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ABSTRACT
This paper presents a tolerance budget for accelerators dictated by the linear trans-
verse dynamics of particle motion. The lnearized equations satisfied by the particle
motion when errors in the lattice are present are given along with the solution to these
equations. The forms of these errors giving rise to the linearized equation are stated.
These results are used to derive a tolerance budget for the Advanced Photon Source

(APS) injector synchrotron.

Introduction

It is well known that the design of an accelerator differs from the operating conditions because of
the idealized character of the forces used in the design stages. These deviations of idealized forces from
actual forces acting on the particles in an accelerator will be called errors in all that follows. These
errors in turn change the lattice functions of the idealized accelerator. If the deviations are large, there
can be instabilities of the beam motion. Thus it is desirable to get some estimate of the effects of errors
on the lattice parameters of an accelerator. These effects in turn dictate the tolerances one can have on
the sources of these errors.

The error sources can be random or systematic. Some of the most commmon sources of errors are (a)
random or systematic positional errors of the magnetic elements and (b) random or systematic multipole
fields present in the magnetic elements.

This paper focuses on the linear dynamics only. The paper is divided into two sections and four
appendices. The first section deals with the transverse equations of motion and the form of their solutions
and attempts to qualitatively distinguish the main sources of error and their effects. The second section
displays the equations satisfied when these errors are present and the general form of the solutions of
these equations and the conditions required to obtain these solutions. Some comments are presented

about the use of these expressions when the errors are systematic, and the expressions are simplified
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for use when errors are random. These two sections are followed by three appendices containing the
derivation of the errors, the derivations of linearized equations of motion, and their solutions. Appendix
D contains an application to the APS injector synchrotron and the resulting tolerances on the lattice
parameters.

Some of this work is well known and can be found in references listed at the end. One of the purposes

of this paper is to collect all this information in a single document for reference.

1. Equations of Motion

In the following we will assume that the accelerators are planar. The radius of curvature p is piecewise
constant and there is no energy change at the particle. We will neglect the coupled motion caused by
sextupoles and skew quadrupoles. We will neglect all nonlinear contributions to the equations of motion.

We will assume accelerator coordinates such that the line element is given by:
d? = dz? + dy* + (1 + z/p)” ds. (1.1)

Note that in the straight sections p is infinite and ds = dz . 1t is straightforward to verify that in these

coordinates the equations of motion take the following standard form (Edwardsl ):

2" — ((p+2) /p") = (—eBy/p:) (1 +2/p)’ (1.2)
Y’ =(=eBs/ps) (1 + x/P)2~ (1.3)

Because By and B, are polynomials in x and y and the coeflicients of these polynomials are functions
of s, it 1s not known at present how to solve these equations analytically. At present we are not even
interested in that question. These equations are simplified considerably 1 view of our previously stated

3

assumptions. Considering only the linear part of the magnetic fleld ( see Courant? or Michelotti3 or any

of your favorite authors) we obtain the linear equations

&'+ (1/p* = k) & = (1/p) (1 = po/ps), (14)
v+ ky=0. (1.5)

If we further assume that the momentum p; is equal to pg we obtain the standard homogeneous equations

satisfied for the transverse motion of the particles in an accelerator as:

x”—{-(l/pz—k)x:() (1.6)
¥+ ky = 0. (1.7)

These equations are similar to the harmonic oscillator equations of a unit point mass whose spring
constant (or what may be called frequency) depends on time. The spring constants in the above equations
are the quadrupole strength and the inverse square of the curvature of the trajectory in the dipole. Its

formal periodic solutions have been extensively studied. In the following, for the sake of the completion,



we will write down the solutions. The interested reader can refer for details to Courant 2 or Lichtenberg4
or Steﬂ"enS, or any of several accelerator summer school proceedings.
Therefore, without any further details we will write down the transformations which bring these

equations in the phase amplitude form and the equations satisfied by those variables. We define:

z(s)=W(s)U(s), W(s)=p2 U(s) = Aet¥©), (1.8)
W'+ K(s)W(s) =W3=0, ¥ = / W 2ds,

v= (277)‘1}£W”2ds, ¢ = 1/1//W‘2ds, (1.10)

where W (s) is periodic in s with some period §s and ¥ (s + §s) — ¥ (s) = §¥. §v is the phase advance
over the distance 6s. The equation of motion takes the following simple form:

&

e + U =0. (1.11)

2. Linearized Equation in the Presence of Errors

The Eq. (1.11) is the equation for a simple harmonic oscillator for the variable U as a function.
of the parameter ¢, with v the natural frequency. However, the deceptively simple-locking equation
has all the complications hidden in Eq. (1.9). Notice that frequency v is given by equation Eq. (1.10) -
and that the equation can be evaluated only if equation Eq. (1.9) for W(s) can be solved. One of the
driving terms in that equation is the quadrupole strength parameter K(s) from Eq. (1.6) or Eq. (1.7).
Therefore, errors in the quadrupole strength of the equations of motion will change the frequency v and
the amplitude function 5. The source of error in the quadrupole strength can be the result of errors
in the quadrupole field, or other multipole content present in magnets, or tilts and/or displacement of
magnetic elements with higher-order multipole fields. Quadrupole strength is not the only parameter
which can differ between the design and the actual machine. In the equations of motion above, the dipole
field is designed to give a constant radius of curvature, 1/p. However, in practice the dipole field of the
bending magnet can vary from the desired goal, giving rise to errors in the bending radius. Additional
sources of bending field errors can come from ¢ilt in the bending magnets or positional displacement of
the quadrupoles, sextupoles, etc. Other very important sources of errors are quadrupole displacements
and tilts in the bending magnets. All these dipole field errors appear as constant driving terms on the
right-hand sides of Eq. (1.6) and Eq. (1.7). These source terms give rise to orbit distortions. Lastly,
recall that in obtaining the linear homogeneous equation we assumed that the actual momentum of the
particle is the same as the nominal momentum assumed in defining 1/p = (eB) / (¢Fy). If the momenturn
pe 18 different from the nominal momentum, then there are source terms which are proportional to the
mornentum deviation from the nominal momentum, causing orbit dispersions. In the following section

we treat the linearized equations to be satisfied in the presence of different sources of errors.



ORBIT DISTORTION:

First of all consider the bend field errors. The linearized equations of motion are written as:

X'+ Ko ()X = £, (5), (2.1)
Y+ Ky (5)Y = £, (5). (2.2)

The formal structure of both the X and the Y equations of motion given above is the same . So it will
be sufficient if we deal with only one of them. The form of the source function f (s) and f, (5} is given
in Appendix C.
If we again introduce the variables U and ¢ as defined in Eq. (1.8) through Eq. (1.10) and use these
in Eq. (2.1) or Eq. (2.2) we obtain:
&2U
d¢?

The solution to the homogeneous equation obtained from Eq. (2.3) is characterized by the invariant

+ 12U = =2 B%f (¢), F(8) = F(4(5)). (2.3)

function I = U? + 1/1/2%%2 which is a constant of motion. In fact this I is just the square of the A
term given in Eq. (1.8). The solution of the inhomogeneous equation can be obtained' by the Green
function method from the linear combinations of the known solutions of the homogeneous equation.
We demand that the Green function satisfy the periodic boundary conditions. Also we demand that
the Green function be continuous at the source point and its derivative be discontinuous at the source
point. (See details in Appendix B.) With the above procedure, the Green function and the solution are
respectively given by

a (¢)¢’) - Wﬂ; (2.4)

(2sin7v)

, gt 2m
0(6) =~ T /{ﬁ B312F (4, cos v (6 — ¢ + m)dds, (25)

where ¢; is the position of the source term. From the solution of Eq. (2.5) we can construct the invariant
I, the square of the amplitude function in terms of which we can express the transverse orbit coordinates
and slopes, for the orbit distortions in X or Y at any point along the ring are given by /1. Using the
above expression for I, we get
I v : ¢f"2"d¢ O+27rd 3/2 3/2 .

~ () [ [ ans e 6 1@ f@eesr - i) (26)
The invariant is independent of the phase angle ¢ and depends only on the phase difference between
different sources, as it should be. Since the error sources are distributed among the discrete magnetic
elements, the double integral over the phase reduces to the double sum over the magnetic elernents
over which f(¢) is non-zero with integration to be carried out over the length of the element itself.
Notice that the beta functions and the tune in the integral are the parameters for the perfect machine.
Therefore, changing the above equation to the double sum form we get,

i=(element) j=(element)

, L L -
[=—Y Z A dé; Z ,/o dg; [ﬂf] (B /3j)d/“cosu (¢i — #7)] - (2.7)

; 2
(2811] 7”/) i=(elementy j=(elementy



If we furthermore use the fact that d¢ = (v8)™ 'ds and the fact that over an element the ds = dl we get

1 i=(element) j=(elementy

L; L, R
e > [T ¥ jgdlj (565 (81 3 Peosw (8= 92)] - (29)

(2sin 7v) i=(element) j=(elementy
We thus have in Eq. (2.8) the expression for the amplitude factor as a function of the errors at position
¢; and the corresponding beta functions at the position of the error and the cosine of the phase difference
between different error positions. The amplitude factor is symmetric in the interchange of thedndices i
and j which refer to the location of the error sources.
We can simplify Eq. (2.8) by assuming that ¢ does not vary significantly over the element under

consideration. We get:

g i=(element)j=(element)

I= <~1_> > SO Ll {fifj (B)" () * cos v (¢ -¢j)} : (2.9)

(2sinmv) i=(elementyj=(elementy
Eq. (2.9) can be used to find the amplification factors if we know the sources of the error. In the case
of systematic errors we just carry out the double sum using the error distribution. However, in the
case of random distribution the double sum reduces to a single sum, i.e only contributions to the rms

amplification factor are for ¢ = j. In that case we have

i=(element)

IS = <_<f_>,_n_> > [l (2.10)

(2sin7v) .
i={elementy
For applications, a comprehensive list of the error sources f(¢) is provided in Appendix C.

GRADIENT ERRORS:

As stated in the beginning of Section 2, the coefficient K in the equations of motion is different from
K for the real machine. In this case one would like to know-the deviation of the orbit parameters between
the real machine and the designed one. Recall that K in the equations of motion defines W (s) = [3%
through Eq. (1.9) and v through Eq. (1.10). Thus, any change in K would change both the g function
and the tune v. In the following we assume that the solution of the equation for W (s) is for the designed

K (s), and we obtain the equations of motion linearized off this solution. To that end we assume that:

K= K+8K, W(s)=W(s)+6W, W(s)=w(s){l+ %}. (2.11)

Since W (s) satisfies the equation analogous to Eq. (1.8) we use the right-hand side of Eq. (2.11) in it.

After writing the equation in terms of the variables ¢ and §WW/WW, we obtain the following (see Appendix

d* (W 2 WY _ L
@;(—W-)w (—W—) = F(g), (2.12)

F(¢) =— 1V *WSK. (2.13)

A for details of the derivation):

Notice that Eq. (2.12) for % satisfies the equation for the driven harmonic oscillator with frequency

twice the frequency of the corresponding orbit distortion equation, Eq. (2.3), the driving term being
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proportional to the square of the unperturbed £ function. Associated with this equation is the invariant,
say Isp (see Appendix B for details), which is the square of the amplitude of the (%) oscillations.
Again, we solve Eq. (2.12) subject to the conditions of the periodicity, with periodicity given by the
revolution time period of the particle. In addition, we demand the continuity of the Green function at
the source point and the discontinuity in the derivative of the Green function equal to the strength of

the source term. We obtaln

cos2v (¢ ~ ¢1 + 7)

Comd, 1) = 4vsin(27v) (2.14)
sW ! gt . |
W 4w sin(27v) A F(¢1)cos2v (¢ — ¢1 + m)des. (2.15)

The corresponding invariant function Isg, can be written as follows:

sWA\2 I\ s\ ‘
Using Eq. (2.15) in Eq. (2.16) we obtain,

1 2 pet2m o+2m
.rw::(m) L dés [» F(61) F (¢2) cosu (¢1 — d2)d1. (2.17)

4vsin(

In a given accelerator, the sources of the error F(¢) are distributed discreetly around the ring in the
attributes of the magnetic elements. Hence, in any particular application the function F (¢) vanishes for
most values of ¢ except at a finite number of values of ¢. We can then replace the double integration
over ¢ by a double sum with integration carried over the region of the magnetic element which is the

source of the error. Under these conditions we get

1 2iz=n pL; j=n L,
Lip= (W) ;/ﬂ dg/);A de; [F (i) F (¢5) cos2v (¢i — ;)] - (2.18)

We can further simplify Eq. (2.18) by changing the integration variable from ¢ to s using vd¢ = g~ 1ds ~
£~ 1dl over the magnetic element. We also assume that in F (¢;) = v*W;*6 K (¢;), 6K (¢:) is constant

over the length of the P’th element. Consequently we can replace 6K (¢;) by 6K;:

1 2i=n .. j=n L, § ; ‘
Isg = (W) Za A dli; A dl; i B (6K 8K j cos2v (¢ — ¢;)] (2.19)
. 6B/ . 4B/ o
5[&1' = 122 [\7, = “E—p‘ (220)

We need to make one more assumption in order to render the above expression simple for applications
to accelerators: that the phase ¢; does not vary over the length of the magnetic element. Under this

condition the integration over dl; contributes the length of the magnetic element, and we have

gi=(element)j=(element)

1 o .
1“3:(\W> Z Z LiL; Bif; 6 K6 K j cos2v (¢; — ;)] - (2.21)

i={elementyj=(elementy



The Eq. (2.21) is the invariant function associated with the linearized equation of the motion for 63/,

and is, in fact, the square of the amplitude of the motion. In terms of /55 we have
5

55 -

% /552 (vd). (2.22)
; y

If the sources of our errors are systematic we can carry out the double sum and find the change in the
B function. In case of random errors we can either find the rms value of the change in § or carry out
the double sum and associate the invariant amplitude function with §8/8. If we are only interested in

the root mean square value of the double sum the expression becomes particularly simple:

. i=(element)
<K >rms)’ 59

rms = | BTSN L 37, 2.2:
<lsp> ( 2sin(27v) > , Z & (2:23)

i=(element)

. i=(element)
op <K > 222

oy SO8 Zrms 1262, 2.24
< JZ; > 2sin(2nv) P (224)

i=(elementy

In obtaining Eq. (2.24) for %—3 we have used the relation W? = . Notice again that Eq. (2.12) satisfied
by 68/8 is one of simple harmonic motion. And §8/8 is maximum when (68/8) vanishes. Hence
max (68 (s)/5 (s)) = Isp. Therefore, knowing 5 (s) and Isz tells us the maximum value 64 can have at
any place 1n the accelerator ring.

Since the tune is given by v = 5~ fozﬁﬁ’ lds, we can obtain the change in tune v, from the change
in 3. The expression for the change in tune Av/v can be obtained by using Eq. (2.22) in the expression

for v:

Ay 1 i=(element)j=(element)
7 e —4—7; ( Z a ( Z [)L,ékzélu] Ljﬁiﬁj(}OSQI/ (¢2 — (b]) (225)
i={elementyj={(element,

MOMENTUM SPREAD EFFECTS:

Recall that in obtaining the linear equations of motion we assumed that the longitudinal momentum
used for defining the magnetic rigidity is the same as p,. In general, the particle bunch has a longitudinal
momentum spread. Particles of momentum p; # po are said to have a momentumn error. We will next
investigate the trajectory of these off-momentum particles. Again, starting from the linear equation of
motion Eq. (1.6), using p; = Pp + Ap and expanding (po + Ap)~"in the power series and keeping only

the linear terms we obtain
X'"+k(8)X = Fi(s)+ —A];ZZFQ (s), Ba(s)=1/p+ f(s). (2.26)
We will demand that the solution of Eq. (2.26) be of the form Xz + D%P— such that
5"+ k(s) Xp = Fi(s),
D'+ k(s)D=1/p+f(s). (2.27)

The solution of the first of the above equations has already been considered previously. Here we are

interested in Eq. (2.27).



It f(s) in Eq. (2.27) vanishes, we obtain an equation with the source term given by 1/p, which is
the well-known source term for driving the dispersion effects. We will next assume that the solution
of the equation with f(s) = 0 is already known and is given by D(s). Hence we can assume that for
PR

he solution is given by D (s) + AD(s). Inserting this into Eq. (2.27) we obtain the equation

satisfied by AD (s):

cw—

{'/9\/1/
JAs) < i/

™

AD" +k(s)AD = —k, D+ f(s). (2.28)

The coefficient k, of D, the first term on the right-hand side of the above equation, is préportional to
BLp times the alignment and field errors in the magnetic elements. Its form is given in Appendix C.
We will proceed in a similar manner, assuming that AD = /U (¢), where d¢ = 7/13 Inserting these
in Eq. (2.28) and using 288" — B+ 48% = 4, we get (see Appendix A},
IZU
d¢?

Once again notice that Eq. (2.29) is the linear equation of the driven harmonic oscillator with frequency

VU = 12832 [k, D + f(s)] . (2.29)

v. Associated with the above equation is the invariant Isp = U2+ —2 (%—q> where U (¢) is the solution
of the inhomogeneous equation, Eq. (2.29). The solution U (¢) satisfying the periodic. orbit boundary

conditions can be written as follows:

427
U () = —— ; / VB8 (60%2f (d1) cos (6 — b + 1)ddr. (2.30)

2usin(mr) Jg

In terms of the solution Eq. (2.30) we have

Isp= (m> / d / Ao f (1) V48 (1)1 28 (62)°/71 (82) cosw (1 — ). (2.31)

Again the above expression is simplified under the assumption that sources of error are distributed
discreetly around the ring in the attributes of the magnetic elements, and the integral. contributes only

at those elements. Under these assumptions we get
v 2i=n AL l j=n Lj , 32
Iip = (5-——(;——)) > / 63 [ 0,5 @) @B @) @) =6 23

Furthermore, using vd¢ = ~1ds and ds = dL; over the i’th element and assuming that 8 changes very
little within the magnetic element, we can write

gi=(element)j=(element)

I 2
oo = (W) 2 S AL L f o (- 60| (239)

i=(elementyj=(elementy
In the above form we have carried the integration over the magnetic element and assumed the value of
¢; 1s the value at the center of the magnetic element. If the error sources are assumed to be random in
character we can estimate the root mean square value of the “invariant” amplification factor 5 from

Eq. (2.33) (see Appendix for the most commonly used forms of I):

i=(element)

. <f>rms 2. a
< [6[) >rms= QSiIl(ﬂ’l/) Z Lz/))l (234)

t={(clementy
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Appendix A.

Sources of Error

ERROR SOURCES:

In this appendix we will give the explicit form of the sources of errors which contribute ag sources
of the linear equation of motion. We will assume magnetic multipole fields up to octupoles, introduce
the field errors and the placement errors of the magnetic elements along with the momentum errors of
the particle. After that we will obtain the equations where these errors contribute as sources.

In the following we will assume that (a) the accelerator is planar, (b) the radius of curvature p
is plecewise constant, (c) there is no energy transfer to the particle or energy loss by the particle,
(d) the coupled motion caused by the sextupole type of coupling or skew quadrupole type of coupling
is neglected, (e) all the nonlinear contributions to the equations of motion are ignored, and (f) the

accelerator coordinates are such that the line element is given by
di? = da? + dy? + (1 + z/p)* ds*. (A.1)

Note that in the straight sections p is infinite and ds = dz . Also in what follows B will stand for By or
B..

As stated earlier we have assumed, (g) the magnetic field has terms up to order three, in multipole
expansion:

— 1
B= Bo+Ba+-ZT)’ + 3

and (h) in the perturbative expansion of the field errors we will keep at most second-order terms in the

v B’” (A.2)

errors.

Under field errors, the dipole part of the field is By + A By, the quadrupole part is B’ 4+ AB’, the
sextupole part is B 4+ AB", and the octupole part is B + AB’”. Under displacement error Az, the
position of the centerline of the magnet changes to # 4 Az. Using these expressions for the magnetic

field we can write

(z + A;z)
21

(:13+A:z:

B = (Bo+ ABo) 4 (z+ Az) (B'+ AB') + (B"+AB") + (B"+ AB"™). (A3)

Taking By as a comnon factor we obtain

N ABy B ABYN o (z+Ax)’ B AB"
(m +Al,) B/// AB/” <A4)
BO T (1 —‘—)
3! By B

The equation of motion as in Eq. (1.2) (see section 1 on Equations of Motion) has term f’[" (1 + > . In

the following we will assume that the momentum p; = py + Ap , where pg is the nomindl mornentum of
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the particle on the designed trajectory. We will further assume that:

. B/ B// B///
S T k - = — . .t
Bop 7 Bgp ® Bop o (45)

Using the definitions in Eq. (A.5) and the form of p, assumed earlier, we can write the right side of

Eq. (1.2) as follows:
eB Ap\ T ABO i AB' s AB" 5
2 (2 o ()3 o]
A ABII O AB///
( — ——-) [( k) ( > +s (1 4 T )A:L—i— 5 (1 + ——— T > sz] -+ (A.6)
Ap s AB" O AB" 0 AB"
(-2 22) 2 0+32) )5 (4]

In the following we will ignore the coefficients of the nonlinear terms (i.e z? terms) and also the terms

5

of the form Az® in the right-hand side of Eq. (1.2), i.e third-order terms in the perturbation expansion.

2
A /
5145 (145) [0 2) e e )]
Ps p 2 B 2 (A7)
Ap X AB AB" o, .,
(1~—-I;—> [(—L) (1—{-—-5,—) +s <l+ 7 )Am+7Ax } z
Next, separating the terms which are coefficients of the x and the constant terms, we get
eB z\? Ap {1 ABO ( AB’) s 2]
— 14+ =) =]l —-— — Az + Az} +
2 ( p) ( P > iy B el
1
- {—k 1+AB +s(14+22 A;L'—l—-;O—A:nz} + (A.8)
p B B//
(1 A_> {2{1 ABo 4 <1+A[B>Ax+ S Az }]

p Bop
We define:
ABg AB S o
ort = — k)Y l1 Az + ~Az? A.
fdztort {BOP "Jf’( ) < +— B ) z -+ ‘ZA:L }> ( 9)
ABO AB/ S
fdispers: {EO—; +( l”) <1 + —E’—> Az + EA"BZ}: (A'IO)

/ 1 !
Sk = [{—kAB (1+AB >Aa +OA 2} + = {ABO k(l A5

il 5 Az?
5 )Am+ QA:): }} J(A11)

Using the above definitions in Eq. (A.7) for the right-hand side of Eq. (1.2) we get

eB z\? A
(1 + "') :/)m1 - fditort_ '—p [p-‘l -+ fdisper; +
Ds P 4 (A.I‘Z)

Ap ...

Both Eq. (A.12) and Eq. (A.8) describe the right-hand side of the equation of motion of the particles

int the presence of errors.
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Appendix B.
Equations of Motion

Equations for orbit distortion and dispersion:

In order to derive the linear equations of motion of particles with forces specified by the error sources
in Appendix A, we start with Eq. (1.2): o
2 — ((P+$)/p2) = (——6By/ps)(l+:c/p)2, (B.1)
Y’ = (=eBo/ps) (1 +/p)*. (B2)
Using Eq. (A.12) for the right-hand side of the above equations, while keeping in mind that for the

y-motion p71 =0,

((p+2)/p?) — (eBy/ps) (1 +2/p)’ =+ faistori— %—ZZ (P71 + faisperd +

A (B.3)
[(k —p~2) — bk + 7{(2,0“2 — lc) +6kg}| ®.
Using Eq. (B.3) in Eq. (B.1) and Eq. (B.2), and defining K = (p~2?— k) we get
. A A
z" -+ l:[\ + 61»/3 - “EE{(‘ZP—‘Z - k) + 6kﬁ}] &L= fdistort+ ?p {/7_1 + fdisperg ) (34)
A A
y,/ + [i” + 51“5 - ';)g{(Qp_z - ]”) + 61”5}} y= fdistort""‘ -Z'Dgfdispem (35)

Because of the similarity of the above two equations we treat only Eq. (B.4). Let us assume that

the solution of this equation is of the form T = Z + Z4;,, such that,

A
2 {K + 6y — —p—p{(zp-2 — k) + 61%}} F = Farstors (B.6)
, A 5 . A
;Eii/isp_{_ {[\ + 6kﬁ - _52{(2/)—” - k) + 6k/3}} :Edisp: "'];E [P—] -+ fdispgr; . (87)

Furthermore let us assume that zg;,, = %ED, implying thereby that T = % + —A;)f—’]j Using our new

substitution in Eq. (B.7) we obtain,
~ A . ~
P [K 4k~ Z2((277 - +5kﬁ}} D=0+ fareper] (B8)

Notice that the coefficients of the linear parts of Eq. (B.6) and Eq. (B.8) are both harmonic oscillator
type equations with the same s dependent quadrupole strength. Also notice that when there are no
magnetic field imperfections and no misalignment, the dispersion equation has the driving term given by
p~ 1. Let us consider the leading order terms in both these equations. If D = D+ AD and # = 2 + Az,
where D and x satisfy Eq. (B.8) to the leading order in the expansion, in the absence of field and

placement errors we have

2"+ Kz =0, (B.9)
D"+ KD=p". (B.10)
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The two perturbative parts Az and AL satisfy:

. Ap 2 Ap 2 _
Az’ 1 [A’ +0kg — 751')'{;‘3 —k+ 6/%}} Az = faistortt+ [6&;,, — _1_913{57 —k+ 6lc,3}} z  (B.11)
I i

[ ] 1 r A, a
AD" + [K + kg — -A]‘)i’{;- - 5kﬁ}J AD = faisperst [61% - %{55 —k+ 6k,3}j D (B.12)

If we ignore terms higher than order one in Eq. (B.11) and higher than order two in Eq. (B.12) we obtain

the following equations for Az and A D, respectively: -
Az + KAz = o . BPe o .
xr +[\Ax-fdzstort+ 5L[3—?{(2p —L)} z, (Blg)
17 - _ . A Ap 5 2 A
AD"+ KAD = faisperst+ |0kg — > (2p7% - k)}| D. (B.14)

Equation {B.13) is not exactly in the form most often found in the literature. Usually the orbit
distortion Az is given for the particle whose trajectory is characterized by z = 0 and y = 0, solutions of
the homogeneous equation. However, if the particle initially has « # 0, 2’ # 0, then the above-specified
solution cannot characterize the trajectory of such initial conditions. For such particles, the second term
on the right-hand side contributes to the orbit distortion over and above the contributions to the central
trajectory. For completion these terms are included in Eq. (B.13)

In the next step we reparameterize Eq. (B.13) and Eq. (B.14) by assuming that Az = WU (¢) and

AD = WV (¢). Since both equations are formally of a similar structure, we concentrate on Eq. (B.13):

Aa:’:UW’-}—( : >dU

vW ) dg’
"o 1 ]‘ f_l_z_g
Az = UW" — <—z/2W3 d¢2 .
Recall that W satisfies
W'+ KW = W3, (B.15)

Using these relations and Eq. (B.15) for Eq. (B.13) and the analogous relations in Eq. (B.14) we get

U ) o A ,
';1'(;;2' + VQU = VH,BJ/Z ljfdistort'*‘ {6k/3 o —pg (2/7“2 - l”) }:E] ) (316)
d?v A

W =+ VvV = V2/83/2 l:fdispers_{' {5kﬂ - TP (2/)_2 - 1”>}D} . (317)

Equation for changes in the § function:

Notice that the quadrupole strength term in Eq. (B.13} and Eq. (B.14) is the same as that appearing
in BEq. (B.9) and Eq. (B.10). Hence, the oscillation frequency and the oscillation amplitude of these
equations is relevant to the solutions of the perturbed equations given above. The well-known solution
of Eq. (B.9) has been stated in the sections on linear motion in equations (1.9) through (1.15). There we
characterized the solutions in terms of the phase function ¥ and a function W? = g satisfying equations

(1.12) through (1.15). Let us consider the homogeneous part of Eq. (B.4) and let the coefficient of the
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term linear in x be called K and the corresponding amplitude function W = W+ AW. Then W, along
with K = K + 8K, satisfies an equation analogous to Eq. (1.12). Equation (1.12) satisfied by W and
W is rewritten below.

W'+ KW =Ww= (B.18)

Inserting W = W + AW and K = K + 6K in Eq. (B.18) we have

_— AWY ., AW/ .
W_<1+—W—>W+W—W-,

. AW AW’ AW

" __ 1 f 1

W _<1+————W>W W + W
. AW AWN 4

-3 _ -3
|64 _<1+——W>W <1+——W> ,
AW

AW AW AW SK
W w '

W“-{—K’VV:(H— 7 ){W”+KW}+2W’——— AW AW 14—

The above relations and Eq. (B.15) imply that:

aAw” o AW AW
W +2W~W-~ +W(1+W

SAW.

- (B.19)

w > OK ~ —4W~

Changing the parameter s of the differentiation to the parameter given by the phase 1, where ¢’ =
W=2=v¢, we get

AW' 1 d AW

W vWidg W
AW" W' d AW+ 1 42 AW

W uvW2de W vPWB gt W

w

These expressions imply that Eq. (B.19) can be written as

&AW AW ‘g ‘

Recall that W? = f so that that §F = %g. If we use this relation in Eq. (B.20) we get the equation

for %ﬁ. We have thus obtained the equation governing the changes in the § function. Notice that the

fractional change of 7 oscillates with twice the frequency of the unperturbed system.
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Appendix C.

Solutions to the Linearized Equations of Motion

In Appendix B we found that the linearized equations satisfied by the orbit distortions 2%, orbit

VP
dispersions -‘57% and %, satisfy the inhomogeneous harmonic oscillator equations in appropriate coord:-
nate systems. Hence the form of their solution is similar. For the sake of completion, we obtain the
solution to the generalized form of the equation even though the solutions to these equations are well

known. Let us consider an equation of the following form:
—— + V2 = F, (C.1)

where Z stands for U or V or QWVZ and F could be any of the terms appearing on the right-hand side
of the corresponding equations obtained in Appendix B. Since we are considering circular accelerators,
the source terms on the right-hand side are periodic with periodicity equal to a revolution around the
ring. We are interested in the closed orbit solutions, i.e we want Z(¢) = Z (¢ + 2x). We use the
Green function method to solve Eq. (C.1). Let GG (¢ — ¢1) be the Green function for the above equation,

satisfying: LG — )
(¢ —¢1
d¢*

Notice that for ¢ > ¢ and ¢ < ¢;, G($ — ¢1) satisfies a linear homogeneous equation with con-

+52G($— 41) = 80 (6 — 1)} (c2)

stant coefficient. The two general linearly independent solutions to such an equation are e*” (¢=1) and
e~ "($=41) The particular solution to the equation is some linear combination of these solutions. Let
(i< and (¢ be the form of the linear combination of the two general solutions in the regions denoted by
0< d< ¢y and ¢ < ¢ < 2w, respectively. We want the solution to be such that at (¢ = ¢1) G = G
and -‘%’:—f - %? = 1. In addition to the conditions of continuity of the solution and discontinuity of its
derivative at the source of the error, we want the solution and its derivative to be continuous at (¢ = 0)

mn a total of four conditions. Therefore, in each region of ¢ where the homogeneous equation 1s satisfied

we can write G« and Gy in the following form:
Ge = e1e?@=91) 4 ¢yem2?(9-91) (C.3)
Gs = dye?@= 914 dpe=2(¢=01) (C4)

Using the conditions of continuity of the Green function at ¢; and discontinuity of the derivative of

the Green function at ¢;, we find that

(0= ) = ~(er= )5 (2= )= (s =) = (7). (c:5)

137

The above two conditions imply that

(e1 —dy) = (i};) D (ea—dy) = <~271;) . (C16)



Solutions to the Linearized Equations of Motion

If we call GG = —%sin [7(¢ — #1)] in the region, 0 <<< ¢, and G5 = 0 in the region, ¢ < ¢ < 2w, and

use Eq. (C.5) and Eq. (C.6), we can write
G(p— 1) = G+ dy PP~ 4 doe=12(0=41) (C7)
The continuity of the Green function and its derivative at ¢ = 0mod (27) imply d; = mm and
dy = m These in turn imply that: o
G(%@):W. (C.8)
Given the Green function for Eq. (C.1) we can construct the solution to the original equation in the

usual way. In the following, we write down the solution to three equations derived in Appendix B:

¢+27
% - ZE%E’%; /¢ F($1) cos{v (¢ — 1 + m)}dé, (C9)
¢+2m
é\/% - T;ﬁ; /4) F (1) cos{v (¢ — ¢y + 1)} doy, (C.10)
¢+2w
%3. _ ML F (1) cos{2u (¢ — ¢, + )} dd1. (C.11)

Recall that true errors are the driving terms in the harmonic oscillator with constant frequency. For

such an oscillator there exists an invariant of motion which characterizes the amplitude of the motion.

1 [dZ\?
= 2 fm— /V‘ €
I=2 +U2<d¢) : (C12)

[is similar to the total energy of a simple harmonic oscillator. Using Eq. (C.9), Eq. (C.10), and Eq. (C.11)

This invariant, say [, is given by

and their derivatives in Eq. (C.12) successively we obtain the invariants we have stated earlier:

1 2 pétar ¢4-2m ( L
Iy, = (W) /¢ déo /q5 A F (61) F (b2) cos [v (g2 — 1) (C.13)
| 2 pptom $42m
Isp= <W> /(/) d@[p dpr F (¢1) F (¢2) cos[v (2 — ¢1)] (C.14)

4rsin

1 2 42w ¢+2m
]6ﬁ:(_—m>.[» dgs / dg1F (1) F (ds) cos[2v (62— 61)],  (C.15)

where F'(¢) denotes the right-hand side of the equations written in Appendix B. Also note that we can

1 ~ L sind az ~ I 7
wrlteZ_ﬁsmuqb and d¢_\/§cosy¢.

Approximations to a discreet error distribution:

In order to simplify the above expressions for applications to circular accelerators we use the fact
that the magnetic elements, hence the error sources, are discreetly distributed around the ring. Hence
the above integrals contribute only at the position of the magnetic elements considered. Let us further
assume that the errors and the beta functions are constant over the length of the magnetic element

under consideration. We further assurne that the term cos o (¢; — ¢;) does not change significantly over



Solutions to the Linearized Equations of Motion 16

the length of the magnetic element. With these assumptions and the fact that d¢ = (T}ﬁ> ds = (ﬁ) drL,

where L 1s the length of the magnetic element, we obtain:

gi=(elementyj=(elementy)
= (— LiF (¢3) LiF (4;) - ]
lso = (W) Z [ " ]uﬁj 2 cos[v (¢ — ¢])]} , (C.16)

i=(elementyj={elementy

gi=(element)j=(element)

- 1 LiF ($:) LiF (¢;) R

o= (QVSin (T”/)> i=(elementyj=(elementy f: vp; ]l//@j —cos [V (d)l - ¢J)]] ’ ((/.17)
1 zistegmenili=(eenent LiF(¢;) Ly F (¢ .

lsp = (4l/sin (27r1/)> [ Vé)id) ) Jy[j(j¢J) cos[2v (¢; — @-)]] . (C.18)

i=(elementyj=(elementy

where ¢; is the phase at the I’th element. Let Fj denote F(¢;). To apply the above to Eq. (B.16),
Eq. (B.17), and Eq. (B.20) stated in Appendix B, we define F; = v233/%f; for orbit distortion and
F; = v*B?6K; for 63. Using these substitutions we can write the above expressions in the following

forms:

gi=(element)j=(element)

1 ~
Isz = <‘Zsin (71’1/)) i:(eg;nemaj:(e%’:mema [Li\/[?ifi[/j \/bjf] cos [1/ ((]51 - (ﬁ])}} s ((/.19)

gi=(element)j=(element)

1 Ak
o= (fZSin (7”/)> i:(e;menidj:(e%;zenta [Li \/B;fiLj \/B;f] cosly (@ — 9 ﬂ} ’ ((/'20)

gi=(element)j=(element)

1
15/5 oz (W) Z z [LL,HZ(S]\’zL][j](S]\’] COos [21/ (¢z — qu)}] . (C‘Ql)

i=(elementyj=(elementy

The tabular form of f; in the above expressions for the invariants for orbit distortion, dispersion, and

the 80 are given below.

Table C.1: Source and Form of f for Orbit Distortion:

Magnet type f f f f
' AB Ap 288, 22
Dipole Th TR Sk s
Quadrupole kAx k—éBifi;z: 2kpA‘”:c kat%’
Sextupole seAx
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Table C.2: Source and Form of f for Orbit Dispersioh:
Magnet type f f f I f
; AB AR 208 20p
Dlpole —ETO‘ _E’-,—{)-[) F/;ZD ‘;T;D
Az .. /BAz AB 2kAs 2kN/B Az L DAP
Quadrupole kAz k\/B\/E kS5-D D g LQ -
Sextupole .SD\/B—‘:/% sDAz
Table C.3: Source and Form of 6 K for %’3 anddv
Magnet type 6K SK §K
; AB 208
Dlpole —B—p" B—pg
Quadrupole kéé,g—l 2kp ﬁ_g% ka‘“’
Sextupole s\/ﬁ—‘&% sAz
Table C.4: Source and Form of §¢ = &£
Ap/p
Magnet type 5K §K SK SK K §K §K
Dipole AB 280 pAas” 2
pbole Bp Bp? Bp rx
/ 4 2k - LAz 3 2k . 24
Quadrupole kEL kD&E- p ﬁ% “pA‘ Z/}-D > ﬁ-‘&% Zch%,B; k
Sextupole qﬂ% sAz sDéS s\/[)’-‘s\-/% s%f#,
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Appendix D.
Application to the APS Injector Synchrotrdn

In this appendix we apply the results from the linear theory as given in the previous parts to specify
the tolerance budget for the injector synchrotron& The results and conclusions of the calculations as
given by the linear theory are given in Tables D.1 through D.22, in terms of the error sources. If we know
the accuracy of the beam position monitors and the accuracy within which we can place the magnetic
elements then these tables provide us with reasonable upper limits on the error tolerances.

We expect that the survey alignment accuracy is approximately 2 x 10~* meters, both in the
horizontal and the vertical directions. Also the BPM accuracy is expected to be 10~% meters. In order
to establish tolerance limits of errors we assume that these accuracies are met.

Consider the orbit distortion tables, Table D.1 and Table D.11 for horizontal and vertical motion,

respectively. With rms values for Az = 2 x 10~* meters, we find < L\/E— >= 1.4 x 10~3/meters and

x

< —76%~ >= 1.5 x 1073 /meters. With mean 8, ~ 8.3 meters and , ~ 8.8 meters, < §z >~ 4.1 mm and
< by >~ 4.5 mm. Without any orbit correction, we demand that other sources of the orbit distortion
may contribute at most the same amount. This amount of orbit distortion due to the dipole field error in

AB
b

dipole magnets implies tha ~ 1073 and Af ~ 10=3. Hence orbit correction is necessary. We expect

-to keep the orbit distortion to about .1 mm by using orbit correctors. After correction < :?fn >~ .03 mm

z

and < :%— >~ 034 mm. It is clear from Tables D.1 and D.6 that the contributions from other sources is
y

a factor of three or less than the orbit achieved after orbit correction. Therefore, these two tables do not
give rise to any further restrictions on other multipoles. Henceforth we will assume that orbit correction

has been implemented and < \;Z— >~ .03 x 10~3 vmeters and < —\;—% >~ 034 x 107 3y/meters.
z Yy

We consider next Table D.3. In view of the assumptions about Az and < -4Z

> from survey.
alignment and orbit correction criteria, respectively, we find from Table D.3 that the contributions to
< \6/% > from these sources in quadrupoles and sextupoles are < % > guad~ 192 X 10~ % /meters,

< B Seney 893 107 V/melers, < L8 >quar 14 1077 /mefers, and < L8 >eeorr 17
103 +/meters, respectively. We use the criterion that the contribution from other sources to < % >

x

may be at most equal to 1.7 x 1073 y/meters. This criterion gives the tolerance limits on some of the

field components in dipoles and quadrupoles. The conclusions about tolerances drawn from Table D.3
are given in Table D.4.

Similar considerations shown in Table D.5, Table D.14, Table D.7, Table D.16,Table D.9, and Table
Sz

D.18, while using values for Az, <

= >, Ay, < —\—%—; >, and < \5//% > obtained previously, give
restrictions on the multipole moment errors in different magnetic elements. The conclusions obtained
from each table are given separately in Table D.6, Table D.15, Table D.8, Table D.17, Table D.10,
and Table D.19, respectively. The final conclusion about tolerances on different multipole components

is obtained by comparing these different tables, and appears in Table 13.20. In the end, Table D.21,
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and Table 1D.22 give the total change in each beam dynamical parameter, as obtained after using the

estimated values.

Table D.1:

Horizontal Orbit Distortion Calculations 75%; =4 /%5.
Error Source Dipole Quadrupole Sextupole
sz Vise Viss
AB B
& 14158
a8, 00134F
08 00085£
28p, 00005322
P P
kAx 6.88Az
KAE, 0095485
2izy 0057Az
. AP AP
kz = 003655
szAx 013Az

From a survey accuracy of Az ~ 2 x 10~ %m we find that < 7

Table D.2: Tolerance Limits Due to Orbit Distortion in the Horizontal Direction.
Sz . —
>~ 1.6 x 10

Assumed <

Ve,

§z

3 /mand Az ~ 2 x 107%m

>~ 1.6 x 1073 /m.

AB
< B >dipole B

Tolerance

103

1.1 per meter
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Table D.3: Horizontal Dispersion Calculations 6? = 15—29
Error Source Dipole Quadrupole Sextupole

§D \/LSD V ]6D

B

28 1.4148F
B B
8D 8L
B B
228D 05572
288 1) 0642
pep P

kAz 6.88Az

bVBLE 26422

kb 33Az

2B ar 1.31-8¢2
roE vz

kAR D 54985
kDAL 24645
sDAz 831Az
: Az 29.752L
sD~\/B Vi 9.75 %

Table D.4: vTolerance Limits from Dispersion Calculations in the Horizontal Direction.
Assumed corrected orbit with < \;g. > 3% 1075 /m and Az = 2 x 10~ %m;
€

this implies 42 ~ 1.7 x 10~3,/m.

\/Ex

3! B!
<& >p <& >p < >q

Tolerance 1.2 x 10—3 2.1 x 10=3pm 1 3.1x 104
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Table D.5: ‘5/3/3: Calculations \6/%%

= /215

Error Source

Dipole

Quadrupole

Sextupole

V465

VAITN

Vg

. I

i
>

e ok

18.154%5
L09Az

4.33-52
3352

2477 Az

24z
90.22%

$fa

Table D.6: Tolerance Limits from ==

We have used 5—;;* ~ 2.7 x 1078

using Az ~ 2x 10~ *m and NG

bz

<AE>p | <AF >
Tolerance 1.1 x 10-3 M1 1.4 x 10-4

~ 3x10-°./m.

21
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Table D.7: v, Calculations.

Error Source Dipole Quadrupole Sextupole
vy bv, vy
AB AB
2AB AB
—2-;—[;2' .05?
RAE 5.7TAF
2oz 35Az
2k~/B A Q@ bz
A 1.38
N/ N/E
sAx 7.87Az
5v/BLE 28.66-22
s\/B v v/

Table D.8: Tolerance Limit using évy,
Az ~2x 1074 and 753- ~ 3 x 1075%/m.

z

1
<& >p <Tgr >q

Tolerance 2.1 x 1073 M1 28 x 1074
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Table D.9: 66, = Z%'/?; Clalculations.
Error Source Dipole Quadrupole Sextupole
AB QAL
v 785~
B E -
ZBATZ 055E
AB” P A[ "
D%y 35~
2
2
KAE 5.7TA%
91 NAB oy: 4
2k D7 1455
kDAZ" 2.388E
2kor 35Az
- )
26/B ag 1.3842
RV VA
2k/BAD AD
2o 1.382%=
v VA
k 07
sABT 459487
sAz 7.87TAz
51/BA% 28.662%
‘;\//3775 8 7/;
AD 9AD
s 90.2
VP 7
Table D.10: Tolerance Limits from 6&,,
using Az ~ 2 x 10~4m, \}Z’Z ~ 3 x 1075,/m,
and < ‘5? >~ 25 x 1073 /m;
implying that 66, < 2.3 x 10~ 1.
1 / ! / /
<AL, <AE S, < BB 5, < 8B >, <A >
Tolerance 4.1 x 1071 m~! 1.im~? 5.5 x 1072 1.3x 107 m~! | 6.97 x 10-2

23
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Table D.11: Vertical Orbit Distortion Calculations —\—;J—;_ = %ﬂ

v
Error Source Dipole Quadrupole Sextupole
Vs Vs Vs
Ab 1.74A0
kAy » 7.6Ay
kAZ 2 O14F
HELey 00064y
ka&F 0118
sy 027Ay

Table D.12: Tolerance Limits from Vertical Orbit Distortion.
Used < -ﬁ%; >~ 1.5 x 1073 /m and Ay ~ 2 x 10~ *m.

<EE > jipore AB

Tolerance 10-3

Table D.13: Dispersion Calculations in the Vertical Direction éﬁ— = \/%-“.

Error Source Dipole Quadrupole Sextupole

Visp, Vip, V1o,

kAy 7.6Ay




Table D.14: %%l’ Calculation % = /2 Isp,
Y
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Error Source Dipole Quadrupole Sextupole
V4 ]5/53/ \V/ ]‘Sﬁy 8By
Ap 9 onAs
KAE 17588
2 1.05Ay
2ky/B sy 4.17-5L
7 By VPBy
sAy 46 43Ay
sy/B- 167.93-2%
s\/B N />

Table D.15: Tolerance Limits from 22¥

By’
~ ¢ —4 5 ~ -5 éﬁy ~ -3
Assumed Ay ~ 2 x 107%m, —\7{%; 3.4 x 107°/m, and i 9.3 x 1077,
! !
<HF>p <% >
Tolerance 3.2 x 10=3m~1 5.3 x 10—
Table D.16: 6y, Calculations.
Error Source Dipole Quadrupole Sextupole
by Sy by
AB QAR
By 8875~
AB 90AE
kS5 5.2955
2kLy 320y
2k~/B 4y ¢ [
1.26
sAy 14.05Ay
sy/B-SL 53.36-9
vy Vs




Application to the APS Injector Synchrotron

Table D.17: Tolerance Limit using évy,
Ay ~ 2 x 107%m, and 71~‘5 ~ 3.4 x 1075 /m.
By

Table D.18:

AB'
< 5 >p

!
<&fF >¢

Tolerance

39 % 1073m™!

5.3 x 10~4

8y = Zép”—ﬁ) Calculations.

Error Source

Dipole

Quadrupole

Sextupole

8y

8¢,

88y

B
B8AE

5.2988
320y

1.26-%L

N

sAy
Sy
S\/—B\/E;

14.05Ay
53.36-2

VPy

Table 13.19: Tolerance Limit using 6§,

Ay ~2x 10~

4 Sy ¢ -5
m, and ~3.4x 10 m.
VP,
<A >p <AF >q
Tolerance 3.2 % 1073m! 5.3 x 10~4

Table D.20: Summary of Tolerance Limit on Multipole Errors from Tables D.1 through

26

D.19.
I I ! oL /
s | <AEsp | <Mlsp | <A | <A sq | <A
Tolerance 10-3 2.1 % 1073m~! 1.0 m=2 1.5 x 10-3 A3m—1 07




Table D.21: Resulting Change in Beam Parameters, Horizontal Direction.
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A

RlcE3
<FE>

vy

6z

3.6 x 10-3/m

6.4 x 10-3

9.6 x 103

0.51

Table D.22: Resulting Change in Beam Parameters, Vertical Direction.
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