #x = double (2);

type cast to string; #x = string (2);

change to upper case; if (capital (#x) .eq. "YES")

convert a binary string to integer; #x = btoi ("Obl0l0n);

convert an integer to a binary string; #x = itob (10);

convert a hexadecimal string to integer; #x = htoi ("OxOa");

convert an integer to a hexadecimal string; #x = itoh (10);

pick the n-th number in the string s; #x = picknum (#s, 2);

pick the n-th character in the string s; #x = pickchar (#s, 2);

pick the n-th word in the string s; #x = pickword (#s, 2);

format a string using the format specification's' with

arguments al, a2, ... , an.

23

Operator

strsize (s)

fexist (a)

fsize (a)

disks pace (a)

datetime (a)

memory (a)

min (a,b)

max (a,b)

abs (a)

sqrt (a)

sin (a)

cos (a)

tan (a)

asin (a)

acos (a)

atan (a)

atan2 (a,b)

log (a)

exp (a)

rand (a)

sign (a)

arrdim (a)

arrmax (a)

arrmin (a)

arrmean (a)

arrstdev (a)

arrsum (a)

Type

integer

integer

long

long

string

long

double

long

long

Function and Example

length of the string s in bytes; #1 = strsize (#s);

true if a file of name "a" exists in the current directory;

if (fexist ("data.dat"))

the size of a file "a" in bytes.; #flen = fsize (lldata.dat");

the available disk space in the drive a in bytes.;

#dspace = diskspace (IIC");

a = 0; the current time and date

a = 1; number of seconds since startup in long integer

a = 2; number of seconds since startup in double

a = 3; number of milliseconds since startup in long integer

a = 0; the size of available memory in bytes

the smaller of a and bi #X = min (ry, #z);

the larger of a and b; #X = max (ry, #z);

the absolute value of a; #X = abs (-10);

double the square root of a; #X = sqrt (10);

double the sine value of a in radian; #X = sin (2.0);

double the cosine value of a in radian; #X = cos (2.0);

double the tangent value of a in radian; #X = tan (2.0);

double the arc sine value of a; #X = asin (0.5);

double the arc cosine value of a; #X = acos (0.5);

double the arc tangent value of a; #x = atan (0.5);

double same as atan (alb); #X = atan (-1,2);

double the natural logarithm of a; #X = log (2);

double the exponential of a; #x = exp (2);

double the random number generator of max a; #x = rand 0);

integer the sign of the number a; #x = sign (-100);

long the dimension of the array a; #x = arrdim (ry);

the maximum of the array a; #x = arrmax (ry);

the minimum of the array a; #X = arrmin (ry);

double the mean value of the array a; #x = arrmean (ry);

double the standard deviation of the array a; #X = arrstdev (#y);

double the sum of the elements of the array a; #x = arrsum (#y);

24

Operator

arrsum2 (a)

arrdot (a,b)

Type Function and Example

double the sum of the square of the elements; #x = arrsum2 (ry);

double the dot product of the arrays a and b; #x = arrdot (ry,#z);

Table E.l: List of operators and functions built into the shell. The type of the return value

depends upon the arguments if it is not specified.

25

AppendixF. Graphics Command Syntax

Commands Syntax Function

arc graf arc radius anglel angle2 Draw an arc with radius from

anglel to angle2.

clear graf clear Clear the graphics screen.

line to graf lineto h v Draw a line to (h,v).

moveto graf moveto h v Move to (h,v).

putpixel graf putpixel h v color Put a pixel of color at (h,v).

restore graf restore Restore the graphics status.

rmoveto graf rmoveto dh dv Move by (dh,dv).

dineto graf dineto dh dv Draw a line (dh,dv).

save grafsave Save the graphics status.

setbkcolor graf setbkcolor color Set the background color.

setcolor graf setcolor color Set the color for drawing.

setfont graf setfont fontid Set the font for text.

setfontsize graf setfontsize fontsize Set the font size for text.

setorigin graf setorigin h v Set the origin of coordinate to

(h,v).

setlinestyle graf setlinestyle Hnestyle Set the line style.

setlinewidth graf setlinewidth linewidth Set the line width.

setscale graf setscale scale Set the scale for graphics object

and text.

show graf show string Draw a text string left adjusted.

showcenter graf showcenter string Draw a text string centered.

showright graf showright string Draw a text string right adjusted.

vshowdown graf vshowdown string Draw a text string top to

bottom.

vshowup graf vshowup string Draw a text string bottom to

top.

Table F.l: List of the graphics related commands.

26

AppendixG. Window Command Syntax

Commands Syntax Function

box window box wtitle blink bc tc Draw a rectangular box (1, t, r, b)

1 t r b around a window.

create window create wtitle blink bc Create a window.

tc 1 t r b

cwrite window cwrite wtitle blink bc Draw a colored text in a

tc 1 t r b text rectangle (1, t, r, b) in a window.

debox window debox wtitle 1 t r b Remove the rectangular box (1, t,

r, b) in a window.

-delete window delete [wtitle I all] Delete a window or all windows.

fill window fill wtitle blink bc tc 1 Fill the rectangle (1, t, r, b) with

t r b bc. tc is the color of text in the

rectangle.

hide window hide [wtitle I all] Hide a window or all windows.

move window move wtitle 1 t Move a window to a new

location:

resize window resize wtitle dw dh Resize the window to dw x dh.

show window show wtitle Show a window.

write window write wtitle 1 t r b text Draw a text in a rectangle (1, t, r,

b) in a window.

Table G.1: List of the window related commands. wtitle = window title, bc = background

color, tc = text color, 1 = left, t = top, r = right, b = bottom.

27

AppenilixH. GPm Conunand Syntax

Commands Syntax Function

dear gpib dear dev Clear a GPIB device.

command gpib command [board brdl cmd cnt Output a GPIB command

to a board.

control gpib control [to] dev Pass the GPIB control to

a device.

ifclear gpib ifclear dev Interface dear a GPIB

device.

Hock gpib Hock [board brd] dev Disable the local mode of

a GPIB device.

local gpib local dev Make a G PIB device local.

open gpib open dev [timeout tmo] Open a GPIB device.

read gpib read [line I file I ffile] [from] dev Read a word, a line, or a

[to] dest [upto eose] file from a GPIB device.

remote gpib remote [board brd] dev [on I off] Enable/disable REN

(remote enable) line.

trigger gpib trigger dev Trigger a GPIB device.

write gpib write [line I file] [to] dev [from] Write a word, a line, or a

srce [upto eose] file from a GPIB device.

Table H.l: The commands for communication to external devices via the GPIB interface.

The characters in square brackets are optional.

28

AppendixL Device Driver Command Syntax

Commands Syntax

read atmio read [line I file]

[all I chan I chan1 chan2] var

Function

Read AID conversion

result(s) and store to

'dest'. Idest' is either a

variable name or a file

name.

write atmio write line [all I dacO I dael] expr Output D/ A conversion

result. 'expr' is the

desired voltage.

Table 1.1: The commands for the ATMIO device driver. The characters in square

brackets are optional.

Commands Syntax

read neat read [line I file] [from] srce [to]

dest

write neat write [line I filel [to] dest [froml

srce

Function

Read from a NEAT board

and store to 'dest'. 'dest'

is either a variable name

or a file name.

Write to a NEAT board.

Isrce' is test string or a

file name.

Table 1.2: The commands for the NEAT device driver. The characters in square brackets

are optionaL

29

Commands

device

Syntax

atdio device integrator [a I b I c I d]

[readstat & var I

readcnt & varl & var2 I

readncnt n & varl & var2 I

reset I

trigger]

atdio device timebase

[setu p intI int2 I

start I

stop]

atdio device pscontrol

[ramp currf irate I

read & varl & var2 I

record nsample interval]

atdio device trigger[a I b I ... I h]

[setup delay interval I

start I

stop]

30

Function

Read integrator status

byte.

Integrate 1 time and read

the counts.

Integrate n times and

read the counts.

Reset the integrator.

Trigger the integrator.

Set up, start, or stop the

timebase.

Set the current and the

ramp rate.

Read the current and the

ripple.

Record the current as a

function of time.

Set up, start, or stop the

gated trigger unit.

Commands Syntax

read atdio read [integer I long] from

[[porta I portb I porte I portd] I

[group1 I group2]] & var

Function

Read from a port or a

group of ports and store

to'var'. Groupl is porta

and portb, and group2 is

porte and portd.

write atdio write Write 'expr to a port or

[[char [porta I portb I porte I a group of ports. Groupl

portd]] I is porta and portb, and

[integer [cfg3 I groupl I group2]]] expr group2 is porte and

portd. 'cfg31 is the board

configuration port.

Table 1.3: The commands for the ATDIO device driver. The characters in square

brackets are optionaL

31

AppendixJ. Script Example SORTCAP.SCR

procedure sortcaposcr

1*

*
*
*
*'

{

This is a script for measurement of BPM button capacitance
for sorting before mounting on the vacuum chamber. The whole
procedure is automated and requires little intervention by
the operator.

call initialize;
call start;
call setup_tek;
call measure cap;
call finish;­
end;

subroutine show_usage

TOSCRNL "Script for measuring the button capacitance.";
TOSCRNL "Syntax:";
TOSCRNL " run sortcap [-n I -a] sumfile";
TOSCRNL Ii -n: name of the new summary file.";
TOSCRNL " -a: name of the summary file to append to.";
return;

subroutine finish

window delete star;

open/n #logfile;
TOLOGL "last session operator =" #opr name;
TOLOGL "last-session-startime =" #startime;
TOLOGL "last-buttonid =" #but id;
TOLOGL Itlast-meas date =" #meastime;
close #logfile;

close #sumfile;

return;

32

subroutine get_data

Initialize the data display.

GWT "autos star";
GWT "chml offset: II I I #tekoffset I I ", sensi:" I I #teksensi;
GWT "mainpos " I I itektbase;
GWT "tbmain len:" I I # it len I I "f time:" II itektdi v;
GWT "~avg " I I iteknavg;
GWT "tral des:'avg(ml) ''';
wait for itekwait;

Get the data for normalization to obtain the saturation
level.

GWT "curve?";
GRFTB norm.dat upto 0;

Turn off averaging for subsequent data.

GWT "chml offset:" I I #tekoffset I I II, sensi: It I I #teksensi;
GWT "tral des: i mIl" ;
GWT "mainpos" #tektbase;
GWT "tbmain time:" itektdiv;
wait for #tekwait;

Write the header data.

GWT "mainpos?";
GRT #linel;
istr len = strsize (#linel);
GWT "tbmain?";
GRT iline2;
add #str_len by strsize (#line2) + 2;

TOFILEL "Header Data";
TOFILEL format ("Size %d", #str_len);
TOFILEL ilinel;
TOFILEL iline2;

Write the normalization data.

TOFILEL "Normalization Data";
TOFILEL format ("Size = %d", fsize (norm.dat»;
TOFILEF norm.dat;

for #i = I, inmeas, 1 {
iiI = ii - 1;

GWT "curve?";
GRFTB wave.dat upto 0;

33

open/bin curv.dat;

GWT "mainpos?";
GRT #line;

write line to curv.dat from #line;

GWT "tbmain?" ;
GRT #line;
write line to curv.dat from 4fline;

write file to curv.dat from norm.dat;
write file to curv.dat from wave.dati

close curv.dat;
dos #$vmdir I I \cap -i curv.dat -0 out.dat

-x #init 4fifit #ioff -m 0.0 -a 4fcavg;

open out.dati
read line from out.dat 4fline;
read line from out.dat #line;
close out.dati

#capac[#il] = picknum (#line, 5);
TOSCRNL format ("%8d't%15.5f", #i, #capac[#il]);
TOFILEL;
TOFILEL format ("Case = %d", #i);
TOFILEL format ("Capacitance = %15.5f pF", #capac[#il]);
TOFILEL format ("Size = %d", fsize (wave.dat»;
TOFILEF wave.dat;

TOSCRNL "------------------------------------";
TOSCRNL format ("Average 't%15.5f", arrmean (4fcapac»;
TOSCRNL format ("Stdev = 't%15.5f", arrstdev (#capac»;
TOSCRNL;

file go to beginning off 0 in 4fdatfile;
file find" Case'tButton Capacitance (pF)") in 4fdatfile;
FRFILEL 4fline;
call write_results;

Write the data into the summary file.

write char to 4fsumfile from
format ("%04d't%7.5f't%7.5f't%s't%s't%s", 4fbut id,

arrmean <4fcapac), arrstdev (#capac), -
4fopr name, #m date, 4fm time);

for #i = 0, #nmeas - 1, -1 { -
write char to #sumfile from

format ("'t%7.5f", 4fcapac[#i]);

write line to #sumfile from nu 0 ,

34

return;

subroutine initialize

{
int #itlen = 1024;
int #nmeas = 5;
int #done = 0;

int #init;

int #ifit;
int #ioff;

#init
#ifit
#ioff

0.02 * #itlen;
0.35 * #itlen;
0.2 * #itlen;

int #teknavg = 16;

number of data points.
number of measurements per button
true if the measurement is done.

the pixel where to begin fitting.
offset from the minimum point.
the number of pixels for fitting.
the number of pixels for calculating
the offset (saturation value) .

number of averaging done on
the scope.

float #tekoffset = -0.20;
float #teksensi = 0.05;
float #tektbase = 70.28e-9;
float #tektdiv 2.e-10;
float #tekwait = 6.0;

vertical offset.
vertical sensitivity.
time base.
time per division.
time in sec to wait for the
averaging done.

float #cavg; interval of averaging to
eliminate the 12 GHz ripple.

#cavg = #itlen / (10.24 * #tektdiv * 12.e9);

string #tekprec = "optional";

double #capac[#nmeas];
double #capavg;
double #capstdev;

int #but id;
string #datfile;

string #logfile;
string #sumfile;

string #dt dir;
string #bu=dir;

string #opr name;
string #startime;
string #meastime;
string #m_date;

capacitance array.
average capacitance.
standard deviation.

button id.
name of the data file.
One data file will be
assigned to each button.
name of the session log file.
name of the summary file.

directory for data.
backup directory for data.

name of the operator.
datetime when the session started.
time when the measurement was made.
date when the measurement was made.

35

time when the measurement was made,

Miscellaneous variables,

int #str len;
string #line, #answer, #string;

Aliases,

define FRSCRNL read line from screen to;

define TOSCRNC write char to screen from;
define TOSCRNW write word to screen from;
define TOSCRNL write line to screen from;

define FRFILEL read line from #datfile to;

define TOFILEC write char to #datfile from;
define TOFILEW write word to #datfile from;
define TOFILEL write line to #datfile from;
define TOFILEF write file to #datfile from;

define TOLOGL write line to #logfile from;
define FRLOGL read line from #logfile to;

define BACKBYTE(A) file go to current off -1

define GWT
define GRT
define GRFT
define GRFTB

gpib write line to tek from;
gpib read line from tek to;
gpib read file from tek to;
gpib read /b file from tek to;

define QUERY(A,B) {

}

write word to screen from Ai
read line from screen to B;
window hide star;

define QQUERY(A,B)
do {

TOSCRNW Ai
FRSCRNL B;
TOSCRNL B I I II, correct? (y or n)";
FRSCRNL #t answer;

while (capitar (#t answer) .ne. "ylI);
window hide star; -

define ALERTW(A,B,C)
write char to screen "-07";
window write star 3 2 45 2 A;
window write star 3 3 45 3 B;
window write star 3 4 45 4 C;
window show star;
pause 0;

36

in Ai

window hide star;
}

#dt dir = d:\butcap;
#bu-dir = d:\butcapbu;
#logfile #dt dir I I \caplog.dat;
#sumfile = #dt-dir I I \capsum.dat;

f* Read info from the log file.

*1

The format of the logfile is:
last session operator = last opr name
last-session-startime = last-startime
last-buttonid = last but id
last-meas datetime -last m datetime

pickopt -n #sumfile #ia nsum;
pickopt -a #sumfile #ia-asum;
if (.not. (#ia_nsum + #Ia_asum» {

call show_usage;
end;

}

if (fexist (#logfile»
TOSCRNL "The last session log:";
TOSCRNL;
dos type #logfile;
TOSCRNL;

return;

subroutine measure_cap

do {
QQUERY ("Type in the button ID, please. Numerics only.

", #but_id);
ALERTW ("Please connect the button to the cable",

"for measurement.",
"Hit return when ready.",;

#datfile = format ("%s'\c%04d.dat", #dt_dir, #but_id);
open/bin #datfile;

call write_header;
call get_data;

close #datfile;
copy #datfile #bu_dir;

QQUERY ("Do you have more buttons to measure? (y or n)
", #answer);

37

}

#done = capital (#answer) .eq. "N";
} while (.not. #done);

subroutine setup_tek

ALERTW ("Connect an SMA cable to channell and",
"connect a button to the cable.",
"Hit return when ready.");

Display adjustment.

GWT "init";
GWT "disp mod:vec";
GWT "enc set:ascii,wav:bin";
GWT "trig mode:normal,source:int";
GWT "gra refa:2.5e-1,xun:sec,yun:rho";

Select the trace and the channel.

GWT "rem tra1";
GWT "rem tra2";
GWT "rem tra3" ;
GWT "rem tra4";
GWT "sel tra1";
GWT "out tra1 n ;

GWT "tbmain len:" #itlen;

GWT "tra1 des: 'smooth(m1,20) 'n 0 ,

GWT "tra1 de s : 'm1 ' IV ;

GWT "chm1 tdrs:on";
GWT "chm2 tdrs:off";
GWT "chm3 tdrs:off";
GWT "chm4 tdrs:off";

Adjust the display offset and sensitivity.

GWT "chm1 offset:" I I itekoffset I I ",sensi:" I I iteksensi;
GWT "tra1 des:'m1''';
GWT "mainpos" #tektbase;
GWT "tbmain time:" #tektdiv;

ALERTW ("Adjust the time base with the knob until",
"the dip on the trace is 10% from the left.",
"Hit return when ready.");

GWT "mainpos?";
GRT #line; format of #line is "MAINPOS %e".
#tektbase = picknum (#line, 1);

GWT "tbmain?";

38

GRT #line; format of #line is
"TBMAIN LENGTH:%d,TIME:%e,XINCR:%e".

#tektdiv picknum (#line, 2);

return;

subroutine start

windo~ create star 0 0 15 18 5 63 9;
window box star 0 0 14 1 1 80 80;

Check if a new summary file is to be created.

if (#ia nsum) {
#line = format ("You specified a new summary file

'''%s'''. Are you sure? (y or n) ", #sumfile};
if (capital (#answer) . eq. "Y") {

open/n #sumfile;
write line to #sumfile from

format ("Button ID'tC_p'tStdev'tOperator'tDate
'tTime'tCase l'tCase 2'tCase 3'tCase 4'tCase 5");

}

else {
TOSCRNL format
("Appending to the summary file '''%s'''.'', #sumfile);
open/a #sumfile;

copy #dt dir I I \cap.exe #$vmdir;
QQUERY ("Type in your name, please.
#startime = datetime (0);

subroutine write header

#meastime = datetime (0);
#m time = pickword (#meastime, 1);
#m-date pickword (#meastime, 2);

TOFILEL format ("Operator name:

"

TOFILEL format ("Session start datetime:
TOFILEL;
TOFILEL format ("Button ID:
TOFILEL format ("Measurement datetime:
TOFILEL;

%S", #opr name);
%s", #startime);

%04d", #but id);
%s", #meastime);

TOFILEL format (" Case'tButton Capacitance (pF)");

TOSCRNL;

39

}

TOSCRNL format (ii
TOSCRNL;

Case'tButton Capacitance (pF)ii);

Make room for the capacitance data in the file.

call write_results;

subroutine write results

{

}

TOFILEL;
for #i = 1, #nmeas, 1 {

TOFILEL format (ii%8d't%15.5fii, #i, #capac[#i-l]);

TOFILEL ii ____________________________________ ";

TOFILEL format ("Average 't%15.5fll, arrmean (#capac»;
TOFILEL format (IiStdev = 't%15.5f", arrstdev (#capac»;
TOFILEL;

40

AppendixK. Script Example RADTRIG.SCR

procedure radtrig.scr

define INCH PULSE 5080;
define CM PULSE 2000;
define GMT gpib write line to motor;
define TOSCRNL write line to screen;
define TOFILEL write line to #fname;

int #ndata, #npulse, #nlength, #ndelay, #nver, #interact;
float #xp, #xpm, #xpen, #xbndin, #xbndout, #signx;
double #gain, #cntvsec;
string #answer, #linel;
string #fname, #fgname, #frname, #ffname, #fxname;

call get_input;

#xp = -1.0 * #xbndout;
call initcoil;
TOSCRNL II Current Position =" #xpen;

window write star 3 3 45 3
" Now moving PC coil in forward direction";

window write star 3 4 45 4
" Hit return to continue ... ";

window show star;
if (#interact)

pause 0;
}
window hide star;

#xp = #xbndout;
call movecoil;
#npulse = 2 * #xbndin * INCH PULSE / #ndata;
#nlength = #npulse * #nqata + 1;
#ndelay = abs (#xpen) * INCH_PULSE - #npulse * #ndata / 2;
atdio device trig b setup 1 #npulse;
atdio device trig a setup #ndelay #nlength;
atdio device trig b start;
atdio device trig a start;
GMT start;
integ ab -a -f -n #ndata;
atdio-device trig b stop;
atdio device trig a stop;
gpib read line from motor #linel;
#xpen = picknum (#linel, 1) * #signx;
TOSCRNL " Current position =11 #xpen;

window write star 3 3 45 3

41

" Now moving PC coil in reverse direction";
window write star 3 4 45 4

" Hit return to continue ... ";
window show star;

}

(#interact)
pause 0;

window hide star;
#xp = -1.0 * #xbndout;
call movecoil;
#npulse = 2 * #xbndin * INCH PULSE / #ndata;
#nlength = #npulse * #ndata + 1;
#ndelay = abs (#xpen) * INCH PULSE - #npulse * #ndata / 2;
atdio device trig b setup 1 #npulse;
atdio device trig a setup #ndelay #nlength;
atdio device trig b start;
atdio device trig a start;
GMT start;
integ ab -a -r -n #ndata;
atdio-device trig b stop;
atdio device trig a stop;
gpib read line from motor #linel;
#xpen = picknum (#linel, 1) * #signxi
TOSCRNL Ii Current position =" #xpen;

call mvorig;
window write star 3 3 45 3 ;
window write star 3 4 45 4

.. Now Doing some calculation ;
window write star 3 5 45 5 ;
window show star;

float/l #frdt = frwd a.vmf;
float/l #bkdt = bkwd-a.vmf;
float #avrg[#ndata];-
float #avrg add[#ndata + 1];
float #avrg-xxx[#ndata + 1];
#avrg add[O] = 0;
#avrg-xxx[O] = #npulse * (0.0 - #ndata / 2.0) / INCH_PULSE;
for #i = 1, #ndata, 1 {

#avrg[#i - 1] =
#cntvsec * 0.5 * (#frdt[#i - 1] - #bkdt [#i - 1]);

#avrg add [#iJ
#avrg add [#i - 1] + #avrg[#i - IJ;

#avrg xxx [#i]
#npulse * (#i - #ndata / 2.0) / INCH_PULSE;

}
save/b var to #frname #avrg;
save/b var to #fxname #avrg_xxx;
save/b var to #ffname #avrg_add;

window delete star;

if (#interact)

42

}

xyplot -i cmove.inp -x #fxname -y #ffname -0 #fgname
-t "PC Coil Measurement #" I I #nver;

else {

}

xyplot -i cmove.inp -x #fxname -y *IIname -0 #fgname -b
-t "PC Coil Measurement #" I I #nver;

tprint pnetq /ps- #fgname;

subroutine get_input

#gain = 100.0;
#cntvsec 5.0 / 250000.0 / #gain;
#xbndout = 1.4;

#signx = 1.0;

pickopt -b #line #tf;
if (#tf) {

#interact 0;

else {
#interact 1;

}
pickopt -v #line #tf;
if (#tf) {

#nver = picknum (#line, 1);
}
else {

call show_usage;
}

pickopt -x #line #tf;
if (#tf) {

#xbndin = picknum (#line, 1);

else {
#xbndin = 1.0;

}
pickopt -n #line #tf;
if (#tf) {

#ndata = picknum (#line, 1);

else {
#ndata = (#xbdnin * INCH_PULSE * 2) / 127;

}
#fname = "CMOVE" II #nver I I ".REC";
#fgname "CMOVE" II #nver II Ii.PSF";
#frname "CMOVR" I I #nver I I ". VMF";
#ffname = "CMOVF" I I #nver I I ". VMF" i
#fxname "CMOVX" I I #nver I I Ii. VMF";

43

TOSCRNL " n;

subroutine initcoil

{
window create star 0 1 15 18 5 63 10;
window box star 0 1 14 1 1 80 80;
window write star 3 3 45 3

" Now moving PC coil to starting position.";
windo~ write star 3 4 45 4

" Hit return to continue ... ";
window show star;
if (#interact) {

pause 0;

window hide star;

gpib clear motor;
wait for 0.2;
GMT select stepinit;
wait for 0.2;
GMT load;
wait for 0.2;
GMT "mode e abs e abs * *";
GMT "enco mres 25000 25000 *
GMT "enco eres 508 508 * *" . ,

*11. ,

GMT "unit pos 5080.0000 5080.0000
GMT "vel 100000 100000 * * n e ,
GMT "accel 80000 80000 * *". ,
GMT "decel 80000 80000 * *" . ,
GMT "slimit e cw 1.6 1.6 * *" . ,
GMT "slimit e ccw -1.6 -1. 6 * *" . , -
GMT "pdef 0 0 0 *,.. ,
GMT "*"0 ,
wait for 1.0;
gpib read line from motor #answer;
wait for 0.5;
GMT start;
wait for 0.5;

do {
call movecoil;
GMT start;
wait for 5.0;

* *11. ,

gpib read line from motor #linel;
write line to screen #linel;
#xpen = picknum (#linel, 1) * #signx;

while (#xpen .ne. #xp);

subroutine move coil

44

{

}

#xpm = #xp * #signx;

gpib clear motor;
wait for 0.2;
GMT select stepmv;
wait for 0.2;
GMT load;
wait for 0.2;
GMT "mode e abs e abs * *11;
GMT "enco mres 25000 25000 * *";
GMT "enco eres 508 508 * *";
GMT "unit pos 5080.0000 5080.0000 * *";
GMT "vel 100000 100000 * *";
GMT "accel 80000 80000 * *";
GMT "decel 80000 80000 * *";
GMT "slimit e cw 1.6 1.6 * *";
GMT "slimit e-ccw -1.6 -1.6 * *";
GMT "wait for-5.000 seconds";
GMT "move" #xpm #xpm ,,* *";
GMT "in q2 = position ofaxis2 eabs";
GMT "out port3 A X =A q2";
GMT "*11;
wait for 0.5;
gpib read line from motor #answer;
wait for 0.2;

subroutine mvorig

{
window write star 3 3 45 3

II Now moving PC coil to the origin. lI
;

window write star 3 4 45 4
" Hit return to continue ... ";

window show star;
if (#interact) {

pause 0;
}
window hide star;

do {
#xp = 0.0;
call movecoil;
GMT start;
wait for 5.0;
gpib read line from motor #line1;
#xpen = picknum (#line1, 1) * #signx;
if (#xpen .ne. 0.0) {

#xp = 0.1;
call movecoil;
GMT start;

45

}

wait for 5.0;
gpib read line from motor #linel;
#again = 1;

}
else {

#again 0;
}

while (#again);

window write star 3 3 45 3 " Now PC coil is at origin";
windoVof write star 3 4 45 4 " x =" #xpen "inch";
window write star 3 4 45 5 " Hit return to continue ... ";
window show star;
if (#interact)

pause 0;

window hide star;

subroutine show_usage

{
TOSCRNL

"Usage: RUN RADTRIG [-b] -v #num [-x #xin] [-n #ndata]lI;
TOSCRNL "-b: Operate in batch mode (default: interactive)";
TOSCRNL ii-V #num Measurement number(99 < #num < 1000)";
TOSCRNL Ii_X #xin Integration boundary";
TOSCRNL" (-#xin < integration region < #xin)";
TOSCRNL II-n #ndata Number of intervals";
TOSCRNL" (default: (#xin * 5080 * 2) /127)";
end;

46

