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1 Introduction 

This paper describes a study of controlling the coupling between the horizontal and the ver­
tical betatron oscillations in the APS storage ring. First, we investigate the strengthening of 
coupling using two families of skew quadrupoles. Using smooth approximation, we obtained 
the formulae to estimate the coupling ratio defined as the ratio of the vertical and horizontal 
emittances or, for a single particle, the ratio of the maximum values of the Courant- Snyder 
invariants. Since we knew that the coupling is mostly enhanced by the 21st harmonic con­
tent of skew quadrupole distribution, we carried out the harmonic analysis in order to find 
the optimum arrangement of the skew quadrupoles. The numerical results from tracking a 
single particle are presented for the various configurations of skew quadrupoles. Second, we 
describe the global decoupling procedure to minimize the unwanted coupling effects. These 
are mainly due to the random roll errors of normal quadrupoles. It is shown that even with 
the rather large rms roll error of 2 mrad we can reduce the coupling from 70 percent to 10 
percent with a skew quadrupole strength which is one order of magnitude lower than the 
typical normal quadrupole strength. 

2 Global Coupling 

2.1 Treatment of Weak Coupling Using Smooth Approximation 

The Hamiltonian including the skew quadrupoles is 

(1) 

where K(s) = ~ 8/: and M(s) = ~ 8/yY. The equation of motion with B = R as the 
independent variable is 

x" + k( B)x = -m( B)y 
y" - k(B)y = -m(B)x, (2) 

where k( B) = R2 K( s), m( B) = R2 M( s) and prime denotes -teo To analyze the above linear 
coupled equation, we may use the "smooth" approximation ([1], [2]). Let 

x(B) = X(B) + u(X,B) 

y(B) Y(B) + v(Y, B), 

1 

(3) 



where the "smooth" variable X(B) is a slowly varying function of B, and u(X, B) is rippling 
with the period of 27r and its average is zero. Then the equation of motion for the smooth 
variables can be written 

x" + v;X -rn(B)Y 
" 2 Y + VyY = -rn(B)X, (4) 

where Vx,y are the tunes but in the context of smooth approximation, it is the mean restoring 
force defined as 

< k > + < (j(k- < k > )dB)2 >~ v2 

for uncoupled linear betatron oscillation. 

Assuming weak coupling, the solution of Eq. (4) may be obtained by substituting the 
homogeneous solution of X (or Y) into the right-hand side of Eq. (4). To simplify the 
calculation, we assume the initial conditions at B = 0 to be 

x = 1, X' = 0, Y = 0 and y' = O. 

Then, substituting X = cosvxB into the equation for Y we get 

y" + v;Y = -rn(B)cosvxB. 

Expanding rn( B) in the Fourier series 

k=+oo 

-rn( B) = I: (akcoskB + bksinkB), 
k=-oo 

we obtain the solution for Y 

If the tunes are near the coupling resonance, Vx Vy ~ k, 

and the coupling ratio becomes 

(5) 

(6) 

(7) 

For the APS storage ring, the tunes are Vx = 35.22 and Vy = 14.30. Hence, the 
21 st harmonic of skew quadrupole distribution around the ring causes the coupling most 
efficiently. In the next sections, the arrangement of skew quadrupoles to excite the 21 st 

harmonic is discussed and some numerical and analytical results are presented. 
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2.2 Arrangement of Skew Quadrupoles 

Consider N skew quadrupoles with the same strength evenly distributed around the ring 
with period ~ as shown in Fig. I-a. Then 

n=+oo 21f N N n=+oo 
fr(B) = ~ 8(B - -n) = - + - ~ cos(nNB). 

L.t N 21f 1f L.t 
n=-oo n=-oo 

Fourier harmonic numbers are k = nN where n is an integer. In order to control the 
harmonic number k such that k = nN + mM, we may apply on top of fr(B) the periodic 
staircase functions whose period equals ~. Such functions are shown in Fig. I-b and 

h(B) = ~bmsin(mMB), 

where bm = ~1r and m = odd integer. Thus, 

f( B) fr(B)h(B) 
2N ~sin(mMB) 2N ~~sin(nN + mM)B - sin(nN - mM)B 

2 L.t + 2 L.tL.t . 
1fm m 1f nm m 

(8) 

Hence we show that we can generate an arbitrary harmonic by changing the period of the 
staircase functions. 

In the APS storage ring, the spaces available for the skew quadrupoles are between 
Q3 and S2 in the upstream half of a sector (half sector A), which we will call the A:QS 
family, and between Q4 and S3 in the downstream half of a sector (half sector B), which 
we will call the B:QS family. This arrangement is shown in Fig. 2 which illustrates the 
nomenclature rules [3]. The number of skew quadrupoles considered is ten for each family. 
We may install the focusing A:QS in every fourth cell, say cell numbers 1, 5, 9, 13 and 17, 
and the defocusing A:QS in cells 21, 25, 29, 33 and 37. This family alone can adequately 
generate the desired 21 st harmonic. Using Eq. (8), with N = 10 and M = 1 for the A:QS 
family, we find the coefficient of the 21 st harmonic to be b21 == c = ~ which is greater than 
unity. When the additional B:QS family is added to the ring, the 21st harmonic coefficient 
has the interference term because A:QS and B:QS are not in phase. For the arrangement 
shown in Fig. l-c which we will call the "normal" arrangement, we may write 

- m(B) = c( a cos21B + b sin21B), (9) 

where a = -sin21tlBo, b = 1 + cos21tlBo, and tlBo is the shift of the origin of the B:QS 
family with respect to the origin of the A:QS family which is the middle of the A:QS skew 
quadrupole in cell number 1. In the APS storage ring D-.Bo is f. We note that, if A:QS and 
B:QS are exactly in phase, a = 0 and b = 2. 

In the next section, we present numerical results of the coupling coefficient obtained 
by tracking a single particle. We first use the "normal" arrangement as the basis and then 
we attempt to find the optimum arrangement for obtaining full coupling, K, = 1. 
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2.3 Numerical Results 

For the single particle motion the Courant-Snyder invariant is 

The coupling ratio in this report is defined as 

( Ey)max 
K, = . 

( Ex)max 

This definition is consistent with the ratio of emittances of a group of particles (a beam), 
because the emittance is the phase space area enclosed by the envelope of the beam. How­
ever, since the linear optical parameters, (3x,y and ftx,y, are ill-defined in the coupled lattice, 
our definition of the emittance is not the true projection of the four-dimensional phase space 
volume onto the x or y plane as defined in Ref. [4]. But for our application it is an adequate 
approximation to the real projected emittance. 

In order to estimate the coupling ratio with the intentional insertion of skew quadrupoles 
in the otherwise uncoupled APS storage ring lattice, we used the programs MAD [5] and 
RACETRACK [6]. The phase space structures obtained from the two programs are in 
good agreement. The results shown in this report are those from the program MAD. The 
coupling ratios for the various configurations are summarized in Table 1. The first column 
shows which family of skew quadrupole is excited to couple the beam. Each family consists 
of ten skew quadrupoles. For full coupling, K, = 1, we found that A:QS is 20 percent more 
efficient than B:QS. This is because (3x = 7.52 m and (3y = 13.63 m at A:QS, (3x = 3.54 m 
and (3y = 20.50 m at B:QS, and the coupling is proportional to J(3x(3y. Using both families, 
we could obtain full coupling with the integrated skew quadrupole strength of B'l =0.25 T 
which is larger than the 0.2 T of the design normal operating strength. 

In order to achieve full coupling at the skew quadrupole strength 0.2 T, we optimized 
the skew quadrupole arrangement. One optimization procedure is to rotate the B:QS family 
by n i~ in clockwise direction while A:QS is fixed at the original place. With n = 1, B:QS 
in cell 3 goes to cell 7 and B:QS in cell 7 to cell 11 and so on. This operation is shown in 
Fig. I-d. By using this shifting operation, we control the a and b coefficients in Eq. (9) 
which can be written 

a = a(A : QS) + a(B : QS), 
a(A:QS)=O, 
a(B : QS) = -sin21.6.8n , 

b = b(A: QS) + b(B : QS) 
b = b(A : QS) = 1 
b(B : QS) = cos21.6.8n , 

where .6.8n .6.80 + i~ nand .6.80 = If. The coefficients a( B : Q S) and b( B : Q S) for 
different n values are plotted in the polar coordinate system as in Fig. 3 (top). We notice 
that two skew families are almost in phase when n = 7 and the amplitude of the 21 st 

harmonic resulting from Fig. 3 (bottom), is 
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Skew quadrupoles Bll (T) Exmax/ ExO Eymax/ExO K, = Eymax/Exmax 

0.30 2.3936 2.6330 1.1000 
0.25 1.8577 1.8069 0.9741 
0.20 1.4991 1.1874 0.7921 

Qs3 + Qs4 0.15 1.2604 0.7031 0.5579 
0.10 1.1027 0.3195 0.2897 
0.05 1.0260 0.0860 0.0838 
0.00 1.0000 0.0000 0.0000 
0.30 1.5513 1.5555 1.0028 
0.25 1.3667 1.3057 0.9553 
0.20 1.2237 1.0343 0.8452 

Qs3 0.15 1.1280 0.7280 0.6454 
0.10 1.0555 0.3978 0.3769 
0.05 1.0133 0.1168 0.1153 
0.00 1.0000 0.0000 0.0000 
0.30 1.2501 1.0835 0.8667 
0.25 1.1715 0.8571 0.7317 
0.20 1.1099 0.6319 0.5693 

Qs4 0.15 1.0636 0.4148 0.3900 
0.10 1.0284 0.2116 0.2101 
0.05 1.0070 0.0585 0.0581 
0.00 1.0000 0.0000 0.0000 

Table 1: Effects of skew quadrupole arrangment on the linear coupling ratio 

which is the desired result. 

The tune separation and the coupling ratio for various arrangements of the B:QS family 
of the skew quadrupoles with the integrated strength B'l = 0.2 T are listed in Table 2. The 
tune separation data, an indication of coupling, clearly shows that the n = 7 arrangement 
is the most efficient way of coupling the lattice. However, the coupling ratio doesn't show 
a clear advantage of the n = 7 over the n = 8 arrangement. This is because once the beam 
is close to full coupling, the coupling ratio is saturated in the sense that it does not gain 
much advantage from the optimized arrangement to a less optimized one. This saturation­
behaviour is shown in Fig. 4 (top). Also, our definition of emittance is not rigorous. Finally, 
the coupling ratios around the ring are plotted in Fig. 4 (bottom) for a useful comparison. 

3 Global Decoupling 

3.1 'Treatment of Weak Coupling Using Matrix Formalism 

The Courant-Snyder parameterization for one-dimensional linear motion in a periodic sys­
tem is generalized to two-dimensional coupled linear motion by Edwards and Teng [7]. This 
work is further developed and put into a more convenient form for compensating coupling 
by Peggs [8]. A detailed description of the above matrix formalism can be found in Tal-
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Arrangement No. Ivx - vyl K, Eymax/ Exmax 

o (normal) 0.104 0.797 
1 0.080 0.403 
2 0.087 0.542 
3 0.115 0.798 
4 0.145 0.891 
5 0.171 0.888 
6 0.185 0.936 
7 0.186 0.952 
8 0.172 0.963 
9 0.145 0.936 

Table 2: Optimization of skew quadrupole arrangment 

man's paper [9]. Applications of this theory in a real storage ring known to us are found 
in the work of Billing at CESR [10]. Measurement and correction of the local coupling 
in the storage ring at CESR are described by Bagley and Rubin [11,12]. In addition, the 
global decoupling at the design stage of a ring which is relevant to this work is described 
by Schachinger at SSC [13]. 

Following Peggs, we may write the normalized transfer matrix for the ring as 

(10) 

This normalized transfer matrix is the similarity transformation of the Edwards and Teng 
matrix, T'. The relation between the two is 

T = GT'G-1 , (11) 

where G is the 4x4 Floquet transformation matrix defined as 

G = (G' 0) o Gy 

Gx 
(P-l/2 0) 

ax;; 1/2 (3i/2 (12) 

G-1 (Pi/2 
0 ) x (3-1/2 (3-1/2 -ax x x 

Since the two matrices are related by the similarity transformation, the eigenvalues and the 
trace of the matrix are invariant. We futher define a "fundamental" coupling matrix 

If = m+n+, 
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where the adjoint operation is the symplectic conjugate operation defined as 

n+ = -SiiS , 

from which it follows that n+ = n-1 if n is unimodular. Here S is the unit symplectic 
matrix. 

The roll angle of the eigenmodes is given by 

(20
',) _ -2Jdet(H) 

tan lj/ - ). Tr(M - N 
(13) 

An important relation for the eigenfrequency is given by 

1 
(COS21TVI - COS21TV2)2 = 4Tr(M - N)2 + det(H). (14) 

Note that the results in Eqs. (13) and (14) are exact without any approximation. Assuming 
weak coupling, Peggs shows that the matrices M and N are not perturbed in the first order 
of the coupler strength. Hence, to the first order approximation, 

Tr M = 2cos21TVx, and Tr N = 2cos21TVy. 

Thus, on the coupling resonance Vx = vY ' Eq. (14) becomes 

(15) 

The procedure to minimize 8v is often called "global decoupling". However, this terminology 
is misleading. "Global" here does not mean "at all locations of the lattice." The coupling 
effects on the beam motion which are characterized by the off-diagonal submatrices, m and 
n, of the transfer matrix, T, are local and the complete decoupling of the lattice is only 
possible by removing all the magnets which cause coupling effects. 

According to M. Billing, H can be written 

(16) 

H ± are defined as 

~ ( cosw±(Sm) SinW±(Sm)) 
'fQqm -sinw±(sm) cosw±(sm) , 

where qm = yf3;f3y is the dimensionless skew quadrupole strength of focal length f and 

where <Px,y( sm) is the betatron phase at the skew quadrupole measured from the reference 
point. These expressions are convenient because all the quantities used in the formula are 
those of the uncoupled lattice. Defining p = L.:': qmCOSW+ and r = L.:': qmsinw+, II + can be 
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compactly expressed as 

HF ( _~ ;) 
Near the coupling resonance, the contribution of the H_ term becomes negligibly small. 
Thus, 

(17) 

3.2 Decoupling Procedure and Its Application 

A routine procedure to decouple the lattice by the operator may be described as follows: 

1. Initially, the ring operates at the normal tunes which are Vx = 35.22 and Vy = 14.30 
for the APS storage ring. 

2. Adjust the trim quadrupoles to bring the two tunes together as close as possible. 

3. Adjust the two families of skew quadrupoles (A:QS and B:QS in the APS storage 
ring) to minimize the tune separation, ov. 

4. Finally, return the tunes to the normal values by adjusting the trim quadrupoles. 

The same procedure is simulated using the program MAD interactively. In the simulation, 
Qls (see Figure 2 for the location) are chosen as the trim quadrupoles. 

Rewriting p and r, 

(18) 

where Po and ro are from the random roll errors of normal quadrupoles in the ring, we can 
see that it is convenient to use A:QS to control r, and B:QS to control p, or vice versa. 
With the midpoint of the straight section of cell 0 as the reference point, we found that 
A:QS mainly control r. With the ten skew quadrupoles of the A:QS family, we get 

p(A: QS) = O.2Iqml, r(A: QS) = 6.0 Iqml. 

For optimal control of p using the B:QS family, we consult Fig. 3 (top) in order to find the 
most efficient arrangement. There we find that the phase of n = 4 or n = 9 arrangement is 
almost orthogonal to that of A:QS. The relevance of using Fig. 3 (top) may be traced to 
the definition of w+, 

In the simulation, we used the n = 0 arrangement of B:QS. The coupling ratio due to 
the random roll errors of normal quadrupoles is shown in Fig. 5 for three different error 
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Error level 8v (before) 8v (after) A:QS (B'l) B:QS (B'l) 
0.5 mrad 0.0186 0.00133 0.019 T 0.055 T 
1.0 mrad 0.0353 0.00465 0.031 T 0.100 T 
2.0 mrad 0.0714 0.0282 0.019 T 0.140 T 

Table 3: Effect of Decoupling Procedure on the Tunes 

levels (0.5 mrad, 1mrad, and 2 mrad). The minimum tune separations before and after 
decoupling are summarized in Table 3 with the same seed number for the assignment of 
random errors. We note that 8v before decoupling is linearly proportional to the magnitude 
of rms errors as expected. 

Finally, the effects of decoupling on the phase motion at the normal tunes, shown 
in Fig. 6 for the error level of 2 mrad, indicate that our decoupling procedure effectively 
reduced the vertical emittance. The turn by turn single particle emittances are also plotted 
(see Fig. 7). 

4 Conclusion 

In this report we investigated the introduction of coupling to put a beam in the fully 
coupled state and the decoupling procedure to cancel the coupling effects due to the random 
roll errors of normal quadrupoles. The harmonic analysis of skew quadrupole distribution 
provides the common ground for finding the optimum arrangement of skew quadrupoles. We 
achieved full coupling at the integrated skew quadrupole strength of 0.2 T and we reduced 
the coupling by the decoupling procedure down to 10 percent even with the rather large 
rms roll error of 2 mrad. 
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(the optimized arrangement achiving full coupling). 



Hi H2 
Vi V2 r-----------------, , 

H3 
V3 

A 

Storage Ring Sector and 
Magnet Nomenclature 

----1---
1 

8 

H4 H4 H3 H2 Hi 
V4 V4 V3 V2 VI 

~---------- ~ ~---------- ----: ~---------------~ ~---- --------

I ( : ( BMn: 1 

! ~ ~O~ol i 000. :~ ~o~ ~j in 000 : :~o~ ~: ~ 
: 01 02 S1 03 OS" S2 M S3' 'Q4 05S405 04: 'os S3 M S2 ':03 S1 02 01 ' 
t : : : : j : : : : 
'-- _______________ 1 t ___________ , 1 ________________ ' .. ________________ 1 ______________ , 

Girder 1 

S(n)A:{H,V)1 
S(n)A:01 
S{n)A:P1 
S(n)A:(H,V)2 
S(n)A:02 
S(n)A:P2 
S(n)A.S1 
S(n)A:03 
S(n)A:OS 

Girder 2 Girder 3 Girder 4 Girder 5 

S{n)A:{H,V)3 S(n)A:04 S{n)B:OS S(n)B:03 

S(n)A:(H,V)4 S(n)B:S3 S{n)B:S1 S{n)A:S2 
S(n)A:05 S(n)B:P4 S(n)B:P2 S(n)A:P3 
S(n)A:S4 S(n)B:M S(n)B:02 S(n)A:M 
S(n)B:P5 S{n)B:P3 S(n)B:{H,V)2 S{n)A:P4 
S(n)B:05 S(n)B:S2 S{n)B:Pi S(n)A:S3 
S(n)B:(H. V)4 S(n)B:(H,V)3 S(n)B:01 

S(n)B:04 S(n)8:(H,V) 1 

S = Storage Ring 
n = Sector Number 
A,B = Upstream, Downstream Half of Sector 
: = Delimiter - Do not use period (.) 
01-05 = Ouadrupoles 
OS = Skew Quadrupole 
S 1-S4 = Sextupoles 
H 1-H4 = Horizontal Steering Correctors 
V1-V4 = Vertical Steering Correctors 
M = Dipoles 
P = Position Monitors 
10 = Insertion Device Source 
8M = Bending Magnet Source 

Fig. 2. Nomenclature for the APS storage ring. (From G. Decker, Ref. [3]) 



180 

180 

b 
t 

90 11 = 7 

270 1'1 = 1 

h 
i 

1'1=6 901'1=1 1'1=8 

270 

Fig. 3. (Top) a and b coefficients from the B:OS skew quadrupole family, 
(Bottom) total a and b coefficients including both the A:OS and the B:OS skew quadrupole families. 



i20,---------------------------------------------~ 

100 

80 
~ 
~ 

0 

~ @I n=7 a: 60 
OJ 
c 

--0- n=8 
0.. 
::::l 
0 40 0 

20 

O~--~----~--_r----r_--~--~----T_--_r--~~~ 

0.00 0.05 0.10 0.15 0.20 0.25 

B'I (T) 

120~--------------------------------------------~ 

100 

80 
~ 
~ 
0 
.~ ---e- n=O 
a: 60 

@I n=7 
OJ 
c --0- n=8 
0.. 
::::l 
0 40 
0 

20 

o 5 i 0 15 20 

Cell Number 

Fig. 4. (Top) Coupling Ratio vs B'I (T), (Bottom) Coupling Ratio Around Ring. 



80~--------------------------------------------, 

60 

~ 
~ 

0 
SEED=OEFAULT 

~ 
-a--

40 
~ SEED=1111 

<.'.J 
z l1li SEED=2222 
:::::i 
0... 
:J 
0 
0 

20 

O~~==~~---'------r-----~----~----~ 
0.000 0.001 0.002 0.003 

RMS ROLL ERROR (RAO) 

Fig. 5. Coupling ratio due to the random roll errors of normal quadrupoles. 



HOFUZONTAL PHASE SPACE VEETICAL PHASE SPACE: 

0.500 -------------------, 0.500 

OAOO - 0.400 -

0.300 - 0.300 -

0.200 0.200 -
...... 
" . 

0.100 0.100 
;:;; 

0.0 ;:;; 0.0 

x r 
n.. -0.100 n.. -0.100 

;:;; 
;:;; 

X 
n.. 

-0.200 -0.200 

-0.300 -0.300 

-0.400 -0.400 

-0.500'--_____________ ----' -0.500 
-0.5 0.5 -0.5 0.5 

X(MM) Y(MM) 

HORIZONTAL PHASE SPACE VERTICAL PHASE SPACE 

0.50 ,------,-----.,.----,------, 0.50.------.-------,------,.------, 

0.25 - 0.25 f-

0.0 0.01-

-0.25 - -0.25 -

-0.50 L.... __ ........L ___ --"-___ -'--__ ---' -0.50'---__ ---'-___ -'-___ -'--__ _ 

-0.50 -0.25 0.0 0.25 0.50 -0.50 -0.25 0.0 0.25 0.50 

X (MM) Y (MM) 

Fig. 6. The effects of decoupling on the phase motion. 
(Top) Before decoupling, (Bottom) After decoupling. 



t=1 
«: 
0:: 
::2 
I 

::2 
::2 

X 
W 

HORIZONTAL EMLTTANCE 

0.002 

0 .. 001 

0.0 L.....-'--_..L....--'-_-'---'_---'-_L--'--_..L...........l 
0.UOO.0200.oo00.0400.a500.OO00.0700.OO00.moo.oooo.0 

TURN 

HORIZONTAL EMITTANCE 

0.008 

0.007 

0.006 

0.005 

0.004 

0.003 

0.002 

0.001 

0.0 
0.0 200.0 400.0 600.0 800.0 1000.0 

TURN 

t=1 
«: 
0:: 
::2 
I 

::2 
::2 
~ 

r 
w 

Fig. 7. The effects of decoupling on the emittance. 

VERTICAL EMITTANCE 

0.009 

0.008 

0.007 

0.001 

0.0 
O.U 00 .0200 .0000.0400. a500. 0000 .0700. 0000. moo.Q 000.0 

TURN 

VERTICAL EMITTANCE 

0.009 

0.008 

0.007 

0.006 

0.005 

0.004 

0.003 

0.002 

0.001 

0.0 
0.0 200.0 400.0 600.0 800.0 1000.0 

TURN 

(Top) Before decoupling, (Bottom) After decoupling. 


