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Optimization of nonlinear driving terms have become a useful tool for designing storage rings,
especially modern light sources where the strong nonlinearity is dominated by the large chromatic
effects of quadrupoles and strong sextupoles for chromaticity control. The Lie algebraic method is
well known for computing such driving terms. However, it appears that there was a lack of explicit
formulas in the public domain for such computation, resulting in uncertainty and/or inconsistency
in widely used codes. This note presents explicit formulas for driving terms due to sextupoles and
chromatic effects of quadrupoles, which can be considered as thin elements. The computation is
accurate to the 4th-order Hamiltonian and 2nd-order in terms of magnet parameters. The results
given here are the same as the APS internal note AOP-TN-2009-020. This internal note has been
revised and published here as a Light Source Note in order to get this information into the public
domain, since both ELEGANT and OPA are using these formulas.

I. INTRODUCTION

It is well known that the effective Hamiltonian of a storage ring can be concatenated from individual element maps
via similarity transformations and BCH formula. Let h,, and f;, be the n-th order generator for the ring Hamiltonian
and i-th element in the ring, respectively. Then to the 4th Hamiltonian order (i.e., the octupole order),
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where fi means fi(X) = fi(R 1 X) with Ry = Ry_; > e~ F2ie=if2 .. e=2"" the linear transformation
matrix from the last element N to the i-th element. [f,g] represents the Poisson bracket of f and g. Note that since
[h3, hy] is 5th order, e3'ehe: = ehstha yup o the 4th order.

To reduce the nonlinearity of the ring, one would like to minimize the nonlinear generators hs and h4 as much
as possible. Because the linear system is periodic, it is more useful to examine the nonlinear generators using the
resonance basis, i.e., the eigenmodes of the linear map. The connection between the normal coordinates (z, psz, Y, py),
action-angle variables (J,, ¢z, Jy, ¢y ), and the resonance basis (&4, &_, 9+, §—) are commonly defined as

By = /20,65 = x Fip,, §i = /20,65 =y Fip,. (3)
Using the resonance basis, the effective Hamiltonian can be expanded as

i1+i2+i3+igtis=n _ o
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i1,42,13,14,i5 >0
This note gives the explicit formulas for these coefficients for a simplified storage ring model, where the nonlinear
contributions are due to chromatic effects of quadrupoles and sextupoles that can be treated as thin elements. The
computation is straightforward but rather tedious, and thus was done with the help of Mathematica™.
Note that the resonance associated with each term is:

(i1 — i2)vy + (i3 — ia)vy = integer, (5)

where v, , are the horizontal and vertical tunes.



II. FORMULAS FOR THE DRIVING TERMS
Here we use the same notations as in [3] and consider thin sextupoles with vector potential
1 3 2
Vi:_gbi&i(x = 3zy”), (6)
and chromatic contribution from quadrupoles
1 2 _ 2

The purpose here is to give explicit 2nd-order driving terms, i.e., the coefficients of h(?) in Eq. (93) of [3]. We obtained
the same Ist-order expressions as in [3] and explicit 2nd-order expressions as:
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Here the coefficients by = boL = K;L and by = b3 = KsL/2, i.e., the integrated field strength (K7 and Ks are
quadrupole and sextupole coefficients used in ELEGANT and MAD, and L is magnet length). The summation means
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