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The Effect of Small Ellipsoidal Material on
the Resonant Frequency of a Cavity
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367
and L = 1, = 47T X 107 henrys/meter. Excited at resonance, the fields inside the cavity can be
written in the form

We assume that the medium inside the cavity hasno losseswith e = ¢, = 10~ farads/meter

E(X,y,zt) = Eo(x, Y, z)eJ ot

H(x,y,zt) = Ho(x, Y, z)eJ wt.

The electric and magnetic fields are 90° out of phase. In other words, if E,isrea H, isimagi-

nary and vice versa. Insertion of asmall piece of material with € # €,and W # L, will change
the field values and the resonant frequency

j(0+dm)t

E = (E,+Epe «y

H= (H0+ Hl)ej(w+8m)t.

Note that dm will be acomplex quantity if the inserted material islossy. Substitution of equa-
tions (1) in Maxwell’s equations

_ 0B
curl E= o
_ oD
curl H= o

give

curl (Ey+ Ep) =—j(® + 0w) (B, + B,)
curl (Hy + Hp) =j(® + dw) (D, + Dy).

Noting that the fields E,, Do, Hy and B, satisfy the same Maxwell’s equations we obtain:



curl E; = —j[80B+ (o +3w0)B, ]

curl Hy = j[dwD + (w +8w)D,].

Multiplication of equation (2a) by H, and equation (2b) by E, and addition give

Ho-curl E1+Eo-curl H1 = j(m+5m)(EO. Dl_Ho'Bl)

+ jSm(EO- DO—HO- BO)
Using the vector relation
dv(AXB)=B - culA-A- curl B
we can rewrite the L.H.S. of equation (3) in the form
Ho-curl E1+H0-curl H1
= El-curl HO+H1-curI Eo
—dlv(Hox E1+EO>< Hl),
or
Ho-curl E1+Eo-curl H1

—div(HOxE +Eo>< Hl).
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Comparison of equations (3) and (4) gives

j(0+30) (Ey D1 - Hy - By) +j80(Ey Do - Ho - Bo)
=jO(E; - Dy - Hy - By) - div (Hg X E; + E; X Hy)

(28)

(2b)

3

(4)

In practice  >> 3w so that in the expression (o + d®) (E,- D1 - Hy - B1) we can neglect o with

respect to ® and obtain

Jo(Eg- Dy - Hg - Bl'El' Do+ Hyp- Bo)+j50)(Eo' Do-Hog - Bo)

= - div (Ho X Ey + E, X Hy).

Outside the ellipsoid we have

()



Do=€0Eg, D1=€0E;, Bo=HoHy, Bp=HHy,
and equation (5) reducesto
jOW(Ey- Dy-Hy - By) =-div (Hy X E; + Ey X Hy).

We integrate this equation over the volume bounded by the cavity wall and the surface of the éllip-
soid
idw j (Ey,-Dy—Hy - BodV = — j div(Hyx Ey + ExHp)dV (6)
V AV V-aV
where V = volume of the cavity

and AV = volume of the ellipsoid.

Using the divergence theorem, the R.H.S. of equation (6) can be written as a surface integral

j div(H x E +E xHpdV = I(HOXE1+EO><H1)-dS
V -aV S+AS

where s + Asis the surface bounding the volume V-AV. Since the cavity is assumed to be a good
conductor, E, and E; will be practically perpendicular to the cavity surface and the contribution of

the cavity wall to the surface integral can be neglected. In this case we find

idw j (Ey-Dy—Hy - BydV = J(HOXE1+EO><H1)-ds 7)
V -AV AS

where As = surface of the éllipsoid. Notethat dsisin the direction of the now outward normal to
the ellipsoid surface. Inside the ellipsoid we have

D;=€E,+P and Bj=UH+M
where P = polarization or electric dipole moment per unit volume, and

M = magnetization or magnetic dipole moment per unit volume.
Substitution in equation (5) gives

jO(Ey - P-HM) +j0®(E, - Dy-Hy - By) = -div(Hy X E; + E; X Hy).

Integrating over the volume of the ellipsoid and using the divergence theorem we obtain



jmJ(EO-P—(HO-M))AVﬂSm j (Ey-Dy—Hy - ByAV (8)
AV AV
= —J'(H0><E1+EO><H1)'ds.
AS

Comparison of equations (7) and (8) and some manipulation gives

j(EO-P—HO-M)dV
dw AV

o
\j/(EO- D,—Hy BydV

or, since Hy and B, areimaginary if Ejand D, are real, we can write

) 1
—m:—mj(Eo-P+Ho-M)dV (9)

0)
AV

where U = cavity stored energy and E,, P, Hy and M are now all real quantities. For the small
region in and around the ellipsoid, E, and H, are practically uniform. For an ellipsoid of semi-

axisa, b and c with afield paralel to the a-axis, P and M are given by (see M. Mason and W.
Weaver, Dover Publications, § 36).

e -1
r E

P = e —D+1i%5o

M = e H
T Lw, -1 +1too

where €, = relative permittivity, WL, = relative permeability, and

_ abey du
L=

o (& + ) (@2 + U (b7 + u) (2 + )

Axia Symmetrica Ellipsoid

For axial symmetry about the a-axis we have b = ¢, and this reduces the integral to an elementary
one,



du

200
L = ab%J‘ 2 3/2 2
o(@+u)y (b"+u

Performing the integration we find for a oblate spheroid (a< b)

2
1+3e (e—arctane), e = i b2—a2

e

L =

and for a prolate spheroid (a> b)

2
L = l-¢e (lln1+e—e), o= i a2—b2

e \2 1-e
For both cases the spheroid reducesto aspherefore— Oand L = 1/3. For thelimitasa— 0
(e— oo ), theoblate spheroid becomesacircular disk of radiusband L = 1. On the other hand,
as b — 0 the prolate spheroid becomes a very thin rod of length 2aand L = 0.

If the field is perpendicular to the axis of revolution we have

2

L:& du

2 E(b2+u)2 /a2+u

For a prolate spheroid (a> b) we find

2
Lo 1—e( 2e _|n1+eJ oz %1 2 2

4e3 1—e2 1-e

For an oblate spheroid (a< b)) we find

2
1+6° e(1-¢) 12 2
actane — ——— |, e = =4Jb —-a.
3 2.2 a
8e (1+e)

L =

In both casesfor e — 0 (sphere), L = 1/3. For the prolate spheroid for e =1 (rod), L = 1/2. For
the oblate spheroid for e = oo (disk), L = 0.

EXAMPLES



(1) Dielectric Sphere:

. _ _ 8r_ _
RadiusR, 1, = 1, P =31 5efy M =0
g = _1LR3 Er_l EO
f U £r+2 o)

(2) Metal Sphere:

RadiusR, 1, = O, €, = 00, P=3¢,E, M =-3/2 loH,

of nR3 1 2

T _T(SOEO_E“OHOJ'

(3) Dielectric Needle:

Parallel to E,, volume AV, P= (g, - 1) E.E, M =0

of _ AV 2
T = —m(ﬁr—l)EoEo .
(4) Meta Needle:

Perpendicular to E, and parallel to Hy, volume AV, P=2 €,E,, M = -l H,

of _ AV 2 2
T~ —m(ZeoEo —uoHo )

(5) Dielectric Disk:

e
Perpendicular to E,, volume AV, P = re €€y M = O
r

of _ AVer_l 2
= —— e E "
f 4U g 0O

(6) Metal Needle Parallel to E, and Metal Disk Parallel or Perpendicular to E,




A/az—b2 = 1 isnot valid since
aa/bz—a2 = oo isnot valid since

forL=0,P— candforL =1, M = oco. Inthese cases, the actual value of L must be calculated

1
r—1toMo

For the metal needle parallel to E,, the approximation of e =

QI

I~

for L =0, P— oo, For the metal disk, the approximation e =

. | B
and substituted in P = [eoEo andM =



